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Figure 1: The brain regions are modularly ("scaffold") reconstructed and simulated in an 

advanced neuroinformatic framework, the Brain Scaffold Builder (BSB).  
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Abstract: 

This deliverable describes anatomically and physiologically based modelling of 
mouse cerebellar-basal ganglia-cortical networks, with a focus on the former two 
structures, along with a tool for the flexible reconstruction and simulation of 
multiple brain regions, the Brain Scaffold Builder. Existing multicompartment 
models were translated to point neuron models to enable full-scale simulations in 
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future. The circuits perform sensorimotor learning using spike-timing-dependent 
plasticity. 
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1. Introduction 
The goal of this work is to develop a model system of multiple brain regions, in a closed-loop 
configuration to generate sensorimotor behaviours. The individual region models need to be 
scalable, in size, and the considered structural and dynamical features need to have different levels 
of detail. Finally, their specific internal dynamics and plasticity mechanisms will drive adaptation 
and learning of an actuated physical plant, performing sequences of motor tasks (in simulation). 
Such a modular system will be fundamental to fill a gap across multiple scales, from microcircuit 
dynamics to changes in motor actions. This addresses one of the key avenues of investigation in 
neuroscience: relating detailed, biologically plausible neural models to emerging macro-level 
functions and behaviours. 

As long-standing vision, this can be used to generate a digital twin of the specific subject’s motor 
system, to investigate brain dynamics of healthy subjects or patients, and the bidirectional causal 
relationships between changes in movements and in brain network activities. This is in synergy with 
the Work Package (WP) 1 approach, by including the peripheral systems connected to the brain 
models. In summary, the modular system can host multiple networks reconstructed with different 
levels of detail, e.g. local connectivity among single neurons generated through intersection of 
morphologies in 3D space, or functional equations reproducing the algorithmic operations of the 
network dynamics. A dedicated neuroinformatic framework, the Brain Scaffold Builder (BSB), has 
been designed to address specific properties of network architecture, allowing easy reconfigurations 
of brain networks, and offering flexible interfacing for simulations (De Schepper et al. 2021) (this is 
in synergy with WP5/ Service Category (SC)3 tool development tasks).  

This document provides an update on the implementation status, as of December 2021, of scaffold 
modelling of some brain microcircuits fundamental in sensorimotor functions, with as goal to connect 
them in a functional adaptive system (D’Angelo et al. 2016). We focus on cerebellar and basal ganglia 
networks. The work builds on our previously developed detailed single-neuron models of cerebellar 
cortex and basal ganglia. Atlas-derived quantitative data on cell compositions and local connectivity 
were exploited (voxel-based density, cell compositions, etc.). The developed BSB framework is able 
to host and tune these data, and we have validated the network reconstruction. Extensive work has 
been performed at a detailed modelling level (De Schepper et al. 2021; Hjorth et al. 2020), where 
multi-compartmental neurons were embedded in a realistic, structurally validated connectome. For 
simulations, we have considered two network variants plugging in i) biophysically detailed 
compartmental neuronal models or ii) point neuron models. Both are constrained by experimental 
measurements and are able to reproduce multiple observations from electrical recordings in vivo 
and in vitro. This allows elucidating relationships between network structure and function. 

The point neuron networks maintain the salient properties of the specific single neurons and 
microcircuits. Spike-time-based plasticity rules, previously designed and tested (Antonietti et al., 
2016), have been introduced in the cerebellar network to support learning of sensorimotor task 
sequences (Figure 2). Using the developed BSB framework, initially used to address the cerebellum 
as a use case, we will finalise the basal ganglia network and augment it with specific plasticity 
mechanisms. 

A prototype model, composed of multiple brain networks, connected in feedback and feedforward 
loops, has been designed. The resulting model will feature cerebellar and basal ganglia modules at 
high granularity, connected through the thalamus and cerebral cortical modules (mainly M1, S1). 
Some of the building blocks (e.g., primary motor cortex, state estimator) are represented by 
simplified functional counterparts of the brain regions considered. They are able, by ad hoc 
interfaces, to work with spike signals. This developed model will allow simulation of learning in 
sensorimotor tasks, investigating, among others, mechanisms related to the prediction of sensory 
consequences based on efference copies of motor plans, sensory feedback, delays, error 
compensation, selection of the motor plan, and suppression of competing plans. The range of 
functions considered typically emerge from the concerted activity of several brain regions. 
Implementing a detailed digital model of such a neural system would prove excessively 
computationally intensive, to the point of being impractical (if at all possible currently). The 
developed framework directly addresses such issues, allowing construction of streamlined 
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counterparts to detailed models, retaining their key functional features, and composing different 
models, at different levels of detail, to investigate emerging behaviour.  

The work presented directly contributes to the co-design of EBRAINS and thereby to its unique value 
proposition. Results discussed in this document rely on neural simulation tools (NEST, NEURON) from 
EBRAINS’ Brain simulation and simulation workflow Service Category (SC3), the aforementioned BSB 
(developed in coordination with SC3), and dedicated High Performance Computing (HPC) resources 
provided by EBRAINS’ interactive workflows on HPC or NMC Service Category (SC6). The technology 
offers the perspective of ground-breaking developments, only possible using EBRAINS. In the middle 
term, we will work on aspects related to embodiment, facilitating faithful expression of the 
sensorimotor functions under consideration, with contributions from EBRAINS’ Closed-loop, AI and 
robotics workflows Service Category (SC4). The development of the BSB and of workflows tying this 
framework to EBRAINS simulation tools directly expands the range of services provided to EBRAINS 
users, making it possible for neuroscientists to approach the same type of multiscale modelling work 
discussed below. Second, the functional model, whose properties are discussed hereafter, will be 
made accessible, serving as a blueprint illustrating use of the developed digital modelling 
technology. The resulting set of tools, supported by a combination of services not found anywhere 
else, will empower EBRAINS users to break new ground in computational neuroscience. 

 

 
Figure 2: Workflow: from neurons to behaviour 

2. Main achievements 

2.1 Scaffold modelling for brain circuit reconstruction 
and simulation 

Data-driven modelling of the brain requires a neuroinformatic framework implementing a general 
strategy to accommodate experimental data at different scales. To this end, we have developed the 
Brain Scaffold Builder (BSB), an advanced framework for neuronal circuit modelling, with specific 
modules for network reconstruction and simulation. The “scaffold” design allows an easy model 
reconfiguration reflecting variants across brain regions, animal species, and physio-pathological 
conditions without changing the basic network structure. The BSB provides an organised staged 
workflow allowing reconstruction of networks with arbitrary volume and geometry. It provides 
multiple strategies for cell placement and connectivity, a configuration system managing detailed 
neuronal and synaptic models, and the support for multiple simulators with transparent parallel 
processing. The interfaces with several simulators (NEURON, NEST, Arbor) allow investigation of the 
same brain region at different levels of resolution, depending on the scientific question about 
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structure-function relationships. The BSB1 is provided as an open-source package2, applicable for 
multi-scale modelling of different brain areas. In principle, the BSB workflow may be applied to any 
neuronal circuit, promoting an ecosystem of modelling packages compatible with one another, for 
long-term value and extended use of brain modelling in the scientific community. 

2.2 Cerebellar circuit reconstruction and simulation 
With the BSB, for the first time, the mouse cerebellar cortex was reconstructed and simulated at 
cellular/subcellular resolution using morphologically realistic multi-compartmental neuron models. 
Embedded connection rules allowed the BSB to generate the cerebellar connectome, unifying a 
collection of scattered experimental data into a coherent construct. Naturalistic background and 
sensory burst stimulation were used for functional validation against in-vivo recordings, monitoring 
the impact of subcellular mechanisms on signal propagation and spatiotemporal processing. 
Molecular and cellular properties reverberate across scales controlling spike timing and distribution. 
In particular, different properties emerged matching experimental values and observations: 
background frequency of all cerebellar populations, synchronous theta-band oscillatory behaviour of 
granular layer in resting state, vertical organisation of the impulsive responses of the cerebellar 
populations, burst-pause response of Purkinje cells, and feedforward and lateral inhibition from 
molecular layer interneurons (stellate and basket cells) to Purkinje cells. The integration of 
structural and functional properties through the model provides a new “ground truth” about 
cerebellar circuit organisation capable of predicting neural dynamics in vivo. The model appears to 
confirm the possible existence of a vertical column structure, activated in the cerebellar cortex by 
peripheral inputs. Our simulations provide the first prediction of neural dynamics in the cerebellar 
network revealing the formation of vertical columns of activity that might represent the emergence 
of cerebellar computational modules (De Schepper et al. 2021). 

 

Figure 3: Voxelized cerebellar flocculus reconstruction 

One of the final goals is to reconstruct full-scale atlas-mapped cerebellar regions and simulate them 
with ad hoc task-specific protocols, which means with ad hoc encoding-decoding strategies. In this 
context, we have scaled up the original scaffold architecture to large-scale networks mapped on the 
Allen Brain Atlas (ABA), developing full cerebellar region networks (e.g. the vermis, the flocculus, 

 
1 https://bsb.readthedocs.io/  
2 https://github.com/dbbs-lab/bsb  

https://bsb.readthedocs.io/
https://github.com/dbbs-lab/bsb
https://bsb.readthedocs.io/
https://github.com/dbbs-lab/bsb
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and the hemispheres). To do so, the placement and connectivity strategies of the original scaffold 
have been generalised (considering real folding and orientation) to account for region-specific 
anatomical data derived from the ABA. They are used to generate full-scale models of mouse 
cerebellar regions. Eventually, this will yield the first full-scale spiking neural network model of the 
mouse cerebellum, to be integrated with large-scale models of further brain areas (e.g. co-
simulations in The Virtual Mouse Brain). The BSB reconstruction stage can directly use the voxel-
based density and cell composition data coming from atlases. Technically, full-scale reconstruction 
is feasible thanks to the parallel reconstruction feature (on HPC) supported by the latest version of 
the BSB. The intra-cerebellum structural specificities will allow investigation of specific 
functionalities ascribed to cerebellar lobules. In a system of multiple brain regions, emergence of 
such structure-function relationships is also affected by specific connection pathways. Figure 3 shows 
an example of reconstruction of the cerebellar flocculus, using voxel-based density from the Allen 
Brain Atlas and specific annotations/corrections in collaboration with Blue Brain Project at EPFL. 
The total number of voxels is 88,216; the floccular volume 1.4 mm3; and 1,325,206 neurons are 
positioned. Functional simulations of this region are ongoing using point neuron models (in NEST). 

The interfaces with several simulators allow simulation of the same brain region at different levels 
of resolution, depending on the scientific question about structure-function relationships under 
investigation. For our point neuron network models (Cerebellar Spiking Neural Network – SNN), we 
developed and used an Extended Generalised Leaky Integrate-and-Fire (E-GLIF) neuron model 
(Geminiani et al., 2018) and alpha-shaped conductance-based synapses. We had previously (SGA2) 
optimised the E-GLIF for each cerebellar cell type (granule, Golgi, Purkinje, stellate, basket cells) 
(Geminiani et al., 2019a) (Figure 4).  

A reconstructed cerebellar cortical module of 17.7 10-3 mm3 including 29,230 neurons was simulated 
using naturalistic background and sensory burst stimulation, imitating whisker/facial sensory 
stimulation in vivo (Rancz et al., 2007). The outputs of the simulations in NEURON and NEST are 
reported in Figure 5. 

 
Figure 4: Simulations of optimised E-GLIF point neuron models vs experimental 

electroresponsiveness. 
GR: granule cell; PC: Purkinje cell; MLI: molecular layer interneurons (stellate and basket cells); DCN (deep cerebellar 
nucleus cell). The panels depict the relationship between the output frequency and current injection, showing f-Istim 
slope, adaptation (initial and steady-state output frequency as solid disks and open squares, and basal discharge (at 
Istim = 0 pA). Adapted from (Geminiani et al., 2019a). 
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Figure 5: The reconstructed cerebellar network was simulated using the BSB NEST and 

NEURON Adapters.  
The simulation lasted 1 second, with background rate 4 Hz on all mossy fibres (mf), and a burst on 4 adjacent mfs 
starting at 500 ms and lasting 20 ms. For the NEST version, optimised E-GLIF neuron models and alpha-shaped 
conductance-based synapses (Geminiani et al., 2019a) were inserted. a) Raster plot of all cells; GrCs are undersampled 
(random 10%) for clarity. b) Peri-Stimulus Time Histogram (PSTH) of each population (number of spikes in 5 ms time 
bins, normalised on the total number of cells). GrC: granule Cell, GoC: Golgi Cell, PC: Purkinje Cell, BC: basket Cell, 
SC: stellate Cell. 
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2.3 Learning capability of the cerebellar circuit (point 
neuron network with plasticity) 

When dealing with cerebellar-driven sensorimotor behavioural loops and learning, the cerebellar 
cortical microcircuit needs to be connected with the deep cerebellar nuclei and the inferior olive, 
at a mesoscale level. We have developed a microcomplex network model (Figure 6) embedding long-
term plasticity rules at multiple connection sites. To challenge the plastic cerebellar microcomplex 
in different sensorimotor tasks, task-specific systems have been designed, wiring the plastic 
cerebellar microcomplex with the appropriate structures to reconstruct the main loops involved in 
those tasks. 

 
Figure 6: Cerebellar microcomplex. 

The first example concerns the spiking cerebellar circuit embedded in a system able to generate and 
adapt saccadic eye movements (cf. Figure 7). This study investigates how synaptic mechanisms in 
the Purkinje cell populations of the cerebellum lead to predictive control and encoding of saccadic 
eye movements. Bioinspired plasticity rules in the spiking neural network model of cerebellum lead 
to improvement in both movement accuracy and speed, despite receiving just the end foveation 
error to evaluate the movement quality for trial-by-trial movement improvement. This work "Dual 
STDP processes at Purkinje cells contribute to distinct improvements in accuracy and vigour of 
ballistic eye movements" was presented at the HBP Summit 2021 and now is submitted for 
publication (in collaboration with the BioRobotics Institute, Scuola Superiore Sant'Anna, Italy).  

Cerebellar nuclei 
(controlateral)

Inferior Olive 
(controlateral)

Cerebellar cortex

Cerebellar nuclei
(contralateral)

Inferior olive
(contralateral)
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Figure 7: Schematic of the saccadic control loop.  

The system is designed so that the target displacement information (desired target) is sent to the internal feedback 
loop (IFL) and to the cerebellum. In the cerebellum, the target displacement is encoded by the Gaussian receptive 
field (GRF) of the mossy fibres (MF), MF are connected to the granule cells (GrC), which, through their axonal endings 
(namely the parallel fibres, PFs) excite both the Purkinje cells (PC), and the molecular layer interneurons (MLI), 
composed of basket and stellate cells. The connection between PF and PC is the only plastic one in the model 
(represented by the green arrows). The MLI are connected to the PCs. The PCs are split into two subpopulations: PC 
pause (purple) and PC burst (light blue). PCs are connected to the deep cerebellar nuclei (DCN), which are the output 
of the cerebellum and project to the IFL. The IFL is composed of the neural integrator (NI), the burst generator (BG), 
and the displacement integrator (DI).  The error information is then encoded by the firing rate of the inferior olive 
(IO), connected to the PC. 

Another example in collaboration with Politecnico di Milano concerns the whisker system. The mouse 
whisker system has become a standard model to study active sensing and sensorimotor integration 
through feedback loops. In that work, we have developed a bioinspired spiking neural network model 
of the sensorimotor peripheral whisker system, modelling trigeminal ganglion, trigeminal nuclei, 
facial nuclei, and central pattern generator neuronal populations. This network was embedded in a 
virtual mouse robot, exploiting the HBP Neurorobotics Platform. The peripheral whisker system was 
connected to the adaptive cerebellar network. The whole system is able to drive active whisking 
with learning capability, matching neural correlates of behaviour experimentally recorded in mice 
(Figure 8). This work "Brain-inspired spiking neural network controller for a neurorobotic whisker 
system" was presented at the NeuroMatch 4.0 conference 2021 and now is submitted for publication. 
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Figure 8: The rodent whisker system.  

A) Virtual robotic mouse implemented in the NRP, with two whiskers per side. L0 and R0 are the lower left and right 
whiskers, L1 and R1 are the upper whiskers. B) Block diagram of the rodent whisker system, including sensory and 
motor pathways, and its integration with higher-order areas (thalamus and cortex). C) SNN implementation of the 
mouse peripheral whisker system; numbers in each block represent the size of the neural populations included in 
that brain region. Arrows represent excitatory connections, circles inhibitory connections.  

Other systems have been designed to investigate the role of the cerebellar plasticity mechanisms in 
the eyeblink classical conditioning paradigm (EBCC). During this simple task, the cerebellum learns 
to associate two time-locked stimuli and drives a motor response (i.e. eyelid closure) that anticipates 
the second stimulus. Experimental evidence suggests that this association results from multiple 
mechanisms at neuronal and synaptic levels (Ten Brinke et al., 2017). The cerebellar network is able 
to simulate EBCC, driven by the complex balance of multiscale mechanisms found in experiments, 
reproducing realistic firing patterns and modulation of neural activity throughout learning. The new 
more realistic simulations started from SGA2 work, as the use case on this cerebellar-driven task 
provided on EBRAINS https://wiki.ebrains.eu/bin/view/Collabs/cerebellum (Geminiani et al. 2019b) 
(live paper https://doi.org/10.25493/3XVH-RS7) 

In this context, ongoing work is related to pathological conditions by model reconfiguration. 
Specifically, when localised lesions in the cerebellar cortex are applied, the model should reproduce 
the alterations of behaviour found in experiments on knock-out mice, while suggesting hypotheses 
on the underlying modified neural mechanisms. Information on alterations in motor behaviour was 
derived from EBCC experiments in mutant mice. Specifically, EBCC was not impaired in GluR2Δ7 
mutant mice with reduced PF-PC long-term depression (LTD), while L7-KCC2 and L7-Gamma2 mutant 
mice showed a decreased amplitude of CRs with altered timing, even though EBCC learning was not 
completely compromised (Boele et al., 2018). 

  

https://wiki.ebrains.eu/bin/view/Collabs/cerebellum
https://doi.org/10.25493/3XVH-RS7
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2.4 Design of the system to host multiple brain region 
scaffold models 

We have designed a more general-purpose control system, embedding realistic cerebellar circuits 
through the connectome. The main controller (Primary Motor Cortex M1) performs inverse dynamics 
operations and feedback control working with spiking signals (Figure 9). In the context of upper-limb 
coordinated movements, a reaching task disturbed by force fields has been designed. According to 
the target position, the planner model generates a certain trajectory, which, in turn, is translated 
into motor commands by the cortex-based controller. The sensory feedback and sensory prediction 
generated during the movement are optimally integrated by the state estimator, which updates the 
controller with the current status of the system. The cerebellar networks play a double role: forward 
and inverse model. 

 
Figure 9: Sensorimotor control system.  

The system is implemented as a Python-based flexible code using NEST for the brain spiking networks 
and MUSIC for the “body and environment” block, managing MPI simulations 
(https://github.com/cristianoalessandro/control_loops). 

The State estimator block has been developed in collaboration with Politecnico di Milano. To allow 
the execution of complex movements, the brain continuously estimates the state of the body and 
the environment. To this end, specific brain regions are thought to act as a Bayesian estimator, 
optimally integrating the noisy and delayed sensory feedback with the sensory prediction generated 
by the cerebellum. This process is thought to be carried out by the parietal cortex, which receives, 
through the thalamus, projections from both the deep cerebellar nuclei (output of the cerebellum) 
and peripheral sensory structures. In the present work, we designed a spike-based computational 
model of this Bayesian estimator. The model receives spikes from neural populations encoding the 
sensory feedback and the cerebellar prediction signals and computes the spike-rate variability within 
each afferent population to estimate the reliability of these sources of information. Using these 
indices of reliability, the model implements a "spike-based Bayesian integration", so that its output 
encodes the current estimate of the state. We tested the system simulating a reaching task of a 
point mass, by imposing input trajectory signals that represent plausible snapshots of the movement 
learning process. The activity of the sensory feedback neurons encoded a noisy and delayed version 
of the executed trajectory, with a constant level of spiking variability throughout the learning 
process. The activity of the cerebellar output neurons emulated two different conditions, pre- and 
post-learning. In pre-learning, their firing rate did not encode any relevant signal, as the cerebellum 
should not be able to perform useful predictions yet, and their intra-population spiking variability 
was set to be higher than that of the sensory feedback, which conveyed useful, albeit noisy, 
information on the movement being executed. In post-learning, the firing patterns of the cerebellar 
output neurons encoded the trajectory before it was executed (accurate sensory prediction), and a 
spiking variability lower than that of the sensory feedback population was set. The designed model 
proved to be able to properly weight the two information sources based on their reliability, which 
depended on the learning stage and/or on any change during the ongoing movement (e.g. a sudden 

https://github.com/cristianoalessandro/control_loops
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loss of the sensory feedback information). The proposed tool will be a critical block for the 
development of general spiking brain-inspired control systems for sensorimotor tasks ("Bayesian 
integration in a spiking neural system for sensorimotor control": submitted for publication) (Figure 
10). 

 
Figure 10: State estimator neurons. 

The raster plot and the corresponding population rate signals (computed with time bins of 25 ms) of the state 
estimator neurons are reported in pre-learning (A) and in post-learning (B) conditions. While the negative group shows 
a constant background firing rate (∼ 50 Hz), the positive group generates a number of spikes that depends on the 
progressive moving away of the point mass along x-axis. The corresponding net activity (blue rate profile) is reported 
on the right and compared with the net activity of the sensory feedback and cerebellar output populations in each 
condition. 

More detailed models of the Deep Cerebellar Nuclei (DCN) and the Inferior Olive are under 
construction. Specifically, DCN neural populations are under reconstruction and functional 
characterisation, especially in the context of the signal integration process between sensorimotor 
inputs and cerebellar output internal feedback ("Implementation of the NucleoCortical pathways 
inside a Spiking Neural Network model of Cerebellar Nuclei" 
https://ieeexplore.ieee.org/document/9441361; 
https://www.youtube.com/watch?v=gW9Ca3109d0) 

Also, the thalamic nuclei are under construction in collaboration with Politecnico di Milano. Indeed, 
they are intercalated nuclei fundamental for wiring together cerebellum, cerebral cortex, and basal 
ganglia. Atlas data and the BSB with the NEST interface are used. 

Finally, also the system connectome is under refinement. In the context of cerebellar connectivity 
analysis, a comparison between Allen Mouse Brain Atlas data and the literature is being carried out 
to quantify the long-range connections. 

  

https://ieeexplore.ieee.org/document/9441361;
https://www.youtube.com/watch?v=gW9Ca3109d0
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2.5 Basal ganglia circuit reconstruction and simulation  
Current work targets the in-silico reconstruction of the striatum. All major neuron types are 
characterised and placed in the network volume. Distance-dependent connection probability rules 
are applied. The point neuron models are tuned, axonal delays are introduced, and NEST simulations 
are run in the resting state and with an abstract cortical signal. 

2.5.1 Neuron density maps for mouse striatum 

Cell densities are estimated from in-situ hybridisation images of the Allen Mouse Brain Atlas. 
Molecular markers for all major cell types in the striatum are available: Drd1 for direct-pathway 
striatal projection neurons (dSPN), Adora2a for indirect-pathway striatal projection neurons (iSPN), 
Pvalb for the fast-spiking cells (FS), Sst for the low threshold-spiking interneurons (LTS) and Chat for 
cholinergic interneurons (ChIN). Striatal masks are obtained from the digital mesh definitions of the 
striatal volume (Allen Mouse Brain Atlas, structure ID 485). Cell counting is performed using spot 
registration algorithms from the scikit-image library. Combined cell counts per each slice provide a 
complete three-dimensional density map for all major neuron types with 200 µm spatial resolution 
(Figure 11). Density maps of dSPN cells (Figure 12), iSPN cells, FS cells, LTS cells, ChIN cells are 
extracted and used.  

 

 

Figure 11: Three-dimensional density map for all major neuron types with 200 µm spatial 
resolution. 
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Figure 12: Density maps of dSPN cells. 

Cell densities within the left part of the dorsal striatum obtained as in Figure 11 for multiple coronal slices in (z, y)-
plane separated by 200 µm along the rostro-caudal axis (x-direction). Numbers above the maps correspond to the x-
coordinate (in µm) of each slice. 

2.5.2 Spike-based neuron models for the basal ganglia nuclei 

Point neuron models, using adaptive exponential integrate-and-fire neuron AdEx (aeif_cond_exp in 
NEST), were tuned to represent direct-pathway striatal projection neurons (dSPN, experimental 
dataset 150917_c10_D1 from the previous work by Hjorth et al. (2020) publicly available on 
EBRAINS.eu, DOI: 10.25493/MZE0-BH5), indirect-pathway striatal projection neurons (iSPN, dataset 
151123_c1_D2, DOI: 10.25493/MZE0-BH5), striatal fast-spiking cells (FS, dataset 161205_FS1, DOI: 
10.25493/E883-NFA), as well as arkypallidal neurons from the globus pallidus externa (Arky), 
prototypical globus pallidus externa neurons (Proto), substantia nigra pars reticulate neurons (SNr), 
and subthalamic nucleus neurons (STN). The latter models were taken from our earlier studies 
(Lindahl et al., 2013; Lindahl and Hellgren Kotaleski, 2017). An example model of the principal cell 
of the dorsal striatum is shown below (dSPN, Figure 13, Figure 14, Figure 15). 

Here, as example, dopamine receptor D1-expressing striatal projection neurons of the mouse 
striatum are modelled using the adaptive exponential integrate-and-fire neuron model, AdEx from 
the NEST simulation environment. 

https://doi.org/10.25493%2FMZE0-BH5
https://doi.org/10.25493%2FMZE0-BH5
https://doi.org/10.25493%2FE883-NFA
https://doi.org/10.25493%2FE883-NFA
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Figure 13: Fitting of the point neuron model (AdEx) of dSPN to the experimental data. 
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Parameters for 'aeif_cond_exp' model (NEST v.2.20) of dSPN cells are given in Table 1. Models of the 
other basal ganglia neuron types are similarly defined and will be available in an upcoming 
publication. 

Table 1: Parameters of the point neuron model (AdEx) of dSPN. 

C_m 123.5 

g_L 35.002 

E_L -96.2 

Ie -80 

a -14.5 

b 500 

tau_w 15 

V_th -51 

Delta_T 16 

V_reset -51 

V_peak 23.5 

t_ref 2.47 

 

 
Figure 14: Baseline activity of dSPN population and response to the cortical command.  

Arrows in the inset mark large IPSPs due to the lateral inhibition. 

2.5.3 Preliminary network simulations 

A neuron population is simulated as a homogeneous pool of cells with distributed excitability, 
distance-dependent connection probability and axonal delays. Cell density in the pool is estimated 
from three-dimensional density maps and the location of the simulated action channel. The synapse 
model is conductance-based with Tsodyks-Markram short-term plasticity. The baseline activity 
within the dSPN population due to the background excitatory drive as well as the response to the 
cortical command are shown in Figure 14. 

The population response of a pool of the cells with distributed excitability involves increase of the 
firing rate of individual neurons and gradual recruitment of the cells, which are silent at baseline, 
as shown in Figure 15. 
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Figure 15: Population response of dSPN cells with distributed excitability.  

Cells that are silent at baseline get gradually recruited by the excitatory cortical command. 

3. Next steps 
The cerebellar and basal ganglia spiking networks will be made compatible to be wired into the 
modular system. Ad hoc interfaces to connect them with functional non-spiking blocks will be 
inserted. The system blocks will be completely developed, and the entire connectome will be 
verified and tuned. Spike-based plasticity rules will be introduced also in the basal ganglia spiking 
network. 

Specific tasks will be designed in order to challenge all the system blocks, especially the ones 
represented with high granularity (spiking circuits at single-cell resolution).  

The functional multiscale model and testing sensorimotor protocols will be made accessible in 
EBRAINS. 
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