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Cognitive architecture with visuo-motor and advanced cognitive 
functions 

(D3.8 – SGA3) 
 

 
Figure 1: Diagram of the saccades for scene understanding (SSU) architecture. 

The SSU consists of five modules (nodes): Camera, Salience, Selection, Saccade, and Classification. An additional Sync 
Node manages simulation of the SSU. All nodes are isolated within their own Docker container and interact with each 
other through a virtual network. Containers and the network are orchestrated by Docker Compose. Red arrows show 
the flow of data through the SSU architecture. Blue arrows show the flow of control from the sync node to the other 
nodes. Nodes communicate with each other using ROS2 in a publish-subscribe pattern. 
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1. Introduction 
The complexity of the human brain, estimated to contain 86 billion interconnected neurons, poses 
an immense challenge for neuroscience. Experimental methods alone are limited in their capacity 
to fully capture and explain the intricate workings of the brain and are increasingly complemented 
by computational models that describe neural systems in abstract, mathematical terms. These 
models allow for the simulation, prediction, and exploration of brain function in ways that were 
previously unimaginable.  

However, the development of computational models of the brain is a challenging undertaking. 
Researchers need to balance the need for capturing real, biological phenomena in the brain and a 
model's ability to execute complex cognitive tasks. This requires a careful balance between bottom-
up and top-down modelling techniques. Hybrid models, that combine these two approaches, show 
great promise, and enable the integration of existing model implementations into a single system. 

To build such hybrid models, we developed a modular-integrative modelling approach that divides a 
complex system into discrete, self-contained modules, each simulating a circumscribed brain 
structure or specific aspect of brain function. This not only allows for the independent development 
and optimization of each module but also facilitates adaptation of the overall system to meet the 
demands of different research questions. Moreover, with a deeper understanding of the brain's 
intricacies and the emergence of new hypotheses, the modular approach fosters the examination of 
these hypotheses as independent modules, promoting constant model improvement and 
collaborative development.  

In addition to the modular-integrative approach, we also highlight the advantages of end-to-end 
training of large-scale architectures through goal-driven reinforcement learning. To that end, we 
utilize AngoraPy, a tool developed within Showcase 5 with the specific aim to train brain models 
capable of simulating a wide array of sensorimotor tasks. Driven by requirements of the present 
demonstrator, AngoraPy was adapted to provide a platform for goal-driven modelling that not only 
accommodates sensorimotor control but also extends to cognition. This allows us to close the 
perception-cognition-action loop in a computationally efficient manner. AngoraPy is user-friendly 
and has been optimised for distributed computation, scaling from individual workstations to high-
performance computing clusters. Furthermore, it adheres to a neuroscience-first approach, 
prioritising the needs of neuroscientists while also preserving options for customisation. These 
attributes make AngoraPy an instrumental resource in the exploration of brain functionality and the 
development of high-performing, goal-driven models. 
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2. Modular-Integrative Modelling 

2.1 Motivation 
In the contemporary landscape of neuroscience research and computational modelling, the need for 
complex, scalable, and highly customisable modelling solutions is rapidly intensifying. Bottom-up 
(data-driven) modelling provides a biologically plausible but functionally limited perspective, 
whereas the top-down (hypothesis-driven and goal-driven) modelling offers functional performance 
at the expense of biological realism. Hybrid models make it possible to blend biological plausibility 
and functional performance by integrating pre-existing model implementations into a unified 
system. A flexible, modular-integrative approach additionally supports continuous model refinement 
and comparative hypothesis testing. 

The beauty of this approach lies in the autonomy it bestows upon each module - they can be 
developed independently, encapsulating specific functionalities or simulating particular biological 
phenomena. This autonomy offers significant advantages. Firstly, it enables developers to 
concentrate on specific components, refining and optimising them without the obligation of 
managing the entire system. Secondly, it allows the addition, removal or substitution of modules to 
match the requirements of the research question or the data available, substantially enhancing the 
flexibility and adaptability of the system. 

As our understanding of the brain develops and new hypotheses arise, this modularity enables us to 
construct and assess these hypotheses as separate modules without the need to redesign the whole 
model. This approach also allows for parallelised development, where different teams can work on 
different modules at the same time, reducing development time and fostering collaboration. 

The relevance of this modular-integrative modelling approach extends far beyond the sphere of 
academic research and provides a strong framework for commercial use, particularly in the field of 
artificial intelligence (AI). AI and machine learning are increasingly dominant in various sectors, and 
there is an unprecedented demand for adaptable, scalable and efficient modelling methods, such as 
ours. 

To increase understanding and promote wider use of this method, we have submitted an opinion 
piece to National Science Review detailing the advantages and applications of the modular-
integrative modelling technique. The paper provides finer details of this approach and highlights its 
significance in current neuroscience research. 

2.2 Technical Implementation 
Realising the modular-integrative modelling approach involves a multi-step process that includes 
component modularisation, containerisation, communication via a message broker, time 
synchronisation with a simulation manager, and synchronisation of components. 

The initial step, component modularisation, breaks the system down into manageable modules, each 
serving a specific function. The succeeding step, containerisation, is achieved using technologies 
like Docker that isolate each module within a container, circumventing dependency issues and 
ensuring that modules can function in diverse environments. Efficient inter-module communication 
is critical and facilitated by a message broker. Lastly, synchronisation is key to ensuring smooth and 
coordinated functioning of the modules, which we achieve using a dedicated Simulation Manager. 
Each module signals the Simulation Manager upon completion of its calculations for the current time 
epoch, and a new epoch is initiated by the Simulation Manager once it receives signals from all 
modules. 

We provide a technical demonstration of the modular-integrative approach for a closed-loop 
architecture engaging in saccades for scene understanding (SSU; 
https://github.com/ccnmaastricht/SSU). Scene understanding is a complex task requiring the 
interplay of numerous modules - each processing a different aspect of visual input, coordinating eye 
movements, decision-making and more. It thus offers an ideal test bed for a modular-integrative 

https://github.com/ccnmaastricht/SSU
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approach. The SSU architecture consists of five modules (see Figure 1). A camera module provides 
snapshot from panoramic scenes. These scenes were selected from the Stanford 2D-3D-Semantics 
Dataset (http://buildingparser.stanford.edu/dataset.html) and include 11 categories of indoor 
scenes. Snapshots of the scene are passed on to a classification module. This module first resamples 
the snapshot according to ganglion cell distributions in the retina adapted from a procedure outlined 
by da Costa et al. (2023; P3995; original implementation: 
https://github.com/ccnmaastricht/ganglion_cell_sampling). Subsequently, it updates the internal 
state and classification layer of a recurrent convolutional neural network implemented with PyTorch. 
The camera also passes the snapshot to a saliency module. This module uses a deep encoder-decoder 
architecture developed by Kroner et al. (2020; P1761; 
https://github.com/alexanderkroner/saliency) to compute the salience distribution across the 
snapshot. Then, the module integrates this local, eye-centred, saliency into a global (head-centred) 
map. Regions of this global map that are not currently in view exhibit passive decay with a time 
constant of 200ms. The saliency module passes the global saliency map on to the target selection 
module, which probabilistically selects a target for the next saccade and passes this on to the 
saccade generation module. The saccade generation module uses a spiking-neuron model of the 
reticular saccade generator implemented in NEST 
(https://github.com/ccnmaastricht/spiking_saccade_generator) to update eye-position. The target 
location and actual eye position are passed to the camera module, which suppresses snapshots while 
the eyes are in motion. All modules are isolated within a dedicated Docker container and 
communicate via a shared network. Data exchange between modules is decentralised through a 
publish-subscribe pattern realised via ROS2. A dedicated sync_node serves as the Simulation Manager 
to synchronise all simulations.  

2.3 Publications 
Senden, M., van Albada, S. J., Pezzulo, G., Falotico, E., Hashim, I., Kroner, A., Kurth, A. C., Lanillos, 
P., Narayanan, V., Pennartz, C., Petrovici, M. A., Steffen, L., Weidler, T., & Goebel, R. (2023). 
Modular-Integrative Modeling: A New Framework for Building Brain Models that Blend Biological 
Realism and Functional Performance. Manuscript submitted for publication, National Science 
Review. 

3. End-To-End Training of Large-Scale 
Architectures Capable of Visuo-Motor and 
Cognitive Functions 

3.1 Motivation 
Goal-driven deep learning presents a promising framework for providing a holistic perspective of the 
brain as an integrated system. Using this approach, cognitive processes, sensory inputs, and motor 
actions are not required to be separate operations but can be from the outset interwoven 
components of a single, complex process. The core idea of goal-driven deep learning is that deep 
neural networks can develop computational strategies that match those employed by the brain. 
Specifically, if similar perceptual, cognitive, or motor tasks are assigned to these networks as a 
neural system, they are expected to converge on comparable neurocomputational solutions 
employed by these biological systems. Historically, this modeling approach has had its restrictions 
due to its reliance on significant amounts of labeled data, confining its use mainly to areas of 
perceptual neuroscience where abundant data of this kind is available. 

However, reinforcement learning renders the goal-driven deep learning approach viable for 
developing models of sensorimotor and cognitive functions. Reinforcement learning is distinct in its 
reliance on learning from data sourced directly from environmental interactions. This approach 

http://buildingparser.stanford.edu/dataset.html
https://github.com/ccnmaastricht/ganglion_cell_sampling
https://github.com/alexanderkroner/saliency
https://github.com/ccnmaastricht/spiking_saccade_generator
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sidesteps the constraints linked to the necessity for pre-labeled data sets, facilitating a more organic 
approach to neural modeling. By creating a training framework based on RL techniques, we 
complement the modular-integrative approach to produce holistic brain models that span the entire 
perception-cognition-action cycle. 

3.2  Technical Implementation 
End-to-End training of Large-Scale Architectures is realised with AngoraPy 
(https://doi.org/10.5281/zenodo.7770180). AngoraPy's prime function is to train deep neural 
network models of the human brain using reinforcement learning. The design principles that govern 
AngoraPy—Neuroscience First, Modularity, and Pragmatism—ensure that it remains a flexible yet 
effective tool for neuroscientists. With a 'neuroscience-first' approach, AngoraPy addresses the needs 
of neuroscientists aiming to build goal-driven models with ease. Its modularity permits a wide range 
of applications and caters to various tasks and models. And finally, the principle of pragmatism 
ensures a balance between computational efficiency, performance, and the simplicity of the API, 
delivering a tool that is both practical and powerful. For further information on technical 
implementation of AngoraPy and a demonstration of its capabilities for developing models of 
sensorimotor integration, see Deliverable D3.14 on Showcase 5. 

Here, we demonstrate the ability of an end-to-end goal-driven reinforcement learning framework 
(realized with AngoraPy) to develop models capable of cognitive function. To that end, we trained 
a network on the Tower of Hanoi task. For this task, the network architecture consisted of a simple 
Long Short-Term Memory (LSTM) network with two upstream fully connected layers of 64 units each, 
leading to downstream policy and value heads. The policy was discrete, reflecting the discrete 
movements of the disks in the task. The trained model converged to an optimal solution in about 20 
training cycles of refinement/exploration (see Figure 2).  

  
Figure 2: Tower of Hanoi 

Left: State of the Tower of Hanoi environment at several steps. Right: Average reward per cycle for an AngoraPy-
trained model on the Tower of Hanoi task. The model converges to an optimal solution in about 20 training cycles. 

3.3 Publications 
Weidler T, Goebel R and Senden M (2023). AngoraPy: A python toolkit for modeling anthropomorphic 
goal-driven sensorimotor systems. Front. Neuroinform. 17:1223687. doi: 
10.3389/fninf.2023.1223687 

Weidler, T., & Senden, M. (2023). AngoraPy - Anthropomorphic Goal-Oriented Robotic Control for 
Neuroscientific Modeling (Version 0.9.0). doi:10.5281/zenodo.6636482 

https://github.com/ccnmaastricht/angorapy
https://doi.org/10.5281/zenodo.7770180
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4. Relations to EBRAINS 
The work informs the HBP’s EBRAINS research infrastructure, in terms of specifications. The 
Neurorobotics Platform (NRP, SC4) has opted for a modular, containerised design. This was 
motivated in part by the requirements of the Saccades for Scene Understanding (SSU) architecture. 
In the course of our work, we actively exchanged ideas on optimal design principles with the NRP 
developers, driving the evolution of the NRP in a direction that aligns with the modular-integrative 
approach we developed. Conversely, the work relies on EBRAINS. Specifically, the SSU architecture 
utilises the NEST simulator for the simulation of a spiking neuron model of saccade generation. 
Looking Forward 

Looking ahead, our aim is to enhance the functionality and efficacy of the modular-integrative 
modelling framework and AngoraPy. This includes optimising the interface between these tools and 
users and building a community of contributors. By fostering an inclusive community and creating 
robust, scalable tools, we aim to drive considerable progress in our understanding of the brain's 
complex operations. 


	1. Introduction
	2. Modular-Integrative Modelling
	2.1 Motivation
	2.2 Technical Implementation
	2.3 Publications

	3. End-To-End Training of Large-Scale Architectures Capable of Visuo-Motor and Cognitive Functions
	3.1 Motivation
	3.2  Technical Implementation
	3.3 Publications

	4. Relations to EBRAINS

