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Final demonstrator of the deep learning and SNN model for 
robot control in a conditional task using an industrial 

manipulator UR5 (SPIKEFERENCE)  
(D3.16 – SGA3) 

 

 
Figure 1: Demonstrator of Spiking Neural Network Control of Robots and Dynamical Systems 

This Deliverable is composed of i) a main demo of a robotic arm controlled by a deep spiking neural network 
architecture and ii) the description of an SNN model for estimation and control, inspired by the predictive coding 
account of perception. Along with the models we also describe iii) its deployment in neuromorphic hardware with the 
collaboration of the High-Level Support Team. The main demo uses our developed deep SNN architecture to control 
an industrial manipulator in simulation (using the NVIDIA Isaac sim). This demo targets researchers who want to train 
their own SNN controllers and for education purposes, as we provide a tutorial-like Jupiter notebook. As an aside 
contribution we developed a control software library at the top of the stork SNNs library. 
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Abstract: 

Spiking Neural Networks (SNN) have been shown to have comparable or better 
performance on perceptual tasks, e.g., classification, with the advantage of being 
directly deployable in neuromorphic chips. However, research in SNN control is still 
insufficiently investigated. In fact, robust estimation and control with spikes is still 
an open problem. The closed-loop generation of control signals that allow an agent 
(natural or artificial) to produce behaviour has particular characteristics. For 
instance, sensory input is dynamic and the temporal response is critical. This 
Deliverable shows how biologically plausible architectures using spiking deep neural 
networks can control robots and dynamical systems in general. We provide i) a main 
demonstrator of a robotic arm controlled by a neuroscience-inspired deep spiking 
neural network architecture (using Nvidia Isaac simulator) and ii) the description of 
an SNN model for estimation and control, inspired by the predictive coding account 
of perception. Furthermore, we also describe iii) the SNN models' ongoing 
deployment in neuromorphic hardware with the collaboration of HBP service 
category four (High-Level Support Team) to connect to physical systems. The demo 
and SNN model descriptions are accompanied by open-source software and libraries 
that can be downloaded and executed. 

Keywords: Spiking Neural Networks, Predictive coding, Perception and control, Robotics 

Project Number: 945539 Project Title: HBP SGA3 



   
 

D3.16 (D94) SGA3 M42 SUBMITTED 230927.docx PU = Public 27-Sep-2023 Page 3 / 10 
 

Target Users/Readers: 
Researchers, students, computational neuroscience, computer scientists, artificial 
intelligence, experts in spiking neural networks, experts in robotics, neuroscientific 
community. 
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1. Context 
This Deliverable belongs to Task 3.11, a dedicated task inside WP3 funded by the SGA3 call: High-
level neuro-symbolic processing for guidance of goal-directed behaviour. The aim of Task T3.11 is 
twofold: i) to investigate and develop brain-inspired architectures to address the challenge of high-
level reasoning and behaviour (See Output 3.31 for a detailed outcome of the task in this direction); 
and ii) to demonstrate how biologically plausible architectures with spiking neural networks, can 
control dynamical systems (e.g., industrial robots). The latter is described in this Deliverable in the 
form of a demo accompanied with open source software, and the description of the models 
developed. This Deliverable D3.16 shows how biologically plausible architectures using spiking 
deep neural networks can control robots. Hence, targeting WP3 overall goal WPO3.1 (Enhanced 
real-world task performance through biologically plausible adaptive cognitive architectures running 
on neuromorphic hardware and closed-loop neuro-robotics platform) within the HBP scientific area 
of Cognitive Functions. 

The Deliverable is composed of i) a main demo of a robotic arm controlled by a neuroscience-inspired 
deep spiking neural network architecture (in simulation) and ii) the description of a SNN model for 
estimation and control, inspired by the predictive coding account of perception. Along with the 
models we also describe iii) its deployment in neuromorphic hardware with the collaboration of HBP 
service category four (High-Level Support Team) to connect to physical systems. 

1.1 Progress vs State of the Art & Scientific Problems 
Addressed  

On the one hand, recent advances in SNNs and neuromorphic hardware have shown their strong 
potential to reduce energy consumption while achieving high performance in some tasks1. On the 
other hand, within the Human Brain Project, there have been important scientific breakthroughs to 
allow the scalation of SNNs to non-toy examples thanks to, for instance, the development of 
improved surrogate gradient methods 2 . However, studies on SNN control are scarce as their 
evaluation usually targets perceptual tasks, such as image classification. While in the mindset of the 
neuromorphic community control may be a solvable problem thanks to current technology, efficient 
and robust control using SNNs is still an open and challenging problem.  

The developed models presented in this Deliverable open new avenues for SNN control in 
neuromorphic hardware in artificial intelligence, robotics and cognitive neuroscience, and have 
direct application in industrial automation and robotic wearables (e.g., exoskeletons and closed-
loop prosthetics). Action generation with spikes is a very challenging endeavour in HBP, needed to 
understand behaviour and develop new AI solutions that can interact with the physical world. 

The closed-loop generation of control signals that allow an agent (natural or artificial) to produce 
behaviour has its own characteristics that differ from perceptual classification. For instance, sensory 
input is dynamic and temporal response is critical. There are outstanding exceptions in continuous 
control, such as Eliasmith and colleagues' works3, where their SNNs architectures target cognition 
but also control robotic arms4; or recent works on quadratic optimisation2. These methods are, whilst 
bioinspired, closer to an engineering solution than a functional mimicry of brain processing. 
Therefore, D3.16 describes the key ingredients of biologically-inspired closed-loop behaviour 
generation with SNNs, a major goal in Task 3.11 and a subgoal of WP3. Particularly Task 3.11 

 
1 Davies, M. et al. (2021). Advancing neuromorphic computing with loihi: A survey of results and outlook. 
Proceedings of the IEEE, 109(5), 911-934. 
2 Bellec G, Scherr F, Subramoney A, Hajek E, Salaj D, Legenstein R, Maass W (2020). A solution to the learning 
dilemma for recurrent networks of spiking neurons. Nat. Commun. 11(1):3625. (P1998) 
3 Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., & Rasmussen, D. (2012). A large-
scale model of the functioning brain. science, 338(6111), 1202-1205. 
4 DeWolf, T., Patel, K., Jaworski, P., Leontie, R., Hays, J., & Eliasmith, C. (2023). Neuromorphic control of a 
simulated 7-DOF arm using Loihi. Neuromorphic Computing and Engineering, 3(1), 014007. 
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investigated i) how to learn to control robots with SNNs, ii) how to develop efficient and fast 
neuroscience-inspired SNNs architectures for estimation and control of dynamical systems (e.g., a 
spiking active inference model) and iii) the deployment of these approaches into neuromorphic 
hardware. 

1) Learning to control with SNNs. We developed a new SNN architecture that can learn complex 
continuous control policies from self-generated data of the robot (See Demo of this Deliverable). 
While current solutions are restricted to position control, discrete action generation or in the 
case of NENGO there is a need to approximate engineered dynamics mappings with large SNNs, 
our solution can learn from scratch the dynamics (world model5) and, at the same time, the 
generation of the control signals in a continuous action domain. This architecture has a strong 
brain inspiration, as i) it is based on predictive coding account to perception and ii) the neurons 
of the SNNs possess LIF internal dynamics and their recurrency—conversely to other machine 
learning SNNs solutions that transform SNN neurons into standard artificial neurons with binary 
output and payload messages. 

2) Predictive coding and active inference with Spikes. Although predictive coding6 and active 
inference 7  have been presented as a biologically plausible functional description of brain 
processing (for perception and action), there is still a big gap between its mathematical 
formulation and the biological neural substrate. In particular, a spiking neural network 
formulation is missing. We investigated in Task 3.11 algorithms that integrate the characteristics 
of these theoretical accounts through spiking dynamics. This is essential to achieve the following 
objectives: i) creating low-power highly-efficient inference chips for perception and control, ii) 
aiding in parsing and decoding the actual signals generated within the brain's circuitry8 and iii) 
deploying cybernetic/biological computers9. This Deliverable describes a model that is able to 
robustly estimate and control known dynamical systems (e.g., robots) with biologically plausible 
spiking patterns and that can mimic active inference dynamics. These novel methods named 
Spike Coding Networks Control and Spike Active Inference do not need learning or optimization 
thus, offering important opportunities for deploying fast and efficient task-specific on-chip 
spiking controllers with biologically realistic activity. 

3) Neuroscience-inspired neuromorphic control. One of the main advantages of our proposed SSN 
architectures is that they can be directly deployed into neuromorphic chips. However, there are 
always hardware restrictions and specifications that need translation from the theoretical model 
into chip-specific computations. While this is more a technical problem than a scientific one, 
this Deliverable also describes the collaboration of SKU (Task 3.11) with the service category 4 
(T4.13) High-Level Support Team (Thomas Nowotny, Sussex University and Jörg Conradt, KTH) to 
deploy the developed models into hardware. 

1.2 Relation to and use of EBRAINS and service 
categories 

We are collaborating with the service category 4 High-Level Support Team through a Voucher 
programme. In particular, they supported Task 3.11 to deploy the developed SNN models—described 
in this Deliverable—into neuromorphic hardware and allow the connection to a physical robot. First, 
the team of Thomas Nowotny (Partner UoS) has ported our closed-form Spike Coding Networks 

 
5 Taniguchi, T. et al. (2023). World models and predictive coding for cognitive and developmental robotics: 
frontiers and challenges. Advanced Robotics, 1-27. (P4156) 
6 Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some 
extra-classical receptive-field effects. Nature neuroscience, 2(1), 79-87. 
7 Parr, T., Pezzulo, G., Friston, K. J. (2022). Active inference: the free energy principle in mind, brain, and 
behavior. MIT Press. (P2988) 
8 Denève, S., Machens, C.K. (2016). Efficient codes and balanced networks. Nature neuroscience, 19, 375-382. 
9 Kagan, B.J. et al. (2022). In vitro neurons learn and exhibit sentience when embodied in a simulated game-
world. Neuron 110(23), 3952–3969. (P4008) 
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Control to a GPU-based accelerated hardware—using their developed framework GeNN10. The model 
has been deployed into a Nvidia Jetson Nano to have a fast interface connection between the 
physical robot and the SNN computation. This reduces the challenges of SNN simulated solutions, 
which normally cannot provide perception-action fast loops needed to control a robot. Second, Jörg 
Conradt’s group (Partner KTH) is working on the deployment of the SNN models into the Spinnaker 
board using their developed Peripheral Interface (SPIF) to obtain a high-frequency sensor/motor 
robot connection. 

1.3 How to access the demo 
The demonstrator shows the deep SNN architecture (described in Sec. 2.1) controlling a robotic arm 
with spikes in the Nvidia Isaac Simulator (See Figure 1). The demo has two levels of use: i) open-
source software for researchers investigating regression or control problems with SNNs and ii) a 
tutorial that can be followed step by step through a Jupiter notebook, or executed directly in Python. 
Hence, this demo is thought to aid researchers in training their spiking controller for any robot and 
also for teaching purposes—to train students in spike learning and control. It can be accessed in the 
following GitHub repository: https://github.com/jhuebotter/spiking_control 

Requirements, instructions and a link to a video of the demo can be found in the README.md file of 
the repository. The backbone software of the demo is a library developed for SNNs learning for 
control (on the top of the stork library): https://github.com/jhuebotter/control_stork 

2. Neuroscience-inspired SNN robot control  

2.1 Learning to control: SNN World Models 
SKU, in this sub-task, developed a new deep SNN computational model that is suitable for learning 
to control robots. In particular, our primary goal was to construct an SNN for the low-level continuous 
control of industrial robotic arms—See the main demo of this Deliverable. Instead of creating an 
anatomically detailed model of how human brains perform control (e.g., cerebellum model), we 
sought to harness basic principles of efficient information processing. Our proposed architecture 
takes inspiration from the predictive brain approach to control—See11 for preliminary work on motor 
control with the proposed architecture)—and state-of-the-art model-based deep learning approaches 
for continuous control12. The core ability of SNNs to process temporal dynamics makes them an ideal 
candidate for robotic arm control. The provided repository in this Deliverable also includes tutorial 
notebooks, offering an introduction to SNNs control in the machine learning context for research and 
education purposes. Besides, we foresee that this contribution will lay the foundation for future 
implementations of SNNs for control in neuromorphic hardware. 

We evaluated the developed model in two exemplar simulated robotic manipulanda (Figure 2): a 
2DoF planar arm (for tutorial/teaching purposes) and a 7-DoF robot arm by Franka Emika using the 
Isaac Sim framework13. In the latter, we examined several DoF cases and control modes (velocity, 
acceleration, and torque) under more realistic conditions, including joint constraints and self-
collision. In both robots, the primary learned task was reach & follow—in a full observability setting—
where the robot end-effector was programmed to reach a target pose and track moving target 
positions.  

 
10 https://genn-team.github.io/  
11 Huebotter, J., Thill, S., Gerven, M. V., & Lanillos, P. (2022, September). Learning policies for continuous 
control via transition models. In International Workshop on Active Inference (pp. 162-178). Cham: Springer 
Nature Switzerland. (P3997) 
12 Hafner, D., Lillicrap, T., Ba, J., & Norouzi, M. (2019). Dream to control: Learning behaviors by latent 
imagination. arXiv preprint arXiv:1912.01603. 
13 https://developer.nvidia.com/isaac-sim 

https://github.com/jhuebotter/spiking_control
https://github.com/jhuebotter/control_stork
https://genn-team.github.io/
https://developer.nvidia.com/isaac-sim
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Our model architecture is composed of two connected pathways. The prediction/world model allows 
the agent to learn the world dynamics (predicting observations and state transitions) and a 
policy/inverse model for control signal generation14. This modular architecture is adaptable and can 
be extended for higher-level cognitive functions, such as visual perception, value assessment, and 
high-level policy planning and learning (e.g., including rewards-based learning). Supervised learning 
in deep SNNs via surrogate gradients has been shown to be a powerful tool for feed-forward networks 
on the classification using temporal data. Here, we adapted this method in a self-supervised setting 
in the domain of continuous control problems. For this purpose, we extended the stork 
framework15,16 for surrogate learning in SNNs in GPUs via PyTorch for control problems. The software 
library has been released as open source17. 

 
Figure 2: Learning to control with SNNs. 

Left: Robots used for simulated reach & follow tasks. Centre: Schematic and example activity of the spiking neural 
networks for control signal generation and robot state prediction. Right top: The sigmoid surrogate gradient function 
approximates the step activation function during the backward pass for leaky integrate-and-fire neurons. The shape 
of the gradient has been normalized and tuned to tackle vanishing gradients during sequence learning. Right bottom: 
Example of unrolled autoregressive state prediction under a given control sequence used for updating the prediction 
network (predicted state vs. observed state). 

Training SSNs for control 

The (recurrent) prediction model was trained to comprehend the robot arm dynamics from 
experience. The robot primarily rolls out imagined robot state trajectories based on control signals 
from the policy/inverse model. This enables us to determine the gradient of the end-effector pose 
error concerning the control signal and its network parameters. We then employed Backpropagation 
Through Time (BPTT) to optimise both networks simultaneously using an end-to-end learning 
approach. A schematic of this process is illustrated in the figure below. 

Our model implementation was able to reduce the well-known problem in SNNs of vanishing gradients 
during BPTT, a challenging problem in non-spiking RNNs before the advent of LSTMs. We compared 
the performance of our SNN model against baselines from optimal control (linear quadratic regulator 

 
14 Iacob, S., Kwisthout, J., & Thill, S. (2020, July). From models of cognition to robot control and back using 
spiking neural networks. In Conference on Biomimetic and Biohybrid Systems (pp. 176-191). Cham: Springer 
International Publishing. 
15 Rossbroich, J., Gygax, J., and Zenke, F. (2022). Fluctuation-driven initialization for spiking neural network 
training. Neuromorph. Comput. Eng. https://doi.org/10.1088/2634-4386/ac97bb 
16 https://github.com/fmi-basel/stork 
17 https://github.com/jhuebotter/control_stork 

https://doi.org/10.1088/2634-4386/ac97bb
https://github.com/fmi-basel/stork
https://github.com/jhuebotter/control_stork
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for 2D arm and Riemannian Motion Policies for 3D) and non-spiking probabilistic neural network 
models (that incorporate LSTMs). Our findings indicate that the SNNs' performance was competitive 
with both baseline methods for the reach & follow task. All code developed for this project was 
written in Python 3 and is openly available in this repository: 

https://github.com/jhuebotter/spiking_control 

2.2 Predictive coding and active inference with Spikes 
SKU, within Task 3.11, developed a novel computational model for control using spike-coding 
networks (SCNs). This is a special type of SNN that can track any dynamic system and implement its 
state estimator and controller without the need for training when the system is known. The details 
of this model are described in the accepted publication18 in the journal IEEE Trans. Cog. Dev. Sys, 
Special Issue on Advancing Machine Intelligence with Neuromorphic Computing. The model has been 
presented at the HBP 2023 summit and the Neuromorphic Computing in the Netherlands Conference 
(NCN2022). The code to execute this model can be found here:  
https://github.com/FSSlijkhuis/SCN_estimation_and_control 

The basic idea behind this coordinated SNN is that neurons describe a population code that minimises 
prediction error (i.e.,  neurons spike when prediction error rises)19. To encode the dynamics of a 
system, the connectivity of the network is analytically computed (exploiting the leaky-integrate and 
fire neuron mathematical model). Thus, we can encode any robot (with its state-space equations) 
into the SCN and obtain a spiking estimator and controller. Figure 3(A-D) depicts the SCN high-level 
description along with its evaluation with numerical examples (Spring-Mass-Damper and Cartpole 
systems) of optimal estimation and control and its robustness/efficiency analysis in terms of neuron 
silencing and the tuning of the spike patterns sparsity. 

Transforming SCNs into Spike Active Inference Control 

Active inference is grounded on the free energy principle20, a very influential theory on how the 
brain may process information and generate behaviour that may solve some of the challenges in 
robotics21. While multiple computational models account for designing artificial agents and robots 
using this framework22, there is no spiking model in the literature that implements active inference. 
This is very relevant as the biological plausibility of the theory needs to be proven in spiking 
dynamics. Hence, we investigated how spiking neural dynamics can control systems in the same way 
active inference works. We designed and implemented an SCN that follows the continuous-time 
active inference differential equations, thus obtaining an SNN that outputs control commands that 
minimise the free energy functional. Hence, obtaining the first implementation of Active Inference 
with spikes. Figure 3F shows the comparison between continuous-time active inference (non-spike) 
and the proposed spike active inference control for the spring-mass-damper system. State dynamics, 
generated actions and the minimisation of the free energy (F) shows the equivalence between the 
two models. 

 
18 Slijkhuis, F. S., Keemink, S. W., & Lanillos, P. (2022). Closed-form control with spike coding networks. arXiv 
preprint arXiv:2212.12887. accepted at IEEE Tans. Cog. Dev. Sys. (P4175) 
19 Denève, S., Machens, C.K. (2016). Efficient codes and balanced networks. Nature neuroscience 19(3), 375  
20 Friston, K. (2010). The free-energy principle: a unified brain theory? Nature reviews neuroscience, 11(2). 
21 Da Costa, L., Lanillos, P., Sajid, N., Friston, K., & Khan, S. (2022). How active inference could help 
revolutionise robotics. Entropy, 24(3), 361. (P3294) 
22 Lanillos, P., Meo, C., Pezzato, C., Meera, A. A., Baioumy, M., Ohata, W., ... & Tani, J. (2021). Active 
inference in robotics and artificial agents: Survey and challenges. arXiv preprint arXiv:2112.01871. 

https://github.com/jhuebotter/spiking_control
https://github.com/FSSlijkhuis/SCN_estimation_and_control
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Figure 3: Predictive coding and active inference with spikes 
Neuroscience-inspired robots estimation and control of known dynamical systems (e.g., robots). (A) Schematic of the 
Spike Coding Network (SCN), whose neurons coordinate the firing to output the correct control signal, while 
estimating the system state. (B) Cartpole SCN control. The top panel describes the desired state (position of the cart 
pole, dashed blue line) and the position of the system when controlling it with SCNs in comparison with classical 
optimal control Linear-Quadratic Gaussian. The second and third panels show the cart pole angle velocity estimation 
and the estimation error. The bottom panel shows the spike raster of the SCN while controlling the system. (C) Robust 
SCN estimator (Spiking version of a Kalman filter) under the presence of sensory and plant noise evaluated in the 
Spring-Mass-Damper system. (D) SCN has interesting characteristics. The left panel shows its robustness to neuron 
silencing thus, describing how the coordinated spikes can recover the control when more than 50% of the spikes are 
not working anymore. The right panel describes how the sparsity of the SCN can be tuned by with a trade of 
performance. (F) Comparison between Continuous-time Active Inference Control (AIC) and Spike Active Inference 
Control (SAIC). F.1) Controller acting on a Spring-Mass-Damper system; F.2) Control signal generated by the network; 
F.3) the free energy of the system being minimised over time by the network; F.4) the spike raster for the network 
activity. 

2.3 Neuromorphic Control (hardware) 
At SKU, in Task 3.11. we investigated the deployment of the SNN control models in hardware. Figure 
4 shows a detailed description of the different neuromorphic devices and models. At SKU we 
developed our own software for the Intel Loihi 2 neuromorphic chip (using Lava interface) to deploy 
Spike Coding Networks and Spike Active Inference models. Figure 4b shows the SCN model running 
on the Loihi simulator. Besides, we have evaluated multiple Spiking Neural Network Communication 
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and Synchronization Methods on Event-driven Neuromorphic Systems23. Furthermore, through the 
SGA3 voucher program Task 3.11 has been supported by the High-Level Support Team (HLST) service 
category to port our approach into neuromorphic hardware. UoS partner ported our SCN models into 
GeNN (GPU SNNs implementation) to develop a superfast SNN deployment able to control a robotic 
arm in high frequency. The interface with the robot is currently being developed with an NVIDIA 
Jetson nano. KTH partner is porting our SNN model into Spinnaker 1.0 making use of their self-
developed input-output hardware that allows fast speed communication between the neuromorphic 
board and the robot. 

 
Figure 4: Neuromorphic deployment of Spiking Neural Network Control developed in Task 3.11 
To deploy our models into hardware we followed different routes. SNN learning architectures have been developed 
for Isaac Simulator (Nvidia), and SCN models have been deployed in Intel Loihi 2 chip and ported to GeNN to allow 
GPU-accelerated hardware (Nvidia Jetson Nano) execution. Finally, HLST is also supporting its deployment into 
Spinnaker 1.0 boards.  

3. Looking Forward 
To summarise, the work documented in this Deliverable has advanced the state of the art by i) a 
deep spiking neural network architecture that can learn to control robots end-to-end in a self-
supervised fashion (a demonstrator is provided), ii) a closed-form SNN model that can robustly 
estimate and control known dynamical systems without the need of learning (the code and the 
publications are described), and iii) the ongoing work in the deployment of SNN control into 
neuromorphic hardware. 

While the hardware implementation of the SNN models was out of the scope of Task 3.11, it is 
planned that within one year we will achieve a full deployment of the proposed SNN models into 
hardware and control two different physical robotic platforms. This is an ongoing collaboration 
between SKU, UoS and KTH, which will be extended after the end of the HBP. Furthermore, Task 
3.11, with Deliverable 3.16 and Output 3.31 provides the elements needed to design artificial 
systems that combine high-level reasoning and closed-loop SNN control. Hence, our mid-term goal 
besides neuromorphic implementation is to transfer these general neuroscience-inspired estimation 
and control solutions to applications ranging from general-purpose robotics24 to space robotics or 
wearables. 

 
23  Shahsavari, M et al. Advancements in Spiking Neural Network Communication and Synchronization 
Techniques for Event-Driven Neuromorphic Systems. http://dx.doi.org/10.2139/ssrn.4481982 (P4176) 
24 Taniguchi, T., Murata, S., Suzuki, M., Ognibene, D., Lanillos, P., Ugur, E., ... & Pezzulo, G. (2023). World 
models and predictive coding for cognitive and developmental robotics: frontiers and challenges. Advanced 
Robotics, 1-27. (P4156) 

http://dx.doi.org/10.2139/ssrn.4481982
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