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Figure 1: In silico design of NLRP3 inhibitors to target neurodegeneration. 
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1. Introduction 
The present project, BRAVE (Protecting the brain from COVID-19-mediated neurodegeneration 
through inflammasome inhibition), answered the HBP calls for expression of interest for SGA3 
“COVID-19 and its impact on the brain and mental health”. 

BRAVE focuses on the development of computational approaches, complementing and integrating 
EBRAINS tools and services, to advance the investigation of COVID-19-related brain disorder 
mechanisms into the discovery of novel drug candidates able to block SARS-CoV-2-induced excessive 
inflammatory responses in the brain. 

The task (T5.22) which underpins the present deliverable has identified active small molecules, 
together with modelling their binding mode to the protein NLRP3 (the main protein effector involved 
in the mechanisms leading to brain disorders and neurodegeneration) and simulating their effect on 
NLRP3 functionally oriented dynamic properties and networks of interaction. The discovered new 
ligands are intended to inhibit the inflammatory response that is observed after COVID-19 infection, 
one of the main causes of brain disorders. Identified molecules should also have anti-inflammatory 
effects on neuroinflammation associated to several neurodegenerative diseases, as Alzheimer’s 
disease (AD) and Parkinson’s disease (PD). 

Specific Objectives of the task that allowed to reach the present deliverable were i. the structural 
and dynamic requirements for effective drug-NLRP3 complex formation; ii. the impact of ligands on 
the internal dynamics of the target in terms of allosteric modulation and modification of Protein-
Protein Interactions and networks; iii. the efficacy of designed ligands in vitro and their capability 
of crossing the BBB in vivo. 

This deliverable also contributes to the HBP modelling scientific area. Indeed, to be achieved, 
specific computational tools have been developed and applied. Considering the development of new 
neuro-anti-inflammatory molecules and the mentioned tools, the following communities should be 
interested: computational neuroscience community, HPC community, neuroscientific community, 
neuroscientists, researchers, scientific community. The used tools have been shared in the KG and 
are available to the HBP community, and the proposed molecules represent an important starting 
point for the development of new anti-neurodegenerative drugs. Indeed, some of the identified 
molecules have been already published (P4078), while others here described will be likely submitted 
for patenting in the near future. The work here described thus contributes to the computing and 
medicine HBP downstream applications. 

More specifically, we contributed to the areas of: 

• modelling, structural computational biology: through the improvement of computational 
methods for drug design, analyses of protein dynamics, and of ligand-modulated interactions.  

• chemical biology: new chemical tools from the combination of the structural methods mentioned 
above with drug activity studies, synthesis, and in vitro functional assays, in the context of 
proteins involved in inflammatory responses to pathogenic viruses. 

• development of drugs against COVID-19-induced and other brain diseases: through the set-up of 
tools and protocols and their integration into a multidisciplinary technological platform that can 
be exported as a model study. 

The tools used for modelling identification are the following: 

• MEDIUM : https://search.kg.ebrains.eu/instances/7c3dbeb1-cb2c-4fab-910d-9fe0ca8709e9 

• MLCE : https://search.kg.ebrains.eu/instances/a164f8e6-bc1a-4c17-9bb0-0dab0014b3d2 

• DF : https://search.kg.ebrains.eu/instances/3647a7eb-a233-440a-8b57-87fed1ec4c01 
These methodologies have expanded the umbrella of molecular tools in Task 5.17 (WP5) and their 
integration (in Task 5.1) in the multiscale toolset of WPO5.1 (Brain modelling and simulation), by 
developing tools and workflows as EBRAINS services for molecular data, either derived from 
experiments or from simulations, for multiscale modelling, PPI and network modelling, and 
simulation of neurological processes. 

https://search.kg.ebrains.eu/instances/7c3dbeb1-cb2c-4fab-910d-9fe0ca8709e9
https://search.kg.ebrains.eu/instances/a164f8e6-bc1a-4c17-9bb0-0dab0014b3d2
https://search.kg.ebrains.eu/instances/3647a7eb-a233-440a-8b57-87fed1ec4c01
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Calculations have been run thanks to the FENIX infrastructure (Application number 25681, 
computational time assigned to Francesca Spyrakis). 

Chemical synthesis and in vitro testing have been performed at UNITO (P152), thanks to the 
collaboration with Prof. Massimo Bertinaria, Dr. Elisabetta Marini (Department of Drug Science and 
Technology, University of Turin) and Prof. Chiara Riganti (Department of Oncology, University of 
Turin). 

2. Results  

2.1 NLRP3: from the effects of allosteric binding to 
implications for drug design 

2.1.1 Tools development and application 

2.1.1.1 Structural organization of NLRP3 

From the structural point of view, NLRP3 is organised in three main different domains: the N-terminal 
Pyrine domain (PYD), the central NACHT domain designated to accommodate ADP and the C-terminal 
Leucine-Rich Repeat (LRR). A flexible linker combines PYD with NACHT (Figure 2). 

 
Figure 2: Structural organization of NLRP3. 

2.1.1.2 NLRP3 functional dynamics and long-range coordination 

The cryoEM structure of the NLRP3 monomer complexed with ADP and the MCC950 inhibitor (1-
(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)-3-[4-(2-oxidanylpropan-2-yl)furan-2-yl]sulfonyl-urea; PDB ID 
7pzc) was used as the starting point for extensive explicit solvent, all-atom MD simulations, run on 
Fenix (1.365443 core-h on Jusuf CPU; 661094 core-h on Jusuf GPU). Specifically, the latter were run 
on NLRP3 bound to ADP (simulation labelled ADPstate) and bound to both ADP and MCC (MCCstate). 
The total length of the simulations for each system was 4 μs and allowed the observation of 
differences in the conformational stabilization of the states (Figure 3). In both states, PYD appears 
as the most flexible region. However, the presence of MCC induces a PYD rearrangement that makes 
it inaccessible for establishing interactions with other monomers in the assembly of functional NLRP3 
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oligomers. Altogether, these analyses show that the allosteric ligand significantly perturbs the 
overall dynamics of NLRP3 and favours conformational ensembles that are not poised to form the 
inter-monomer PYD-mediated interactions that eventually translate into the assembly of functional 
oligomers.  

To gain more insights into the impact of MCC on the protein internal dynamics in terms of short- and 
long-ranged perturbations, and ultimately, on its biological function, we computed the pairwise 
fluctuations of residue distances in all MD trajectories, that is known to be related to the degree of 
coordination and allosteric communication between different protein substructures. Different 
motions could be associated to different protein functions. Both matrices exhibit a block character, 
which is typical of multidomain proteins, however finely tuned MCC-dependent modulations of NLRP3 
internal dynamics can be observed. In the MCC-state, PYD loses coordination with all the remaining 
portions of the protein, which may favour a more disordered type of domain dynamics (Figure 4). 

 
Figure 3: Representative structures of NLRP3 monomer without (left) and with (right) MCC.1 

 

 
Figure 4: Distance fluctuation (DF) matrices for ADPstate and MCCstate.1 

 
1 Pictures taken from 10.1016/j.ijbiomac.2023.125609 
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2.1.1.3 Ligand effect on PPI surfaces 

One of the direct computational strategies to predict protein-protein interfaces is the use of the 
Matrix of Low Coupling Energies (MLCE) energy decomposition method. This method is based on the 
concept that non-optimized, low-intensity energetic interaction networks in the protein structure 
may correspond to localized regions with low-intensity energetic couplings with the rest of the 
protein, which allows them to undergo conformational changes and work as PP recognition sites. 
MLCE starts by analysing the pairwise interaction energies of all amino acids in a protein. 

MLCE operates in a multistep process, in which it first calculates the unbound part of the potential 
E (van der Waals, electrostatic interactions, solvent effects) through an MM/GBSA calculation, 
obtaining, for a protein of N residues, an N x N Mij symmetric interaction matrix, which can be 
expressed in terms of eigenvalues and eigenvectors. From this point of view, we can filter the 
approximated interaction matrix 𝑀𝑀𝑖𝑖𝑖𝑖 so that it contains only those pairs of residues that are in 
geometric proximity in the analysed structure, resulting in the Matrix of the Local Coupling Energy. 
We select the residues involved in the 15% of non-zero interactions that are less energetic. This cut-
off value proved to be a key parameter for specificity/sensitivity of the approach. The obtained 
residues are then fused into patches, which are sets of residues close to each other and constitute 
the predicted Protein-Protein Binding regions. Weaker pairwise interactions, combined with the 
localization of residues in continuous areas on the protein surface, highlight substructures that are 
not internally optimized and are therefore prone to interact with a potential partner.  

Specifically, we applied MLCE to the representative structures of the most populated conformational 
clusters extracted from the ADPstate and MCCstate simulations. In the ADPstate, the top and front 
regions of the NACHT domain, highlighted in violet and red in Figure 5a, are predicted as possible 
interaction regions. This result is consistent with the recently published supramolecular, disk-shaped 
structure of polymeric NLRP3 (PDB ID 8ej4), where the most relevant monomer-monomer interface 
involves exactly the two substructures of the NACHT domain here predicted (i.e. interface A in Figure 
5b). MLCE also defines the concave (internal) surface of LRR as a putative interaction region. 
Interestingly, in the above-mentioned supramolecular structure, this substructure engages in an 
interaction with the centrosomal kinase NEK7, which helps keep the structure open and extended.  

 
Figure 5: MCLE analysis of ADPstate.2 

In the MCCstate, a first potential PPI interface is located on the external surface of the LRR domain 
(Figure 6a, orange surface), in agreement the assembly of the inactive decamer (PDB ID 7pzc), where 
two distinct LRRs from two consecutive monomers establish contacts through the predicted interface 
(Figure 6b, interface A). This result is also consistent with observations from Geyer and co-workers 
who implied this interaction as an important stabilising factor in the decamer assembly. The second 
PPI interface here predicted is located on (the external portion of) the NACHT domain, specifically 
involving the helices in the HD2 subdomain (Figure 6a, green surface). Importantly, in the inactive 
decamer, this region is involved in interactions with the terminal portion of the LRR domain and the 

 
2 Picture taken from 10.1016/j.ijbiomac.2023.125609 

a b 
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third and fourth helix of HD2 subdomain of two consecutive monomers (Figure 6b, interface B). 
Finally, MLCE returned a prediction of PPIs on the PYD domain (Figure 6a, magenta surface), which 
is also corroborated by the PYD-PYD interactions observed experimentally in the assembly of the 
inactive decamer (see Figure 6b).  

 
Figure 6: MCLE analysis of MCCstate.3 

Summarising, the energy-based prediction of potential PPI interfaces indicates that different 
interacting substructures may emerge and be presented for partner-binding as a function of the 
ligand-state of the protein. In our model, the presence of MCC determines a rearrangement 
consistent with a model where monomers are preorganized to assemble via interactions observed in 
the recently described decamer form: this is achieved via the specific interaction interfaces, that 
present distinct structural and physico-chemical profiles from the ones observed in the ADPstate. 

2.1.1.4 MD-based machine Learning Classification of active/inactive 
states 

The results reported above provide a detailed view of the mechanisms of ligand-based regulation of 
NLRP3 functions, and of the impact of different ligand combinations on potential interacting 
surfaces. The proposed model is, in fact, able to differentiate functionally inactive dynamic states 
induced by the presence of MCC, from biologically active ensembles. This would allow the automatic   
classification of protein ligand-induced states as active or inactive, without the need for in-depth 
and extensive analysis of the trajectories. To meet this challenge, we further developed and tested 
a Machine Learning approach, called MEDIUM and available in KG (vide infra), that, starting from the 
analysis of images corresponding to Distance Fluctuation (DF) matrices (see above), can classify the 
protein as active or inactive. Indeed, DF images capture the overall state of the protein, since small 
modifications within the protein structural organisation (such as ligand binding or even mutation) 
can impact on the overall coordination propensity. 

To classify the protein state as Active or Inactive, we applied Convolutional Neural Networks (CNN). 
Specifically, we used the VGG19 classification algorithm, directly available from Tensorflow (TF), 
and showing an optimal compromise between computational cost and accuracy. The detailed 
procedure is described in Figure 7: a) the architecture of modified VGG19 mode; b) different states 
of the protein involved in the study with the DF matrices (left) and performance evaluation of 
training and validation of the CNN ML-model (right); c) confusion matrix for the test data set using 
the trained ML-model. 

By evaluating our trained model on the test set, we got 100% of accuracy, taking less than 1s to scan 
all the 42 DF test images. This result is corroborated by the confusion matrix, which perfectly showed 

 
3 Picture taken from 10.1016/j.ijbiomac.2023.125609 

a b 
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that amongst forty-two (42) total images, 21 test entries were correctly classified as Active while 
the other 21 as Inactive. 

Overall, the combination of MD simulations and ML image recognition proves able to correctly classify 
different states of a protein, based only on the analysis of its internal dynamics. The potential of 
this classification method can allow us to predict the effect of other types of small molecule 
effectors binding in the MCC site, even with completely different structures, whose functional role 
is not known a priori. Given the difficulties in generating SARs for allosteric drug candidates, the use 
of dynamical descriptors and ML can help prioritise compounds with desired functional properties. 
This result is presented as a verifiable experimental hypothesis and has been used for the design 
novel generations of NLRP3 inhibitors. 

 
Figure 7: MEDIUM workflow.4 

The results here presented have been published in 2023 in the International Journal of Biological 
Macromolecules (doi: 10.1016/j.ijbiomac.2023.125609; https://arxiv.org/abs/2309.03589; P4079; 
OP5.47), while the developed and applied tools are available in the KG at the following links: 

• DF : https://search.kg.ebrains.eu/instances/3647a7eb-a233-440a-8b57-87fed1ec4c01 

• MLCE : https://search.kg.ebrains.eu/instances/a164f8e6-bc1a-4c17-9bb0-0dab0014b3d2 

• MEDIUM : https://search.kg.ebrains.eu/instances/7c3dbeb1-cb2c-4fab-910d-9fe0ca8709e9 

These tools are also available in the EBRAINS molecular and subcellular level simulation tool suite at 
https://www.ebrains.eu/modelling-simulation-and-computing/simulation/molecular-and-
subcellular-simulation.  

 
4 Picture taken from 10.1016/j.ijbiomac.2023.125609 

https://arxiv.org/abs/2309.03589
https://search.kg.ebrains.eu/instances/3647a7eb-a233-440a-8b57-87fed1ec4c01
https://search.kg.ebrains.eu/instances/a164f8e6-bc1a-4c17-9bb0-0dab0014b3d2
https://search.kg.ebrains.eu/instances/7c3dbeb1-cb2c-4fab-910d-9fe0ca8709e9
https://www.ebrains.eu/modelling-simulation-and-computing/simulation/molecular-and-subcellular-simulation
https://www.ebrains.eu/modelling-simulation-and-computing/simulation/molecular-and-subcellular-simulation
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2.2 Identification of the structural requirement a 
molecule should have to target NLRP3  

2.2.1 Identification of key moieties in NLRP3 inhibitors 

In the last decade, the investigation for NLRP3 inhibitors became of great interest in academia and 
industry, leading to the discovery of both reversible and covalent NLRP3 inhibitors. Different 
chemical scaffolds have been used to design NLRP3 inhibitors, the most effective up to now being 
di-substituted sulfonylurea typical of glyburide. Notable examples are MCC950 (also known as CRID3) 
and NP3-146 (Figure 8A and 8B, respectively). Sulfonylurea-based inhibitors bind to an allosteric 
pocket in the NACHT domain of NLRP3, at the interface of HD1, HD2, NBD, FISNA and WHD 
subdomains and adjacent to the nucleotide binding site, as shown in Figure 8C. This allosteric pocket 
is shaped by residues belonging to different subdomains of the NACHT domain and is only apparent 
in the inactive, ADP-bound conformation. Indeed, a recently published cryo-EM structure shows that, 
upon activation, HD1, HD2, NBD, FISNA and WHD subdomains undergo a massive conformational 
change, which requires a 85.4° rigid body rotation of the FISNA-NBD-HD1 module with respect to the 
WHD-HD2-LRR module, on an axis located between subdomains HD1 and WHD (Figure 8D). Therefore, 
in the active, ATP-bound form of NLRP3, the allosteric pocket cannot be detected. The inhibitory 
activity of sulfonylurea-based inhibitors derives from their ability to glue together the HD1, HD2, 
NBD and WHD subdomains constituting the allosteric pocket, eventually avoiding the activation of 
NLRP3 NACHT domain.  

 

Figure 8: Structural information on NLRP3 active/inactive state.5 

 
5 Picture taken from 10.1016/j.ejmech.2023.115542 

https://doi.org/10.1016/j.ejmech.2023.115542
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2.2.2 Design of new NLRP3 inhibitor series 

Based on our previous experience in the development of NLRP3 inhibitors, we explored the possibility 
of designing new non-sulfonylurea based NLRP3 inhibitors. The interaction of the latter with NLRP3 
can be generally schematized in three blocks (Figure 9): (i) the lipophilic tail, represented by the s-
hexaydroindacene in MCC950 or the 4-chloro-2,6-diisopropylbenzene ring in NP3-146 that fits into a 
hydrophobic pocket; (ii) the sulfonylurea moiety establishes a network of hydrogen bonds with 
Ala228 and Arg578 of the HD2 subdomain; (iii) the sulfonamide oxygen binds to the positively charged 
Arg351 of the NBD subdomain. The terminal substituted furanyl moiety in MCC950 is not essential as 
it has been extensively modulated by using either aromatic and heteroaromatic rings appropriately 
substituted to improve physicochemical and pharmacokinetic properties of this class of compounds. 

      

 

 

 

  

 

 

 

 

 

 

 

 

Figure 9: 3D and schematic view of NLRP3 inhibitor moieties. 

 

 
Figure 10: Representative compounds of the synthesized series. 

 

1 2 

3 
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Figure 11: Example of NLRP3-ligand MD trajectory analysis for compound INF200.6 

 
6 Picture taken from 10.1016/j.ejmech.2023.115542 

https://doi.org/10.1016/j.ejmech.2023.115542


   
 

D5.13 (D109) SGA3 M42 SUBMITTED 230926.docx PU = Public 26-Sep-2023 Page 13 / 19 
 

We have maintained the three mentioned key blocks of interactions by replacing the sulfonylurea-
based central core with different heterocycles, while performing limited structural modulations to 
the lipophilic moiety and terminal polar group. In particular, we used a substituted benzene ring as 
the lipophilic moiety and a carboxylic acid functionality, or its ester prodrug, as polar group (Figure 
10), and linked the three blocks using spacers endowed with different size and flexibility. The spacer 
chemical nature and length were varied to maintain the interaction with Arg351, as its flexibility 
can be hardly predicted. The synthetic accessibility of the differently substituted heterocycles was 
also considered in the design of new compounds.  

Different series, trying to resemble the main interaction previously described have been designed, 
modelled, synthesized, and tested. Modelling simulations, performed by means of molecular 
docking, molecular dynamics, DF, MLCE and MEDIUM analyses, have guided the selection of the most 
promising compounds to be synthesized. In Figure 10 some of the representative of the series, along 
with the reference NP3 compounds and the moieties involved in key interactions with the target are 
reported and labelled. 

More specifically, and as an example, the persistence of key hydrogen bonds between the compounds 
and the target has been tracked during 200ns-long MD simulations and compared with the reference 
NP3 ligand (Figure 11A,B). The RMSD of the ligand and of the residues lining the pocket (Figure 
11C,D) has been also calculated, as an average, to verify the stability of our newly designed 
compounds, again with respect to NP3 ligand. Moreover, the capability of the compounds to stabilize 
an inactive state of NLRP3, and inhibit its activation, has been tested by means of DF and MEDIUM 
analysis. 

In the reported example (Figure 11), it is quite clear how compound INF200 is involved in less stable 
interactions with the NLRP3 target, with respect to the known active NP3 ligand. 

Based on the mentioned analyses, in collaboration with Prof. Massimo Bertinaria (Department of 
Drug Science and Technology, UNITO), we synthesized and tested the compounds reported in Tables 
1 and 2. 

2.3 Selection of the best performing molecules 
The synthesized compounds were characterized for their ability to inhibit NLRP3-dependent 
pyroptosis and IL-1β release in human differentiated THP-1 and mouse J774.A.1 macrophages, upon 
inflammasome priming and activation.  

Table 1: Newly synthesized compounds tested on J774.1 cells. 

Compound ID 
IC50 ± SEM (µM) 

determined on J774A.1 cells  

INF229 11.8 ± 1.2 

INF243 15.8 ± 4.2 

INF244 9.5 ± 1.4 

INF245 14.6 ± 1.8 

INF246 11.1 ± 1.2 

INF247 18.6 ± 3.6 

INF234 10.3 ± 1.2 

INF236 11.7 ± 1.3 

INF237 18.2 ± 2.7 

INF240 15.6 ± 2.1 

INF241 13.1 ± 3.1 

INF242 11.6 ± 1.2 

INF238 19.5 ± 4.2 

INF239 18.7 ± 1.6 
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Specifically, compounds reported in Table 1 were tested in J774.A.1 (1*105 cells/well in a 96-well 
plate). Cells were first treated with 1 μg/ml LPS to prime the inflammasome for 6 hours, and then 
treated with different inhibitor concentrations (1 nM, 10nM, 50 nM, 100 nM, 500 nM, 1 μM, 2.5 μM, 
5 μM, 10 μM, 20 μM) for 30 minutes. 10 μM Nigericin was administered to the cells to activate the 
inflammasome. Measurement of IL-1β release was carried out after 1 hour by means of an ELISA 
assay, and IC50 was determined.  

The following series (Table 2), recently published in (doi 10.1016/j.ejmech.2023.115542; P4078; 
OP5.48) was evaluated in THP-1 cells for pyroptosis and IL-1β release inhibition. Briefly, THP-1 cells 
were plated and differentiated into macrophages by treatment with phorbol myristate acetate (PMA; 
50 nM; 24 h). Differentiated cells were primed with lipopolysaccharide (LPS; 10 μg/mL; 4 h) in serum-
free medium and then treated with either vehicle alone or test compound (10 μM; 1 h). The cell 
death was triggered with ATP (5 mM), and the pyroptotic cell death evaluated after 1.5 h by 
measuring the LDH released in the cell supernatants. For those compounds showing > 25 % inhibition 
of pyroptotic cell death at 10 µM, the % inhibition of IL-1β release in THP-1 or J774A-1 cells was 
evaluated via an ELISA assay (Table 2). Finally, the cytotoxicity exerted by test compounds over 72 
h was evaluated using the MTT assay after treatment of THP-1 cells with increasing concentration of 
test compounds (0-1 – 100 µM).  

Table 2: Newly synthesized compounds tested on THP-1 cells.  

Compound ID Compound structure 
Pyroptosis 
inhibition 

percentage 

IL-1β release inhibition 
percentage at 10 µM 

INF198 

 

46.3 ± 17.3 <10 

INF206 

 

14.2 ± 2.1 NT 

INF209 

 

<10 NT 

INF209c 

 

<10 NT 

INF200 

 

66.3 ± 6.6 35.5 ± 8.1 (16.6 ± 2.6) a  

INF204 

Cl

O
N

N

O

OMe  

11.4 ± 3.8 NT 

INF207 

 

45.9 ± 8.4 30.3 ± 14.6 (32.6 ± 5.0) a 

INF208 

Cl

O
N

N

O

COOEt  

17.7 ± 6.4 NT 
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INF218 

 

<10 NT 

INF227 

 

27.6 ± 9.5 <10 

INF211 

 

39.7 ± 13.3 22.4 ± 9.5 

INF212 
Cl

N
H

S

NN
N

COOEtO

 

25.7 ± 5.8 20.7 ± 12.6 

INF216 

Cl

N
H

S

NN
N

COOEtO

 

60.0 ± 13.2 49.0 ± 12.4 

a IL-1β release IC50. 

Most of the selected molecules demonstrated to inhibit IL-1β release in the low micromolar range. 
According to in vitro data, in silico evaluation, novelty of the compounds and synthetic feasibility, 
three compounds (Table 3) have been selected for further characterization, in particular for BBB 
permeation and intestinal absorption. 

2.4 BBB permeation and intestinal absorption 
experiments 

2.4.1 BBB permeation experiments 

Table 3: Compounds selected for BBB and intestinal permeation studies. 

Compound ID 
IC50 ± SEM (µM) 

determined on J774A.1 cells 

INF245    14.6 ± 1.8 

INF246 11.1 ± 1.2 

INF234         10.3 ± 1.2 

First, sulfamethoxazole-based derivatives, INF245 and INF246, have been tested. Compounds were 
administered i.v. to male wistar rats (250-300 g), 2.5 mg/kg. 

At each time point (30, 60 and 180 minutes): 

• blood was collected via transcardiac puncture, centrifuged and plasma was analysed by HPLC; 

• after trans cardiac perfusion with PBS, brain was removed, homogenized, and analysed by UPLC-
MS. 

When INF245 is administered, it is possible to observe in plasma a certain, even if minimum, amount 
of INF246, likely because of INF245 being partially deacetylated in the liver (Figure 12), since INF245 
is stable in rat plasma (in vitro enzymatic stability).  
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Figure 12: Plasma concentration of INF245 and INF246 upon administration of INF245. 

Analysis of brain samples obtained from rats treated with INF245 did not reveal the presence of the 
compound, thus ruling out the possibility of INF245 exceeding the BBB in detectable quantities, this 
might be due to an active transporter taking INF246, but not INF245, through the BBB (Table 4). 

Table 4: BBB permeation data for INF245. 

District Time 
(min) 

      µg/g tissue ± SE µg/mL ± SE AUC0-3 
(µg/mL.min) Kp

a 
INF245 INF246     INF245 INF246  

Brain 

30    0 0   

-- 

-- 

60    0 0   

180    0 0   

Plasma 

30   15 ± 1 0.016 ± 0.015 

1503 60   9.5 ± 0.8 0.035 ± 0.018 

180   9.5 ± 0.6 0.014 ± 0.005 

   aAUCbrain to AUCplasma ratio 

Similarly, INF246, the deacetylated form of INF245, has been administered to male wistar rats. Brain 
samples showed the presence of the compound at all tested times, with a maximum permeation at 
60 minutes. At 30 minutes only INF246 has been detected, while at 60 minutes also INF245 has been 
detected, thus suggesting that part of the compound is transformed in the acetylated derivative, 
i.e. INF245 (Figure 13, Table 5). At time 180 min, most of the compound has been cleared from the 
brain, and only a small amount of it is detectable. Apart from the same INF246, no other metabolites 
were found in the plasma (Figure 13, Table 5). 

 

 

 

 

 

 

 

 

 

 

Figure 13: Plasma and brain concentration of INF246. 
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Table 5: BBB permeation data for INF246. 

District Time 
(min) 

µg/g tissue ± SE µg/mL ± SE AUC0-3 
(µg/mL.min)      Kp 

INF246 INF245 INF246 INF245   

Brain 

 30 0.016 ± 0.007 0   

4.84 

 0.022 
 

 60 0.012 ± 0.010 0.039 ± 0.016   

 180 0.0012 ± 0.0012 0   

Plasma 

 30   2.4 ± 0.2 0 

225  60   1.8 ± 0.05 0 

 180   0.91 ± 79 0.08 

Then, also INF234, belonging to the class of quinazoline compounds, showing promising in vitro 
values, was tested for BBB permeation, following the protocol previously described. INF235, the 
hydrolysed derivative of INF234 was the only compound detected at 180 minutes after 
administration. Considering INF234 is transformed in INF235 already in the plasma, it is quite 
reasonable that INF235 directly passes the BBB and reach the brain (Table 6). 

Table 6: BBB permeation data for INF234. 

District Time 
(min) 

µg/g tissue ± SE µg/mL ± SE AUC0-3 
(µg/mL.min)      Kp 

INF234 INF235 INF234 INF235   

Brain 180 0 0.070 ± 0.030   -- 
-- 

 
Plasma   180   0  0.035 ± 0.17  

2.4.2 Intestinal permeation experiments 

The three mentioned compounds have been also tested for intestinal permeation (Figure 14, Table 
7).  

Each compound (5 mg/Kg: 1.5 mg/0.2 mL BPS + Methocel 3%) was syringed into intestinal sacs from 
different segments of rat intestine and incubated in oxygenated Krebs-Ringer buffer at 37°C with 
smooth shaking. Sample solution was then withdrawn from serosal side at fixed time intervals (0-2h) 
and replaced with fresh buffer. Samples were analysed by HPLC. At the end of permeation 
experiments, intestinal sacs filled with the tested compound were emptied and washed with Krebs-
Ringer buffer. Tissues were homogenized and analysed by HPLC. 

The experiments of intestinal permeation show that compounds (Figure 14, Table 7) are very poorly 
absorbed by intestinal epithelium, and they accumulate in intestinal tissues in a small extent, with 
no significant differences between the three intestinal sections. Specific formulations would be 
required to improve intestinal absorption. 
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Figure 14: Absorbed fraction (left) and tissue accumulation (right) of tested compounds. 

 

Table 7: Intestinal permeation of the tested compounds. 

Compound ID 
Fraction absorbed (Fa) ± SE (mg absorbed/mg dose) 

Duodenum Jejunum Ileum 

INF245 0.0080 ± 0.002 0.0039 ± 0.0020 0.0063 ± 0.002 

INF246 0.011 ± 0.005 0.0090 ± 0.003 0.010 ± 0.002 

INF234 
0 0 0 

Metabolite (INF235) 
0.0072 ± 0.0012 

Metabolite (INF235) 
0.011 ± 0.006 

Metabolite (INF235) 
0.0088 ± 0.0002 

 

IN F 2 34  T is s u e  a c c um ul a t i o n  o f  IN F 2 3 4  a n d  IN F 2 3 5  
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3. Looking Forward 
The compounds that proved their capability of crossing the BBB, representing good leads for 
developing new treatments to target neurodegeneration, will be submitted to the following analyses: 

• Check of IL-1β release from LPS/flagellin- and LPS-poly-dA:dT-stimulated J774A.1 to prove 
compound selectivity for NLRP3 vs AIM2 and NLRC4 inflammasome; 

• Test compounds in N11 microglia and human THP-1-derived macrophages; 

• test compound cytotoxicity (MTT) in J774A.1 and another cell line (non-immune system), e.g. 
HEK293, HK-2 or others. 

At the same time, chemical modulation of the leads is ongoing to improve the compound potency 
and have more room to improve ADME properties via substituent modification and/or addition. 
Specifically, lipophilic substitutions on the hydrophobic ring are under investigation to better fill the 
hydrophobic. All compounds will be submitted to DF, MCLE and MEDIUM analyses, to confirm their 
capability of disrupting the NLRP3 inflammasome activation. 

The optimized compounds will be patented and will, likely, constitute good candidates for the 
development of new drugs to target neuroinflammation causing long-COVID detrimental effects and 
other neurodegenerative pathologies as AD and PD. 
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