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Figure 1: SpiNNaker and BrainScaleS fully integrated in the EBRAINS research infrastructure 
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1. Introduction 
Neuromorphic computing - the construction of computer systems whose operation is to some degree 
based upon principles derived from neuroscience - has been a significant component of the Human 
Brain Project (HBP) from its outset as an aspect of the objective of ’Developing Future Computing’, 
alongside the other objectives of ‘Understanding the Brain’ and ‘Understanding Diseases of the 
Brain’. The HBP Neuromorphic Computing Platform comprises the SpiNNaker million-core computing 
system developed by UMAN and the BrainScaleS analogue wafer-scale system developed by UHEI. 
These are the only two neuromorphic computing systems openly available world-wide, with 
supporting software infrastructure at TRL 8, accessible by all researchers through the EBRAINS 
Research Infrastructure. 

The HBP has supported the development of the software and services for SpiNNaker and BrainScaleS, 
and the design and development of second generation silicon for both systems. This has established 
these systems as world-leading in their respective domains, and both are represented on the 
organising committees and in the programmes of international meetings such as the annual NICE 
(Neuro-Inspired Computational Elements) conference. The goal of neuromorphic computing includes 
contributing to HBP Scientific Areas such as Modelling, Brain States, Network Complexity and 
Cognitive Functions, and extends into addressing the excessive energy demands of large state-of-
the-art AI systems. The HBP Neuromorphic Computing Platform is an integral part of the EBRAINS 
Research Infrastructure, with access available through the Collab and Jupyter and making use of the 
job queue and quota services. 

The European Institute for Neuromorphic Computing (EINC) at UHEI is established and is providing a 
new home for the BrainScaleS systems, ensuring their continued availability to offer a service within 
the EBRAINS Research Infrastructure beyond the end of the HBP. Neuromorphic computing is 
attracting increasing interest from industry, and the second generation SpiNNaker2 chip, 
codeveloped by UMAN and TU Dresden, is being commercialised through SpiNNcloud Systems GmbH 
who will deliver datacenter-scale systems incorporating millions of processor cores to support large 
AI systems with minimal energy consumption as well as very low-power edge AI. Downstream 
applications of the technology include AI and neurorobotics, with the potential to contribute also to 
medical areas such as prosthetics. 

This deliverable describes the two neuromorphic computing systems supported by the HBP, and in 
particular the progress made in advancing the support software infrastructure to TRL 8, which was 
the agreed primary objective of the work in SGA3. 

The creation of the EBRAINS Software Distribution was an important step towards an integrated 
software work environment across HBP. WP6 contributed the initial implementation of the EBRAINS 
Software Distribution to the Technical Coordination team (TC); the final state is described in 
Deliverable D5.7 "EBRAINS Infrastructure". The adaptation and optimization of the EBRAINS Software 
Distribution for HPC usage is described in D6.4 "Final release of the federated HPC, Cloud and storage 
infrastructure for EBRAINS". 
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2. BrainScaleS 
The description about the achieved status of the BrainScaleS system at the end of the development 
during HBP SGA3 is published as a public accessible pre-print at DOI 10.5281/zenodo.8375522 on 
zenodo (P4195)  in order to disseminate the development to the scientific community. The pre-print 
is attached to this Deliverable document as Appendix  

In the text below some additional information is being made available with respect to the EC 
reporting requirements. It will be shown below that this is the case by addressing the points of TRL 
level 8, as defined in the HBP Technology Readiness Level Assessment guide1, using the software 
criteria as this is to be judged. 

2.1 Full software system has been proven to work in its 
final form and under expected conditions, i.e. the 
end-to-end system has been already created with all 
components 

The BrainScaleS-2 software stack has been completed. An experiment service has been created that 
allows experiments to be run from remote locations. This BrainScaleS client-side software stack is 
part of the common EBRAINS Software Distribution, which is not only available in the “EBRAINS 
Jupyter Lab” environment, but has also been deployed at the HBP HPC centres (at the time of this 
writing at JSC, CINECA and BSC). All software components, including the "server-side" parts, are 
available as open source software at https://gitlab.ebrains.eu/brainscales and 
https://github.com/electronicvisions. The BrainScaleS software development generally follows a 
rolling release/stable HEAD development scheme, but for releases of the EBRAINS Software 
Distribution, additional release branches have been introduced to ensure a stable user environment. 

The BrainScaleS systems, running in Heidelberg, are accessible for batch (BrainScaleS-1 & -2) and 
for interactive use (BrainScaleS-2) from the EBRAINS Research Infrastructure Jupyter Lab. Example 
Jupyter notebooks are executed nightly via the system maintained by the Technical Coordination 
team (ATHENA), which simulates the operation of the notebooks via a browser, i.e. seeing the 
notebooks like a user of the EBRAINS Lab sees them, thus testing the full end-to-end communication 
flow: User/Browser ⟷ Jupyter web frontend at CSCS ⟷ Jupyter notebook instance ⟷ experiment 
services in Heidelberg ⟷ hardware control systems in Heidelberg ⟷ BrainScaleS-2 NMC systems in 
Heidelberg. Software changes are validated using an extensive test suite that is automatically 
evaluated by the CI system, and fed back into Code Review as a pass/fail condition, and, if successful 
and together with a positive manual review, trigger an automatic delivery of a new stable version. 
Changes to the hardware design are validated against a system simulation. This enables true co-
design of software and hardware components. Automatic health checks are performed on idle 
hardware on a 30-minute time grid, to validate and monitor hardware function. The experiment 
service is monitored, and in case of malfunction, automatic reset mechanisms restore functionality. 

2.2 All functionality successfully demonstrated in 
simulated operational scenarios. 

Demonstration and tutorial Jupyter notebooks show the features and capabilities of the BrainScaleS-
2 architecture, and are ready for interactive execution in the “nmc-test-USERNAME” collabs (a static 
version is publicly available on https://electronicvisions.github.io/documentation-brainscales2), 
which are created for users interested in using the NMC systems. Details of the aspects covered are 
described in the paper in chapter 6 Appendix. In summary, the executable documentation explores 
the software interfaces for defining and performing experiments on the BrainScaleS systems (e.g., 

 
1 https://www.humanbrainproject.eu/en/collaborate-hbp/innovation-industry/technology-readiness-level/ 

https://doi.org/10.5281/zenodo.8375522
https://gitlab.ebrains.eu/brainscales
https://github.com/electronicvisions
https://electronicvisions.github.io/documentation-brainscales2
https://www.humanbrainproject.eu/en/collaborate-hbp/innovation-industry/technology-readiness-level/
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PyNN and hxtorch), and demonstrates the capabilities of the in-silico neuron model (e.g., Naud firing 
patterns or multi-compartment neurons), aspects of programmable plasticity, machine learning 
inspired modelling (e.g., using surrogate gradients or eventprop), partitioning of larger networks, as 
well as multi-chip operation. 

2.3 End-to-end system tested and integrated in a real-
world environment with a small number of real 
users. 

The BrainScaleS systems are available and continuously accessed by users via the experiment service 
from the EBRAINS Lab and/or HPC sites, the batch system NMPI, or directly by local users. The 
layered software stack provides different levels of abstraction, reaching down to expert-level APIs 
that allow for direct manipulation of individual bits on the system. All levels are automatically CI-
tested. In addition, end-to-end testing is implemented by using a TC-provided service that facilitates 
the execution of interactive Jupyter notebooks, thereby emulating the behaviour of a human user. 
Nightly calibration jobs measure hardware characteristics and provide a mapping between user-
defined parameter selections, e.g., membrane time constants, and operation points for the analog 
circuits. The calibration process also provides means of checking the analog behaviour of the circuits; 
problems in parameterisation, or, for example, incorrect power supply settings, can be detected by 
comparing known-good analog behaviour against the actual measured data. A resource scheduler 
keeps track of all activities on the hardware systems and orchestrates the mapping between 
neuromorphic hardware components and user jobs. 

2.4 Software has been thoroughly tested (user-
acceptance and performance) and debugged.  

The systems are in use for research including for Masters and PhD thesis works, mainly from WP3 and 
WP6 (see the publication list). The HBP voucher process also added some specific development for 
the voucher winners, further broadening the accessible feature space. The layered software stack 
provides software and hardware tests at all levels, that are automatically executed as part of the 
software development process: As soon as a developer uploads a proposed change, the code review 
service (Gerrit) interacts with a continuous integration service (Jenkins) and triggers the execution 
of checks (e.g. static code analysis, formatting) and tests in software and on hardware. The hardware 
tests cover runs on a currently available hardware system, and a simulation of the system in 
software. As new hardware revisions often change software requirements (e.g. additional 
configurable components), the latter can also be used for software co-development during hardware 
design. 

2.5 Software has been fully integrated with all 
operational hardware and software systems.  

The BrainScaleS hardware systems execute the emulation of networks and experiments described in 
PyNN (BrainScaleS-1 and -2) or hxtorch (BrainScaleS-2) high-level APIs, or any other lower-level API 
with the high-level description being provided e.g., via the EBRAINS Lab interface, remote sites via 
the BrainScaleS experiment service, or via the BrainScaleS batch system. 
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2.6 All user documentation, training documentation and 
maintenance documentation completed, including 
software/system requirements and architecture/ 
design related descriptions. 

• Usage of the system’s features and capabilities is thoroughly described via executable example 
and tutorial notebooks (source: https://github.com/electronicvisions/brainscales2-demos.git), 
which are deployed as a web documentation 
(https://electronicvisions.github.io/documentation-brainscales2) and as Jupyter notebooks 
(https://github.com/electronicvisions/brainscales2-demos/tree/jupyter-notebooks); 

• Recordings of talks describing the system background and of “hands-on trainings” using the 
systems are available2 on YouTube; 

• The maintenance of the experiment service is aligned with the EBRAINS Software Distribution 
release cycles (experimental images with weekly releases and longer-term, typically every three 
months, available ‘stable’ releases). 

2.7 BrainScaleS move to the EINC 
The European Institute for Neuromorphic Computing (EINC) building has been initiated by Prof. 
Karlheinz Meier and is mentioned in the HBP SGA2 and the SGA3 grant agreements. It was funded by 
the Europäischer Fonds für regionale Entwicklung (EFRE), regional government, three private 
sponsors and Heidelberg University. After years of delay in the construction process (caused mainly 
by concrete problems, i.e. problems with the quality of the walls and floors made out of steel 
reinforced concrete) the building became available on 31 May 2023 for moving in. The building is 
designed i.a. with the requirements of fast analog neuromorphic computing in mind and therefore 
features a large experiment hall (ground floor, Figure 2) and a computer room directly below that 
hall (basement, Figure 3). This allows placement of conventional digital computers in standard racks 
directly beneath the experiment and service setups in the hall (Figure 4 and Figure 5). The resulting 
short cable lengths allow for a fast round trip time of control packets between the control systems 
and the analog neuromorphic hardware systems. The building also provides the possibility to grow 
the service offer space-wise (room for additional machines in the experiment hall and computer 
room) and in terms of electrical power and cooling capacity, both for the experimental systems and 
for the control systems.  

Beginning in August 2023 the BrainScaleS systems have been moved from their previous locations 
(partly an intermediary container structure, built for the ramp-up phase of HBP) to the new building, 
including the BrainScaleS-2 systems (Figure 4). With the move to the EINC, the partner UHEI can 
continue offering the BrainScaleS service for the EBRAINS Research Infrastructure and ensures, that 
the service has space to grow, if needed. 

 
2 https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic/Videos/ 

https://github.com/electronicvisions/brainscales2-demos.git),
https://electronicvisions.github.io/documentation-brainscales2
https://github.com/electronicvisions/brainscales2-demos/tree/jupyter-notebooks
https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic/Videos/
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Figure 2: EINC ground floor with the experiment hall 

The experiment hall (cyan color), offices, labs, a seminar room and the large atrium — a space for meetings and 
(disseminations and outreach) events with up to 299 attendants.  

 

 

 
Figure 3: EINC basement with the computer room  

(the computer room is shown with example rack positions), storage- and support rooms. 
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Figure 4: BrainScaleS-1 (left) and BrainScaleS-2 (right) systems in the EINC (27 Sep 2023) 

 
Figure 5: Connectivity between experiment hall and computer room 

The computer room with conventional digital computers is situated directly below the experiment hall. Cables can go 
through the ceiling of the computer room into the racks placed in the experiment hall = short cables for low delay 
connectivity.   
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2.8 BrainScaleS next chip 
To enable support for industrial applications of brain-inspired neuromorphic technologies it was 
planned to develop an additional BSS-2 ASIC during SGA3, thereby supporting the addition of local 
learning to deep convolutional networks. To get more 
precise directions of possible industrial applications for 
analog NMC, we established a collaboration with industry 
to use BSS-2 for reducing the high energy consumption of 
optical communications equipment. Novel brain-inspired 
concepts have been evaluated on BSS-2 (P3863: “Spiking 
Neural Network Nonlinear Demapping on Neuromorphic 
Hardware for IM/DD Optical Communication”, DOI 
10.1109/jlt.2023.3252819). This collaboration showed 
that the most promising direction for analog 
neuromorphic computing lies in a combination of event-
based inference acceleration and novel event-based 
extension to the back-propagation through time methods 
(P3858 arxiv.org/abs/2302.07141). The progress 
regarding local-learning within the AI and neuroscience 
communities was not big enough to merit the effort of a 
specialized hardware implementation, since the BSS-2 
ASIC already supports a multitude of local learning 
capabilities (P2240  DOI 10.1016/j.neunet.2020.09.024 
and tutorial notebook3). The only difference here is that 
they are not fully applicable to continuous-activation 
based network realizations, as opposed to the bio-inspired 
event based kind. Since we had concluded that event-
based implementations are more promising to provide a 
benefit for industrial applications we decided against 
specialized local-learning support for non-event based 
networks in the BSS-ASIC. Instead, we tackled the major 
shortcoming of the current BSS-2 ASICs, the missing direct 
chip-to-chip connectivity to extend the size of the 
network capable of continuous time operation. 

To allow the realization of large size artificial spiking 
neural networks, the BSS-2 ASIC is not sufficient. To solve 
this limitation, a new version of the BSS-2 ASIC has been 
developed that supports low-latency multi-chip 
operations. We successfully tested a small prototype 
containing the novel chip-to-chip spike communication 
circuits. Unfortunately, due to the chip crisis the 
turnaround time for this prototype was much longer than 
expected. This caused a delay in the finalization of the 
planned new full-size ASIC, since the measurement results 
from the prototype ASIC were required first. The design 
of this ASIC is now complete and ready for manufacturing (Figure 6)  

Since the funding regulations did not allow us to order the chip when delivery during the project 
period cannot be guaranteed and turn-around times in semiconductor manufacturing are now close 
to six months, the ASIC could not be manufactured during SGA3. 

The new ASIC will also be integrated into the neuromorphic EBRAINS service as soon as new funding 
is available and manufacturing is complete. It is fully backwards compatible to the actual BSS-2 ASIC, 
but will provide a major upscaling of the possible network size and the demonstration of the energy 
advantage of brain-inspired event-based analog-computing for real applications.  

 
3 https://github.com/electronicvisions/brainscales2-demos/blob/master/ts_02-plasticity_rate_coding.rst  

 
Figure 6: Floorplan of the 5mm x 

10mm chip design 
The novel chip-to-chip spike communication 
circuits are arranged at each  end of the chip 
edges so that the transmitter and receiver 
circuits of  adjacent chips are directly facing 
each other. This way, e.g. direct wire 
bonding between chips is facilitated, 
allowing for very compact design of multi-
chip assemblies. 

https://dx.doi.org/10.1109/jlt.2023.3252819
https://dx.doi.org/10.1109/jlt.2023.3252819
https://arxiv.org/abs/2302.07141
http://dx.doi.org/10.1016/j.neunet.2020.09.024
https://github.com/electronicvisions/brainscales2-demos/blob/master/ts_02-plasticity_rate_coding.rst
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3. SpiNNaker 

 
Figure 7: The million-core SpiNNaker machine at UMAN that supports the EBRAINS SpiNNaker 

service.  

At the start of the SGA3 Phase of the HBP, the SpiNNaker software was considered to be at TRL level 
6. We now consider it to be at TRL level 8. It will be shown below that this is the case by addressing 
the points of TRL level 8, as defined in the HBP Technology Readiness Level Assessment guide4, using 
the software criteria as this is the component to be judged. 

3.1 Full software system has been proven to work in its 
final form and under expected conditions, i.e. the 
end-to-end system has been already created with all 
components 

The full SpiNNaker software stack has been completed and made available on PyPI as a release, with 
all binaries included. This has been tested using the Integration Test suite that is used to test all 
versions of the sPyNNaker code. See section 3.2 for more details of this testing. The following 
subsections also support this point. 

The software has also been made available on the EBRAINS Lab, where it can be used with the 
SpiNNaker 1Million machine in Manchester directly. This has been made possible through a proxy 
that exists as part of the SpiNNaker allocation service. The proxy allows direct access to the 

 
4 https://www.humanbrainproject.eu/en/collaborate-hbp/innovation-industry/technology-readiness-level/ 

https://www.humanbrainproject.eu/en/collaborate-hbp/innovation-industry/technology-readiness-level/
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SpiNNaker boards of an allocated job, whilst at the same time block access to other boards from 
other jobs, ensuring safe operation. 

The software can also be accessed using the EBRAINS Job Queue and Quotas service (NMPI service), 
where batch jobs can be submitted to the same SpiNNaker 1Million machine in Manchester. The jobs 
submitted to the NMPI service are read by the SpiNNaker job management software and executed 
on the platform before the results are returned. This also makes use of the SpiNNaker allocation 
service, although the proxy is not used in these cases since this service can access the machine 
directly. 

3.2 All functionality successfully demonstrated in 
simulated operational scenarios. 

The software has been successfully shown to be able to execute a number of large and small scale 
neural networks including: 

• Several Integration Tests that are made of scripts obtained from users5, as well as other hand 
made examples that test the system6. These are run daily to ensure code changes do not break 
the ability to run the examples. 

• The Cortical Microcircuit example7. This is included in the above integration tests. 

• Subsets of the Multi-area model example (as yet unpublished). The full model runs through the 
software but hardware failures have so far prevented a full run from being achieved. The 
software copes with the hardware issues in so much as it can. 

• A model of the Cerebellum8. 

• An implementation of the E-PROP algorithm9. 

• General use by users; less is known about what these users are doing on the machine unless 
support requests are received or until papers are published, but they are using SpiNNaker on a 
daily basis. 

3.3 End-to-end system tested and integrated in a real-
world environment with a small number of real 
users.  

The SpiNNaker software is in use daily by users, via the EBRAINS Jupyter Lab, the SpiNNaker Jupyter 
service and the Job Queue (NMPI) batch service, as well as by local users in Manchester. This includes 
all parts of the software from the SpiNNaker job management system, through the SpiNNaker 
allocation service and making use of the sPyNNaker software. Many thousands of SpiNNaker jobs 
have been allocated via the allocation service, submitted by many hundreds of users. The software 
has therefore far exceeded this requirement. 

3.4 Software has been thoroughly tested (user-
acceptance and performance) and debugged.  

Users are using the software continuously and are vocal when things do not work. The software has 
therefore undergone extensive user acceptance testing. The software performance has been 

 
5 https://github.com/SpiNNakerManchester/PyNN8Examples 
6 https://github.com/SpiNNakerManchester/sPyNNaker/tree/master/spynnaker_integration_tests 
7 https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0160 (P2299) 
8 https://www.frontiersin.org/articles/10.3389/fncel.2021.622870/full (P2905) 
9 https://doi.org/10.1145/3517343.3517352  

https://github.com/SpiNNakerManchester/PyNN8Examples
https://github.com/SpiNNakerManchester/sPyNNaker/tree/master/spynnaker_integration_tests
https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0160
https://www.frontiersin.org/articles/10.3389/fncel.2021.622870/full
https://doi.org/10.1145/3517343.3517352
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improved vastly over the years, with specialised loading and data extraction algorithms that can run 
in parallel over multiple boards, as well as data expansion done in parallel on the machine itself. 
These reduce the running of the microcircuit model to a little over a minute on a fast machine, 
where it took around 24 hours when first attempted. 

The software is tested daily with the integration test suite mentioned above, which include several 
examples of user scripts and large and small scale problems designed to test the software in certain 
scenarios. These are also run against any major changes before they are integrated into the main 
software. 

3.5 Software has been fully integrated with all 
operational hardware and software systems.  

The software has been integrated with all other known hardware systems. The software has also 
been integrated with several other software systems of relevance. The systems that have been 
integrated with to date are: 

• All known SpiNNaker 1 Hardware. This includes the SpiNNaker 1Million machine (Figure 7), as 
well as individual boards and smaller hardware systems deployed throughout the world. The 
software is capable of booting any machine, from the smallest 4-node SpiNNaker board up to the 
million core machine hosted in Manchester, and executing neural networks on these hardware 
systems, including placement, routing, loading of data and executables, and extracting of data. 

• Robotic hardware connected to SpiNNaker 1 systems. The software is capable of setting up 
communications between the hardware and the SpiNNaker network for devices that are capable 
of this communication. This includes the “SPIF” device where configuration data is sent directly 
to the device10, as well as configuration of the FPGAs on the SpiNNaker machine itself. 

• The EBRAINS lab. Users can use the software by making use of the most recent release of the 
EBRAINS tools on the lab. This software interacts directly with the SpiNNaker 1Million machine 
in Manchester. 

• The HBP NeuroRobotics Platform (NRP). The SpiNNaker platform can be used on this platform if 
the SpiNNaker software is installed. This has been integrated with the original version 3 of the 
software which can be accessed via the SpiNNaker Jupyter platform where both SpiNNaker and 
the NRP have been installed11 (Figure 8). The software has also been integrated with the latest 
version 4 release of the NRP12, though this requires manual installation and configuration. 

 
10 https://dl.acm.org/doi/10.1145/3589737.3605969 (P4057) 
11 https://spinnakermanchester.github.io/latest/jupyter.html 
12https://bitbucket.org/hbpneurorobotics/nrp-core/src/nrp-
4.1.0/nrp_event_loop/nrp_event_loop/nodes/spinnaker/ 

https://dl.acm.org/doi/10.1145/3589737.3605969
https://spinnakermanchester.github.io/latest/jupyter.html
https://bitbucket.org/hbpneurorobotics/nrp-core/src/nrp-4.1.0/nrp_event_loop/nrp_event_loop/nodes/spinnaker/
https://bitbucket.org/hbpneurorobotics/nrp-core/src/nrp-4.1.0/nrp_event_loop/nrp_event_loop/nodes/spinnaker/
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Figure 8: Neurorobotics co-simulation with SpiNNaker running the brain model. 

 

• The MUSIC software. SpiNNaker can be used in MUSIC co-simulations, which makes use of the C 
code software library13. 

3.6 All user documentation, training documentation and 
maintenance documentation completed, including 
software/system requirements and architecture/ 
design related descriptions. 

All documentation has been written and published in various easily accessed locations, with the 
exception of system documentation, which is held in a secure drive as it contains sensitive 
information. The documentation includes: 

• User documentation, available at https://spinnakermanchester.github.io/. This includes 
installation instructions, and code documentation indicating the purpose of each function, for 
each of the C, Python and Java parts of the software. 

• Training documentation, via lab manuals available at https://spinnakermanchester.github.io/, 
as well as various videos of hands-on workshops that have been given at events in the past14.  

• Architecture design for the software is available at https://bit.ly/2A1AWEt, and for the NMPI 
integration at https://bit.ly/3c7k3q4. The software requirements and architecture are also 
described in two papers15,16. 

  

 
13 https://github.com/SpiNNakerManchester/Visualiser/tree/master/spynnaker_external_device_lib 
14 https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic/Videos/ 
15 https://www.frontiersin.org/articles/10.3389/fnins.2018.00816/full (P1805) 
16 https://www.frontiersin.org/articles/10.3389/fnins.2019.00231/full (P1806) 

https://spinnakermanchester.github.io/
https://spinnakermanchester.github.io/
https://bit.ly/3c7k3q4.
https://github.com/SpiNNakerManchester/Visualiser/tree/master/spynnaker_external_device_lib
https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic/Videos/
https://www.frontiersin.org/articles/10.3389/fnins.2018.00816/full
https://www.frontiersin.org/articles/10.3389/fnins.2019.00231/full
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3.7 Conclusion 
The SpiNNaker software has been shown to meet all the requirements of TRL level 8, and so this 
part of the deliverable is considered complete. 

As part of the process of bringing the SpiNNaker1 access software to TRL level 8 the 
implementation  anticipates support also for SpiNNaker-2 (developed during HBP SGA3, Figure 9), 
wherever possible, facilitating the addition of SpiNNaker-2 to the EBRAINS RI when resources allow. 

 

 
Figure 9: The SpiNNaker2 chip co-designed by TU Dresden and UMAN.  
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4. Job Queue and Quota system 
The main elements of the Job Queue and Quota system for neuromorphic computing in EBRAINS 
(previously known as the NMPI system) are shown in Figure 10. Certain additional components such 
as the administration app, which allows platform administrators to manage compute resource 
requests, assign quotas, etc., are not shown. 

Neuromorphic Computing services are deeply integrated with other EBRAINS services, as shown in 
the Figure. Additional interactions, beyond those shown, are the storage of per-collab configuration 
information for the Job Manager app within the Collaboratory, use of the Python client within the 
EBRAINS Lab, use of the SpiNNaker and BrainScaleS software stacks interactively within the Lab, and 
quota updates related to such interactive sessions. 

 
Figure 10: Job Queue and Compute Quota system for neuromorphic computing (NMPI system), 

showing integration with other EBRAINS services.  

The Job Queue and Quota system has been completely rewritten within SGA2 and SGA3, with the 
goals of (1) handling the migration from Collaboratory v1 to v2, (2) improving maintainability, in 
part by using a more modern technology stack, (3) adding additional functionality, notably support 
for interactive sessions. This rewrite, and the associated improvements in code and documentation 
quality, have raised the TRL of the system to TRL8, with some criteria of TRL9 having also been met. 
More detail on the assessment of TRL is given in the following subsections. 

4.1 Operating conditions 
TRL8: Full software system has been proven to work in its final form and under expected conditions, 
i.e. the end-to-end system has been already created with all components 

TRL8: All functionality successfully demonstrated in simulated operational scenarios. 

TRL9: System is in its final form and operated under the full range of operating conditions.  

TRL9: Final product operates over the full range of expected conditions.  

The Job Queue and Quota system has been in continuous use, in real (not simulated) operational 
scenarios, since the end of the first phase of the HBP. Updates and improvements have been released 
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frequently. Over 50000 jobs have been submitted over this time, by 400+ users. As such, we consider 
that the system satisfies the requirements for TRL9. 

4.2 Hardware and software integration 
TRL8: Software has been fully integrated with all operational hardware and software systems. 

All of the interactions shown in the figure above, based on integration between the Job Queue/Quota 
System and (a) BrainScaleS and SpiNNaker; (b) other EBRAINS services, have been implemented, 
tested, and exploited by end users. 

4.3 Testing and debugging 
TRL8: End-to-end system tested and integrated in a real-world environment with a small number 
of real users 

TRL8: Software has been thoroughly tested (user-acceptance and performance) and debugged. 

TRL9: Tested in a real-world environment with a target number of real users.  

Each of the components of the system has its own set of unit and integration tests, which are run 
following all software modifications using the EBRAINS GitLab continuous integration service. 

As noted in Section 4.1, the system has been used in a real-world environment by over 400 users. 
Bugs encountered by these users have been communicated to the development team through the 
various support channels (see Section 4.5), such as the EBRAINS High-Level Support Team, the bugs 
fixed, and the new versions deployed. 

4.4 Documentation 
TRL8: All user documentation, training documentation and maintenance documentation completed, 
including software/system requirements and architecture/design related descriptions. 

Documentation for end users, for developers, and for maintainers, including requirements and 
architecture/design descriptions, is available from the "Neuromorphic Computing in EBRAINS" 17 
collab. 

4.5 Support 
TRL9: Sustaining software engineering support is in place (e.g. forum, issue tracking, help desk, 
bug reporting email, etc.)  

Each of the components of the system is developed as an open source software project on GitHub 
(with mirrors in the EBRAINS GitLab), and we use the GitHub issue tracker for each repository. The 
other main support pathway is the EBRAINS support (HLST) system. 

  

 
17 https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic 

https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic
https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic
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5. MUSIC 
During SGA3, the MUSIC software suite has been further developed and maintained. During SGA2 and 
continuing in SGA3, the MUSIC communication infrastructure has been extended with adapters 
allowing MUSIC-aware software to communicate with a neuronal network model running in the 
SpiNNaker system. A PyNN-MUSIC interface allows MUSIC co-simulations to be specified in a single 
PyNN script. 

5.1 Operating conditions 
The MUSIC software suite has been used in a number of scientific publications by different research 
groups since the first phase of HBP. During this time, there have been several releases. An alternative 
launch mechanism for clusters has been implemented and MUSIC has been adapted to changes in 
external API:s. The use of pairwise communication between MPI ranks has been complemented with 
collective communication, which is selectable at the level of MUSIC ports. The MUSIC scheduler has 
been improved. 

5.2 Hardware and software integration 
The MUSIC interfaces of the NEST and NEURON simulators have been bug fixed and updated. Adapters 
have been implemented allowing for communication with SpiNNaker hardware. This complements 
the ROS adapters (Robot Operating System) which were implemented during the first phases of HBP. 

5.3 Testing and debugging 
MUSIC is mirrored at EBRAINS GitLab where the continuous integration service is employed. The 
MUSIC software suite includes a set of unit tests. 

5.4 Documentation 
MUSIC documentation is available at the MUSIC wiki18. Live examples of using MUSIC from 1) a C++ 
application, 2) from within a neuronal network simulator, 3) from a Python script and 4) using the 
PyNN/MUSIC interface is available in the Docker container mdjurfeldt/simebrains. Documentation 
for the MUSIC-SpiNNaker adapters is available at the SpiNNaker adapters wiki 19. This includes 
examples of interacting with SpiNNaker through MUSIC. 

5.5 Support 
All MUSIC-related components are developed as open source software projects on GitHub and the 
GitHub issue tracker is used for each repository. 

  

 
18 https://github.com/INCF/MUSIC/wiki 
19 https://github.com/incf-music/spinnaker-adapters/wiki 

https://github.com/INCF/MUSIC/wiki
https://github.com/incf-music/spinnaker-adapters/wiki
https://github.com/INCF/MUSIC/wiki
https://github.com/incf-music/spinnaker-adapters/wiki
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6. Appendix 
Appendix: P4195 “The BrainScaleS-2 Neuromorphic Platform — A Report on the Integration and 
Operation of an Open Science Hardware Platform within EBRAINS” at DOI 10.5281/zenodo.8375522  

https://doi.org/10.5281/zenodo.8375522
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1 Introduction

Neuromorphic systems open up opportunities to explore brain-inspired questions that

are inaccessible to software simulations. In addition, the combination of deep learning

and neuromorphic hardware promises efficiency gains in traditional artificial intelligence

(AI) applications. However, neuromorphic hardware has traditionally been difficult to

approach and use, even more so for hybrid systems that couple an accelerated analog

architecture, where analog circuits emulate biological cell dynamics in accelerated con-

tinuous time, with programmability, e.g., for flexibility in implementing plasticity rules.
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This report presents the challenges and our solutions gained during Specific Grant Agree-

ment 3 (SGA3), and the overall progress leading to this state at the end of the Human

Brain Project (HBP). In summary, this document is an extension of deliverable D6.3

with details and application examples.

2 Methods

In this section we discuss the methodological results that have transformed BrainScaleS-

2 (BSS-2) from a lab system into a public science platform. First, general platform

operation and parameterization aspects are discussed. Finally, we summarize the work

on BSS-2 integration into the EBRAINS Software Distribution.

2.1 Hardware Platform

Each BSS-2 application-specific integrated circuit (ASIC) is accompanied by a field-

programmable gate array (FPGA) for real-time experiment control and execution, as

well as peripheral circuitry for power delivery and system monitoring. The setups are

connected to conventional compute nodes via 1Gb Ethernet and a transport layer pro-

tocol implemented in software and on the FPGA. We utilize an additional ARM-based

controller per system, which hosts a remote procedure call (RPC)-based service for pow-

ering, configuring and monitoring the FPGAs. This allows remote maintenance and

automated hardware test execution with a freely selectable FPGA configuration for

regression tests and test-driven development. Through continuous monitoring, health

checks and regression tests, this system architecture allows us to operate the BSS-2

platform robustly throughout all phases of its life cycle. Automatic health checks are

performed on idle hardware on a 30-minute time grid, to validate and monitor hardware

function.

2.2 Platform Operation

Transforming the BSS-2 neuromorphic systems from intricate lab setups to more user-

friendly backends for executing spiking neural networks poses several challenges. Access

for multiple users to a limited amount of hardware resources needs to be managed in a

reliable and reproducible fashion, while still allowing low-latency interactive experiment

execution or iterative reconfiguration and thereby fully utilizing the high acceleration

factor of the system.
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To address these challenges, an experiment micro scheduler, quiggeldy, was devel-

oped, enabling access to hardware while efficiently managing concurrent usage from

different users. The scheduler decouples hardware utilization from surrounding compu-

tations, supporting job execution rates of 10Hz and faster. It tracks and —if needed—

reapplies the configuration state of individual experiments allowing for seamless inter-

leaving of iterative hardware executions. The experiment service is monitored, and in

case of malfunction automatic reset mechanisms restore functionality.

Additionally, a Spack (Gamblin et al., 2015) bundle package is utilized to track soft-

ware dependencies and versions needed for neuromorphic hardware experiments, facili-

tating easier distribution through automatically built containers. This software packag-

ing methodology was contributed to the EBRAINS research infrastructure (EBRAINS

Research Infrastructure 2022), resulting in a Spack-based software deployment — the

EBRAINS Software Distribution — in the Jupyter-based EBRAINS collab environment

and on multiple high-performance computing (HPC) sites. This approach fosters multi-

site workflows involving both neuromorphic hardware and traditional high-performance

computing (HPC) within the EBRAINS platform. The integration of the BSS-2 hard-

ware into this infrastructure ensures a low-threshold entry point for the neuroscience

community, while sustainable software development practices ensure the long-term us-

ability of the accelerated neuromorphic research platform.

2.3 Parameter Transformation & Calibration

All analog circuitry on each BSS-2 chip needs to be set to the operating point desired

for a specific application. Regarding the neurons, 8 voltages and 16 currents need to

be configured for each individual instance, covering a wide range of configurability (Bil-

laudelle et al., 2022). To achieve that, we calibrate one parameter at a time, such that

the observed behavior of the circuit matches a given target. The individual parameter

calibrations are combined into user-facing functions that configure the whole chip for,

e. g., leaky integrate-and-fire (LIF) neuron operation, taking into account dependencies

between the parameters.

Fundamentally, each neuron can have different target operating points, and will then

be given different bias parameters by the calibration. On top of that, calibration needs

to counter device-specific fixed-pattern variations between similar instances, that arise

as a result of manufacturing tolerances. For each parameter, we state a feasible range of

targets, meaning all neurons are able to reach these targets even when they need to com-

pensate for these fixed-pattern variations. Targets are given in hardware domain units.

Translating biologically sensible operating points to the hardware domain fundamentally
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means finding common scaling factors for voltages and time constants, respectively, such

that they all coincide with the feasible ranges.

The calibration framework calix is included in the EBRAINS software release. It is

possible to use nightly-deployed default calibrations, or perform calibrations for custom

targets as required taking a few minutes. Custom calibration results are cached to avoid

involuntary recalibration.

2.4 EBRAINS Software Distribution

The BrainScaleS (BSS) software development generally follows a rolling release, or ‘sta-

ble HEAD’, development scheme, but for releases of the EBRAINS Software Distribu-

tion, additional release branches have been introduced to ensure a stable user environ-

ment within EBRAINS. The BrainScaleS systems, running in Heidelberg, are accessi-

ble for batch (BrainScaleS-1 (BSS-1) & BSS-2) and for interactive use (BSS-2 only)

from the EBRAINS Research Infrastructure Jupyter Lab. Example Jupyter notebooks

are executed nightly via the system maintained by the Technical Coordination team

(ATHENA), which simulates the operation of the notebooks via a browser, i.e. seeing

the notebooks like a user of the EBRAINS JupyterLab instance, thus testing the full end-

to-end communication flow: User/Browser ↔ Juypter web frontend at CSCS ↔ Jupyter

notebook instance ↔ experiment services in Heidelberg ↔ hardware control systems in

Heidelberg ↔ BrainScaleS-2 neuromorphic systems in Heidelberg. Software changes are

validated using an extensive test suite that is automatically evaluated by the Continuous

Integration (CI) system, and fed back into Code Review as a pass/fail condition, and,

if successful and together with a positive manual review, trigger an automatic deploy-

ment of a new version; thus, the software development follows a rolling release scheme.

Changes to the hardware design are validated against a system simulation. This enables

true co-design of software and hardware components.

3 Results

In this section we demonstrate the capabilities of the BSS-2 platform. We provide doc-

umentation and interactively executable tutorials that can be explored by all EBRAINS

users. In addition to its versatile application in the field of spiking neural networks

(SNNs) shown in the following sections, the BSS-2 system is also capable of performing

vector matrix multiplication in the analog domain. This feature facilitates research on

the application of analog accelerators for classical deep learning models. For details

on this mode of operation, we refer to the corresponding publications from internal as
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well as external collaborators (Spilger et al., 2020; Weis et al., 2020; Klein et al., 2021;

Stradmann et al., 2022).

3.1 Complex Firing Patterns

The LIF model has become the de facto standard abstraction level in many applications

ranging from computational neuroscience to biology-inspired machine intelligence. It in-

corporates the fundamental principles of somatic integration as well as the central dogma

of spike-based communication. More complex neuronal dynamics, however, typically re-

quire both nonlinear membrane dynamics and a second state variable. The adaptive

exponential leaky integrate-and-fire (AdEx) model (Gerstner and Brette, 2009), extends

the simple LIF equation by an exponential feedback current mimicking the onset of the

action potential and an adaptation term acting on timescales typically much longer than

the membrane dynamics.

BrainScaleS-2 provides an accurate emulation of the AdEx equations (Billaudelle et al.,

2022) which is capable of reproducing all firing patterns originally analyzed by Naud et al.

(2008), including adaptating, bursting, and bistable behavior. Billaudelle et al. (2022)

demonstrated programmatically calibrated silicon AdEx dynamics using the original

parameter sets assembled by Naud et al. (2008). In addition, we provide an interactive

Jupyter notebook for EBRAINS users, see Figure 1.

3.2 Multi-compartmental Neuron Models

Biological neurons receive the majority of inputs at their dendrites. These inputs are not

merely propagated to the somatic spike initiation zone but are transformed by the passive

and active properties of the dendritic tree and can for example elicit dendritic spikes

(Larkum et al., 1999; Schiller et al., 2000). Consequently, the morphology of neurons is

assumed to play an important role in the computational capabilities of neurons (London

and Häusser, 2005; Major et al., 2013; Poirazi and Papoutsi, 2020).

Multi-compartmental neuron models discretize the complex morphology of neurons in

space and allow simulating their behavior (Rall, 1959). On BSS-2, several neuron circuits

can be combined with adjustable resistors to form multi-compartmental neuron models

(Kaiser et al., 2022). Each of the compartments in these neurons supports dendritic

spikes; this includes sodium-like spikes as well as plateau potentials.

The BSS-2 software stack (Müller et al., 2020) supports the definition of multi-

compartmental neuron models in the PyNN (Davison et al., 2009) language, allowing

easy access to the modeling capabilities of the BSS-2 hardware system.
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Figure 1: Jupyter Notebook to explore the BSS-2 neuron circuit parameter space. All
visible traces have been recorded from the system. The AdEx hardware neu-
rons are configured to a ‘bursting’ state. Users can interactively change hard-
ware parameters and get instantaneous feedback from the system.

Two demo notebooks on EBRAINS demonstrate how multi-compartmental neurons

can be modeled on BSS-2.

3.3 Programmable Plasticity

The on-chip single instruction, multiple data (SIMD) central processing units (CPUs)

allow for implementation of (in principle) arbitrary plasticity algorithms. The cross-

compilation toolchain developed in Müller et al., 2022 is used to compile freestanding

kernel programs written in C++ and includes access to low-level hardware abstraction

data structures.

Using programmable plasticity with high-level network topology and experiment de-

scriptions requires common data formats for the network component location information
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(e.g., of the placement of synapses on the hardware) and the description of plasticity

execution dynamics. We developed this integration into the data flow graph-based exper-

iment descriptions and execution as well as into the PyNN front-end language in Spilger

et al., 2023b.

There, plasticity is treated as a property of network elements like neurons or synapses.

Figure 2 shows the developed Application Programming Interface (API). At runtime,

the algorithm function is supplied with location information of the network entities

generated by the experiment description layer. Using this location information ensures

no unrelated network parameters are altered by the plasticity program. Therefore, we

integrate programmable plasticity into the high-level user interface while relieving the

user from network entity placement translation to the plasticity algorithm as well as

scheduling of the plasticity execution.

# PyNN

class PlasticityRule:

def __init__(

self,

timer,

observables):

...

def generate_kernel(self) -> str:

"""

Generate plasticity rule kernel.

:return: Kernel as string.

"""

...

# user code

class MyPlasticityRule(PlasticityRule):

...

PyNN.Projection(

...,

synapse_type=MyPlasticityRule(

...)

)

Figure 2: Plasticity API integrated into PyNN. The user supplies a plasticity algorithm
function written in C++, which is just-in-time compiled by the experiment
execution layer. The plasticity algorithm’s execution is timed and supports
one-shot or periodic execution.

3.3.1 Pursuit Task

We demonstrate plasticity by learning a Pong-inspired game based on reward-modulated

spike-timing-dependent plasticity (STDP), see Figure 3. We use an approach similar to

T. Wunderlich et al. (2019), where the network uses random noise to explore and it

learns by applying STDP weight updates only when the reward increases, i.e., when the

network performs better than before.

The vertical position of the Pong ball is encoded as a spike train to a specific synapse
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row, and the Pong paddle will move to the position encoded by the most-active neuron.

The network can learn to play a perfect game by simply tracking the ball with the paddle

at all times, using a diagonal matrix, see top plot in Figure 3.

Training the network involves two plasticity functions: One that handles the random

noise required for exploration, where we simply configure a clipped normal distribution

in a row of synapse weights; and one that uses the neurons’ spike counters to compute a

reward, reads out correlation data, and finally computes weight updates for the network.

The two plasticity rules are applied to two separate projections in our PyNN-based

network description, and are configured to run at specific times: before and after the

spikes encoding the ball position are sent, respectively.

Since the whole experiment is defined in PyNN, it is easy to run it on the EBRAINS

platform. We provide a demo notebook on EBRAINS, containing training and an ani-

mation of the chip playing the game as learned so far, see Figure 3 for a visualization.

3.4 Machine Learning-Inspired Modeling

Typical hardware devices used in machine learning (ML) tasks are considered energy

consumptive, in part due to the well-performing but energy-hungry deep learning algo-

rithms (Schwartz et al., 2020). Biologically-inspired hardware and learning algorithms

promise to alleviate this issue by providing means for energy-efficient computing. To this

end, novel neuromorphic hardware has to prove itself competitive in terms of scalability,

performance, and user-friendliness.

In the following sections we showcase gradient-based ML on different tasks with the

backpropagation-through-time (BPTT) and EventProp learning algorithm with BSS-2

in-the-loop (ITL), see Figure 4A. For hardware ITL learning, we use high-level PyTorch-

based or JAX-based software frameworks.

3.4.1 Surrogate Gradient

Time-discretized SNNs are commonly trained with BPTT by utilizing surrogate gradi-

ents (SGs) to account for the non-differentiable spike events (Neftci et al., 2019). Unlike

the EventProp algorithm in Section 3.4.3, this learning approach relies on the obser-

vation of both spikes and membrane potentials of the SNN. On BSS-2, the membrane

potentials of the neurons can be recorded with the CADC, read out by the host com-

puter after the SNN has been emulated on-chip, and used to estimate a hardware-aware

gradient for the computation of weight updates.

SG-based training on BSS-2 has been demonstrated successfully on multiple tasks.
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Figure 3: Jupyter Notebook demonstrating on-chip learning on BSS-2. We apply
reward-modulated STDP to learn a pursuit task. Users can change network
parameterization, and modify the learning rule.

We classify the Yin-Yang dataset (Kriener et al., 2022) (see Figure 4C) on BSS-2 with

an SNN with 120 hidden LIF neurons (Spilger et al., 2023a) as shown in Figure 4C. The

experiment is implemented in the hxtorch (Spilger et al., 2023a) software framework,

facilitating the definition of SNNs models on BSS-2 while harnessing PyTorch’s auto-

differentation mechanism. Most importantly, the software allows estimating gradients

of the network parameters on BSS-2 based on hardware observations. The experiment

software is available as jupyter notebook on the EBRAINS platform. In Arnold et al.

(2023), we have trained an SNN on BSS-2 for demapping symbols to bits transmitted

in an optical IM/DD link. Further surrogate gradient-based learning on BSS-2 can be

found in (Cramer et al., 2022a), where the MNIST (LeCun and Cortes, 1998) and the
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Figure 4: (A) EventProp ITL training scheme. Taken from (Althaus, 2023). (B)
Schematic of the hardware-in-the-loop method: in forward direction, we record
hardware output and state variables; in backward direction, we calculate gra-
dient estimates and update the hardware configuration. Taken from (Pehle
et al., 2023). (C) Example inference of a sample from the Yin-Yang dataset
on BSS-2. Taken from (Pehle et al., 2023). (D) Three-class Yin-Yang dataset.
(E) Partitioning of a large-scale network for sequential execution on BSS-2.
Taken from (Straub, 2023).

Spiking Heidelberg Digits (SHD) (Cramer et al., 2022b) datasets were classified.

3.4.2 Fast and Deep

In contrast to the inherently approximative training method of SGs, we described an

exact training method for networks of LIF neurons based only on spike times (Göltz et

al., 2021). In simulation, this method can train networks to a high accuracy on typical

image classification tasks like MNIST (LeCun and Cortes, 1998) or the Yin-Yang data

set (Kriener et al., 2022). We studied the robustness of the algorithm to substrate effects

like parameter variation or weight discretisation in detail. Despite being derived under

a limiting assumption, the method is not limited to perfect substrates but instead deals
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well with simulated imperfections of a substrate.

The robustness of the algorithm was confirmed when training networks on the analog

neuromorphic hardware BSS-2. The accuracy achieved on the Yin-Yang and MNIST

datasets is as good as in simulation. In part due to the chosen encoding of information,

the classification decision is reached within a short amount of time, allowing us to deliver

on the promise of fast and energy-efficient computation on neuromorphic hardware: We

reach a high throughput of over 20 000 Images/s while the analog chip consumes about

175mW.

We have started a comparison of the three methods described in Sections 3.4.1 to 3.4.3

and are in the process of pinpointing the conceptual as well as practical differences (Göltz

et al., 2023).

3.4.3 EventProp

The EventProp learning algorithm (T. C. Wunderlich and Pehle, 2021) is a backpropaga-

tion algorithm for neural networks built from spiking LIF neurons. Derived in continuous

time for a general loss function, the algorithm computes exact gradients and only depends

on observations at spike times (see Figure 4A). This makes the algorithm event-based

by design and therefore fundamentally appealing for an energy-efficient implementation

on the BSS-2 hardware.

To enable the integration of EventProp in standard machine learning frameworks such

as PyTorch, a time-discretized version of the algorithm has been implemented within the

hxtorch framework. To assess the effectiveness of the discretized EventProp algorithm,

experiments were conducted on the Yin-Yang dataset (Kriener et al., 2022). Notably,

the achieved results demonstrate performance comparable to previous ITL training ap-

proaches carried out on the BSS-2 hardware platform (Pehle et al., 2023). While the

other approaches either use surrogate gradients or explicit gradient expressions for spe-

cial cases of neuron time constants (see Section 3.4.2), the time-discretized EventProp

approach doesn’t limit the choice of time constants while approximating the exact gra-

dient reasonably well (see Pehle et al. (2023)).

3.4.4 Event-based Optimization

Most software libraries for the simulation of SNNs discretize time into fixed-size bins (see

Section 3.4.3), resulting in a loss of information regarding the precise timing of spikes.

Capturing the temporal dynamics of SNNs more precisely and better representing nu-

merical operations is motivation enough for an event-based software library. In addition,

11



the BSS-2 system is an inherently asynchronous device, that operates with high time

resolution. Therefore, we have been developing the jaxsnn framework. It can simulate

SNNs in a time-continuous manner and is based on JAX (Bradbury et al., 2022), which

is a Python library for ML and composable function transformations. jaxsnn provides

core functionality and data structures for event-based simulation and gradient-based

learning in SNNs, and supports SNN emulation on the BSS-2 system.

A time-continuous version of the EventProp algorithm was implemented on top of

event-based data structures. The correctness of the implementation was verified with

experiments on the Yin-Yang dataset, and the results of previous time-discrete simula-

tions were exceeded. An interface to the BSS-2 system was developed that efficiently

supports sparse observations, e.g. spike events, from the analog neuromorphic hard-

ware for ITL training. The achieved results are comparable to previous results of ITL

training on BSS-2 and demonstrate the feasibility of the event-based approach. As the

event data structures in software closely match the representation of spikes on BSS-2,

expensive data transformations are minimized.

Further, forward and backward compute graphs can be created in jaxsnn and in-

dependently invoked with data. This contrasts to PyTorch, which typically executes

models eagerly when an operation is invoked and therefore builds up the network graph

incrementally. jaxsnn presents one of the first approaches for fully event-based, time-

continuous gradient-learning in SNNs.

3.5 Partitioning of Larger-Scale Networks

The experiments and methods considered in Section 3.4 focus on network topologies

fitting on a single BSS-2 instance. However, real-world applications often require net-

work sizes exceeding the resources on BSS-2. To realize large-scale spiking feed-forward

neural networks (SFNNs) BSS-2, the network needs to be partitioned and the partitions

executed sequentially. This can be realized with hxtorch.snn.

Larger networks typically exceed both, the synaptic and neuronal resources, since the

fan out of one layer constitutes the fan-in of a subsequent layer. Each neuron circuit on

BSS-2 has a fan-in of 256 which limits the size of the previous layer to the same number

in case of dense projections. To alleviate this constraint, multiple neuron circuits can be

connected to a larger logical neuron, thereby increasing the realizable fan-in of a single

logical neuron. Consequently, less logical neurons fit on BSS-2, possibly inducing an

increase in the number of needed partitions.

To demonstrate the means of partitioned network execution on BSS-2, we train a

22×22 MNIST dataset (LeCun and Cortes, 1998) with an SNN consisting of 256 hidden
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LIF neurons, receiving input from 484 inputs, and projecting their events onto 10 readout

leaky integrator (LI) neurons (see Figure 4E). Each neuron in the hidden layer is realized

by 4 connected neuron circuits on BSS-2, allowing for the (signed) fan-in of 484 and

128 neurons on a single execution. Hence, the given SNN can be partitioned into three

partitions, where the hidden layer is represented by the first two partitions, see Figure 4E.

We achieve similar classification accuracies as in Cramer et al. (2022a).

3.6 Multi-Chip

Section 3.5 has presented methods and experiments addressing the problem of network

models, larger than fitting on a BSS-2 single-chip system. Besides executing partitions

of the network model sequentially on the same chip, the more general approach is to

interconnect multiple BSS-2 chips and communicate spike events directly between the

BSS-2 ASICs. Thereby, the whole network model can be executed in parallel on multiple

chips. As demonstrated in Thommes et al. (2022), this can be achieved on the existing

hardware platform using the FPGAs and the EXTOLL high performance interconnection

network technology, offering high message rates at very low latencies and high bandwidth

(Nüssle et al., 2009b; Nüssle et al., 2009a).

Generally, the main challenge about communicating spike events between accelerated

neuromorphic chips is to do so with transmission latency and jitter (i.e. latency variation)

as low as possible. Thereby, jitter is the more strict constraint, as it will directly affect

the performance of learning rules depending on precise spike timing. In our BSS-2

implementation, the jitter is minimised by transmitting an arrival deadline timestamp

in units of a globally synchronised system time (systime) counter and delaying events

at their destination FPGA until that timestamp becomes current with respect to the

systime. As single spike events carry only small amounts of information, it is necessary

to aggregate multiple of them into larger network packets towards a common destination.

Thereby the header overhead, i.e. the share of bandwidth only used for network protocol

information, is minimised. Figure 5a shows the course of some spike events through the

communication FPGAs and the EXTOLL network in BSS-2. As a first experiment, we

implemented a synfire chain, see Kremkow et al. (2010) for the original model, jumping

multiple times across the network border between two BSS-2 ASICs (see Figure 5b).

Results of this experiment are shown in Figure 5c and d. For low weights of the inhibitory

projections inside each chain link, the activity (especially in the inhibitory populations)

can be seen to disperse over time with every hop through the chain. The latency in the

activity jumping between chain links across the network border can be seen to be larger,

but still comparable in order of magnitude to the latency between chain links on the
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same chip.

(a)

(b)

(c) (d)

Figure 5: (a) Packet-based BSS-2 spike event communication. On the left, ASIC 1
produces events for ASIC 2 on the right, where they can excite target neurons
to emit new spikes in turn. Time numbers are given in hardware units with
a speedup factor of 103. (b) Population projection graph of a synfire chain
network spanning two BSS-2 ASICs. The excitatory populations will generally
excite all neurons at the next chain link, while the inhibitory populations will
inhibit the excitatory neurons at their own chain link. This synfire chain is
broken into several parts which are connected back and forth between the two
BSS-2 chips. Activity is started through a stimulus projection at an excitatory
input population on ASIC 1. Resulting activity diagrams of the synfire chain
experiment with low (c) and high (d) weights at the inhibitory projections. The
neuron identifiers are chip-local labels, and the respective spikes are plotted on
the same axis using different colors. The time axis is given in bio units using
a typical scaling factor of 103.
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4 Discussion

In this document, we have outlined the challenges and solutions we encountered during

the integration of BrainScaleS-2 (BSS-2) into the EBRAINS ecosystem. The goal was

to provide accelerated neuromorphic BSS-2 systems as an open scientific platform, and

to offer easy access to the hardware substrate for potential users. We were able to

benefit from the developments made for the previous BrainScaleS-1 (BSS-1) wafer-scale

system, especially in the operation of a large hardware installation, the methodology for

encapsulating user experiments, ensuring hardware and service stability, and monitoring

system usage.

To enable new users to be able to use the platform productively, and to support

users to make progress, especially in the areas of computational neuroscience and bio-

inspired machine learning, we have developed novel methods and libraries to minimize

system usage complexity. We have demonstrated BSS-2 hardware capabilities targeting

bio-inspired research, such as complex neuronal dynamics, or programmable (online)

plasticity, as well as the use of the system in various machine learning inspired environ-

ments. To make the flexibility and breadth of use of the neuromorphic substrate more

accessible to the user community, we provide executable documentation in the form of

tutorials for this purpose.
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