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Figure 1: Enactive theory of relational reasoning applied to counting 

The image shows the brain network and theory that inspired our deep neural network model of zero-shot counting. 

 



   
 

D3.12 (D31) SGA3 M42 RESUBMITTED 231208.docx PU = Public 8-Dec-2023 Page 2 / 9 
 

 

 

Document Title: Neural network architectures for relational reasoning, planning, and cognitive 
intelligence 

Document Filename: D3.12 (D31) SGA3 M42 RESUBMITTED 231208.docx  

Deliverable Number: SGA3 D3.12 (D312) 

Deliverable Type: Other 

Dissemination Level: PU = Public  

Planned Delivery Date: SGA3 M42 / 30 SEP 2023 

Actual Delivery Date: SGA3 M42/ 27 SEP 2023 (resubmitted 08 Dec 2023) 

Author(s): Christopher SUMMERFIELD, UOXF (P59) 

Compiled by: Christopher SUMMERFIELD, UOXF (P59) 

Contributor(s):  

WP QC Review: Jeannette BOSCHMA, UM (P117); Anita VAN OERS, UM (P117) 

WP Leader / Deputy 
Leader Sign Off: Rainer GOEBEL, UM (P117) 

T7.4 QC Review: N/A 

Description in GA: 

A neural network architecture will be built based on the neurobiology of the primate 
prefrontal cortex. Its performance will be evaluated on verbal and/or nonverbal 
intelligence tests. The deliverable will consist of (i) an evaluation dataset; (ii) the 
network code; and providing (iii) a summary of results achieved. 

Abstract: 

D3.12 aimed to build models of complex processes, such as reasoning, planning and 
compositional inference, by drawing on our understanding of computational 
principles in biological neural networks. We trained neural network models to solve 
tasks that involved counting the number of unique elements in a scene, planning to 
get to a goal in a multi-compartment environment, and combining two pieces of 
abstract knowledge to make an inference. 

Keywords: Neural networks, cognition, relational reasoning, planning, navigation, composition 

Target Users/Readers: Computational Neuroscientists, Machine Learning researchers, Cognitive scientists, 
interested public 

 

  

Project Number: 945539 Project Title: HBP SGA3 



   
 

D3.12 (D31) SGA3 M42 RESUBMITTED 231208.docx PU = Public 8-Dec-2023 Page 3 / 9 
 

 

Table of Contents 

1. Introduction ............................................................................................................. 4 
2. Relational Reasoning .................................................................................................. 4 
3. Planning in spatial navigation ....................................................................................... 5 
4. Cognitive Intelligence ................................................................................................. 6 

4.1 Generalised Latent Equilibrium ................................................................................ 7 
5. Looking Forward ....................................................................................................... 8 
6. References .............................................................................................................. 9 
 

Table of Figures 

Figure 1: Enactive theory of relational reasoning applied to counting .............................................. 1 
Figure 2: Deep neural networks for relational reasoning .............................................................. 5 
Figure 3: Models of spatial planning ....................................................................................... 6 
Figure 4: A neural network for knowledge assembly ................................................................... 7 
Figure 5: Preliminary results of the GLE framework. ................................................................... 8 

 

History of Changes made to this Deliverable (post Submission) 

Date Change Requested / Change Made / Other Action 

27 SEP 2023 Deliverable submitted to EC 

 

Resubmission with specified changes requested in Review Report 
Main changes requested: 

The deliverable is acceptable in terms of scientific content, but the quality of the 
text is not sufficient and needs to be revised before public release. Either add 
details from or clearly list links to peer-reviewed publications or preprints related 
to the reported outcomes. 

 
Revised draft sent by WP to PCO. 
Main changes made, with indication where each change was made: 
• added hyperlinks to all the references in the bibliography 

 Revised version resubmitted to EC by PCO via SyGMa 
 
  



   
 

D3.12 (D31) SGA3 M42 RESUBMITTED 231208.docx PU = Public 8-Dec-2023 Page 4 / 9 
 

1. Introduction 
The focus of D3.12 has been to build neural networks that display cognitive abilities including 
reasoning, planning, and compositional inference. Recent years have seen remarkable progress in AI  
research. The advent of large generative models has thrust issues of artificial reasoning and 
compositional inference into the limelight. However, current AI systems lack core functionality that 
is present in the human brain. In particular, they are excessively data-hungry, lack robustness, and 
use computational motifs that may be very different from those in biology. In In task T3.6, the goal 
has been to explore how neural network models can recreate the systematic behaviour of humans 
displayed by humans when reasoning or planning. 
Over recent years, there has been a blossoming of interest in neuroscience for tools, concepts and 
datasets from machine learning. In particular, we have witnessed a renaissance of interest in deep 
neural network models of vision and audition, which have used off-the shelf architectures as models 
of perception. In task T3.6, we take a different approach, by conducting systematic experiments to 
understand how neural networks might be capable of systematic behaviours. This contributes to HBP 
focus on Cognitive Functions and Neural Networks. 

We have focussed on three key outstanding problems in AI research, using ideas inspired by biology, 
and specifically human neuroscience. The questions were as follows: 

• How do intelligent agents understand visual scenes? [OP3.15] 

• How do intelligent agents plan during navigation? [OP3.16] 

• How do intelligent agents efficiently encode new knowledge? [OP3.17] 

Over the course of SGA3, UOXF has tackled these challenges in three parallel streams. These have 
been conducted collaboration with TUGRAZ (P55) (Wolfgang Maas), TUM (Fabrice Morin) and UM 
(P117) (Mario Senden). 

The work will be of interest to a broad community of researchers spanning cognitive science, 
computational neuroscience, machine learning, and AI research. 

2. Relational Reasoning 
Visual scenes are understood not just by the objects they contain, but by the relations between 
these objects. For example, in Figure 2a, the four panels each contain two objects: a man and a 
car. However, grasping the relationship between the man and the car is vital for understanding what 
is occurring in the scene. Current AI systems, based on deep convolutional neural networks (CNNs), 
excel at the recognition of lone objects with a single, rapid glimpse. However, systems currently 
struggle to interpret scenes by processing the relations between objects. In P2200 (Summerfield et 
al., 2020), we developed a theory of the shortcomings of current AI systems and how biology tackles 
this problem. In OP3.15, we focussed on a simple relational property of visual scenes – numerosity. 
We chose numerosity because it is a domain where AI systems – including state-of-the-art large 
generative models – still perform poorly. The specific challenge that we set out to solve is called 
“zero-shot counting” (See Figure 1). We asked how it might be possible to train a neural network to 
accurately count objects drawn from a class that it had never seen before, a challenge that human 
can effortlessly solve. 
To address this challenge, we drew inspiration from the dual-streams architecture of the human 
brain, as well as enactive theories of learning from cognitive psychology. We built a neural network 
that viewed a visual scene through a series of discrete glimpses, mirroring the saccadic system in 
the primate brain (Figure 2b). Like the primate brain, the network receives information about both 
what (the glimpse contents) and where (the glimpse location), which allows it to form 
representations that multiplex information about object identity and relational spatial information 
during representation learning. We predicted that this model would be able to solve zero-shot 
counting problems, and that in doing so, it would recreate key aspects of the neurophysiology of the 
primate number system. 
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The project was successful, and has now been described in conference proceedings P4055 and P4142 
(Thompson et al., 2023, 2022), and is in the late stages of being written up for a journal article. The 
results are summarised below. Unlike state-of-the-art machine learning models of the human visual 
systems, like CNNs, the model is able to solve zero-shot counting problems, but model lesion studies 
reveal that this depends on the integrity of both dorsal and ventral streams. In solving this problem, 
the network forms neural representations of space and number that are very similar to those 
observed in primate area LIP; its pattern of representation learning mirrors well-described 
developmental trajectories known from cognitive psychology, and it predicts counting performance 
with and without distraction in human participants (Figure 2c-g). 

Data and deep neural network models for relational reasoning can be found here: 

https://github.com/summerfieldlab/saccades. 

 

 
Figure 2: Deep neural networks for relational reasoning 

(a) Relational information is important for scene understanding. (b) Schematic of dual streams network. (c) 
Performance of dual streams network on OOO tests (purple). (d-f) Lognormal codes for number in the RNN, 
distributions of preferred numerosities, and spatial receptive fields in the network match those in primate LIP. (g) 
Developmental trajectories are similar to those in children, with lower numbers learned first. 

3. Planning in spatial navigation 
Current AI systems continue to display limited versatility, especially in spatiotemporally extended 
environments such as video games. One key outstanding challenge is the question of how intelligent 
agents plan a route to a goal. During navigation, agents including humans and rodents encode the 
environment with diverse classes of spatially sensitive neuron housed in the hippocampal-entorhinal 
cortex, including place and grid cells. However, much less is known about how goals are encoded in 
the human brain, and how this coding scheme may permit versatile, context-dependent navigation. 
Here, we tackled this question using a classic AI problem implemented as a video game (Figure 3a-
b). 
In OP3.16, we developed a new model of context-dependent navigation, based on the functional 
properties of the human medial temporal lobe. It proposes that an agent navigates using a 
combination of place cells (encoding its current location) and goal cells (encoding the location of its 
current destination, which can be used for spatial planning; Figure 3c). Critically, the goal cells can 
change flexibly with context, allowing the agent to navigate to distinct destinations based on a 
contextual cue. The model makes a striking prediction about the neural geometry of the medial 
temporal lobe representation: that neural signals should be compressed along spatial dimensions 
that span current goals (Figure 3d). We tested this by asking human participants to carry out a variant 
of the classic goal-directed navigation task used in AI research, called the Four Rooms Task, which 

https://github.com/summerfieldlab/saccades
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involve navigating to two goals in succession. Humans solving this task formed exactly the sorts of 
representations predicted by the goal-directed model. This work is now published (P4137) (Muhle-
Karbe et al., 2023). 

In a complementary set of experiments, the team at UGRAZ have studied planning by developing a 
biologically inspired neural network that can solve planning problems in high-dimensional graph-like 
environments. Unlike deep networks, it does so using only local prediction rules, and a theoretical 
framework that is closely related to predictive coding. The network has been translated to solve 
both navigation problems (Figure 3e), and the control of locomotion in simulated quadruped (Figure 
3f). This work is described in P4037 (Stöckl and Maass, 2022). 

Models for spatial planning can be found here: 

https://zenodo.org/record/8246406  

 

 
Figure 3: Models of spatial planning 

(a) The four rooms environment, with two successive goals. (b) Screen shot of the video game. (c) Example place and 
goal cells in the model. (d) Predicted (left) and observed (right) neural geometries in hippocampus. (e-f) Problems 
solved by the high-dimensional planner. 

4. Cognitive Intelligence 
A core challenge for current AI systems is how to efficiently encode knowledge in ways that support 
intelligent behaviour. For example, AI systems remain susceptible to catastrophic interference, 
whereby new knowledge acquisition interferes with existing performance. Solving this continual 
learning problem remains one of the key outstanding challenges in AI research. In OP3.17, we tackled 
this problem via a deceptively simple reasoning task on which current neural networks fail 
dramatically. The task requires agents to first learn two transitive series (e.g. to learn that A1>B1>C1 
and A2>B2>C2) and then, from just a handful of trials (few-shot learning) in which they are taught 
that C1>A2, to infer the relations between all items in the set. Standard feedforward neural networks 
fail dramatically at this task; they learn that C1>A2 is an exception, and do not generalise this 
knowledge to the reorganise their full knowledge structure. Monkeys are known to be able to solve 
this task, but only after extensive practice. 
In OP3.17, we studied how humans performed the task and used fMRI to study how their 
representations adjusted after few-shot learning. We found that humans readily reorganised their 
knowledge structures after just a few shots, and that neural representations in the parietal cortex 
changed accordingly. This builds on our previous work showing that the parietal cortex is a key region 

https://zenodo.org/record/8246406
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for relational inference over low-dimensional data structures (P3070) (Luyckx et al., 2019) as well 
as other work on continual learning (P4139 and P4140) (Flesch et al., 2022a, 2022b). Building on 
these human data, and on more general principles of biological learning, we applied a new 
computational principle to standard neural networks, which involves a stabilisation mechanism: 
frequently encountered associations are tagged as being stable, so that during few-shot learning, 
updates are applied not only to the experienced items (C1 and A2) but also to their relevant 
associates (Figure 4a). When the stabilisation parameter was low, the networks reduced to standard 
feedforward networks; when it was high, the networks solved the inference problem like the best 
human performers; and when it was intermediate, they performed like the more poorly performing 
humans (Figure 4b). This work, which is described in P4138 (Nelli et al., 2023), thus describes a new 
biologically inspired mechanism for solving complex inference problems. 

Data and deep neural network models for cognitive intelligence can be found here: 

https://github.com/mwhitemfldm/CompositionalNumericalReasoning/tree/main 

 

 
Figure 4: A neural network for knowledge assembly 

(a) Examples of the internal representations of stability in the model, and model transitive inference performance. 
(b) Architecture and approach in our model. 

4.1 Generalised Latent Equilibrium 
In D3.10 and D3.11 UBERN (P71) presented Latent Equilibrium (LE), a novel framework for 
computation and learning in biological and artificial neural networks. LE is particularly suited to 
process static input such as images of handwritten digits (e.g., the MNIST dataset). In such scenarios, 
the coding is purely spatial, so the time dimension only plays a role when input patterns are 
switched. 

Our daily environment, however, is inherently dynamic and sensory inputs are constantly changing. 
In such an environment, information processing becomes even more difficult. For example, in order 

https://github.com/mwhitemfldm/CompositionalNumericalReasoning/tree/main
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to recognise a sound (or, even more difficultly, a song), it is not only important to know which notes 
are played, but also at which time they are played and for how long. In order to learn in such 
inherently dynamic environments, our brains need to solve the spatio-temporal credit assignment 
problem: “How to adapt the right synapses given their input at multiple points in time in order to 
solve a given problem?” 

In Machine Learning (ML), there exist well-known solutions that enable learning from time-
continuous inputs, such as Backpropagation Through Time (BPTT) or Real-Time Recurrent Learning 
(RTRL). While these algorithms allow to learn from spatio-temporal data with Artificial Neural 
Networks (ANNs), they have multiple shortcomings; either using learning rules that are non-local (in 
time) or that require too much memory, which is why they do not scale well to large networks. 
Partial solutions exist, such as e-prop (Bellec et al., 2019 – P1998), but they rely on parametrizations 
that may not be compatible with biological observations, while still maintaining a relatively high 
resource cost. 

 

 
Figure 5: Preliminary results of the GLE framework. 

(a) Sketch of a network able to process time-continuous signals within the GLE framework. (b) Performance of 
different GLE variants on the MNIST1D dataset (cf. Greydanus, 2020). Different GLE variants differ in whether they 
use lags or true delays as well as whether their architecture is partly hand-engineered or if they are trained end-to-
end. (c) Exemplary SoftMax output of the network during classification of the digit 9 using an ANN. The input is 
streamed in such a way that the instantaneous network sees a temporal window of 10 ms at every moment. 

 

To overcome these difficulties, we are currently working on a generalisation of our Latent 
Equilibrium framework towards combining quasi-instantaneous computation with the transient 
memory of slow membrane voltages to enable information processing of spatio-temporal inputs (see 
Figure 5). Incorporating memory within our framework allows the mapping of temporal problems 
(which so far could only be tackled via BPTT or approximations thereof) to spatial problems, which 
can then be learned with appropriate modifications of LE. In preliminary simulations, we tested the 
capabilities of networks of neurons with multiple time constants to learn temporal patterns on 
multiple time scales and early results look very promising. We therefore envision this generalised 
framework to provide a comprehensive solution for spatio-temporal credit assignment in dynamical 
physical systems and we will carry on this research beyond the HBP. 

5. Looking Forward 
There remains much work to be done.  Since its inception, the HBP has overlooked Natural Language 
Processing (NLP), the study of how to build artificial systems capable of the quintessential human 
cognitive capacity, the ability to speak in structured sentences. The success of large-scale 
transformer-based generative models has opened the door to new lines of research in which 
reasoning, planning and composition are studied in the domain of natural language.  An important 
avenue for future research will be to scale the work described here, to ask whether the insights are 
relevant for new AI technologies that operate at scale. 
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