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Welcome to the 3rd HBP Student Conference on 
Interdisciplinary Brain Research

The human brain is such a complex system that it can only be understood 
by combining knowledge and practices from multiple scientific fields.  
The 3rd HBP Student Conference provided an open forum for the 
exchange of new ideas among young researchers working across 
various aspects of science relevant to the Human Brain Project (HBP). 
The conference offered a space for extensive scientific dialogue, both 
intra- and interdisciplinary, among peers and faculty through a variety of 
discussion sessions, lectures and social events.

LIST OF ORGANIZERS

Chairs
Gabriel Urbain, Ghent University, Belgium

Sandra Diaz-Pier, Forschungszentrum Jülich, Germany

Committee
Marcelo Armendariz, KU Leuven, Belgium

Guillaume Bellec, TU Graz, Austria

Petrut Bogdan, University of Manchester, UK

Andrea Santuy, Universidad Politécnica de Madrid, Spain

Alexander van Meegen, Forschungszentrum Jülich, Germany

HBP Education Programme Office
Stefan Mittermayr, Medical University Innsbruck

Theresa Rass, Medical University Innsbruck
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Transmittance and diattenuation of brain tissue 
explained by finite-difference time-domain 
simulations

Miriam Menzel1,2*, Markus Axer1, Katrin Amunts1,3, Hans De Raedt4, 
Kristel Michielsen5,2

1Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Germany
2Department of Physics, RWTH Aachen University, Germany
3Cécile and Oscar Vogt Institute for Brain Research, University of Düsseldorf, Germany
4Zernike Institute for Advanced Materials, University of Groningen, the Netherlands
5Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Germany

*m.menzel@fz-juelich.de

INTRODUCTION/MOTIVATION

The neuroimaging technique 3D-Polarized Light Imaging (3D-PLI) reconstructs 
 the microscopic nerve fiber architecture of the brain by measuring the bire-
fringence (anisotropic refraction) of unstained histological brain sections [1].  
The anisotropic structure of the nerve fibers leads to diattenuation (anisotropic 
attenuation), which can be measured by means of Diattenuation Imaging 
(DI) [2]. Here, we study the polarization-independent attenuation (transmit-
tance) and the polarization-dependent attenuation (diattenuation) both with 
experimental studies and with finite-difference time-domain (FDTD) sim-
ulations and show that they contain valuable information about the brain  
tissue structure.

METHODS

The experimental studies were performed on 60 μm thick sections of a 
vervet monkey brain embedded in 20% glycerin solution. The transmittance 
images (Fig. 1a) were obtained from 3D-PLI measurements with a resolu-
tion of 1.33 μm/px as described by Axer et al. [1]. The diattenuation images 
(Fig. 1d) were obtained from combined 3D-PLI and DI measurements with 
a resolution of 43 μm/px as described by Menzel et al. [2]. The propagation 
of the polarized light wave through the brain tissue was simulated by means 
of a massively parallel 3D Maxwell Solver based on an FDTD algorithm as 
described by Menzel et al. [3]. 

AQ1
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FIGURE 1: (a) Transmittance images of a sagittal and coronal vervet brain section (the enlarged 

regions show the cingulum (cg) and corpus callosum (cc)). (b) Scattering patterns and 

normalized average transmittance values obtained from FDTD simulations of an artificial nerve 

fiber bundle (inset) with different inclination angles (a = {0,10,...90}°). (c) Scattering patterns of 

two crossing fiber bundles with crossing angle χ. The images below show a region in the 

occipital lobe, demonstrating how the transmittance (right) can be used to distinguish regions 

with small birefringence signal (white circles, left): the transmittance in the region with 

maximum birefringence signal (red) is used as reference value; regions with similar (lower/

larger) transmittance values are expected to contain in-plane crossing (steep/less) fibers.  

(d) Diattenuation images of a coronal vervet brain section measured 8 and 51 days after tissue 

embedding. Diattenuation values belonging to D+ (D-) regions are marked in green (magenta). 

The colored circles highlight regions with flat, intermediate, and steep fiber inclinations: a = 5° 

(cyan), a = 40° (yellow), a = 75° (red). (e) Diattenuation curves (average diattenuation plotted 

against the fiber inclination) caused by dichroism (analytical model [5]) and by anisotropic 

scattering (simulated for the artificial fiber bundle shown in (b)). (f) Average diattenuation of the 

horizontal fiber bundle simulated for different myelin sheath thicknesses (relative to the fiber 

radius) and for different fiber sizes. Parts of this figure have been published in [4,5].
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RESULTS AND DISCUSSION

Our experimental studies reveal that the transmittance decreases with increas-
ing out-of-plane inclination angle of the nerve fibers (see Fig. 1a): flat fibers 
with small inclinations (cyan arrows) show larger transmittance values than 
steep fibers (red arrows). With FDTD simulations, we could demonstrate 
that this effect is caused by isotropic light scattering in combination with 
the small numerical aperture (NA = 0.15) of the imaging system (see Fig. 1b). 
Furthermore, we found that the transmittance of in-plane crossing fibers does 
not depend on the crossing angle and can therefore be used to distinguish 
in-plane crossing from steep fibers (see Fig. 1c), which both yield small bire-
fringence signals and cannot be distinguished with 3D-PLI [4]. 

Combined 3D-PLI and DI measurements have shown that brain tissue exhibits 
two different types of diattenuation: for some brain regions, the transmitted 
light intensity becomes maximal (minimal) when the polarization of light 
is oriented parallel to the nerve fibers, referred to as D+ (D-) effect [2]. With 
increasing time after embedding the brain sections, the D- effect decreases 
(see Fig. 1d). With FDTD simulations, we could show that anisotropic light 
scattering leads to an inclination-dependent diattenuation (D- for flat, D+ for 
steep fibers), which decreases with increasing embedding time (see Fig. 1e). 
Finally, we could demonstrate that the diattenuation also depends on other 
brain tissue properties like myelin sheath thickness and nerve fiber size [5]  
(see Fig. 1f). This allows, for example, to distinguish brain regions with many 
small nerve fibers from regions with few large fibers, which makes DI a prom-
ising imaging technique revealing unknown brain tissue properties.

REFERENCES

[1] � M. Axer et al. A novel approach to the human connectome: Ultra-high resolution mapping of 
fiber tracts in the brain. NeuroImage, 54(2):1091-1101, 2011.

[2] � M. Menzel et al. Diattenuation of brain tissue and its impact on 3D polarized light imaging. 
Biomedical Optics Express, 8(7):3163-3197, 2017.

[3] � M. Menzel et al. Finite-Difference Time-Domain Simulations for Three-dimensional Polarized 
Light Imaging. In BrainComp 2015, Lecture Notes in Computer Sciences, Vol. 10087, Chp. 6. 
Springer International Publishing, Cham., 2016.

[4] � M. Menzel et al. Transmittance assisted interpretation of 3D nerve fibre architectures. 
arXiv:1806.07157, 2018.

[5] � M. Menzel et al. Diattenuation Imaging reveals different brain tissue properties.  
arXiv:1806.07712, 2018.
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Spike latency reduction generates efficient 
predictive coding

Pau Vilimelis Aceituno*, Masud Ehsani*, Jürgen Jost*
Max Planck Institute for Mathematics in the Sciences, Germany

*aceituno@mis.mpg.de; *ehsani@mis.mpg.de; *jjost@mis.mpg.de

INTRODUCTION

Electrophysiology experiments have consistently reported recurrent spike 
trains with regular inter-spike times that have milisecond-level precision and 
can last up to a few seconds [1]. As the brain has evolved under heavy con-
straints on energy consumption and performance. Therefore, if some patterns 
are repeated very often, the neurons that receive and process them should 
transmit that information fast – to reduce the time spent on processing that 
specific spike train – and with fewer spikes – to reduce the metabolic costs 
of the most common stimuli –. In this work we argue that the core mecha-
nism behind this process is the latency reduction due to synaptic plasticity. 
Furthermore, we show that the same mechanism explains how predictive 
coding can emerge.

METHODS

We study leaky-integrate and fire neurons with a refractory period (LIF), each 
one getting an input spike train that is repeated many times. The weights of 
the synapses change following the Synaptic Time-Dependent Plasticity (STDP) 
with soft bounds [5]. We to go from STDP dynamics on a single neuron to 
coding in 3 steps:

•	 Short Temporal Effects: STDP and LIF neurons have time constants on 
the order of 10 ms, and thus we analyze how do postsynaptic spikes 
evolve. We start with a simple toy model (Fig. 1) and we show that a 
single postsynaptic spike reduces its latency, meaning that it happens 
earlier. We also prove that, within normal parameter ranges [3,4] if two 
postsynaptic spikes are close in time, the latter disappears.

AQ1
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•	 Long Temporal Effects: Knowing how postsynaptic times evolve locally, 
we derive their behaviour in longer timescales. We prove that the post-
synaptic spike train becomes very dense at input onset and that the 
number of postsynaptic spikes reduces exponentially with the number 
of repetitions (Fig. 2 A).

•	 Coding Consequences: Since STDP makes postsynaptic neurons fire at 
the onset of the input, the delay between the postsynaptic spike and the 
stimulus is reduced. If the presynaptic spike train includes a pre-stimulus 
clue, the postsynaptic neuron does not differentiate between clue and 
stimulus – neurons do not have direct stimulus information – and will 
fire before the stimulus arrives (Fig. 2 B). Note that we could interpret this 
as having neurons that change what they encode, but this is a common 
feature of all prediction schemes: a neuron that “predicts” a stimulus 
simply encodes a preceding stimulus.

Our results are analytical, using a combination of combinatorial and proba-
bility methods as well as told from dynamical systems theory and differential 
equations with delays. All our results are supported by simulations.

FIGURE 1: Simple explanation of local latency reduction through STDP. Two presynaptic 

neurons send their spikes to a postsynaptic one (left). Originally, the membrane potential of the 

postsynaptic one reaches the threshold at only after receiving the two presynaptic spikes, but 

after many repetitions, the first presynaptic synapse is strong enough to trigger a postsynaptic 

spike uppon receiving the first spike (center). The weights of the two presynaptic spikes evolve 

following STDP rules, which define a dynamical system in which the with four regions 

(separated by the black dotted lines), each one with its own nullclines (red dorred lines) in 

which the weight evolves (following the blue arrows) to a final attractor where the weight 

associated to the first spike at its maximum and the second weight at zero (right plot).
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RESULTS AND DISCUSSION

We showed that STDP in combination with regularly timed presynaptic 
spikes generates postsynaptic codes that are efficient and explain how 
forecasting are phenomena that emerge in an unsupervised way with a simple  

FIGURE 2: (A) Evolution of long postsynaptic spike trains: We simulated a population of 200 

postsynaptic neurons, each one receiving 100 presynaptic spikes with random but fixed arrival 

times during a time interval of 200 ms. The distribution of postsynaptic spikes (left plot) 

changed from a constant firing rate (blue), to concentrate the spikes at the onset of the spike 

train (green) as the same input spikes are repeated. As STDP weakens spikes arriving after a 

postsynaptic one, two postsynaptic arriving very close in time cannot coexist, and thus the 

number of postsynaptic spikes decreases (right plot) as the input is repeated. (B) Predictive 

Coding through Latency Reduction: We show that STDP can lead to predictive coding through 

a simple schema where a single event generates two stimulus S1, S2 which trigger spikes on 

two neural populations P1 P2 at different times so that P1 always precedes P2. If we add a few 

connections from P1 to P2, the neurons in P2 receive a few spikes that systematically precede 

the spikes associate to S2. As they do not differentiate between the two spike trains, they treat 

both as equal. Since each neuron tends to fire at the onset of the presynaptic spike train  

(see Fig. 2 A), some neurons in P2 will fire upon receiving spike trains from P1, even earlier than 

the presynaptic spikes from S2. Thus, they fire earlier than the stimulus. The left plot shows the 

schema, while the right plot shows the firing times of neurons in P2.
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mechanistic interpretation. We believe that this idea offers an interesting 
complement to classical supervised predictive coding schemes in which 
prediction errors are feed back into the coding neurons. Furthermore, the 
concentration of postsynaptic spikes at stimulus onset can be interpreted 
in information theoretical terms as a way to improve the code in terms of 
error-resilience (not shown). Finally, we speculate that the fact that the same 
mechanism can be used to generate predictions as well as improve the 
effectiveness and metabolic efficiency of the neural code might give insights 
into how the ability of the nervous system to forecast might have evolved.

REFERENCES
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[3] � Song, S., Miller, K. D., & Abbott, L. F. Competitive Hebbian learning through STDP. Nature 
neuroscience, 3, 919. 2000.
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Ligand tethered dendrimers for brain delivery of 
Anti-AD agents: Better pharmacokinetics and 
behavioral responses

Avinash Gothwal1*, Kartik T. Nakhate2, Umesh Gupta1*
1Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of 

Rajasthan, Bandarsindri, Ajmer
2Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai, Chhattisgarh

*umeshgupta175@gmail.com; *avgothwal20@gmail.com

INTRODUCTION

To bypass the BBB and to deliver the therapeutic agent into the brain several 
approaches such as pharmacological, physiological, invasive and non-invasive 
have been used so far and each has some merits and demerits [1]. As the BBB 
is the biggest challenge in drug delivery to the brain in all the brain ailments 
including Alzheimer’s Disease (AD), Parkinson and brain tumor etc [2] . For the 
instance, there is no disease-modifying cure or prevention for the AD [3], one 
of the effective approaches for the AD is an anti-AChE (i.e. rivastigmine, done-
pezil) treatment strategy [4] and NMDA (N-methyl D-aspartate) antagonists 
[5] (memantine) which only gives a symptomatic relief. The BBB controlled 
uptake limits bioavailability of the bio-actives into the brain. Therefore, we are 
proposing a new approach, dendrimer-ligand mediated targeted delivery of 
the bio-actives to the brain for the effective delivery to the brain. Dendrimers 
are the hyper-branched, unimiceller, monodispersed, globular, versatile and 
synthetic macromolecules with higher molecular weight. We hypothesized 
that dendrimer-ligand conjugate would facilitate the process of BBB crossing 
which would lead to higher brain uptake.

METHODOLOGY

A ligand was chemically conjugated to PAMAMs (polyamidoamine) den-
drimers of different generations. Conjugation was confirmed by FT-IR,  
1 H-NMR (proton-nuclear magnetic resonance), 2D-NMR spectroscopy and AFM 
(atomic force microscopy) techniques. Further, rivastigmine (RIV) and meman-
tine (MEM) were physically encapsulated to PAMAM and conjugates, separately.  

AQ1
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In-vitro and ex vivo studies such as release, hemotoxicity, encapsulation 
determination etc. were performed. HPLC was used to quantify the drug 
loading and also for the estimation of drug amount in pharmacokinetic and 
bio-distribution methods. Brain targeting potential of the conjugates and 
behavioral responses were investigated in Sprague− Dawley rat model in vivo.

RESULTS AND DISCUSSION

Spectroscopic analysis confirmed the conjugation, size of the conjugate was 
100.03±3.1 nm after RIV (PAMAM-ligand-RIV) and MEM (PAMAM-ligand-MEM)  
loading the size was increased up to 336±8.3 and 131.72±4.73 nm, respectively. 
Ex-vivo hemotoxicity of PAMAM-ligand-RIV and PAMAM-ligand-MEM was less 
than the 10 percent. The bioavailability of the RIV and MEM was enhanced 
by almost 7 and 9 folds compared to pure drugs with other improved phar-
macokinetic parameters. Brain uptake was significantly (p<0.005) higher than 
the pure drugs in vivo. No kind of neuronal death or necrosis was observed 
in the treated animals (Figure 1).

FIGURE 1: Hematoxylin and eosin-stained brain sections of rats treated with (A) control,  

(B) RIV, (C) PAMAM-RIV and (D) PAMAM-ligand-RIV. The neuronal degeneration was not 

observed following any of the treatment.
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Additionally, the memory (long and short-term) and motor tasks were 
significantly improved when treated with RIV based formulations. while no 
significant improvement was observed in MEM based formulations.

CONCLUSION

PAMAM-ligand conjugates were synthesized, characterized to attain higher 
drug loading and effective delivery of RIV and MEM to the brain. The results 
revealed that the developed system could be promising in brain delivery and 
may have possible applications in Alzheimer’s disease (AD).

REFERENCES
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Temporal harmonics of brain activity reveal sleep 
stage transitions

Joan Rué-Queralt1*, Angus Stevner2,3, Enzo Tagliazucci4,  
Helmut Laufs5, Morten Kringelbach2,3, Gustavo Deco1,6,7,8,  
Selen Atasoy2,3

1Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
2Department of Psychiatry, University of Oxford, UK
3Center for Music in the Brain, Aarhus University, Denmark
4Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt, Germany
5Department of Neurology, Christian Albrechts University, Kiel, Germany
6Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
7Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 

Leipzig, Germany
8School of Psychological Sciences, Monash University, Clayton, Melbourne, Australia

*joan.rue01@estudiant.upf.edu

INTRODUCTION

The complex spatiotemporal patterns of brain activity have been the 
subject of intense study over the last two decades. Recent evidence has 
demonstrated that brain activity is constrained by the connectome and 
can usefully be described by a frequency-specific representation of brain 
activity – so-called ‘connectome harmonics’. Here we describe a novel 
Temporal Manifold Harmonics method for recovering the low-dimensional 
manifold underlying the complexity of brain signals. As a proof of con-
cept, we apply this method to fMRI data acquired over the human sleep 
cycle, and show how temporal manifold harmonics reveal how fMRI BOLD 
activity during the sleep cycle can be accurately mapped onto simple  
smooth manifolds.

METHODS

The fMRI BOLD signal from subjects sleeping in the scanner is used in this 
work to estimate the phase coupling between 90 brain regions defined 

AQ1
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by automated anatomical labeling (AAL) template the at each time point. 
We then construct a sparse graph, in which the nodes are the defined as 
the time points, and the edges are defined as connections between only 
those time points that share similarities in their patterns of phase synchrony.  
A manifold learning technique is then applied, namely Laplacian eigenmaps, 
in order to map the high dimensional feature vector containing activity signal 
at each area to a lower dimensional manifold, which we termed ‘Temporal 
Manifold Harmonics’ (TMH) of brain activity. Linear classification of time 
points belonging to different sleep stages (which have been labeled by an 
expert, using the simultaneously recorded polysomnography) is performed 
in this low dimensional embedding through Support Vector Machines (SVM) 
to assess the capability of TMH to characterize different sleep stages. As 
Laplacian eigenmaps do not constrain this embedding to be linear, natu-
ral nonlinearities in the dynamics, if present, are captured in TMH. For this 
reason, we compare the accuracies of TMH with those obtained through a 
linear dimensionality reduction algorithm, the Principal Component Analysis 
(PCA). Sensitivity and specificity of these trained classifiers is assessed with 
a Receiver Operating Characteristic (ROC) analysis. An statistical analysis 
using Monte-carlo random reordering of the temporal signals is performed 
to discard any preprocessing artifact.

RESULTS

When the TMH are constructed for each individual subject, following a 6-fold 
cross-validation, the results indicate a high separability between sleep stages 
(the average accuracy being 91±5 %, with all stage-to-stage comparisons 
being significant, p-value<.01, Monte-Carlo simulations, corrected for multiple 
comparisons via FDR, see Fig. 1). Great sensitivity and specificity scores in a 
binary classification even along a single dimension of the TMH (area under 
the ROC of 0.96). When TMH are constructed for al subjects, following a 
leave-one-subject-out cross-validation, the average accuracy for the group 
analysis is 83±9 %, with all stage-to-stage comparisons being significant, 
p-value<.05, Monte-Carlo simulations, corrected for multiple comparisons 
via FDR, see Fig. 1).
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DISCUSSION 

Overall, this work demonstrates that TMH provide an accurate representation 
of the spatiotemporal dynamics of brain activity for characterizing the intrinsic 
nature of the different states in functional neuroimaging data. Furthermore, 
these results strongly evidence that all subjects share a common smooth 
manifold underlying the dynamics of their brain activity, given that the differ-
ent sleeping stages can be accurately classified under the intrinsic structure 
found by their shared TMH.

FIGURE 1: Pipeline to embed fMRI BOLD data onto their temporal harmonics. (a) Swiss Roll 

example to illustrate manifold learning: Three dimensional data points sampled from an 

intrinsically lower dimensional object are embedded on a two-dimensional manifold. (b) fMRI 

BOLD signal is transformed into instantaneous phase. The pairwise phase coherence provides 

a spatial pattern that characterizes the synchrony relations between the activity of all pairs of 

brain areas at each time point. (c) The Coherence Connectivity Dynamics (CCD) is derived as 

the similarity matrix between such the patterns of between-area synchronization for a time 

point in a pairwise manner. A sparse characterization of the CCD containing only local 

information is obtained through the Relaxed Minimum Spanning Tree (RMST) algorithm. The 

eigenfunctions of the Graph Laplacian applied to this sparse matrix define an embedding onto 

the Temporal Manifold Harmonics of the data.
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FIGURE 2: Accuracies of the support vector machines wakefulness-sleep stage-to-stage 

classification. For each stage pairwise comparison, there is an equal number of test elements 

for each class and the minimum accuracy is thus 0.5. Errorbars indicate the standard error of 

the mean. Legend: TMH, PCA individual, Temporal manifold harmonics or PCA embedding 

computed for each subject. TMH, PCA group: Temporal manifold harmonics or PCA 

embedding computed for the grouped data of all subjects. For all comparisons, temporal 

manifold harmonics yield much better classification accuracies, indicating that nonlinearities 

are crucial to characterize the differences amongst the different sleep stages.
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Brainnets: An open-source graph theoretical 
analysis library and application
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Graph theoretical analysis attracts increasing attention in recent years, high-
lighting its importance and usefulness in neuroimaging, specifically, to brain 
connectivity [1, 2]. Through this new collection of tools, researchers drew 
astonishing conclusions about the underlying dynamics governing the brain 
[3] and even proposed network models that help understand the complex 
organization of the brain [4, 5]. 

In this work, we present, “brainnets” a new, opensource C++ library for 
graph analysis, specifically tailored for exploring functional brain connectiv-
ity. Functional connectivity refers to the statistical analysis of usually distinct 
brain regions [6]. Functional connectivity analysis based on graph analysis 
gains increasing popularity in the field of neuroimaging with applications in 
a wide variety of fMRI studies (see [7, 8] for a short survey); it can help unveil 
vulnerable brain networks’ characteristics and possibly comprise important 
biomarkers. Neurodegenerative and neurodevelopmental disorders, such as 
Alzheimer’s, Parkison’s, Schizophrenia and ADHD are of special interest in 
utilizing graph theoretic approaches due to the disrupted connectivity pat-
terns. Such cases, for example include, the loss of small-worldness has been 
observed in patients who have Alzheimer’s [9, 10]. Moreover, in Schizophrenic 
patients, a significant reduction of betweenness centrality was observed, 
suppressing the centrality hubness of the studied regions [11]. Another com-
plementary topic incorporates studies solely focused on the reliability of graph 
features between/within subjects [12] as well as their reproducibility [13].

The developed tool focuses on the analysis and visualization of graph fea-
tures and graph distances. The usual method to compare connectivity matri-
ces is based on statistical approaches, such as performing a t-test. In this 
toolbox, however, we employ well-established graph theoretical methods 
[14, 15, 16] that operate on the graphs’ spectrum, thus retaining any topological 
and structural information. We plan to employ brainnets as a framework to 

AQ1



24	 3rd HBP Student Conference on Interdisciplinary Brain Research

	
3rd HBP Student Conference on Interdisciplinary Brain Research

further study and develop these methods. Considering the graph features, 
the toolbox contains all the necessary methods to explore the segregation, 
integration, and centrality from both global and nodal aspects of a network. 
A few selected graph featuers are demonstrated in Figures 3 and 4.

While the open source brainnets library can be used in combination with 
any neuroimaging software, we here demonstrate its usage and efficacy in 
combination with BrainVoyager (Brain Innovation, Maastricht) [17] by using it 
as a plugin with a developed graphical user interface (GUI). The plugin pro-
vides a graphical, intuitive way to load and plan a graph theoretical study on 
a subject. As already shortly discussed, graph features can unveil important 
information and insights about a brain organization. The planning of a study 
is as easy as loading the data and configuring the pipeline (i.e., choosing a 
connectivity estimator, graph thresholding, etc.). Subsequently, the options 
for interactive visualization (standard block matrix or circular plot) and graph 
analysis become available. The implemented graph features (both global and 
nodal) are accessible under their associated tab alongside with descriptions 

FIGURE 1: The connectivity between ROIs or voxels is visualized using a circular scatter plot. 

In our example, we demonstrate the functional connectivity between the Right and Left 

hemispheric V5 of one subject, as is estimated from their mean values.

FIGURE 2: The estimated connectivity within the Left V5 (between voxels). The circular plot on 

the left the, the graph is passed through the Minimum Spanning Tree algorithm, and the 

resulting tree is highlighted in red lines. On the right plot, the connectivity matrix is plotted 

using the weights are colors.
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and more visualization options (Figures 1 and 2). However, it is often required 
to draw comparisons between the connectivity profiles between subjects. 
Our proposed toolbox provides methods to perform a group analysis, using 
the corresponding options.

Brainnets is built on top of other well-established, mature, and community-
driven scientific projects, namely Eigen C++ and Boost. The source code 
is available at https://github.com/makism/brainnets under the very liberal 
license MIT.
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FIGURE 3: The strength of each node (voxel) of the left V5, on the full weighted matrix.

FIGURE 4: The degree of each node (voxel) of the left V5 connectivity matrix, filtered 

with the Minimum Spanning Tree.
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INTRODUCTION/MOTIVATION

This research was focused on postdictive properties of apparent motion - 
an illusion of movement as a result of successive presentation of two dots. 
Obviously, the mechanisms of integration of two dot’s representations can 
take place only after the second dot is presented. There are two alternatives 
of what exactly happens. Firstly, a person can become aware of the first dot, 
the second dot and then reconstruct his or her memories of what he or 
she just saw. Secondly, the person can become aware of the first dot, and 
before awareness of the second dot unconscious integration can occur, so 
that the person becomes aware of the sum “sense of motion+second dot” 
[1, 2]. In order to differentiate between two models presented above several 
experimental hypotheses were tested. These hypotheses can be summa-
rized as the following: there are significant differences between the primary 
components of event-related potentials (ERPs) in response to perception of 
the second dot in conditions of different illusory strength. It should be noted 
that the predictive properties of visual cortex are not elaborated within this 
research as far as the previous studies has shown that predictive coding 
is not crucial for apparent motion perception per se (but for some of its  
phenomenological characteristics) [3, 4].

METHODS

15 participants took part in experiment. Three types of stimuli were presented: 
apparent motion (4 levels from weak motion to strong motion), real motion, 
flicker (no apparent motion). The modulation of stimulus type was reached 
by the change of the interstimulus interval. The duration of one dot’s pres-
entation was constant and was equal to 150 ms. The presentation of stimuli 
was randomized. EEG was recorded from 14 channels. ERPs were calculated 
and wavelet analysis performed.

AQ1



28	 3rd HBP Student Conference on Interdisciplinary Brain Research

	
3rd HBP Student Conference on Interdisciplinary Brain Research

RESULTS AND DISCUSSION

Repeated Measures ANOVA revealed the next significant results. The amplitude 
of P100 at the site O1 in the condition of the 2nd level illusion (M = 3.82,  
SD = 2.53) was significantly higher than the amplitude of the same component 
in the condition of the 3rd level illusion (M = 1.76, SD = 1.82), p <.01,  
4th level illusion (M = 1.48, SD = 1.5), p <0.001, and flicker (M = 1.55, SD = 2.01),  
p <0.05. Thus, the amplitude of P100 in response to perception of strong 
apparent motion was higher than in response to perception of weaker apparent 
motion and flicker. The power of alpha rhythm until 250 ms after second 
dot’s onset at the site O1 in the condition of flicker (M = .49, SD = .59) was 
significantly higher than in the conditions of 1st level illusion (M = .043, SD = .36),  
p <.05, 2nd level illusion (M = -. 16, SD = .41), p <.01, 3rd level illusion  
(M = -. 26, SD = .16), p <.01, and 4th level illusion (M = -. 027, SD = .24), p <.05 [Fig. 1].  
Analogous results were presented at right hemisphere (the site O2). EEG-activity  

FIGURE 1: Time-frequency dynamics related to different types of stimuli.
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occuring in the time window from 0 to 300 ms after the stimulus onset is 
considered to be related to visual awareness [5]. This means that the differences 
of activity between different conditions of apparent motion perception can 
point out that these differences are determined by unconsious integration 
that happened before awareness. Thus, the results of this research support 
the second model presented in the introduction. The detected differences 
in the power of alpha rhythm indicate that the integration of the percept can 
occur due to rhythm’s suppression, given its inhibitory role. To sum up, this 
research demonstrates that visual perception itself is a recurrent proccess.
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MOTIVATION

In order to obtain depth information from 2D-images, multiple views provide 
a reliable method for stereo reconstruction. In nature, disparity is computed 
energy efficiently, accurately and robustly. Machine stereo vision, even though 
it has been an active research topic for decades, is still struggling to com-
pete with biological systems at all three points. Solving the correspondence 
problem, hence finding matching points of two 2d-images of the same scene 
from different viewpoints, causes the computing complexity. Silicon retinas, 
also known as event-based sensors, exploit the potential of human vision. 
Their high data transfer rate, low latency and low redundancies open up 
new possibilities for biologically inspired stereoscopy [1], [2]. Event-based 
sensors are a very biological way to obtain visual information. In that manner, 
the data processing shall be inspired by nature as well and thus be done by 
networks of neurons.

METHODS

The data acquisition is realised by two event-based sensors recording the 
same scene out of slightly shifted perspectives. Many approaches for obtain-
ing depth information from event-based 2D-data, like [3], are based on coop-
erative algorithms [4]. Here we present a very different alternative. The stereo 
correspondence problem can be seen as a dimensionality reduction. An effi-
cient way to reduce high dimensional data by use of artificial neural networks 
(ANN) is given by self-organizing maps (SOM) [5]. The data of two 2D-images, 
hence 4D-data, is reduced to an underlying latent 3D representation that 
corresponds with the real-world spatial coordinates. Thus, stereoscopic per-
ception is achieved by a SOM creating a topological representation of event-
based 2D-data. In our approach, divergent from the common use, the neural 
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grid of the SOM is 3D, in order to cover the real-world space. The object’s 
representation in 4D is formalized as the following mapping:

f : x→ [x
L
, x

R
],  x ∈ ℝ3 and x

L
, x

R
 ∈ ℝ2

This object represented in 4D is used as the input of the SOM projecting 
the 3D-object, represented in ℝ4, into ℝ3. An overview about the workflow 
is given in Fig. 1.

RESULTS AND DISCUSSION

At this point, we only tested the implementation with artificial data by picking 
random samples from a cube. Since the visualization of a SOM with more 
than two dimensions is not trivial, we applied a method introduced in [6]. First 
results exposing the progress of the SOM during 1000 iterations are shown 
in Fig. 2. The authors use a color code to illustrate the neighboring relations. 
Therefore, each primary color of the RGB color scheme is assigned to one 
dimension of the 3D-SOM. As shown at the bottom of Fig. 1, the x-axis is 
blue, the y-axis green and the z-axis red. These colors are then utilized to 
depict the topology of the SOM. The graphics a, b, c and d all display the 
output space for both input images. Dots of the left and right part with the 
same coloration, are corresponding to each other and hence matches. As 
a next step, we want to use simulated event-based data, provided by the  

FIGURE 1: Overview of the system architecture. A 3D cube is perceived as slightly shifted 2D 

squares by two sensors. The 3D SOM maps the resulting 4D data to a 3D representation. In the 

lower right part it is visualized which axis is represented by which of the RGB-colors.
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DAVIS simulator [7], as input. Subsequently, we want to test our implemen-
tation with the stereo head introduced in [3].
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FIGURE 2: For visualization an RGB-cube is used as the 3D-SOM output space. Therefore, 

every point in the output space is color coded according to its position on the three axis. In a, 

b, c and d is always the coloration for the left and the right image shown. Identically colored 

dots from each image are potential matches.
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INTRODUCTION

Fundamental relations between architecture, connectivity and function of the 
cerebral cortex still remain elusive. This is partly due to a lack of detailed, quan-
titative cytoarchitectonic data for the human brain. Currently, the only com-
prehensive source of such information is the classic work of von Economo 
and Koskinas (vEK), which, however, is only available in a paper-based 2D 
atlas in non-standard space. Our project is aimed at constructing a virtual 3D 
model of the von Economo and Koskinas atlas in stereotactic space. Recent 
efforts manually mapped the von Economo and Koskinas parcellation onto 
the FreeSurfer Desikan-Killiany atlas based on the textual description and 
2D drawings.

METHODS

To overcome related problems, we aimed at explicitly defining a virtual 3D 
von Economo and Koskinas model independent of existing reference geom-
etries – which became possible using 2 different 3D plaster models of the 
cortical parcellation of manufactured in the era of von Economo. We will 
present our solution to the 3D reconstruction of the vEK atlas and provide an 
update of the current efforts in integrating the extracted information into the 
BigBrain atlas and by extensition, The Virtual Brain neuroinformatics platform –  
demonstrating the progress in a subtrask of (Co-Design Project) CDP8.
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INTRODUCTION

Complex networks have attracted more and more interest during recent 
years. They have been used to describe a wide spectrum of physical pro-
cesses (from gene manifestation [1] to power grid optimization [2]), human 
interactions (social networks [3], for example) or to describe the brain [4], 
among many other applications. Usually, there are two main ingredients 
when working with complex networks: the structural part -and the graph 
theory-based tools used to describe them- and the dynamical part -usually 
studied by means of statistics and non-linear dynamics. When studying the 
temporal dynamics of a network’s nodes, the paradigm is to account for the 
interactions among closest-neighbours (meaning, only directly structurally 
connected nodes are able to interact).

A recent novel approach, proposed by Estrada et al [5] was to characterize 
the dynamics in complex networks taking into account more subtle inter-
actions (they propose the term ’indirect peer pressure’ when dealing with 
social networks, for example). This is not only revolutionary because of the 
technique they introduced but also due to the paradigm shift it would imply.

MATHEMATICAL MODEL

Following their insights, we have delved into the study of a well known single 
cell model, the Morris-Lecar neuron [6]:
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where V
i
 is the main variable (it represents the membrane potential of the 

cell), the X subindex reflects that there are various ionic channels (Na, K) and 
a leaky term; W

i
 is the recovery variable and x

i
 is the noisy term (Gaussian 

white noise) that goes into each neuron’s dynamics. The synaptic current is 
the way of incorporating these novel higher-order interactions:

		

I
K

D e V Vsyn i
D

t t

d i j D
i

j
,

( )

( , )

( )= −






















−

=

− −

=
∑ ∑s a

1

2
2

0

�

(3)

given by the superposition of all the post-synaptic potentials emitted by the 
neighbours of node i in the past, being t

j
 the time of the last spike of node j. 

The synaptic conductance s, normalized by the largest node degree present 
in the network K, plays the role of coupling intensity. For nodes at topological 
distance D > 1, the coupling is modulated by the suppression constant a (this 
is the way in which we incorporate the astrocytes in the neuronal network’s 
activity). When the summation is limited to the first order term D = 1, only the 
usual nearest-neighbour coupling is being considered. We already studied 
this case in Ref. [9], whose results are going to be used for comparison. In 
that work we careful characterized the conditions for the apparition in the 
network of synchronization waves, by measuring its global synchronization 
(S) and comparing it to the local one (Sr ): the discrepancy between these 
two gives us an idea of the ”waveness” of the network’s activity.

RESULTS

The first promising result in this line of research is that we can still preserve 
the travelling wave phenomenon that Leyva et al. [9] evidenced [fig 1]; this is 
interesting because it shows that, if anything, we have generalized the results 
reported in [9]. Furthermore, we see that there appears a new phenomenon 
that did not manifest for D = 1: there is an optimal value of s  for each curve (in 
a sense, that value of the coupling strength implies that the wave-like behavior 
is the strongest it can be for a given topology). Moreover, we report [fig 2]  
another appealing phenomenon: we can produce broader wavefronts of 
information transmission when allowing higher-order interactions than when 
we use the classical approach. A potential and suggestive explanation for 
this is that astrocytes make the neuronal signal more synchronous for lower 
coupling strength values (i.e., neurons can communicate through different 
channels than the axonal ones). 



3rd HBP Student Conference on Interdisciplinary Brain Research	 37

	
3rd HBP Student Conference on Interdisciplinary Brain Research

FIGURE 1: Synchronization discrepancy for different coupling strengths. Each curve is the 

result of averaging ten different realizations of a spatial network of 150 nodes. We see that a 

greater synchronizations is achieved before in the case that we let higher-order interactions 

take place.

FIGURE 2: Synchronization values for different sizes of the local. This is the result of averaging 

five different realizations of a Scale-Free network of 150 nodes with < k >= 4. We see that a 

greater synchronizations is achieved before in the case that we let higher-order interactions 

take place.
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CONCLUSIONS

This work is a pioneering one because it is a potential solution to the irrec-
oncilable problem of not modelling the role of glial cells (in particular, astro-
cytes) in neuronal activity. As different physiological measures have shown 
[8], these cells not only serve as glue and maintenance cells for neurons but 
they also participate in the modulation and release of neurontransmitters. We 
believe it is of capital importance to start exploring the field of incorporating 
astrocytes into the theoretical efforts throughout different scales (from syn-
apses to cortical columns). Therefore, we have started this path towards the 
attainment of a mesoscale model of neuron-astrocyte network interactions.
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INTRODUCTION

If not properly remediated children brought up in institutional care setting 
demonstrate atypical brain functioning (Marshall et al., 2008), general cog-
nitive deficits (van Ijzendoorn et al, 2005) and are at risk of attention and 
behavior regulation difficulties (Loman et al., 2013). However, little is known 
about the neurophysiological markers of attention difficulties in this sub-
population. Moreover, there is currently a relative lack of research on the 
long-term effects of institutionalization on cognitive development. The cur-
rent study is aimed to investigate deferred effects of institutionalization on 
behavioral performance and modulations of the P1, N1 and P3 event-related 
potentials (ERPs) associated with attentional networks in adults with a history 
of institutionalization. 

METHODS

The study sample consisted of 30 young adults with at least 6 month expe-
rience of institutionalization (Institutional Care Group, 15 males, mean age 
= 21 yrs, SD = 3.9, min = 17, max = 32) and a group of 30 matched in age 
and level of education control adults raised by biological parents (Biological 
Family Group, 14 males, mean age = 21.5 yrs, SD = 4, min = 17, max = 31). All 
participants had a non-verbal IQ score above 80 and there was no significant 
difference in IQ between groups. 

During EEG recording the participants performed the original Attention 
Network Test (Fan et al., 2002; fig. 1), developed to evaluate three attentional 
networks: alerting, orienting and executive control (Posner & Petersen, 1990). 
Efficiency of alerting and orienting in this paradigm are assessed by measuring 
how response times (RT) are influenced by alerting cues and spatial cues. The 
efficiency of the executive network is examined by changes in RT related to 
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congruent, incongruent and neutral flankers. The participants were asked to 
determine whether a central arrow points left or right. 

RESULTS AND DISCUSSION

The following four conditions were analyzed: no cue congruent flankers  
(NC-C), no cue incongruent flankers (NC-I), central cue congruent flank-
ers (CC-C), central cue incongruent flankers (CC-I). Response time analysis 
revealed significant effects of the Group (F(1) = 99, p < .001) and Condition 
(F(3) = 21.5, p < .001) factors. IC group responded slower (post-hoc Group x 
Condition test, p < .005) in all conditions. In the accuracy analysis significant 
results were also found for the Group (F(1) = 14.3, p < .001) and Condition  
(F(3) = 33.3, p < .001) factors. IC group was less accurate in the NC-I condition 
(post-hoc Group x Condition test, p < .005). We examined P1, N1 and P3 ERP 
components amplitude in midline central (M-C), midline parietal (M-P), right 
parietal (R-P) and left parietal (L-P) electrode clusters using general linear 
model. No significant differences between IC and BF groups were identi-
fied. Although postinstitutionalized adults demonstrate a lack of attentional 

FIGURE 1: Scheme of the experiment.
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resources related to alerting and executive networks on behavioral level, we 
did not observe any group differences in the amplitudes of the attention- 
related ERPs so far. Our data collection is still in progress. 
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INTRODUCTION/MOTIVATION

Mapping functional neuroanatomy of the human brain has become a cen-
tral challenge in cognitive neuroscience and it constitutes an essential step 
toward linking brain systems and behavior. While there is a rich literature on 
the neural correlates underlying performance of standardized tasks, little is still 
known about the overall functional organization of the brain and how it can 
be translated into cognition. Neuroimaging techniques, such as Functional 
Magnetic Resonance Imaging (fMRI) have contributed to the investigation 
of brain regions involved in a variety of cognitive processes. However, to 
date, no data collection has systematically addressed the functional map-
ping of cognitive mechanisms within a broader scope. The Individual Brain 
Charting (IBC) project stands for a multi-task fMRI dataset, to be shared with 
the neuroimaging community, featuring an univocal encoding between task 
descriptors and brain imaging data. It is intended to support the investigation 
of the functional principles underlying the cognitive representation of the 
human brain, allowing for (e.g.) a detailed parcellation of the brain volume 
into functional-specialized regions. Additionally, the IBC project pertains to 
the development of a neurocognitive atlas based on the functional signatures 
of mutual cognitive components between task descriptors.

METHODS

The first release of the IBC dataset accounts for high-resolution (1.5mm) 
fMRI maps of human brain activations from a permanent cohort of thirteen 
individuals, during the performance of a dozen of tasks. The dataset is com-
plemented by the task-stimuli protocols and the corresponding behavioral 
data extracted from each subject. Such tasks were, in their majority, replicated 
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from previous studies and they comprise a variety of psychological domains, 
addressing both perceptual and high-level cognitive functions, e.g. retinotopy, 
tonotopy, somatopy, calculation, language comprehension, social cognition 
and theory-of-mind [1, 2, 3]. The organization of both neuroimaging and 
behavioral datasets follows Brain Imaging Data Structure specification [4]. 
Contrasts from conditions within tasks were computed, in order to capture 
the effects-of-interest elicited by the responses. Volume-based functional 
signatures of these effects-of-interest were then obtained from classical 
inference of the contrasts. Variability of such functional signatures was also 
investigated across participants.

RESULTS AND DISCUSSION

Pinho et al. (2018) provides a complete description of the first release of the 
IBC dataset [5]. Raw data from this release is available in the OpenNeuro 
repository, under the data accession number ds000244, as well as in HBP 
Knowledge Graph Data Platform. Derived statistical maps can also be found in 
the NeuroVault public repository, with the id=2138. Figure 1 represents the total 
area of the brain significantly covered by all tasks featuring the present release. 
Despite the low statistical power at group level due to the limited sample size, 
results were overall replicated from the original studies. Figure 2 shows both the 
individual and group-level functional signatures obtained for a working-memory 
task [2], upon visualization of four different classes of pictures. It highlights 
also the variability of such functional signatures across participants. Although 
there’s some consistency of the activation patterns when one considers the 
whole brain, size and precise location of homologous clusters are quite diverse 
between participants. These results thus provide clear evidence supporting not 

FIGURE 1: Group-level F-map, at a threshold of p<.05, Bonferroni-corrected, representing the 

total area of the brain significantly covered by all tasks featuring the first release of the IBC 

dataset (fixed-effects model across tasks and subjects). One can readily see that all the brain is 

covered, with higher values in sensory cortices and weaker values for the temporal and 

pre-frontal cortex, as well as subcortical structures.
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only the individual mapping approach but also alternative methods to the classic 
univariate, task-specific, between-subject level analysis. Future outcomes 
will rely on mega-analytic encoding models towards the development of a 
brain-atlasing framework, by systematically mapping the functional networks 
associated with the cognitive components of the tasks.
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FIGURE 2: Activation maps of the contrasts estimated from the conditions in the HCP Working 

Memory task. Individual maps for fixed effects are displayed for every participant, using an 

FDR-corrected threshold q = 0.05. The corresponding group-level conjunction map is shown 

inside the orange frame. All maps correspond to the slice x=40 in the sagittal view.
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INTRODUCTION/MOTIVATION

Differential functional analysis of genetic expression aims to identify which 
genes are responsible for functional differences when in different conditions. 
The usual methods to carry out these analysis work by doing uni-variant sta-
tistical tests which allow us to identify which genes have different expression 
levels between the control and experimental conditions [1]. These helps with 
identifying which genes might be responsible for the functional differences 
but it gives a very limited picture about the interactions between genes 
and how they are affected. Gene regulatory networks [1] (from now GRNs) 
allow us to study the relationships between genes and to identify candidates 
for transcriptional regulation by using metrics like the correlation or mutual 
information between the expression levels of different genes. Using Bayesian 
Networks (BNs) instead of Correlation or Mutual Information Networks allows 
us to expand on these models by ensuring that statistically independent genes 
are separated in the network and by being able to use well known methods of 
probabilistic inference to study the effects of different gene expression levels 
in the rest of the network[1][2]. In this work we train BN GRNs with microarray 
data from the Allen Brain Institute’s Human Brain Atlas [3] to get GRNs from 
different areas of the brain. The aim is to improve on current tools like the 
JuGEx atlas [4] and on previous analysis using Allen Institute data like [5] by 
giving researchers the ability to do differential functional analysis on groups 
of genes instead of the usual uni-variant tests.

METHODS

Using the microarray data from the Allen Human Brain Atlas, we have been 
able to train Gaussian Bayesian Networks of up to a few hundred nodes 
using the Chow Liu algorithm implemented in the bnlearn package for the 
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R programming language [5], which we then visualize using pygraphviz and 
plotly [6] in Python (see figure 1). We are currently implementing a better 
learning algorithm in C++ and Python to improve performance and size of 
the model based on Edwards’ work. [2]

CURRENT RESULTS AND FUTURE WORK

We currently have a working prototype of the tool using a simple structure 
learning algorithm for the Bayesian Networks. In the following months we 
expect to create an improved learning algorithm and increased computing 
time to build a full model incorporating up to the 20000 genes in the Allen 
Human Brain Atlas dataset. We will also validate the model with known genetic 
regulation modules introduce a tool to allow users to explore small regions 
of interest in the model and do inference on them, exploring the effect of 
the expression of one gene on the rest of the network. We expect to add 
the tool we develop to the HBP joint platform as part of our work in SP5.

FIGURE 1: Bayesian Network model of a Gene Regulatory Network for the hundred genes in 

the myelencephalon with the most variable expression level.
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INTRODUCTION/MOTIVATION

Ramakrishnan et al. proposed a new concept of “Brainet” composed of mul-
tiple brains in 2015 [1]. Three monkeys coordinately control a robot arm in 
their experiment. Paisvieira et al. combined the concepts of brain-to-brain 
interface (BtBI) [2] and “Brainet”. A “Brainets” was constructed by interconnect-
ing the brains of four rats to realize real-time information collaboration and 
interaction [3]. In 2018, Jiang et al. successfully established a multi-person 
BtBI cooperation system. A human “Brainet” was constructed to complete a 
game collaboratively [4]. These studies show that mammals can synchronize 
their neural signals and construct a “Brainet”. Whether this is universal in nature 
and whether multiple birds can construct a “Brainet” is unclear. Therefore, 
we choose pigeon as model animal and design expriment to construct a 
synchronous “Brainet”.

METHODS

Based on the plasticity and neural feedback mechanism [5] of the neural sys-
tem, reinforcement learning based paradigms are designed to train multiple 
pigeons synchronize their signals and construct a “Brainet”. The paradigms of 
the two-stage experiment are shown in Figure 1 (a) and (b). In the first stage, 
three LEDs are illuminated simultaneously. Three pigeons are trained to peck 
the key during the lighting period and adjust their neural response to be syn-
chronized. In the second stage, the pigeons need not peck the key after visual 
stimuli. Instead, they get food rewards by synchronizing their neural signals. 
Behavior synchronization transfer to neural signal synchronization in this 
two-stage experiment finally. Implantable neural signals in the Nidopallium 
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FIGURE 1: Paradigms and dynamic correlation changes of the rwo-stage synchronous 

learning experiment. (a) and (b) for paradigms. (c), (d), (e) and (f) for dynamic correlation 

changes. (g) and (h) for LFPs correlation statistical results.

Caudolaterale (NCL) of three pigeons are acquired and preprocessed. The 
local filed potential (LFP) signals belonging to specific response time and 
frequency band related to the synchronization task are obtained. Pearson cor-
relation coefficient between signals is used to measure the synchronization 
degree of pigeons and the learning process of synchronization is analyzed.
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RESULTS AND DISCUSSION

The early period data of the first stage and late period data of the second stage 
are analyzed, the corresponding dynamic correlation changes are shown in 
Figure 1 (c), (d), (e) and (f). Results show that the pigeons can synchronize 
their signals under coordinated task. The LFPs correlation statistical results 
among three pigeons learnt to synchronize their signals (experimental group) 
and other untrained ones (control group) during the two stages are shown in 
Figure 1 (g) and (h). The LFPs correlation among three pigeons of experimental 
group during early period of the first stage have no significant difference with 
that of control group, whereas during late period of the second stage, the 
correlation of experimental group is significantly higher than that of control 
group. It indicates that the well-trained pigeons can successfully construct 
a synchronous “Brainets”.

Brainet can realize intercommunication among multiple brains, break new 
ground of communication and cooperation, and help us understand the 
operation of the brain deeply. This study focuses on NCL of the pigeon, 
which is a comprehensive brain region integrating perceptual information 
and decision-making output. Is there a similar phenomenon in other regions, 
such as the hippocampus, and the neural activity changes of the individual 
pigeon in Brainet remain to be further analyzed and explored.
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INTRODUCTION

Decreasing the incidence of Alzheimer’s Disease (AD) is a global public health 
priority for which the characterisation of early stages of the disease has 
become paramount, being regarded as a requisite for the implementation of 
prevention strategies [1]. Accordingly, dementia researchers worldwide are 
exploring different methods to detect signs of early stages of AD, since it is 
plausible that preclinical patients may exhibit subtle behavioural neurode-
generation, yet neuropsychological tests do not seem appropriate to detect 
them. Our research focuses on linguistic and paralinguistic interactions, as 
recent studies indicate that spontaneous speech data, which can be collected 
frequently and naturally, provide good predictors for AD detection in cohorts 
with a clinical diagnosis [2,3]. However, the potential of models based on such 
data for detecting preclinical AD remains unknown, and there is a growing 
interest in the analysis of spontaneous dialogues [4], as opposed to narrative 
speech data. Hence, we have developed an experimental design to collect 
and process conversational data, and obtain a range of features, yet to be 
specified, that not only are likely to be relevant for AD modelling, but also do 
not rely upon the content, or the language, of what is said.

METHODS: TASK PROCEDURE, PARTICIPANTS AND ANALYSIS

The Map-Task we developed consists of two tasks and three different maps. 
The first is the “Wayfinding task”, which requires two maps: one of which has 
landmarks as well as routes and is given to the participant, the other one has 
only landmarks and is given to the researcher. They navigate cooperatively 
through an imaginary land thanks to the directions given by the participant. 
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About 15 minutes of speech data are recorded through this “give and take”, 
conforming the core data our spoken dialogue study. The third map con-
tains neither landmarks nor routes and is given to the participant afterwards, 
in order to complete a “landmark allocation” task. This assesses allocentric 
allocation, which is known to be impaired in AD earlier than other aspects 
of spatial navigation [5]. 

Our Map-Task has been carefully designed to meet research and ethic criteria 
for the PREVENT-ED study (ED: Elicitation of Dialogues), which builds on a 
larger project (PREVENT [6]) to investigate whether early behavioural signs 
of AD may be detected in dialogue interaction. Participants aged 40-59 at 
baseline are currently undertaking this task, generating a corpus of spoken 
dialogue and data on visuospatial abilities. We use speech processing, natu-
ral language processing and machine learning methods to assess how well 
speech and visuospatial markers agree with neuropsychological, biomarker, 
clinical, lifestyle and genetic data from the PREVENT cohort.

RESULTS AND CONCLUSIONS

The study is currently in a data collection phase (to be finished in February 
2019) with promising feedback and successful interactions. The purpose of 
this communication is giving dissemination to the map-task, which is a new 
method for cognitive assessment, originally developed by our research group.
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INTRODUCTION/MOTIVATION

Schizophrenia (SZ) is a severe psychiatric disorder that manifests through 
positive (hallucinations, disorganized speech and delusions) and negative 
symptoms (grossly disorganized or catatonic behavior, diminished emotional 
expression and anhedonia). The disease is commonly accompanied with 
alterations in sleep, inappropriate affect, depersonalization or derealization 
[1], and may have an insidious or sudden onset. A myriad of correlates can 
be found at every level, from genes to whole-brain structural and functional 
networks. Regarding the last, it has been found that network architecture in 
SZ patients tend to be more disconnected than in healthy populations [2,3].

Modularity and network partitioning are related to a balance between integra-
tion and segregation of information across brain regions [6], and has proven 
to play an important role in shaping different topologies between subjects 
suffering from SZ and healthy population [4,5]. SZ of childhood onset has 
been consistently related to community bounds dissolution [7], while adult 
onset schizophrenia reports range from altered to intact overall modular-
ity [8,9]. Yet, findings on community structure (i.e., communities in which 
different nodes participate) are consistent regardless of diagnostic status 
[8,10,11], indicating regular changes in topology. All in all, it is still unclear how 
modularity diverges in these clinical populations. The goals of our research 
are i) to unveil differences concerning ii) overall connectivity, iii) community 
structure and iv) robustness in terms of connectivity of brain areas associated 
to healthy subjects and patients of schizophrenia.
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METHODS

In the present work, we analyze resting state fMRI functional networks of 65 
healthy subjects (HC) and 44 patients of schizophrenia (SZ), 28 of them in a 
chronic state (CR) of illness, and 16 at early stage (ES). Parcellation follows 
the template proposed by Shen et al. (2013) [12], weights are calculated with 
Pearson correlation between all pair of regions’ time series and corrected 
with surrogate permutation testing (i). We then apply the Louvain [13] and 
Surprise [14] algorithms to detect communities, and compare groups with 
the Rand index [15] (ii). Finally, we prune the network cutting edges with a 
weight smaller to a threshold. We explore the value of the threshold and 
observe how the giant component and the density of the network react to 
the prune at each group (iii).

RESULTS AND DISCUSSION

In comparison to healthy subjects, we found that networks from SZ patients 
exhibits wider weight distribution, larger overall connectivity [(i) Fig. 1], and are 
more consistent in the community structure across subjects [(ii) Fig. 2]. On the 
other hand, as the pruning threshold increases, density [(iii) Fig. 3] and size of 
the giant component decreases [(iii) Fig 4]. Given that average synchronization 
is higher in the SZ group, the giant component is more robust than in the 
HC group (iii), as it survives better edge removal. Density is notably smaller in 
the chronic group in comparison to the other two groups (iii), with HC being 
higher, and early stage in between. That is, even though-functional networks 
are less dense in SZ patients, they are also more robust to disconnection of 
the giant component. This tendencies (i and ii) seem to evolve with time, as 
the early stage group is systematically between the other two groups. This 
might be due to the chronification of the desease or to the medication. 
Further research is needed to assess the stability of this evolution.
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INTRODUCTION/MOTIVATION

Better understanding the differences between human and mouse pyramidal 
cells is important for the modelling efforts of the Human Brain Project. We 
know, for example, that human pyramidal cells have larger dendritic arbors [1] 
and more synaptic connections [2] than those of the mouse. Previous com-
parative studies have largely been univariate, comparing each morphological 
feature in isolation. Yet, there might be meaningful interactions among the 
features. Furthermore, these interactions might differ between the species. 
Such interactions can be captured with probabilistic multi-variate models 
such as Bayesian networks [3].

METHODS

We will use morphology reconstructions from Neuromorpho.org [4], taking 
into account the cells’ brain area, reconstruction procedure specifics, and 
cortical layer when comparing cells across species. We will compute a wide 
array of morphometrics with the NeuroSTR software (https://computational-
intelligencegroup.github.io/neurostr/). We will learn one Bayesian network for 
the human cells and another for mouse cells, with the same morphological 
features as their variables. These are interpretable models encoding proba-
bilistic independencies among sets of variables. Comparing the two models 
can reveal differences and similarities between the species. For example, 
we might find that the distance from the soma is related to branch length 
differently in mouse than in human cells. 

RESULTS AND DISCUSSION

We are performing initial analyses and have no results at this point.
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INTRODUCTION/MOTIVATION

The stagnation or complication of post-stroke cognitive dysfunction could 
be associated with an unfavourable prognosis of the disease [1-4]. Cognitive 
rehabilitation including intensive speech therapy and physiotherapy is used 
in order to increase the effectiveness of restorative treatment. However, the 
question of the therapeutic effectiveness of cognitive rehabilitation courses 
remains controversial and is being extensively researched [5, 6]. The research 
became especially crucial as right rehabilitation potential and stroke outcome 
prognosis became crucial for effective treatment planning [7-9]. The goal of 
the presented study is the analysis of T1-weighted structural MRI to assess 
the patient’s condition at the time of admission to the rehabilitation center 
and forecast the dynamics of recovery as a result of restorative therapy.

METHODS

In the current study, we observe the dataset containing 41 patients, mean age 
57.31 (11.72) years, with clinical aphasia after the first hemispheric ischemic 
stroke in the anamnesis 3-12 months onset. Patients were examined before 
and after the course of rehabilitation treatment (4.7 weeks), which includes 
intensive speech therapy (15 hours of exercise per week). For each patient 
in the dataset MRI was performed on the MAGNETOM Avanto MR scanner 
(Siemens, Germany) with a 1.5 Tesla magnetic field induction right after the 
admission to the rehabilitation center (3 months after the stroke). All the anal-
ysis was done on T1-weighted imagery, which were skull stripped in Brainsuite 
toolbox, centered and aligned. Effectiveness of the course of treatment was 
evaluated based on the dynamics of the results of neuropsychological, neu-
rological and neurovisual examination of patients before and after treatment. 
The estimated parameters included: the dynamics of focal deficiency the 
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National Institutes of Health Stroke Scale (NIHSS) [10] and functional recovery 
of the patients (Barthel Index (BI), modified Rankin Scale (mRS)). MRI scans 
obtained at the time of admission were used to predict NIHSS, Barthel and 
mRS before and after cognitive rehabilitation courses. Additionally, we fitted 
models where value of the target parameter at the acute phase (21 days after 
the stroke) which was concatenated to the feature vector, extracted from the 
image. The Vox Convolutional and residual neural networks [11] with smooth 
L1 loss was used to solve all regression tasks. The plain convolutional net-
work exploits 3D convolutional layers, followed by ReLU activations and max 
pooling layers for gradual dimensionality reduction, while residual network 
also add skip connections between blocks of layers. The calculations were 
performed in python with the use of PyTorch framework.

RESULTS AND DISCUSSION

Table 1 depicts mean absolute error for all the regression tasks, estimated on 
the 5-fold cross validation with two repetitions. We observe rather low errors, 
which supports the hypothesis that the sMRI-based deep learning models can 
be considered as relevant predictive tools for the stroke outcome prognosis. 
Surprisingly, model performs better when predicting the value of interest after 
the rehabilitation treatment, which is even more important than prediction 
of the same parameter before treatment. It is also worth mentioning, that 
addition of the acute phase value increases accuracy of all the models. 
Presumably, the reason for that is high correlation between initial and future 
value of the corresponding variable.

Table 1: Regression results: Mean absolute error and its standard deviation 
on repeated 5-fold cross validation

Target Possible

Values

MAE (SD) before  
treatment

MAE (SD) after treatment

Without 
acute 
phase value

Including 
acute 
phase 
value

Without 
acute 
phase 
value

Includ-
ing acute 
phase value

Barthel 1 - 100 11.40 (3.346) 7.77 (2.222) 7.65 (2.287) 5.86 (2.124)

mRS 0 - 5 0.66 (0.115) 0.53 (0.251) 0.65 (0.174) 0.45 (0.217)

NIHSS 1 - 31 3.33 (0.907) 3.05 (1.179) 2.54 (0.989) 1.78 (0.895)
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INTRODUCTION

An important part of simulations of the whole brain is based on the connec-
tome-based modelling of large scale brain networks [1]. This approach is 
relevant for understanding neuroimaging signals. Nevertheless, these models 
are great simplification of neural population and the loss of description means 
that they can capture only some part of brain dynamics. The identification of 
the missing behaviour of neurons is important to avoid establishing wrong 
conclusions from the simulation. The comparison between mean field theory 
and spiking neural network uses a simple topological structure. The network 
is composed of adaptive exponential integrate and fire neurons placed on 
a torus and connected with homogeneous connections and with one long 
heterogeneous connection [2]. The analysis of the simulated dynamic net-
work demonstrates that the synchronization between neurons is different 
between mean field model and the spiking neural network. These results 
implicate significant differences in the simulated dynamics of these two levels 
of description.

METHODS

We utilize the mean field model to simulate mouse brain dynamics and 
capture resting state dynamics and functional connectivity [3]. However, 
the investigation of missing dynamics in the simulation of a mouse brain 
is crucial for validation of interpretations of the mean field model and for 
helping the future modelling. For this, we propose to use spiking neurons 
over a connectome. These simulations will be run on supercomputers due 
to the size of the network. This analysis should bring some important results 
about the importance of mean field model in the brain simulations. The 
result will also allow simulations with the coexistence of difference scale. It 
will be possible to integrate in our research the impact of our results on the 
dynamics of the brain.
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INTRODUCTION/MOTIVATION

Although depression is one of the most common psychiatric disorders, there 
is no biological test for the depression diagnosis currently in clinical practice. 
Nevertheless, depression patterns have been extensively studied by the means 
of neuroimaging. In the existing studies, it was shown that depression can be 
recognized by analyzing the data of functional brain activity, such as fMRI. 

The fMRI data analysis could be performed of different levels of processing 
and feature extraction. The convenient approach assumes classification on 
functional connectivity matrices, acquired as brain regions of interest (ROI) 
time series correlations [1-4]. Also, obtained ROI time series could be classi-
fied directly with 1-D recurrent neural networks. And finally, fMRI data could 
be classified with minimal preprocessing using 3-D Convolutional Neural 
Networks with recurrent structure. It should be noted that although deep 
learning methods are known for requiring more data to achieve high perfor-
mance, existing works [5], [6] show that neural networks of reduced size with 
strong regularization can be successfully applied to analyze such data as fMRI 
and EEG even on a small sample. In this work, we compare three possible 
approaches: classification with SVM algorithm applied to the precomputed 
features (connectivity matrices), classification with recurrent neural networks 
trained on ROI’s time series and recurrent-convolutional neural networks, 
applied directly to the fMRI data without any feature extraction.

METHODS

The observed dataset consisted of 1.5 T T2* EPI sequences of 25 patients 
with major depressive disorder and 25 healthy volunteers, annotated with 
demographic characteristics as well as BDI-II scores. fMRI imagery was pre-
processed in fmriprep [7] software package. For each patient 133 volumes 
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were corrected by registering and re-slicing for head motion, field unwarping, 
normalization, bias field correction, and brain extraction. Next, images were 
handled via nilearn package to obtain connectivity matrices. Images were 
spatially smoothed with a Gaussian filter, detrended and standardized. The 
116 time series were obtained for each ROI as major SVD component for all 
region voxel according to AAL atlas. Then we evaluated functional connectiv-
ity between each pair of regions using Pearson correlation coefficient. Thus, 
for each patient, we obtained a 116 × 116 symmetric matrix, pulling 1-dimen-
sional vector we describe every subject with (116 × 115)/2 = 6670 features.

The 1-D Recurrent neural network on ROI time series [8] takes the rsfMRI 
time series of each patient as input and predicts the class label, taking into 
account dependence between their sequential changes.

The 3-D Recurrent-Convolutional Neural Network [9] architecture consists of 
a convolutional part followed by a recurrent part. During the training process, 
convolutional part takes as input 3D brain images at each time step of fMRI 
series and transforms them into the feature vectors. Then obtained vectors 
are transmitted to the recurrent part of the network, which tries to capture 
temporal information and predict the class label [10]. 

For both neural networks, we considered configurations with one or two 
recurrent layers with LSTM memory units. We also experimented with the 
number of blocks of convolutional layers and the number of filters in R-CNN 
and the number of LSTM memory units in RNN. The quality of model pre-
dictions is estimated by metric ROC AUC on repeated 5-fold cross-validation 
with 3 petitions.

RESULTS AND DISCUSSION

We compared results obtained with basic fMRI preprocessing and three 
methods of data analysis, included SVM classification on reduced dimen-
sionality features Recurrent-Convolutional Neural Network modifications for 
depression recognition problem (Table 1). As can be seen, recurrent CNN’s 
outperform methods requiring feature extraction and pre-processing. Also, 
we observe statistically significant correlation (p-value 0.02) between prob-
abilistic predictions of the R-CNN’s models and BDI-II scores of the patients.
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Table 1: Performance obtained on the depression recognition tasks. Reported 
as ROC-AUC

Data for the analysis Classifier AUC STD

Functional 
connectivity matrix 

SVM (kernel = rbf, C = 1, gamma 
= 0.01, dim_reduction = PCA)

0.60 0.16

ROI time series RNN-1 0.54 0.15

ROI time series RNN-2 0.57 0.18

Full size fMRI data R-CNN-1 0.75 0.19

Full size fMRI data R-CNN-2 0.77 0.18

REFERENCES

[1] � Sheline, Yvette I., et al. “Resting-state functional MRI in depression unmasks increased con-
nectivity between networks via the dorsal nexus.” Proceedings of the National Academy of 
Sciences 107.24 (2010): 11020-11025.

[2] � Greicius, Michael D., et al. “Resting-state functional connectivity in major depression: abnormally 
increased contributions from subgenual cingulate cortex and thalamus.” Biological psychiatry 
62.5 (2007): 429-437.

[3] � Zeng, Ling-Li, et al. “Identifying major depression using whole-brain functional connectivity: a 
multivariate pattern analysis.” Brain 135.5 (2012): 1498-1507.

[4] � Veer, Ilya M., et al. “Whole brain resting-state analysis reveals decreased functional connectivity 
in major depression.” Frontiers in systems neuroscience 4 (2010): 41

[5] � Plis, Sergey M., Hjelm, Devon R., Salakhutdinov, Ruslan, Allen, Elena a., Bockholt, Henry J., Long, 
Jeffrey D., Johnson, Hans J., Paulsen, Jane S., Turner, Jessica a., and Calhoun, Vince D. Deep 
learning for neuroimaging: a validation study. Frontiers in Neuroscience, 8(August):1–11, 2014. 
ISSN 1662-453X. doi: 10.3389/fnins.2014.00229.

FIGURE 1: Recurrent-convolutional neural network applied to 4D fMRI data.AQ4
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INTRODUCTION

Emotional stimuli are very salient even if they are task-irrelevant, due to their 
relevance to survival (Drevets and Raichle, 1998). Affective stimuli elicit stronger 
perceptual representations in the brain’s visual and other cortices (Vuilleumier, 
2005; Satpute et al., 2015). This increased strength of representation at the 
expense of executive control resources is termed hard prioritization (Pessoa, 
2009) and it is proposed to be a function of amygdalergic projections to 
cortical sensory areas as well as increased direct processing of affective 
information in the fronto-parietal control network (Amaral, Behniea, & Kelly, 
2003; Okon-Singer, Hendler, Pessoa, & Shackman, 2015; Pessoa, 2009; 
Sah, Faber, Lopez De Armentia, & Power, 2003). Executive resources are 
thus occupied by the processing of the affective information and no longer 
available for executive control-demanding activities such as working memory 
(Eysenck, Derakshan, Santos, & Calvo, 2007). The frontal-parietal network 
biases sensory processing of information, facilitating goal selection (Awh, 
Belopolsky, & Theeuwes, 2012). We aimed to directly test the afforementioned 
suggested processes by using the established Emotional Working Memory 
Task (EWMT) in a patient group with Borderline Personality Disorder (BPD). 
The Emotional Working Memory Task (EWMT) is an adapted Sternberg item 
recognition task (Sternberg, 1966) modified by Oei and colleagues (Oei et 
al., 2012; Krause-Utz et al., 2012, 2014). It is one of the most established 
paradigms that can reflect the effects of emotional distraction on working 
memory processes (Krause-Utz et al., 2014; Dolcos & McCarthy, 2006). A 
recent meta-analysis by Scweizer and colleagues (2018) has revealed that 
distraction by emotionally negative pictures is characteried by altered neural 
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processes such as increased vlPFC recruitment, amygdala and temporo-
occipital cortex. However, we still do not know the exact neural mechanisms 
through which emotional distraction during cognitive processing takes place. 
The behavioral impact of the emotional distraction appears to be augmented 
in individuals for whom emotional stimuli have greater significance (Schweizer 
et al., 2018). Affective disorders like BPD have been linked to an increased 
response to affective stimuli (Krause-Utz et al., 2014), so the effects that the 
emotional distractors of the EWMT will have on working memory processes 
is considered to be more readily detectable. To the best of our knowledge, 
no other study has tried to disentangle the different working memory and 
affective processes during the distinct phases of the EWMT. We hypothesized 
that activation of the occipital cortex and the amygdala would be increased 
during the emotional distractor. We further hypothesized that the fronto-
parietal network activation would be enhanced during the probe phase 
following an emotional distractor because frontal resources would need 
to be more actively recruited to compensate for the distraction during the 
pending response execution (i.e. probe).

METHODS

A total of N = 22 (age : 32.50 ± 10.81; mean±SD) female patients with at 
least 5 BPD criteria according to DSM-IV (American Psychiatric Association, 
2000) participated in the study. The present EWMT version had a duration of 
8 minutes and was comprised of 40 trials, each starting with the presentation 
of a set of three letters (memoranda, 1000ms). After a 1500 ms delay phase 
another three-letter set appeared on the screen (probe, 2000ms). Participants 
had to press the button “yes” or “no” indicating whether one of the letters 
in the memoranda has reappeared in the probe. In half of the trials, one of 
the three memoranda was present in the probe. During the delay interval, 
either no distractor (i.e. a fixation cross; “cross condition”) or a distractor (i.e. 
an aversive picture; “negative condition”) was presented. Order of condition 
and pictures were counterbalanced. A 3 Tesla MRI Scanner was used for the 
data acquisition and MATLAB (vR2012a) SPM12 package was used for the 
data analysis. Contrasts between the individual EWMT phases (memoranda, 
negative picture or cross, probe, response) and baseline activity were mod-
eled per subject. One-sample t-tests were computed to get BOLD-activity 
patterns on a whole-brain level for each contrast with an intensity threshold 
of p < .001 and an extent threshold of k > 10 contiguous voxels. 
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RESULTS AND DISCUSSION (PRELIMINARY)

Prelimiray results suggest that during the distraction of negative pictures, 
BPD patients show an increase in the ventrolateral prefrontal cortex (vlPFC), 
the occipital cortex and the amygdala, which is in line with a recent meta- 
analysis on emotinal working memory (Schweizer et al., 2018). Moreover, 
we find a significant increase in BOLD activity in the prefrontal cortex, tem-
poro-occipital cortex and amygdala when comparing the probe following a 
negative distractor with the probe following no distractor. Prelimiary results 
are in line with our hypotheses and suggest that participants in the retrieval 
phase need more resources if they become distracted by a negative picture  
(see Table 1 and Figure 1).

Table 1: Preliminary summary of brain activations per EWMT phase

Talairach coordinate

x y z Aal TD Labels Brodmann

Negative pictures

6 -88 -2 Calcarine_R Lingual Gyrus -

-24 8 -18 Olfactory_L Inferior Frontal Gyrus -

22 -6 -16 Hippocampus_R Parahippocampa Gyrus Amygdala

-20 -30 -4 Hippocampus_L - -

-2 50 -16 Rectus_L Medial Frontal Gyrus -

-44 4 -36 Temporal_Inf_L Middle Temporal Gyrus -

34 -6 -38 Fusiform_R Uncus -

Probe

10 14 -2 Caudate_R Caudate Caudate Head

-4 -78 46 Precuneus_L Precuneus -

-46 -58 22 Temporal_Mid_L Superior Temporal Gyrus 39

-38 -90 4 Occipital_Mid_L Middle Occipital Gyrus 19

-30 -84 -22 Cerebelum_Crus1_L Fusiform Gyrus 19

50 20 -10 Frontal_Inf_ Orb_R Inferior Frontal Gyrus 47

22 56 24 Frontal_Sup_R Middle Frontal Gyrus 10

54 -28 -2 Temporal_Sup_R Superior Temporal 
Gyrus

22

6 -40 6 Cingulum_Post_R Extra-Nuclear Corpus Callo-
sum

-40 -68 40 Angular_L Inferior Parietal Lobule 39

Note. Probe following a negative distractor versus probe following cross.
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FIGURE 1: Note: This figure is preliminary and subject to change to better depict the EWMT 

procedure and the main results. (A) The present version of the EWMT comprised 40 trials, each 

starting with the presentation of a set of three letters (memoranda, 1000ms). After a distraction 

phase of 1500 ms another set of three letters appeared on the screen (probe, 2000ms). 

Participants had to press the button “yes” or “no” indicating whether one of the letters in the 

memoranda has reappeared in the probe. In half of the trials, one of the three memoranda was 

present in the probe. During the distraction interval, either no distractor (i.e. a fixation cross; 

“cross condition”) or a distractor (i.e. an aversive picture; “negative condition”) was presented. 

Target-present and target-absent trials were equal across the negative and the cross condition. 

The presentation of the two conditions was balanced in a pseudo-random manner with no 

more than two consecutive conditions. (B) Left Amygdala mask (x: -27, y: -3, z: -18) was 

created with a sphere of 20mm using the MNI coordinates from the negative>neutral contrast 

reported by Schweizer and colleagues (2018). Small volume correction (SVC) analysis revealed 

increased activation in the left amygdala in response to the negative picture (negative picture > 

baseline contrast), T(21) = 5.70, p < .01, FWE corrected. (C) Left vlPFC mask (x: -39, y: 33, z: -6) 

was created with a sphere of 20mm using the MNI coordinates from the negative>neutral 

contrast reported by Schweizer and colleagues (2018). Small volume correction (SVC) analysis 

revealed increased activation in the left vlPFC in response to the probe following a negative 

distractor (negative probe > cross probe contrast), T(21) = 6.60, p = .00, FWE corrected.
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INTRODUCTION

Chronic stress, which has been correlated with a multitude of physical 
and mental health issues, can significantly impact cognition and decision-
making (Janis and Mann, 1976; Zur and Breznitz, 1981)). Studies using mouse 
models have demonstrated that chronic stress, induced through repeated 
immobilisation, can cause mice to evaluate cost-benefit conflicts erratically 
and engage in riskier behaviour (Friedman et al., 2017). Potential ways of 
counteracting these stress effects remain largely unexplored. In the current 
study, we investigate the role of social interaction in attenuating stress-
induced aberrant decision-making.

METHODS

This study utilised a pre-post-control mixed-measures design. Mice were 
housed either in groups or individually throughout the experiment. Both 
groups of mice underwent a seven-day period of repeated immobilisation 
to induce chronic stress. Stress levels were determined using behavioural 
(Open Field Test) and physiological (urine corticosterone ELISA) measures 
to confirm the efficacy of the chronic stress protocol. Decision-making 
was assessed through a Cost-Benefit Conflict (CBC) task on a T-maze, in 
which mice could choose between a high-benefit, high-cost alternative and 
a low-benefit, lost-cost alternative. All three measures were conducted before 
and after the chronic stress protocol to compare changes in stress levels and 
decision-making after chronic stress exposure.
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RESULTS AND DISCUSSION

We found that urine corticosterone levels and thigmotaxis in an open field, 
which are both reliable measures of stress, increased significantly after the 
chronic stress protocol across housing conditions (Figure 1A, 1B). This suggests 
that the immobilisation protocol successfully induced chronic stress among 
the mice. There was no significant interaction of chronic stress and social iso-
lation on decision-making: socially-housed mice did not show a significantly 
different increase in high-risk decision-making after chronic stress exposure 
compared to individually-housed mice Crucially, however, significant additive 
main effects of stress and housing were found. There was a significant increase 
in high-risk decisions after exposure to chronic stress for both housing con-
ditions, and isolated mice on average made more high-risk decisions than 
socially-housed mice (Figure 2). These findings suggest that chronic stress and 
social isolation lead to risky decision-making in mice as individual factors, but 
the role of social interaction in counteracting this stress effect requires further 
exploration. This study advances our understanding of stress and cognition 
in mouse models and lays the groundwork for further research into factors 
that may attenuate the effects of chronic stress on cognition. 

FIGURE 1: (A) Performance on an Open Field Test and (B) urine corticosterone concentrations 

(ng/mL) for socially-housed (n = 10) and singly-housed (n = 10) mice. Urine corticosterone 

concentrations and time spent outside the center of the field (thigmotaxis) increase 

significantly after repeated immobilisation for both housing conditions, indicating higher stress 

levels after the chronic stress protocol.
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FIGURE 2: Performance of socially-housed (n = 10) and singly-housed (n = 10) mice on a 

Cost-Benefit Conflict (CBC) task before and after exposure to chronic stress. Proportion of 

taking high-risk decisions in total decision trials increased significantly (p < 0.050) for both 

conditions after exposure to chronic stress, but this increase was not significantly different  

(p > 0.021) in socially-housed mice than in singly-housed mice.
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INTRODUCTION AND MOTIVATION

Synaptic plasticity, the ability of synapses (connections between nerve cells) 
to change their strength, is a fundamental property of the brain. Long-term 
potentiation (LTP), the strengthening of synapses, and long-term depression 
(LTD), the weakening of the synapses, are among the best researched phe-
nomena in synaptic plasticity [1]. However, understanding of synaptic plasticity 
is still lacking, due to its very complex expression. One of the main difficul-
ties in understanding synaptic plasticity is the broad range of mechanisms 
involved, from intracellular biochemical networks, through various neuro-
transmitters and membrane receptors, to dendritic morphology [2]. Further 
understanding of synaptic plasticity requires integration of these various levels 
into coherent and consistent models. In this project, we combine various 
experimental literature and modelling attempts to assemble a bottom-up 
model of synaptic plasticity. We employ novel software - KappaNEURON [3] 
- to merge a detailed model of dendritic spine Ca2+ transients and biochem-
ical networks with a model of electrical activity in a neuron. This approach 
will allow us to show how various experimental synaptic plasticity protocols 
manifest themselves at the subcellular level and to make novel experimental 
predictions.

METHODS

KappaNEURON [3] is a hybrid simulator which couples NEURON 7.4 [4] and 
SpatialKappa 2.1.1 [5] in a consistent and accurate manner. KappaNEURON 
has the advantage of allowing biochemical interactions to be specified in 
the rule-based Kappa language, which is particularly suited to describing pro-
tein-protein interactions compactly. Relevant biochemical reactions collected 
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from literature were translated into SpatialKappa’s rule-based format, with free 
or underconstrained reaction rates being tuned to match physiological data. 
The resulting model includes calcium influx through NMDA receptors and 
voltage-gated calcium channels, protein interactions dependent on Ca2+ lev-
els, such as CaM activation and the resulting phosphorylation or dephospho-
rylation of proteins pivotal in plasticity, e.g. CaMKII, I1 and AMPA receptors. The 
biochemical spine model was embedded in a simplified CA1 pyramidal cell 
model with membrane mechanisms based on [6], with biochemical activity 
in the spine responding and contributing to electrical activity in the neuron. 

DISCUSSION

The simulations incorporating a single biochemically complex spine, in the 
context of a detailed electrical model of a neuron, allow for deeper under-
standing of naturally occurring plasticity, as well as pathological plasticity 
mechanisms, such as in Alzheimer’s or Parkinson’s [7]. Specifically, studies 
such as [8], if extended to hippocampus in health and disease, would pro-
vide invaluable proteomic and genetic information, which might be trans-
latable to parameter changes or model extensions, representing gene level 
phenomena. The simulation time due to the biochemical model is much 
greater than the neural simulation time, and it would therefore be desirable 
to develop simplified versions of the model that could be incorporated in 
simulations of networks.
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INTRODUCTION/MOTIVATION

Using a multidimensional reinforcement learning task in which one of 
three dimensions determines reward (Figure 1), previous work showed that 
cognitive models incorporating passive decay of the values of unchosen 
options explained subject choice data better than competing models 
(Niv et al., 2015). More recently, models that assume attention-weighted 

FIGURE 1: The Dimensions task. Subjects are presented with three stimuli, each a column, 

comprised of three features: a face, a landmark, and a tool. Rewards were contingent only on 

a single dimension, in which one feature provided a reward with high probability (0.75) and 

selecting a stimulus with the other two features yielded a reward with low probability (0.25).
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reinforcement learning using eyetracking and MVPA (Multivoxel pattern 
analysis) based measures of attention were shown to predict the data equally 
well (Leong et al., 2017). We investigate whether the two models, which 
suggest different cognitive processes, explain the same aspect of the data, 
or rather different, complementary aspects. We find that the different models 
capture distinct trial dynamics: models incorporating attention predict subject 
choice considerably better immediately after they learn the task, while models 
including decay excel in predicting choices several trials afterward.

METHODS

We fit several different reinforcement learning models to trial-by-trial 
choice data of N=25 participants from Leong et al. (2017), combining 
the best-fitting models from the two previous publications. Models were 
implemented in MATLAB, parameters were fit by maximizing the likelihood 
of the data using fmincon (Matlab), and models were compared using 
leave-one-game-out cross-validation. We also designed and implemented 
additional analyses comparing the cross-validated likelihoods on a trial- 
by-trial basis, to test for differences between the models at different phases  
of the task. 

RESULTS AND DISCUSSION

We show that combining the two models improves the overall average 
fit, as measured by cross-validated likelihood on held-out data, suggesting 
that these two mechanisms explain separate components of the variance  
(Figure 2). Trial-specific prediction accuracies of the models show that each 
model helps explain different trial dynamics depending on the progress a sub-
ject has made in learning the task. In particular, attention-weighted learning 
predicts choice substantially better in trials immediately following the point 
at which the subject has successfully learned the task (and made no further 
mistakes for the remainder of the current game), while passive decay better 
accounts for choices in trials further into the future relative to the point of 
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FIGURE 2: Mean cross-validated likelihood for each model (higher is better). fRL: baseline 

feature-wise reinforcement learning (RL) model. fRLD: feature-based RL model with decay, 

best-fitting model in Niv et al., (2015). ACL: attention at choice and learning RL model, 

best-fitting model in Leong et al. (2017). ACLD: attention at choice and learning model with 

decay, best-fitting model reported.

learning (Figure 3). Additional analyses demonstrate that the decay model fails 
to capture the choice immediately following the last mistake, but recovers 
quickly afterward, while attention aids in predicting choice both before learn-
ing and immediately after it, but not farther into the future. Together, these 
results suggest a possible role for decay in modeling choices that people 
make when exploiting learned knowledge of the task, while attention might 
account for choice behavior as participants actively test hypotheses about 
task structure early during learning.
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FIGURE 3: Difference between the likelihood of the ACL and fRLD models before, at, and far 

after the point at which subjects learn the task. The y-axis (x = 0) marks the trial where the 

subject made the last mistake in a given game, the point at which they learned that game. 

Before the point of learning (x < 0), both models perform reasonably similarly (i.e., both predict 

participants’ choices with similar accuracy). At and immediately after learning (0 < x < 5), the 

ACL model performs substantially better, predicting more than 10% of additional variance, as 

compared to the decay model, while further into the future (x > 5) the decay model predicts 

choice significantly better. 
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BACKGROUND

In the last two decades, there has been a substantial number of studies indi-
cating a link between schizophrenia (SZ) and early life adversities, such as 
childhood trauma (CT), which is highly prevalent in psychiatric populations 
[1]. However, little is known about the association between CT and social 
cognition, defined as a set of mental operations underlying social interactions 
and comprising of: Theory of Mind, emotion recognition and regulation, 
social perception and attributional style. Social cognitive deficits are a hall-
mark feature of SZ, which may result in impaired social and occupational 
functioning [2]. In a limited number of studies, childhood trauma has been 
shown to deleteriously impact on later social cognitive function in individuals 
with schizophrenia and to a lesser extent, in healthy individuals [3]. The aim of 
this study is to examine whether childhood adversity is associated with social 
cognitive abilities in both patients with schizophrenia and healthy controls.

METHODS

Thirty patients with SZ (mean age=43.93; SD=11.80; 18 males, 12 females) 
and thirty healthy controls (mean age=33.07; SD=9.88; 17 males, 13 females) 
completed the Childhood Trauma Questionnaire (CTQ), which assesses the 
frequency and severity of five types of CT: emotional abuse, physical abuse, 
sexual abuse, emotional neglect and physical neglect. Furthermore, all par-
ticipants underwent three social cognitive tasks: the Reading the Mind in the 
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Eyes Task (RME) and the Hinting Task that evaluate the ability to infer emotions 
and mental states of others, and the Emotion Recognition Task (ERT), which is 
implemented in the Cambridge Neuropsychological Test Automated Battery 
and measures the ability to identify six basic emotions in facial expressions 
(sadness, happiness, fear, anger, disgust or surprise). Pearson’s correlation 
coefficient was carried out to investigate the association between various 
types of childhood trauma and social cognitive tasks.

RESULTS

We found that a history of CT in patients, specifically physical neglect, was 
significantly negatively associated with poorer performance on the RME task 
(r=-.623, p<.001) and deficits in recognising disgust (r=.415, p<.05). Physical 
and sexual abuse were positively correlated with recognition of sad faces 
(r=.494, p<.01; r=.406, p<.05 respectively). In healthy controls, a history of 
emotional neglect was significantly negatively associated with deficits in 
recognising disgust (r=-.434, p<.05) and physical neglect was positively cor-
related with recognition of fear (r=.364, p<.05). No significant associations 
were found between CT and the total score on the Hinting Task in any of 
the groups. 

DISCUSSION

These results suggest that the experience of CT has an impact on emotion 
recognition and Theory of Mind abilities in patients with SZ. Since deficits 
in social cognition are suggested to represent a core aspect of disability in 
schizophrenia and are not generally improved by antipsychotic medication 
[4,5], a better understanding of the role of early childhood experiences in 
the development of social cognitive abilities is crucial. Further, the findings 
highlight the importance of addressing the various types of early childhood 
social experience and adversity in the assessment and intervention protocols 
of mental health treatments (e.g.Cognitive Behavioural Therapy), and psy-
chosocial interventions that will specifically target social cognitive deficits. 
Early interventions (e.g. parenting programs) should also be implemented 
in an effort to minimise the occurrence of childhood adversities or reduce 
their impact.
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INTRODUCTION 

This paper discusses the specultaive experimental design/methodology 
intended to be used to explore the coupling of perception-action in the 
context of understanding creativity influenced by sounds in improvised dance 
and physical theatre. It intends to examine the effects of auditory perception 
on movement improvisation and how this informs the creative process of 
a performance. It questions how sounds affect the brain during the crea-
tion of improvised bodily movements while listening to sounds, and how 
sounds influence the movement choices of the performers. This research 
combines contemporary dance and physical theatre practices along with 
cognitive neuroscience. It will explore the response to sound as expressed 
through movement and how this may be used in analysing movements and 
developing choreographic processes in dance and physical theatre. The 
sounds for this experimental process are recorded sounds (blended music 
and environmental sounds). 

METHODOLOGY

The methodology will incorporate movement analysis, brain signal analy-
sis and discussion with participants. The experimental processes has two 
phases. In phase one (behavioural data), a group of performers (group 1) will 
improvise while paying specific and primary attention to the sounds (con-
temporary music blended with man-made environmental sounds) they are 
hearing – not their movements. These movements will be video captured 
via digital (DSLR) cameras and three-dimensional recording via Microsoft 
Kinect System. The captured data will then be parsed for similarities between 
participants movements which will be distilled to form similar taxonomies.  
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This will focus on upper, middle and lower body movements, analysing 
them with the Laban Movement Analysis (LMA), not considering the potential 
meaning or interpretation of the movement. In phase two (neural activity 
data), group 1 and a new group of performers (group 2) will be asked to 
imagine improvising to the same sounds while their brain activity is being 
recorded via an fMRI (functional Magnetic Resonance Imaging) scanner. 
They will watch the video recordings made in phase 1 while listening to the 
same sounds and their brain activity also recorded via an fMRI scanner. All 
data will be compared and correlated for similarities. 

RESULTS AND DISCUSSION

These behavioural and neural activity data will be compared and correlated, 
informing the creative process of a new experimental choreographic work, 
based on the combination of the gathered data. This is an ongoing explora-
tion and early stage results will be presented.
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INTRODUCTION

Brain organization is extremely complex and our current knowledge about 
it is far from being completed. The cerebral cortex attracts the research-
er’s attention because it is the region where cognitive process takes place. 
Concretely, Brodmann’s area 21 or Temporal 2 (T2) is an associative six- 
layered cortex located in middle temporal gyrus [1]. It is strongly connected to 
others associative cortices trough cortico-cortical layer III projecting neurons 
[2, 3]. At a functional level, it is a critical node for language-based semantic 
processing, acting as interface between sensorimotor language and internal 
mental world [4] as well as leading social animations identification [5]. To 
understand how neuronal circuits contribute to the functional organization 
of the cerebral cortex requires a detailed ultrastructural analysis of neuronal 
connectivity. We have selected layer III from T2 to perform a detailed three 
dimensional ultrastructural analyses of the neuropil, the region where most 
of the synaptic contacts are located. 

METHODS

T2 samples were obtained from non-pathological tissue of biopsies from 
epilepsy patients (3 males and 2 females), who reported normal T2 elec-
trophysiological activity during surgery. We have used a focused ion beam/
scanning electron microscopy (FIB/SEM) which allows imaging serial sections 
by removal of 20 nm-thick layers of material, leading to fully reconstruct of a 
given volume [6]. Stacks of images obtained by the FIB/SEM were analyzed 
using EspINA software which allows the 3D reconstruction of synapses. 
Once the synaptic junctions were fully reconstructed, each synapse could 
be classified as asymmetric (AS) or symmetric (SS) based on its prominent 
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or thin post-synaptic density, respectively. EspINA also provides the number 
of synapses in a given volume, which allows the estimation of the number 
of synapses per volume.

RESULTS

The main goal of this study is to provide T2 layer III neuropil synaptic data, 
in particular, its synaptic density per unit volume, and the excitatory/inhibi-
tory synaptic balance. Preliminary results (Figures 1, 2) based on 5111 iden-
tified synapses, which 3590 were finally analyzed, shows synaptic density 
ranges 0.52-0.92 synapse/ µm3 and mean balance were 93.97% for AS and 

FIGURE 1: Synaptic density.
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6.03% for SS, which concur with human related literature [7]. Investigating 
the synaptic properties of cerebral cortex is essential to better understand the  
human synaptome.
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INTRODUCTION

Emerging many-core architectures provide dense interconnection fabrics 
leading to new communication requirements. In particular, the effective 
exploitation of synchronous and asynchronous channels for fast communi-
cation from/to internal cores and external devices is a crucial issue for these 
architectures. SpiNNaker and Intel Loihi are two of the promising architectures 
described in the literature [1]. The direction taken by hardware designers is 
to integrate many processing elements (PEs) cores and several layers of 
memory on each chip with custom communication infrastructures. These 
cores are distributed in computing clusters across the architecture, each with 
locally shared memory. The SpiNNaker system [2] requires two preliminary 
phases for setting-up the applications: the task-graph placement [3], where 
the application is partitioned and placed on the cores and the configuration of 
the cores with application-specific data structures [4]. This last phase requires 
to send a list of op-codes (commands to be executed) generated on a host 
machine to a configurator application (pre-loaded on each core) capable 
of interpreting these codes and creating the data structures necessary for 
the final applications. Currently, the host transmits these lists of op-codes 
to the SpiNNaker cores by instantiating many unicast transmissions (one for 
each core involved in the application) even though many of the transmitted 
packets contain the same information and could be potentially clustered in 
a more efficient stream.
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METHOD

We designed a clustering methodology that uses the Multiple Sequence 
Alignment (MSA) algorithm [5] for transforming the many unicast streams, 
needed for configuring the system, in a consistent multicast/broadcast stream 
that fully exploits the features offered by the custom communication infra-
structure. Our pre-processing step, implemented in C++ using the SeqAn 
bioinformatics library [6], is capable of clustering the recurrent pieces into a 
single stream that can be transmitted using a multicast transmission. Now 
packets are labeled as Multicast (for multiple destinations), Broadcast (to 
communicate with all the cores) or Unicast (for a single destination) and sent 
to the target group of cores depending on the label. 

RESULTS AND COMMENTS

Figure 1 shows the number of packets generated for four versions of the 
Thalamo-Cortical Microcircuit (TCM) [8]. Blue bars represent the number of 
packets sent using unicast streams, without op-codes alignment, in which 
data are transmitted as they are. Green/red/yellow stacked bars indicate the 
number of packets sent using a multicast stream generated with the MSA 

FIGURE 1: Packets comparison.
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procedure designed for clustering recurrent packets. In Table 1 we present the 
number of saved packets for the four scaled versions of the TCM application 
alongside with the number of chips and cores allocated for each version.

In conclusion, we developed a system able to cluster the information in order 
to exploit the multicast network, reducing the number of packets generated 
of a quantity up to the 97% and improving the host-board communication 
phase. The described procedure, in principle, can be applied to all type of 
packet transmissions towards the communication mesh for reducing the 
bottleneck given by the data transmission phase.
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Table 1: Execution stats

TCM Number of chips Number of cores Saved
100% 157 390 97.1%

70% 70 274 97.5%

50% 40 196 97.3%

20% 17 80 94.3%
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INTRODUCTION 

Multi-scale models in neuroscience typically integrate detailed biophysical 
neurobiological phenomena from molecular level up to network and system 
levels. Such models are challenging to simulate despite the availability of 
massively parallel computing systems. Model Order Reduction (MOR) is an 
established method in engineering sciences, such as control theory. MOR 
is used in improving computational efficiency of simulations of large-scale 
and complex nonlinear mathematical models. In this study the dimension 
of a nonlinear mathematical model of plasticity in the brain is reduced using 
mathematical MOR methods. 

Traditionally, models are simplified by eliminating variables, such as molecular 
entities and ionic currents. Additionally, assumptions of the system behavior 
can be made, for example regarding the steady state of the chemical reac-
tions. However, comprehensive models with full system dynamics are needed 
in order to increase understanding of different mechanisms in the brain. 
Thus the elimination approach is not suitable for the consequent analysis of 
neural phenomena. The loss of information typically induced by eliminating 
variables of the system can be avoided by mathematical MOR methods 
that approximate the entire system with a smaller number of dimensions 
compared to the original system. Here, we demonstrate the effectiveness of 
MOR in approximating the behavior of all the variables in the original system 
by simulating a model with a radically reduced dimension.

In the present work, mathematical MOR is applied in the context of an exper-
imentally verified signaling pathway model of plasticity [1]. This nonlinear 
chemical equation based model describes biochemical calcium signaling in 
plasticity and learning in the subcortical area of the brain. The model consists 
of 44 variables and is time-dependent, which poses an additional challenge 
both computational efficiency and reduction wise.
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METHODS

The MOR method we employed is Proper Orthogonal Decomposition with 
Discrete Empirical Interpolation Method (POD+DEIM), a subspace projec-
tion method for reducing the dimensionality of nonlinear systems [2]. By 
applying these methods, the simulation time of the model is radically short-
ened. However, in very long simulations, steady state of the reduced model 
might diverge from the original. The tolerated amount of approximation error 
depends on the final application of the model. Based on these promising 
results, POD+DEIM is recommended for dimensionality reduction in com-
putational neuroscience.

RESULTS AND DISCUSSION

In summary, the reduced order model consumes a considerably smaller 
amount of computational resources than the original model, as seen in  
Figure 1. A low root mean square error between the variables in the original 
and reduced model is achieved without losing any variables from the model. 

FIGURE 1: Simulation time (left) and Root Mean Square error (right) of the reduced model 

compared to the full dimensional model, for DEIM dimensions as function of POD dimension.
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The results presented here are novel as mathematical MOR has not been 
studied in neuroscience without linearisation of the mathematical model and 
never in the context of the model presented here.
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FIGURE 2: Trajectories of selected variables from the original model (blue) and the reduced 

model (red) with POD and DEIM dimension set to 10. Glutamate and Calcium stimulus is 

indected at t=10 ms.
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INTRODUCTION

One of the original ambitions of the Human Brain Project was the develop-
ment of a large-scale cellular level model of the human brain that could be 
used for comprehending fundamental mechanisms of cognition and brain 
diseases [1]. For such an achievement to be accomplished, adequate infor-
mation about the cellularly-resolved structural connectome of the brain must 
be present. Given the breakthrough in [2] of a fully described mouse meso-
connectome, this study aims to proceed in a cell-type specific description 
by applying a set of machine-learning based computational approaches on 
high-throughput molecular and cellular mouse brain related data sources 
for connectivity inference. 

METHODS

High dimensional imaging data from the Allen Brain Institute [3] are being pro-
cessed by an informatics pipeline[4], resulting in 2-dimensional matrices used 
for connectivity inference. The two data sources are ISH (in situ hybridization) 
spatial gene expression patterns and tract-tracing connectivity patterns span-
ning the whole brain. According to our methodology, supervised machine 
learning algorithms (Random Forest, Logistic Regression) are being applied to 
the gene expression dataset, training it to learn the connectivity patterns. The 
connectivity patterns constitute two categories, namely cell-class speciifc and 
cell-class inspecific projections [5]. The predictive accuracy for all projection 
patterns is being evaluated through the use of the cross-validation technique 
with measurements such as area under the roc curve (AUC) and f-score.  
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Moreover, the most important genes for each connectivity pattern are being 
selected and applied to a gene-ontology enrichment analysis, and the molec-
ular function and biological process of those sets are being examined. 

RESULTS

There is no significant difference between the cell class specific and inspecific 
prediction patterns, which suggest that projection patterns are similar in both 
cases. Results are more significant than random for both classifiers, since in 
every case they exceed a baseline classification with random assignments. 

FIGURE 1: Prediction accuracy of connectivity patterns from cortical areas to specific 

laminar-profiles. Left panel: intratelencephalic cell class projections. Right panel: 

corticothalamic cell class projections. X-axis: cortical areas. Y-axis: laminar profiles (layers  

1 – 6b). The legend to the right maps colors to predictive accuracies.

FIGURE 2: (A) Spatial plot of prediction accuracy for projections in wild-type mouse. (black: 

0.7, blue: 0.8; red: 0.9, yellow: 1.0), produced with Scalable Brain Composer (scalablebrainatlas.

incf.org/composer). The result suggests that predicting projections to subcortical regions is 

harder than to cortical regions. (B) Box plots corresponding to area under the curve (AUC) 

values for prediction accuracy of a set of connectivity patterns in cell-class specific patterns. 

(C) Same as B for cell-class inspecific (wild-type mice). X-axis: classification approach. Y-axis: 

AUC values.
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Finally, an average AUC value higher than 80% for each pattern suggests the 
presence of connectivity signal in the ISH gene expression data which might 
be explained by the encoding of synapse formation by transcriptional factors.

REFERENCES

[1] � H Markram. The Human Brain Project. Scientific American 306, 50-55. 2012.

[2] � SW Oh, JA Harris, L Ng, et al. A mesoscale connectome of the mouse brain. Nature, 508(7495), 
207-214. 2014.

[3] � ES Lein, MJ Hawrylycz, N Ao, M Ayres, A Bensinger et al. Genome-wide atlas of gene expression 
in the adult mouse brain. Nature, 445, 68–176. 2007.

[4] � S Ji, A Fakhry, H Deng. Integrative analysis of the connectivity and gene expression atlases in 
the mouse brain. Neuroimage 84:245–253. 2014.

[5] � JA Harris. et al. The organization of intracortical connections by layer and cell class in the 
mouse brain. bioRxiv. 2018.

AQ2



3rd HBP Student Conference on Interdisciplinary Brain Research	 103

	
3rd HBP Student Conference on Interdisciplinary Brain Research

Graph signal processing of high density EEG 
signals in disorders of consciousness

Sepehr Mortaheb1*, Jitka Annen1, Camille Chatelle1,2,  
Olivia Gosseries1, Steven Laureys1

1Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium
2Laboratory for NeuroImaging of Coma and Consciousness, Massachusetts General Hospital, 

Boston, MA, USA

*s.mortaheb@uliege.be

INTRODUCTION

Graph signal processing (GSP) is a novel approach to analyse multi-
dimensional neuroimaging data, constraining functional measures by 
structural characteristics in a single framework (i.e. graph signals) [1-4]. In this 
approach, functional time series are assigned to the vertices of the underlying 
structural graph. GSP analysis is performed in each time point of the signal. 
We used GSP to analyse high density electroencephalography (hd-EEG) in 
patients with disorders of consciousness (DOC) and healthy subjects. DOC 
patients suffer from reduced levels of consciousness after a sever brain injury 
and include unresponsive wakefulness syndrome (UWS), minimally conscious 
state (MCS, also sub-categorised into MCS- and MCS+ the latter showing signs 
of language preservation), and emergence from minimally conscious state 
(EMCS) [5]. In this study, we investigated the use of GSP framework to study 
functional-structural connectivity relationship of these patients especially 
in alpha band (8-12 Hz) which has been shown as an important frequency 
band in these disorders [6].

METHODS

Resting state EEG signals were recorded using a 256 electrode EGI system 
with a sampling rate of 250 Hz for 30 minutes. A convenient sample of 40 
patients (10 UWS, 10 MCS-, 10 MCS+, 10 EMCS, 22 male, age: 40 ± 15.63 
(Median ± SD)) and 10 age-matched healthy subjects (6 male, age: 44.5 ± 11.45  
(Median ± SD)) were included. EEG data were preprocessed and segmented 
into 2 seconds epochs. For each subject, the first 150 clean epochs (i.e. 5 mins)  
were used for analysis. In order to perform GSP analysis, underlying weighted 
graphs were constructed based on the Euclidean distances between each 
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FIGURE 1: Structural connectivity matrix made based on the EGI cap electrode distances. 

pair of electrodes (Fig.1). Then, total variation (TV) [2] of EEG in the alpha band 
(8-12 Hz) at each time point was calculated, supported by the underlying 
weighted graph. For every subject, the mean TV value was calculated for 
each epoch and the median TV over epochs was reported. Clinical diagnosis 
was defined as the best diagnosis based on repeated Coma Recovery Scale-
Revised (CRS-R) assessment. To see whether there is a trend in the median 
TV of subjects in different levels of consciousness a Jonckheere Terpstra 
(JT) trend test was performed. In addition, a Spearman correlation test was 
done to investigate any relationship between median TV and CRS-R score. 
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RESULTS AND DISCUSSION

Increased TV in the alpha band was observed with increasing level of con-
sciousness (JT=4.6195, p<0.001, Fig.2). In addition, a positive correlation 
(R2=0.873, p<0.001, Fig.3) between TV in the alpha band and CRS-R score 
of the patients was observed. TV is theoretically the sum of local variations 
in each electrode, supported by the weighted structural graph. Our results 
suggest that as the level of consciousness decreases, the TV in the alpha 
band decreases. This is possibly related to increased local segregation of 
information in pathological states of consciousness. In the future, GSP anal-
ysis could consider connectivity in the temporal and spatial domain for the 
supporting graph, to provide a truly multi-modal analysis in DOC patients.

FIGURE 2: Median total variation of graph signals of different DOC patients and  

healthy controls.
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INTRODUCTION/MOTIVATION

Parameter tuning and optimisation of SNN models have applications in both 
biological models and in the conversion of artificial neural networks (ANNs) 
models to SNN models 1 . Experimental limits to the data that can be collected 
in vivo mean that SNN models of biological neural networks often require 
several parameters to be estimated or tuned. The SNN models that result from 
the conversion of ANNs 2 could be optimised and so help to develop better 
conversion methods. An evolutionary algorithm (EA) optimisation framework 
for SNN models on SpiNNaker 3 was developed with a view to understanding 
how the weight parameters of a small test network could be optimised for 
the MNIST digit recognition task 4 . A genetic algorithm (GA) was used in the 
experiments for its biological relevance and the potential for model evaluation 
to be parallelised by running multiple models simultaneously on SpiNNaker. 
Tools such as those developed in this research could help bridge between 
the fields of machine learning and computational neuroscience and allow 
for a better understanding of the mechanisms of information processing in 
neural networks more generally.

METHODS

The test model for the optimisation framework was a simple convolutional 
SNN model (see Figure 1), the weights of which were optimised for the MNIST 
digit recognition task using a GA (see Table 1). The input was rate-coded 
representations generated from the MNIST images. Weights were encoded 
in a gene representation of 5,785 bases, with the bases taking integer values 
in the range -1 to +1. Two populations, seeded and unseeded, were evolved 
over 304 generations to understand the effect of initialisation on the evolved 
networks. The unseeded population was made up of 24,000 randomly 
initialised individuals and the seeded population was seeded with 12,000 
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individuals with a centre-surround filter (6,000 positive, 6,000 negative). In 
this experiment 1.46×107 networks were evaluated on SpiNNaker.

RESULTS AND DISCUSSION

Figure 2 shows the evolution of the training accuracy of the two populations 
over 304 generations. The five top performing individuals from the final pop-
ulations were evaluated against the MNIST testing set and the best individuals 
gave 66.7% and 63.9% testing accuracy, unseeded and seeded respectively. It 
was observed that the populations do not converge to one filter, possibly due 
to the high mutation rate or the number of generations the GA was run for.  

FIGURE 1: The structure of the simple SNN model optimised using a GA.

Table 1: A summary of the GA parameters

Variable Value

Population Size (individuals) 24000

Mutation Rate 0.10%

Mutation Type Base substitution

Crossover Rate 50.00%
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During the course of these experiments it was found that the overhead of 
submitting a jobs to SpiNNaker redesigning the framework to allow multiple 
models to be evaluated in one job. This work demonstrates that it is possible 
and feasible to use a GA to tune the parameters of a simple SNN model on 
SpiNNaker. Automated optimisation methods such as GAs and the parallelism 
afforded by SpiNNaker have the potential to change how research is done, 
with researchers being able to concentrate on higher levels of abstraction 
and larger scales in models.
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FIGURE 2: A graph comparing the training accuracy of the seeded and unseeded 

populations over 304 generations.
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INTRODUCTION

Correlation in neuronal spiking activity is considered as an expression of an 
active cell assembly. The concept was suggested by Donald Hebb in 1949 
[1], stating that neurons organize in assemblies of co-activated cells that act 
as information processing units. We hypothesize that assembly activity is 
expressed through repeated and precise activations of sequences - spatio 
temporal patterns (STPs) - of action potentials emitted by the neuron mem-
bers of the cell assembly. We previously developed a method, called SPADE 
[2,3], that combines mining and statistical testing techniques in order to detect 
significant STPs in parallel electrophysiological recordings. The method is 
designed as following: it first finds repeating STPs using frequent itemset 
mining [2], and then evaluates them for significance.

In order to test for significance, it pools together patterns of the same signa-
ture, i.e. the number of spikes involved, its number of occurrences, and the 
duration of the pattern (time between first and last spike). The significance of 
each signature is evaluated by comparing its occurrence count to the num-
ber expected in independent processes generated by dithering the original 
data [4]. The statistics is performed by bootstrapping. The SPADE method is 
available in the Python library Elephant [5]. 

METHODS

Our goal is to investigate cell assembly activation in parallel spike train 
data recorded from pre-/motor cortex of macaque monkeys performing a 
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reach-to-grasp task [6,7]. More specifically, we aim to test the hypothesis that 
different cell assemblies are activated at different points in time in relation 
to the behavior. Therefore we employ the SPADE method in order to detect 
repeated spike patterns, to the data from different epochs during the trial. 
We extend a previous analysis that focused on synchronous patterns on the 
same data [8] to precise patterns with temporal lags, i.e. STPs. Here we first 
focused on two sessions (each of 15min) that are publicly available [6]. The 
experimental procedure was structured as such: after a preparatory period, 
the monkeys had to pull and hold an object by using either a side or a precision 
grip, and using either high or low force (four total behavioral conditions). The 
single trial data is segmented into six behavioral epochs (of 500ms) and data 
from corresponding epochs across the trials are concatenated and analyzed 
as one data piece. Spike trains are discretized with 3 ms precision. 

RESULTS

Preliminary results show firstly that patterns occur mostly during the move-
ment period. The patterns are formed by the same neurons however with 
many different lag configurations. Secondly, pattern configurations are spe-
cific to the different trial types (grip/force combinations). Thirdly, we find that 
several neurons participate in all patterns within one behavioral condition, 
and their individual spikes are involved in multiple patterns. Thus, we suggest 
to consider the latter neurons as hub neurons [9], and plan to investigate 
further their characteristics. Further we plan to analyze many more recording 
sessions for the occurrence of significant STPs, their relation to behavior and 
their specificities.
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INTRODUCTION

There have been several experimental demonstrations of machine learn-
ing algorithm using memristor, simple two terminal metal/insulator/metal 
structured device, networks which paved a way to hardware-based machine 
learning devices 1,2 . However, recently, there have been a lot attention on 
2-dimentional materials based memristors as they have higher power effi-
ciency, lower programming voltage, higher integrability, and higher flexibil-
ity comparing to traditional metal-oxide based memristor 3,4. This abstract 
is inspired by our research at School of Engineering and Applied Science, 
Harvard University laboratory (will be submitted to the journal soon). 

METHODS

We have found out that bilayer 2-dimentional MoS2 based memristor have 
low programming voltage of ~0.2V (see figure 1). Moreover, we were able to 
demonstrate spike-timing dependent plasticity which is very crucial in learning 
algorithms (see figure 2). Standby operation power is about micron-Joule 
order while single weight updating operation consumed around nano-joule 
order. Therefore, memristor networks built from these kind of energy efficient 
memristor have crucial potential applications in various technologies which 
has bottleneck of energy efficiency (e.g. Drones, IoT devices). Fabrication of 
bilayer 2-dimentional (2 layers of 2D MoS2) MoS 2 based memristor network 
of size 16 by 2 is anticipated to perform feature extraction and dimensionality 
reduction. Principal components will be obtained on the memristor con-
ductances using Sanger’s rule (generalized Hebbian learning). Henceforth, 
memristor network will be tested for accuracy using industry-wide data like 
breast-cancer cell data to evaluate the classification performance. Moreover, 
energy consumed for training and testing will be measured as main theme of 
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FIGURE 1: Schematic, device, and four-point probe method. (a) Optical image of Cu/two-layer 

MoS2/Au MIM device. Inset: zoom-in optical image. Scale bar: 100 mm (b) Schematic plot of 

devices and four-point probe method (c) Representative I-V curve of Cu/two-layer MoS2/Au 

MIM device with four-point probe method. Inset: the corresponding curve of resistance versus 

voltage (d) The total resistance and resistance across MoS 2 versus voltage with four-point 

probe measurements.
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FIGURE 2: Demonstration of STDP in the memristor synapse (a) Schematic plot of the STDP 

setup (b) The measured change of the memristor resistance (synaptic weight) vs the relative 

timing ∆t of the neuron spikes. 

the work is quantifying energy efficiency of the network. The work will take 
about 1-2 month and therefore results will be demonstrated in conference 
Feature extraction and dimensionality reduction is crucial component of 
unsupervised learning which has wide range of application including very 
impactful ones like pattern recognition and anomaly detection. Therefore, 
power efficient 2-dimentional material based memristor network integrated 
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devices/systems will pave a way more to the point applications of various 
technologies as they will be to analyze the data on board with very low power 
consumption rather than sending it back to server or trying to do analysis 
consuming a lot energy. Hence, timely action can be carried out depending 
on the environment of the application. For instance, integrating proposed 
memristor networks to drones and using in emergency situations will greatly 
reduce the effectiveness of the action taken by personnel.
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MOTIVATION 

The main feature of neuromorphic multicore systems is the capability of 
processing information asynchronously in an event-driven style. The pro-
cessing units (processors) remain in an idle state until an event arrives, then 
a reaction is triggered and, after that the processors return to the idle state. 
Another peculiarity of the Neuromorphic systems is the high number of inter-
connections between the processing units which speeds-up and simplifies 
the communications between the cores. 

In this domain, SpiNNaker has been the first working example of such 
architectural structure [1]. Currently, one of the issue for this platform is 
the time necessary to transfer data from the host server to the SpiNNaker 
board through point to point packets flowing one-by-one to each target 
core through a single Ethernet enabled chip. In this work we describe a new 
communication middleware designed for enhancing the Host to Core and 
Core to Core data transmission exploiting the Multicast network, thus giving 
a real speed-up in the overall communication procedure.

METHOD 

Data is currently transmitted using the Spinnaker Data Protocol (SDP) in Host 
to Core and Core to Core communications using the point to point (P2P) net-
work capabilities (one source – single destination) of SpiNNaker chips [2]. The 
use of the P2P limits the system as it needs the intermediation of the Monitor 
Processors of the two chips involved in the communication. Furthermore, this 
type of communication is sequential and does not exploit the full capabilities 
of the SpiNNaker network and the concurrency of the system. 
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Our idea has been to develop a Communication Middleware able to exploit 
the multicast (MC) network capabilities (one source - multiple destinations) of 
SpiNNaker chips to speed-up the Host to Core and the Core to Core commu-
nications. The MC protocol being directly used by Application Processors with-
out the Monitor Processor intermediation. The Communication Middleware  
uses a custom multicast packet header (Figure 1) for providing unicast, broad-
cast, and multicast communication on the SpiNNaker. We developed a set of 
APIs, both on host and board sides, capable of managing the routers config-
uration, the fragmentation and recomposition of data block, and the creation 
of MC packets. Each processor is capable of fragmenting and assembling a 
whole SDP packet. 

We have developed a routing rule compression system capable of detecting 
binary overlaps in routing rules and exploiting router capabilities that include 

FIGURE 1: Communication Middleware – The Spinnaker Multicast Headers used for 

implementing the Communication Middleware. The two most significant bits (MSbs) define the 

communication type. Implementing the point to point connectivity (MSbs 0b00) over the MC 

network require to use 4 Byte in order to specify the packet source and the packet destination. 

Implementing the broadcast connectivity (MSbs 0b01) over the MC network require only 2 

Byte in order to specify the packet source only. The BC over MC communication can use 

fragments of 48 bit instead 32 bits with an efficiency of 66% (44% of efficiency using fragments 

of 32 bits). The SYNC packet provides the capability to synchronise the whole SpiNNaker board 

using only four packets using a multilevel approach.
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the use of binary masks during routing. In this way, we were able to implement 
unicast and broadcast connectivity using only 50 routing rules instead of 
1600 making the implementation of the Communication Middleware feasible.

RESULTS 

We tested the implementation of the communication middleware by sending 
to the architecture the data necessary to configure a simulation of spiking 
neural networks (SNN) [3]. By exploiting the concurrency of the system and 

FIGURE 1: Benchmark Results – The Communication Middleware performances measured 

sending configuration packets for a benchmark simulation of a Cortical Microcircuit using 

different network dimensions and a different number of neurons per processor. We use the 

native point-to-point communication middleware (blue lines) and our multicast-based 

middleware (red lines). The improvement is a speedup of about three times.
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the multicast connectivity, we have been able to get an improvement of 3x 
on the data forwarding inside the board (Figure 2), providing the chance of 
building more efficient applications through the new middleware.
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Cognitive competence is highly related to academic and professional suc-
cess. Parametric measures of mental-attentional capacity evaluate cognitive 
competence across multiple levels of difficulty [1, 2], which allow for assess-
ment of performance of individuals with variable cognitive abilities. Research 
shows that mental attentional capacity improves gradually over childhood and 
adolescence [2]. Concurrently, brain related indices significantly change as a 
function of age. One less used method to evaluate hemodynamic responses 
in the typically developing brain is ultrasonography. The purpose of this study 
is to find predictive relations among scores obtained using parametric meas-
ures of mental attentional capacity and hemodynamic responses obtained 
using Doppler ultrasonography in school age children. Specifically, we test 
Machine Learning predictive models on parametric measures of mental 
attentional capacity and Doppler ultrasonographic indices recorded from 
the carotid and vertebral arteries. 

MATERIAL AND METHODS

625 children from Moscow schools attending grades 1-4 ages 7-11 years were 
tested. For them were obtained ultrasonographic data: characteristics of 
carotid, vertebral, cerebral arteries. Also, children completed a paper-and-pen 
Figural Intersection Task (FIT) [1-3] and computerized tasks – Colour Matching 
Task (CMT) [2,3] and Number Matching Task (NMT). Based on behavioral scores 
(accuracy and reaction time) and ultrasound indices (i.e., vessel diameter  
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and blood velocity) we built prediction models to estimate a child’s age. We 
selected a final model from a list of regressors (Lasso, Ridge, KNeighbors, 
XGBoostRegressor and Linear Regression) combined with dimensionality 
reduction (Principal Component Analysis, Locally Linear Embedding) and 
feature selection techniques (SelectFromModel, SelectKBest). 

RESULTS

Show that the age of children was determined with mean absolute error 
of 0.85 with Lasso Regression and SelectKBest feature selection for both 
ultrasound and behavioral scores. In other words, the model can predict the 
age of the child within 10 months. This result remained unchanged when we 
examined boys and girls separately. Concluding, it is encouraging to observe 
agreement in predictive scores for ultrasound and behavioural results. This 
suggests that both methods can be used in predicting developmental age 
in school and clinical setting. Findings will be discussed in the context of 
machine learning approaches, theories of cognitive development as well as 
practical applications in educational settings that encourage neurocognitive 
methods for assessing developmental readiness.

This abstract was prepared with the support of the Russian Science Foundation 
(project No. 17-18-01047).
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INTRODUCTION

For inexperienced users, there are still significant barriers to entry to com-
putational platforms and tools developed by the Human Brain Project (HBP). 
Experiments involving learning are particularly challenging to program, even 
for advanced users. Interface libraries such as PyNN translate and replicate 
experiments across platforms such as SpiNNaker and BrainScales, except 
when plasticity or learning are involved. Both across backends and over 
time, where APIs naturally mutate. Experiments with structural plasticity on 
SpiNNaker [1] or in the loop training on BrainScaleS [2] use platform-specific 
features to achieve their goals, which are difficult to migrate. As a conse-
quence research within learning-to-learn and in-the-loop paradigm training 
require extensive customization of current frameworks. Consistent models 
of simulated and accelerated neural experiments across backends and time 
will significantly reduce the iteration time and drastically cut experimental 
costs, to the benefit of the research community as a whole. Further gains 
in the integration of existing and well-known tools like Python and Jupyter 
notebooks will likely increase adoption. This work presents a method to avoid 
the above-mentioned challenges and to improve exposure to HBP technol-
ogies. Using the novel modeling language Volr [3], we construct a network 
and train it to solve a small maze task on BrainScaleS, NEST, and Tensorflow. 
Volr permits cross-platform training and ensures the reproducibility of the 
experiment. We believe the use case illustrates the suitability of Volr as a tool 
for future neurocognitive research.
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METHODS

The Volr architecture as shown in the figure to the right illustrates how the 
neural network model (top) is translated from the Volr language description 
into various backends. The backend models are trained with backpropaga-
tion in Tensorflow and in NEST through a Tensorflow-like [4]. Training on the 
BrainScaleS system is not yet supported, but because of the universal model 
description, the NEST weights can be translated into BrainScaleS weights [2].

RESULTS AND OUTLOOK

The domain-specific language, Volr, has been developed to describe repro-
ducible and consistent neural network experiments for artificial (ANN) and 
spiking (SNN) substrates. Prototypical integration with Jupyter Notebooks has 
been shown to allow fast iterations of experiments, with immediate access 
to already familiar Python tools for large-scale data analysis. Three targets are 
currently supported, but further work is needed to include platforms such 
as SpiNNaker, Intel’s Loihi and the new BrainScaleS 2 system developed in 
the HBP. Ongoing work is exploring the domain of more complex cognitive 
experiments with cognitive tasks modeling, reverse differentiation for ANN 
and the inclusion of high-level abstractions for learning through learning-to-
learn integration between ANN and SNN. In this context it would be interesting 
to incorporate the methods of [2][5] into a generalizable non-experiment 
specific framework.

Keywords​​: learning, neuromorphic computing, computational neuroscience, domain-specific 
language
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MOTIVATION

Target reaching is one of the most important problems in robotics — object 
interaction, manipulation and grasping tasks require reaching an specific 
target [2]. A broad accepted concept in neuroscience is that the CNS (Central 
Nervous System) uses sensory-motor primitives as building blocks for the 
execution and planning of motions [3], [4]. The combination of simple prim-
itives representing muscle synergies creates more complex and advanced 
motions [4], [5], [6]. There have been developments in robotics using this 
principles for dynamic motion primitives [7], [8], for a reactive framework of 
reflexes [9]. Nevertheless, robotics still relays on the classical methods. In 
classical robotics the problem of reaching a target is solved by calculating 
the inverse kinematics (IK) for the target point, then validating the config-
uration, and finally planning the trajectory. These steps are computational 
expensive. A complete overview on planing methods is presented in [2], 
and a detailed analysis on different methods for solving the IK is presented 
in [10]. Our approach is motivated by the consideration on how human 
beings estimate positions and distances. Humans can easily determine 
which object is in front/back or on the left/right of another one, which of 
two angles is a wider [11]. Studies have shown that the human brain uses 
the feedback information from vision and from proprioception to execute 
reaching movements [12], [13]. A coupling between between this two systems 
suggest that there are other important components involved in the gener-
ation of motion. We avoid the complexity of calculating the IK and motion 
planning, and instead we use a combination of motor primitives to control  
the robot.
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METHODS

The problem definition is that given an initial state of the robot arm, move the 
tool center point (TCP) to a specific target point in space (see Fig. 1a). Building 
on previous work with SNN using motor primitives for grasping [14], [15] and 
manipulation [16], we propose a bio-inspired architecture to perform target 
reaching with a robot arm without planning. A SNN represents motions in a 
hierarchy of motor primitives. Different correction primitives are combined 
using an error signal to control a robot arm in a closed-loop scenario. Three 
motor primitives — le f t − right, up − down and f ar − near — are defined to 
move the robot TCP in different directions. An example on how the prim-
itives are modeled for the arm motion is presented in Fig. 1b. To illustrate 
how the system works, we present a sample run of the whole system in 1c. 
The first three rows show the current TCP position x, y and z in blue vs. the 
target’s location in orange. The next thee rows show the spike activation of 
the error signals ε ϕ, ε θ and ε r. In row seven raw ε shows the spike pattern 
of the error-related population. The spike patterns of the neuron populations, 
representing the motor primitives, are respectively plotted by raw LR, raw 
UD and raw NF.

FIGURE 1: (a) Arm with target and motor primitives. (b) Modeling with motor primitives.  

(c) Spike activation, error signals and TCP position. (Figures adapted from [1]).
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RESULTS AND DISCUSSION

We present a holistic system using one SNN. Motor primitives can simplify 
motor control, reduce amount of parameters, lower amount of necessary 
information processing, allow motion modelling in a parametric way. Our 
approach can also be used with different robot arms, by redefining the map-
ping of the primitives to the robot kinematic. In our method, the TCP position 
comes from simulation as well as the position of the target. But reaching 
involves the visual feedback for online motion [13], [12]. In order to test in a 
real robot, we need to integrate perception with the camera to get tcp and 
ball ”relative positions”. The vision system used in [17] could be integrated to 
perform motion prediction and use that to determine the error signal [18]. 
Current work also focuses on integrating this experiment and the motion 
framework in the Neurorobotics Platform [19] from the Human Brain Project.
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INTRODUCTION/MOTIVATION

The data extracted from the electroencephalogram (EEG) measures can be 
a rich source of information. They can be used not only in clinical research 
to understand the patient status and their diagnosis, but they are also heavily 
used in the gaming industry, IoT devices as well as for emotion recognition, 
military scenarios, etc. Hence, many approaches to machine classification 
have been proposed in this area. At the same time, when using these methods, 
a number of issues associated with the implementation of a multi-criteria 
parameter estimation in real time remain are unsolved. One of these issues 
is to classify the human biophysical state by EEG indicators. It is still unclear 
which machine classifier can be sufficient for clinical application when we 
have several monitoring data. To analyze signal structures of very different 
sizes, we need to perform a multi-sensor analysis on the recorded EEG signal. 
As a first stage to solve this problem, we propose a classification technique 
based on the combined multi-criteria probability estimates. 

METHODS 

The experiment was carried out using the dataset available in the open access 
UCI Machine Learning Repository [1]. Multichannel EEG dataset consists of 
14977 instances obtained from 14 scalp electrodes in two eye states, open 
eyes and closed eyes. Detailed description EEG eye state data is given in [2].

Our EEG data processing methodology consists of six stages. At the first 
stage, we perform the data normalization by applying the Euclidean distance. 
Then, we analyze data using the ARIMA model; it allows us to run exponential 
smoothing, a one-dimensional autoregressive integrated moving average for 
the time series and to obtain a forecast of the data. To assess the quality of 
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the ARIMA model we use the Bayesian information criterion (BIC). To per-
form prediction the human biophysical state we chose the model with the 
minimum BIC value as the optimal. The obtained forecast values are used 
to calculate the residuals, which are the basis for further data fusion. The 
calculation of the base probability distribution is carried out using residues 
of variables of the human biophysical state. Next, we check the conflicts of 
probabilities of variables and select the method of data fusion. In this work, 
we use the Dempster-Shafer theory as a base approach for data fusion. After 
that, data classification is performed. For learning the model, we use the 
Random Forest algorithm and fivefold cross-validation. And at the last stage, 
we assess the classification accuracy.

RESULTS AND DISCUSSION 

The probability of the human eyes states is calculated by the combined prob-
abilities of the data obtained from the 14 EEG electrodes. For test dataset, the 
accuracy of EEG data classification is 0.93. There is a reason to believe that 
the proposed method provides accuracy comparable to other more popular 
algorithms and is a promising further basis for real-time data classification 
due to its low computational power and the possibility of using incomplete 
information.
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MOTIVATION

In philosophy, from Socrates onwards, one could count as many significant 
intellectual and social trends as favoured methods of argument and schools of 
thought, and almost all significant trends (Plato’s idealism, Aristotle’s realism, 
Dewey’s pragmatism, Vygotski’s social constructivism) have contemplated on 
learning/teaching and sought for strategies to develop autonomous learners 
and critical thinkers. They may be right about the general aim of education, 
but none of them provides concrete knowledge about the means to achieve 
the goal, not to mention that more complexities have been introduced by 
information overload, globalisation, digital revolution, etc. On the other hand, 
tremendous efforts have been made to achieve a scientific understanding of 
the brain as “an integrated system supporting the entire array of the mental 
functions” [1]. Mind, brain, education science (MBE) is a pioneering educa-
tional initiative where cognitive science and education science join force to 
inform us about how we learn best, how to most effectively advance the 21st 
century skills, such as elaboration, communication and rational autonomy, 
both for the immediate gain and the long run. This encounter raises several 
epistemological and ethical issues; some objections mirror those against 
evidence-based education.

METHODS

Using methods of philosophy and history of science, the present work inform 
the debate with a systematic descripiton of how MBE works in theory and in 
practice. First, we examine the coherence of the arguments leveled against 
and in favor of evidence-based education. Then we propose an analytical 
framework ideal for conceptualising such projects involving multiple actors 
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and scales of operation. Finally, we use the case of numerical cognition and 
numeracy education to see how it has (not) worked and how it may work 
in the future.

CONCLUSION

Education practices are best served by incorporating research findings. 
However, sustained impact of neuromyths calls for caution with (solely) bain-
based agenda. The analysis suggests that to be a worthy field of educational 
research, MBE has to improve research design and integrate methods of social 
interventions and cognitive sciences. Specifically, there are much potential 
for MBE if it can (1). improve causal validity by balancing internall & external 
validity (2). increase explanatory power with mixted methods and cross-
cultural examinations (3). balance level of involvement and build intermediacy 
between different actors with shared values, fundings, journals and criteria 
of institituional evaluation (4). motivate educational thinking and practice 
through models arising from neural and behavioural evidence that inform us 
about the “what”, the “why” and the “how” it works in the cognitive-cultural 
ecosystem of education.

Keywords: neuroscience and education, transdisciplinary, translational, philosophy of 
cognitive science
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