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Computational architecture for hierarchical cognitive 
processing 

(D3.13 – SGA3) 
 

 
Figure 1: Architectures and learning methods for hierarchical cognitive processing 

Cognition builds and exploits hierarchical structures in the real world to efficiently learn new tasks based on 
components learned in other tasks. We demonstrate such learning in the context of Learning-to-learn (Section 2.1) 
and Learning visual routines (Section 2.2).  
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memorisation and forgetting of task-relevant information, as well as tasks requiring 
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Abstract: 

How can agents learn complex tasks that require the applications of subroutines 
(e.g. “opening the door”) while performing a larger task (e.g. “walking to the 
fridge), or tasks requiring the agent to learn an overarching rule spanning multiple 
sensory modalities (learning-to-learn, or meta-learning)? To resolve this question, 
we developed biologically plausible learning rules and neural network architectures 
trained on trial-and-error on complex tasks with multiple levels of abstraction and 
that can be applied to multiple tasks. Specifically, we developed learning rules that 
can cause attention shifts and create working memories for the relevant aspects of 
a task, exploiting memory mechanisms. One of the approaches implements 
biologically plausible learning in the form of contextual NMDA spikes. We also 
investigated how such learning rules can be extended to group atomic tasks into 
larger task sequences that act as visual subroutines. We provide access to developed 
network models as a release on the eBrains infrastructure.  
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Target Users/Readers: Computational neuroscience community, computer scientists, neuroscientific 
community, researchers, scientific community, students 
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Date Change Requested / Change Made / Other Action 

15 SEP 2023 Deliverable submitted to EC 

 

Resubmission with specified changes requested in Review Report 
Main changes requested: 
• In this deliverable, the computational architecture for hierarchical cognitive 

processing has been presented, but it is not always clear which aspects of the 
developed architecture has already been released on EBRAINS and which 
developments still in progress, e.g. has RECOLLECT, or network for multistep visual 
routines been released yet?  All the above should be clarified in the updated 
document, which should also report all relevant links to EBRAINS.  

• Moreover, the description is quite vague  
• and there are no cited references to SGA3 peer reviewed publications (which must 

be added in the revised document).  
• As regards the scientific content, the NMDA-based local learning as an alternative 

to backprop is hardly novel: can the consortium provide justification for this? 

 

Revised draft sent by WP to PCO. 
Main changes made, with indication where each change was made: 
• Change 1: at the end of Section 1.1, p7, we added the relevant public links ("The 

computational architecture and learning rule are released on the EBRAINS user 
portal (Output 3.18) and are also available on Github. "), and also at the end of 
Section 1.2, p10 ("We  released the corresponding architecture as a publicly 
available repository on EBRAINS (Output 3.19. A paper is currently in review."). 

• Change 2: the text for the Field "Description in GA" on P1 has been elaborated. 
Additionally, some details have been added to the description of the results for the 
pro-/anti-saccade task (p7) ("We further show that the feature selectivity the 
network acquires, resembles that of neurons in primate cortex on the same task. 
"), ("Finally, we found that behaviour of the network during early stages of learning 
evolves in a similar manner as that of rodents learning the task. "). 

• Change 3: Cited references including SGA3 peer reviewed publications are added in 
Section 1.1 p6 ("such as Rombouts et al. (2015), Kruijne et al. (2021; P3194) and 
Zambrano et al. (2021; P3193)"); in Section 1.2, p8, we added a linked reference 
("The neural network was trained using a biologically plausible learning rule (Pozzi 
et al. 2020; P2697)", and on p10, the link to the Wybo et al paper in PNAS was 
added ("(see Figure 5, Wybo et al., PNAS 2023)"). 

• Justification: the scientific content of the PNAS (2023) paper was not that we 
suggest NMDA-based local learning as an alternative to backprop. In fact, NMDA-
dependent plasticity is on a different conceptual level than backprop. What we 

https://search.kg.ebrains.eu/?category=Model#m-ab1d8c26-8b76-4c62-a82b-1df0ba66922b
https://github.com/Alexandra-van-den-Berg/RECOLLECT
https://search.kg.ebrains.eu/?category=Model#8c62f509-5876-4101-8cfb-6db39c90ff98
https://search.kg.ebrains.eu/?category=Model#8c62f509-5876-4101-8cfb-6db39c90ff98
https://plus.humanbrainproject.eu/publications/4066
https://plus.humanbrainproject.eu/publications/3194/
https://plus.humanbrainproject.eu/publications/3193/
https://plus.humanbrainproject.eu/publications/2697/


   
 

D3.13 (D82) SGA3 M42 RESUBMITTED 231208.docx PU = Public 8-Dec-2023 Page 5 / 11 
 

suggested in this paper, instead, is that a few dendritic NMDA spikes on the basal 
tree of pyramidal neurons can strongly change the processing of the whole 
network. We showed that the same feed-forward network with identical synaptic 
weights, but with additional dendritic NMDA spikes, can implement very different 
tasks. The performance of the NMDA-modulated network on the various tasks is 
almost as good is if the network would have been learned by backpropagation for 
each of the tasks individually. 

 Revised version resubmitted to EC by PCO via SyGMa 
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1. Introduction 
How animals learn to represent and memorise the key features of sensory stimuli for the guidance 
of actions, and how this learning can proceed by trial-and-error has been extensively studied. 
However, how agents can learn more complex tasks that require the applications of subroutines (e.g. 
“opening the door”) while performing a larger task (e.g. “walking to the fridge”), or tasks requiring 
the agent to learn an overarching rule spanning multiple problems (learning-to-learn, or meta-
learning) is still understudied.  

The goal of the research described in this Deliverable was to develop biologically plausible learning 
rules and neural network architectures trained on trial-and-error on complex tasks with multiple 
levels of abstraction. Those tasks require mechanisms of selection (i.e. attention) and storage of 
information into working memory. We developed learning rules that can cause attention shifts and 
create working memories for the relevant aspects of the task, and we showed how contextual 
modulation dynamically reshapes network function to solve new tasks. We furthermore exploited 
memory mechanisms and investigated how they can be used to group atomic actions into larger 
sequences that act as subroutines.  

The development of learning rules and architectures that can learn hierarchical task structures 
represent a genuine breakthrough for (1) computational neuroscientists who build biologically 
inspired networks and (2) systems neuroscientist who can use the emerging computational 
framework to addresses the relevant fundamental questions in their experiments. As Figure 1 alludes 
to, we hope that this work, by modelling multistep cognitive routines and meta-reinforcement 
learning in the brain will help the neuroscience community gain a greater understanding on how the 
brain works. Conversely, we hope that by drawing inspiration from the brain, our work will be 
valuable to the AI community, by providing path to develop more robust and energy efficient 
artificial neural networks and learning rules. 

Looking forward, in future work, the architectures and learning rules developed here will be 
extended towards deeper networks and applied onto more complex and naturalistic input data. 

The work described here made a heavy use of the Fenix Infrastructure resources to train, test and 
run the models effectively and on a large-scale. 

1.1 First release of network that can learn to attend the 
relevant information and store it in working memory  

Contributing Partners: KNAW (P91), CWI (P50) 

Humans can increase the speed at which they learn tasks when they have been exposed to similar 
problems in the past. This process is usually referred to as learning to learn. However, this can be 
challenging for neural network models given that new learning often causes networks to forget the 
tasks they previously acquired, rather than building upon these experiences.   

Meta-reinforcement learning models have been designed that do have the ability of learning-to-
learn. However, these typically rely on architectures that are not biologically plausible since they 
require information that is non-local to the synapse for training (e.g. backpropagation-through-
time). An additional difficulty with these models is their computational complexity, which 
complicates their interpretability in relation to the brain. On the other hand, there are models, 
which use local learning rules to learn to represent information in memory, such as Rombouts et al. 
(2015), Kruijne et al. (2021; P3194) and Zambrano et al. (2021; P3193). A limitation here regards 
the inability to forget information, which is important for learning-to-learn. Therefore, the goal was 
to develop a model that 1) uses gating mechanisms to forget information efficiently, 2) is not 
unnecessarily complex, and 3) uses only local information for learning.  

The resulting model is called “REinforCement learning of wOrking memory with bioLogically 
pLausible rECurrent uniTs”, or RECOLLECT. We used RECOLLECT to train networks composed of three 
layers (see Figure 2). The first layer is an input layer that represents the sensory environment. This 
layer projects towards a second layer with light-gated recurrent units (Light-GRU; Ravanelli et al., 

https://plus.humanbrainproject.eu/publications/3194/
https://plus.humanbrainproject.eu/publications/3193/


   
 

D3.13 (D82) SGA3 M42 RESUBMITTED 231208.docx PU = Public 8-Dec-2023 Page 7 / 11 
 

2018). These units use candidate input units to process the sensory inputs. Before this information 
is directed towards the memory units, one gating unit per Light-GRU selects how sensitive the 
memory unit is to new input and how much of the memory is retained. As a result, information can 
be forgotten according to task requirements. The resulting memory units then connect to the output 
layer, where a unit estimates the Q-value of each action the network can take. This Q-value is the 
expectation of the (discounted) reward should this action be chosen.   

In order to learn, RECOLLECT – as in AuGMEnT (Rombouts et al., 2015) – uses tags and traces. The 
tags constitute an attentional feedback signal that identify which output unit provided the winning 
action and should be updated. The traces store presynaptic activity over time. As such, the tags and 
traces provide spatial and temporal credit assignment, respectively, and enable RECOLLECT to learn 
using only local information. 

When tested on a pro-/anti-saccade task, in which the model has to memorise a location and is cued 
to either report that location (pro-saccade) or the opposite location (anti-saccade), RECOLLECT can 
effectively learn to remember task-relevant information and forget the information again when the 
trial ends. We further show that the feature selectivity the network acquires, resembles that of 
neurons in primate cortex on the same task. Moreover, RECOLLECT can learn-to-learn on a reversal 
bandit task. In this task, two levers are presented with differing reward probabilities (e.g. 25% and 
75%). After performing the task for 100 trials (i.e. an episode), the reward probabilities are reversed. 
This process is repeated across several episodes. The goal for the model is to learn-to-learn an 
effective exploration-exploitation policy that allows for efficient switching between actions upon 
episode reversals, rather than re-learning the task every time when reversals occur. Indeed, once 
training was completed and exploration was disabled, RECOLLECT quickly managed to discover the 
high-rewarding lever after reversals; indicating learning-to-learn. Finally, we found that behaviour 
of the network during early stages of learning evolves in a similar manner as that of rodents learning 
the task. In conclusion, RECOLLECT is a novel gated recurrent network that is trained using a local 
learning scheme based on LightGRU units that permit forgetting. RECOLLECT can learn-to-learn using 
exclusively local information in both space and time for network updates, therefore representing a 
biologically plausible alternative to long-short term memory networks in meta-reinforcement 
learning.  

The computational architecture and learning rule are released on the EBRAINS user portal (Output 
3.18) and are also available on https://github.com/Alexandra-van-den-Berg/RECOLLECT. Moreover, 
a variant of the network that extends the method to deeper networks using BrainProp (P2697) will 
also be released on this platform (Output 3.20).  

 
Figure 2: Architecture RECOLLECT 

https://search.kg.ebrains.eu/?category=Model#m-ab1d8c26-8b76-4c62-a82b-1df0ba66922b
https://search.kg.ebrains.eu/?category=Model#m-ab1d8c26-8b76-4c62-a82b-1df0ba66922b
https://github.com/Alexandra-van-den-Berg/RECOLLECT
https://plus.humanbrainproject.eu/publications/2697/
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RECOLLECT can selectively represent sensory information in memory units and forget memory when required. 

1.2 Computational architecture for multistep tasks  
Contributing Partners: KNAW (P91), CWI (P50) 

Numerous problems can be broken down into a series of smaller sub problems, which are then solved 
one after another in a sequential manner. During this process, it is crucial to store and pass on 
relevant intermediate results from one sub problem to the next until the main objective is achieved. 
Similarly, when it comes to visual tasks that can be divided into a sequence of basic visual operations, 
experimental evidence indicates that intermediate results are attended, represented by enhanced 
neuronal activity in the visual cortex. This heightened activity focus can then be utilised by 
subsequent subroutines. However, it remains unclear how such dynamics can emerge in neural 
networks that are trained solely based on rewards, as observed in animals. 

To address this, we propose a novel recurrent architecture designed to solve complex visual tasks 
within a reinforcement-learning framework. We trained neural networks on visual tasks for which 
electrophysiological recordings of monkey’s visual cortex are available: a search-then-trace task and 
a trace-then-search task. The neural network was trained using a biologically plausible learning rule 
(Pozzi et al. 2020; P2697) 

In the search-then-trace task (see Figure 3) the trials starts when an agent (e.g. a monkey) directs 
gaze to a fixation point, which can be one of two colours. The agent had to trace the curve that was 
connected to a disk that had the same colour as the fixation point. This task thus requires the 
composition of two elemental operations: first a search operation to identify the beginning of the 
curve to trace, and then a trace operation. In the trace-then-search task (see Figure 3), the order 
of the two subroutines was inversed: the agent first had to trace the curve connected to the fixation 
point, register the colour of the end of that curve and make an eye movement toward another disk 
that had the same colour. Previous studies showed that the outcome of an elemental operation 
caused a focus of enhanced activity in the visual cortex. For example, in the search-then-trace task, 
the representation of the beginning of the target curve, which is the outcome of the search 
operation, is enhanced first in the visual cortex (159ms, Figure 3C), and then the tracing operation 
can begin (229ms, Figure 3C). In the trace-then-search task, the outcome of the trace operation, 
i.e. the disk at the end of the curve is enhanced first in the visual cortex (180ms, Figure 3F), before 
the search operation can take place (267ms, Figure 3F). Apparently, the outcome of an operation 
causes the tagging of the neuronal representation of a location in space with an enhancement of 
activity, which makes the outcome available as a focus of attention to be read as the input for the 
next elemental operation. Interestingly, the sequence of mental operations is associated with a 
sequence of attention shifts at a psychological level of description. 

 
Figure 3: Multistep visual routines and their representation in the visual cortex of monkeys 

Monkeys and neural networks were trained on a search-then-trace and a trace-then-search task. In monkeys and 
networks, elements relevant to transfer between subroutines are tagged by an enhancement of activity. 

https://plus.humanbrainproject.eu/publications/2697/
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Although there is substantial evidence that visual routines are implemented in the visual cortex 
through the propagation of enhanced activity during a recurrent processing phase, it remains 
unknown which architectures and learning rules can learn such routines. To examine learning of 
visual routines, we tested neural networks with feedforward, feedback and lateral connections. We 
asked whether the network (1) would learn multiple elemental operations, (2) whether it would 
learn to execute the elemental operations sequentially and in the correct order and (3) how the 
network ensured the transfer of information of one elemental operations to the next. We trained 
convolutional neural networks with an input layer; two hidden layers and an output layer (see Figure 
4). In each layer, there was a group of feedforward units that only propagated information to the 
next layer and to recurrent neurons with the same receptive field. The other, recurrent group 
propagated information to both the higher and lower layer and to units with nearby receptive fields 
in the same layer. As a result, neurons in the feedback group could be modulated by activity outside 
the pixel that defined their receptive field. However, the activity of neurons in the feedback group 
was gated by neurons in the feedforward group that had the same receptive field so that this 
modulatory effect could not occur if the feedforward unit with the same receptive field was not 
active. We trained the networks with RELEARNN, which is a biologically plausible implementation of 
Q-learning that can be broken down in three phases. Upon presentation of the stimulus, the activity 
of the input neurons remains constant and activity propagates through the recurrent connections of 
the network. If the activity of neurons between two consecutive time steps was constant, we 
considered that a stable state was reached and the action was selected, but we did not wait longer 
than 50 time steps if the activity was not yet stable. When an action is selected, an “attentional” 
signal originating from the winning action is propagated through an accessory network to determine 
the influence of each neuron on the selected action. The network then gets a reward from the 
environment and computes a reward prediction error. 

 
Figure 4: Neural network for solving multistep visual routines 

Information is processed through a recurrent group (left) and a feedforward group (right). Units in the recurrent 
group are gated by units in the feedforward group 
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Networks were able to learn the tasks that within in a few thousand trials. After training, we 
examined the activation of spatially selective neurons, and that of neurons tuned to colour. We also 
compare these activity profiles to the activity of neurons in the visual cortex. Critically, we found 
that the artificial neural networks spontaneously learnt to develop the same response modulations 
that have been observed in the visual cortex of monkeys. During the trace operation, neurons with 
receptive fields on the target curve enhanced their activity sequentially, starting from the beginning 
of the curve. During the search operation, neurons representing the target colour enhanced their 
activity. Information is also transferred between the subroutines as a focus of enhanced activity in 
the network, so that the output of an elemental operation can be read as the input of the next one. 
As such, the networks were able to transfer the strategies used for one task or subtask (curve tracing 
for instance), to other tasks (like a search-then-trace task or a trace-then-search task, Output 3.19). 
We also showed how relevant information that needs to be transferred between subroutines is stored 
in working memory as an enhancement of activity, until the overall task has been completed. We  
released the corresponding architecture as a publicly available repository on EBRAINS  
(https://search.kg.ebrains.eu/?category=Model#8c62f509-5876-4101-8cfb-6db39c90ff98; Output 
3.19). A paper is currently in review (https://plus.humanbrainproject.eu/publications/4066). 

1.3 Multi-task learning with contextual NMDA spikes 
Contributing Partners: UBERN (P71), FZI (P52)  

Learning in the brain, as well in modern artificial intelligence, is typically considered to rely on 
synaptic modifications. However, every change in synaptic strength does not just affect the 
functionality of the network in the very particular context in which it occurs, but rather carries 
implications for all of the functions in which a network is involved. The dendritic morphology of 
cortical neurons offers another road to re-use the same neurons in new contexts and new tasks, 
without actually changing the synaptic strengths. Dendrites may receive context-dependent ‘top-
down’ input that individually modulates the excitability of the neurons, so that they can be reused 
in the new context without adapting the synaptic strengths. 

In deep learning, the standard approach to accommodate changing task demands is to train new 
output layers on top of a common trunk network, and, if needed, to relearn synapses throughout 
the whole network. However, the brain appears to take a radically different strategy, as neurons in 
all processing layers are modulated by contextual information. We showed that context-dependent 
dendritic afferents can powerfully modulate the neuronal output and that this modulation 
dynamically reshapes network function to solve new tasks, without adapting any feedforward 
synapses (see Figure 5, Wybo et al., PNAS 2023). We furthermore showed that these dendritic 
modulations could underlie self-supervised learning of deep networks, without relying on the 
backpropagation of errors across the layers of the network. 

 
Figure 5: Contextual modulation of neurons in sensory processing pathways 

Adapted from [P3781], Wybo et al., PNAS 2023. (A) Top-down connections from prefrontal and motor areas relay 
high-level information to early sensory processing neurons [adapted from Gilbert et al., 2013), LGN: lateral geniculate 
nucleus of the thalamus, V1-4: visual area 1-4, MT: medial temporal area, IT: inferior temporal cortex, PL: parietal 
lobe, FEF: frontal eye field, PF: prefrontal cortex]. (B) We hypothesize that high-level information from prefrontal 

https://search.kg.ebrains.eu/?category=Model#8c62f509-5876-4101-8cfb-6db39c90ff98
https://plus.humanbrainproject.eu/publications/4066
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and motor areas modulates the activity of early sensory neurons, enhancing response properties of neurons with task-
relevant receptive fields. These modulations induce a task-dependent functional remapping of sensory processing 
pathways built on fixed, task-agnostic feedforward connectivity. (C) At the biophysical level, we investigate two 
plausible candidate mechanisms that could implement quasi-tonic neuron-specific modulations: somatic shunting 
inhibition and dendritic NMDA spikes. 
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