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Full integration of atlas services, models and validation 
including DEMO3 of Showcases 1 and 2  

(D1.5 – SGA3) 

 
Figure 1: Showcase 1 and Showcase 2 

(A) The Virtual Big Brain is a personalised high-resolution virtual brain model, integrating network modelling with 
multiscale brain data from connectomics and region-variant architecture in the same reference frame; (B) High-
resolution virtual brain models represent the human brain on the continuous cortical sheet (blue) instead of a network 
of connected nodes (yellow), improving accuracy in Epilepsy (red) simulation, diagnosis and prediction of 
interventions. 
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Description in GA: 

Software integrating workflows of EBRAINS services (atlas, knowledge graph, HIP) 
and TVB will be available making full use of the brain reference framework, 
comprising the release of a variety of models of human brain networks 
acknowledging population variability, assessment of reliability, and normative data 
on model parameters in relation to demographic, lifestyle, and cognitive data of 
large cohorts.  Integrated workflows will be available to create personalised brain 
network models in small detailed cohorts, enabling mutual prediction of brain states 
in different healthy (rest, cognitive tasks) and diseased conditions. The software 
will allow demonstrations of the showcases comprising the evaluation of predictive 
power of epileptic patient brain models, validated on large retrospective cohort 
(>100 patients), ready for clinical trial testing; as well as demonstrations of sampling 
of individual degeneracy from empirical functional resting-state imaging data and 
reconstruction of virtual brain model variability. 

Abstract: 

This report is the D1.5 Deliverable (M42) as stated in the DoA. It outlines progress 
in the development of WP1’s Showcases 1 and 2, both available in EBRAINS. 
Showcase 1 develops the workflow for building a virtual brain cohort, which includes 
data access to the 1000BRAINS cohort, use of EBRAINS’ multilevel human brain atlas 
and The Virtual Brain simulator. Highlights include novel insights into brain aging 
mechanisms, which confirm some of the leading aging theories. These were initially 
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derived cross-sectionally and then confirmed longitudinally for individual brains. 
Showcase 2 demonstrates how EBRAINS enables advances in personalised medicine 
through high-resolution simulations. Highlights include progress in high-resolution 
and multiscale brain simulation for epilepsy, including modelling of intervention 
scenarios, epileptogenic zone estimation, and co-simulation. The existing 
functionalities of both demonstrators, including access to the Showcases and future 
perspectives of this work are also described. 

Keywords: 
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Epilepsy, Modelling 

Target Users/Readers: 

Clinicians, computational neuroscience community, computer scientists, 
Consortium members, HPC community, neuroimaging community, 
neuroinformaticians, neuroscientific community, platform users, scientific 
community, students, funders, policymakers. 
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1. Introduction 
Work Package 1 has developed two Showcases, in which the potential of EBRAINS to elevate the 
researcher's ability to address profound research questions through interoperable data, models, and 
methods of digital neuroscience is demonstrated. At the core of both showcases lies the digital twin 
brain modelling approach where personalized data-driven brain network models are constructed 
based on individuals' anatomical and functional brain imaging data. Showcase 1 addresses one of the 
principal obstacles to progress in neuroscience, inter-subject variability; this showcase illustrates 
the use of EBRAINS for discovery of mechanisms along the example of healthy aging. Showcase 2 
highlights the clinical potence of digital neuroscience workflows and demonstrates how drug-
resistant epilepsy patients can be better diagnosed using patient-specific digital twins. Both 
showcases bring the services of EBRAINS into the spotlight and provide a collection of reusable 
components including workflows, models, and datasets, which together serve as a highly reusable 
entry-point for prospective scientists and their projects. 

2. Showcase 1: Degeneracy in neuroscience – when 
is Big Data big enough? Demo 3 

2.1 Introduction 
The identification of causality and mechanisms in neuroscience is major challenge, partly due to the 
collision of degeneracy and a large intersubject variability. Degeneracy is the propensity for multiple 
subsystems or mechanisms to support similar functions, appears in all multiscale systems and applies 
to both empirical data and mathematical models in neuroscience. Individuals can function properly 
within a given "normal" range of physiological parameters, while each individual's brain differs from 
each other. The functional loss outside this range, however, varies across different conditions and 
individuals, and apparently similar structural changes may alter the function substantially in one 
brain, but may have minimal impact on another. When applying models to empirical data, a 
substantial amount of data from heterogeneous modalities (e.g., structural and functional MRI, 
receptors densities, etc.) is needed to draw meaningful conclusions due to this degeneracy. The 
objective of Showcase 1 is to demonstrate that brain models applied to cutting edge large datasets 
on structural variability allow to account for degeneracy and can explain and predict the functional 
variability within and across the individuals. 

Human brain ageing is a well-suited paradigm for this task, as large cohorts of healthy subjects and 
patients with brain disease exist, often comprising multiple brain imaging modalities, and sometimes 
even longitudinal following. A deeper understanding of aging also aligns with Europe's priority of 
promoting active and healthy aging among its population. Aging is one of the most prominent factors 
reflected in brain imaging data, making it a relevant metric for quantifying inter-individual 
differences. This is also why aging has been a central focus in various brain network studies during 
SGA1 and SGA2, which generated metrics and paradigms used in SGA3's WP1 and WP2. 

Brain aging is well described both structurally (e.g. atrophies, micro-lesions, dysconnectivity) and 
functionally (e.g. adaptations in network architecture and non-efficient recruitment of brain 
regions), however, to this day, there is no established causality between these observations, albeit 
several competing hypotheses exist. The substantial interindividual variability in brain structure, 
function, and cognitive abilities among older individuals presents a significant challenge in 
unravelling aging mechanisms. Various factors, including genetics, environmental influences, and 
lifestyle choices, contribute to this variability. Additionally, the different organizational levels 
within the brain, from molecular and cellular to systems levels, contribute to these effects to varying 
degrees.  

To explore the variability and ultimately explain aging mechanisms, large numbers are required, and 
a cohort approach is the only viable way of doing so. Moreover, longitudinal cohorts are necessary 
to validate predictions on individual level. This necessitates substantial constraints in terms of data, 
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curation, storage, high-performance computing, multiscale modelling, and validation all of which 
are currently met simultaneously only by EBRAINS. The target paradigm of Showcase 1 is the resting-
state brain activity as measured in fMRI. Resting-state activity has been central to the development 
of HBP's full brain network models during SGA1 and SGA2 and is routinely studied in both basic and 
clinical research. It is considered a unique fingerprint of an individual's brain, affected by factors 
like drugs, diseases, age, and cognitive factors. 

In this showcase, we integrate detailed multiscale data (brain connectome, region-specific data) in 
virtual brain models (see Figure 1A), implement the hypothesised ageing mechanisms, and simulate 
the functional resting-state brain imaging data of a large cohort of individual brains. During SGA3, a 
novel model inversion process was developed specifically for the resting state, independently 
validating empirical data against virtual cohort data. This validation demonstrates that 
neurodegeneration of long interhemispheric fiber tracts is a major causal factor affecting brain 
activity during healthy aging, aligned with prior hypotheses regarding compensation mechanisms 
that counteract neural decline. Preliminary findings in Showcase 1 confirm this prediction on the 
individual level for the longitudinal follow-up, demonstrating support for compensatory scaffolding 
in aging within a large cohort.  

2.2 Technical Specification 
Showcase 1 makes use of the Jupyterlab interactive computing interface available in EBRAINS either 
in the Collaboratory (lab.ebrains.eu), in the Health Data Cloud (hdc.ebrains.eu), or on the individual 
FENIX sites (e.g. jupyter.cscs.ch). Concise clients and programmatic interfaces for the EBRAINS 
services and the Showcase components enable efficient usage for a broad range of users with basic 
computing and programming skills. The user interacts with the Knowledge Graph and the High-
Performance Computing infrastructure with user-friendly programming interfaces. Figure 2 shows a 
detailed workflow diagram of Showcase 1. 

The demonstrator for this deliverable integrates 4 main components detailed below covering the 
interaction with the EBRAINS human brain atlas and the modelling workflow. 

The Showcase is connected with the EBRAINS human brain atlas via the software library siibra-python 
(https://siibra-python.readthedocs.io). The library provides structured access to different 
parcellations and reference spaces of the human brain, combining the macroscopic scale in MNI and 
Freesurfer spaces with the microscopic scale of the BigBrain model. Modelling workflows can retrieve 
spatial properties of brain regions as well as regional data features from different modalities, 
including regional density measures from different histological experiments, spatial sampling of 
high-resolution image data from the BigBrain model, and access to different forms of connectivity 
from imaging cohorts (for the use of the EBRAINS human brain atlas in personalised neuroscience see 
Jockwitz et al., 2021). In the showcase demonstrator, siibra is used to retrieve spatial maps of 
neurotransmitter receptor densities. In addition, for datasets, which are not available directly from 
the Knowledge graph, for example due to sensitive data protection measures, siibra allows seamless 
integration of local data sources via predefined configuration schemes. Such configurations are 
specified as simple json files containing all the necessary metadata such as a reference space, 
parcellation and local file URLs. In the demonstrator we use such local configurations to bring 
sensitive data of the 1000BRAINS dataset in the common spatial reference framework, and 
simultaneously harmonise the data access steps across the demonstrator workflows, regardless if the 
data is publicly available in the KG or made available upon request in a dedicated space on a suitable 
platform such as the HDC.  

https://siibra-python.readthedocs.io/
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Figure 2: Showcase 1 workflow diagram 

The workflow of the showcase 1 running in the EBRAINS collaboratory (A) is portable and can be also executed in the 
high-performance interactive computing services of FENIX RI, or the services for sensitive data provided by HDC (C). 
Showcase 1 addresses the structure-function link through variability across subjects (inter-subject 
variability parametrised by age) and across brain regions (intra-subject variability parametrised by 
neuroreceptor density). The study of inter-subject variability is built on the connectivity data from 
the 1000BRAINS study1 (Caspers et al., 2014) available in the Knowledge Graph as a dataset with 
protected access available to EBRAINS users. The access to protected datasets is provided in EBRAINS 
through the Human Data Gateway2 (HDG) which allows full access once the user has validated the 
terms of use. In the implementation of the study on intra-subject variability, we are using the N=294 
ROIs (Regions of Interest) parcellation, with the available receptor density datasets (currently 
measurements are available for 33 brain regions) linked to the Julich-Brain cytoarchitectonic atlas 
(Amunts et al., 2020). For the remaining regions, their values were extrapolated to the nearest 
neighbour where the corresponding information is defined. In terms of connectivity data, we have 
used the connectivity matrices in the same parcellation as above from the Parcellation-based 
structural and resting-state functional brain connectomes of a healthy cohort3 available in the 
Knowledge Graph as a public dataset. The connectivity datasets mentioned above are already 
accessible via siibra- python, using recently developed support for the new Knowledge Graph API 
(v3) and Human Data Gateway API. Results of the empirical connectivity analyses are shown in Figure 

 
1 https://search.kg.ebrains.eu/instances/Dataset/83407c06-b494-4307-861e-d06a5aecdf8a  
2 https://wiki.ebrains.eu/bin/view/Collabs/data-proxy/Human%20Data%20Gateway/  
3 https://search.kg.ebrains.eu/instances/Dataset/d61fc54a-7cc1-4126-93c0-9b6d97775421  

https://search.kg.ebrains.eu/instances/Dataset/83407c06-b494-4307-861e-d06a5aecdf8a
https://wiki.ebrains.eu/bin/view/Collabs/data-proxy/Human%20Data%20Gateway/
https://search.kg.ebrains.eu/instances/Dataset/d61fc54a-7cc1-4126-93c0-9b6d97775421
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3, where a decline in the inter-hemispheric white matter connections is shown in Figure 3A. In the 
functional data in Figure 3B, an important quantifier of brain flexibility is captured quantitatively 
by the variance of interhemispheric Functional Connectivity Dynamics (FCD), which declines with 
age. FCD is a metric capturing the temporal variation of Functional Connectivity, the latter of which 
is computed by the usual Pearson correlation. FCD represents intuitively a form of fluidity in the 
brain signals that is particularly informative of age (Battaglia et al., 2020, Petkoski et al., 2023), 
cognitive performance (Lombardo et al., 2020) and is linked to the perturbational complexity index 
in the WP2 Showcase 3.  

The second major component of the Showcase is The Virtual Brain (TVB) simulation platform (Sanz-
Leon et al., 2013), that was largely expanded during SGA1- SGA3 (Schirner et al., 2021). TVB uses 
empirical structural and functional data to build whole brain models of individual subjects. For 
convenient model construction, the system is based on a processing pipeline for structural, 
functional, and diffusion- weighted magnetic resonance imaging (MRI) data. The pipeline combines 
several state-of-the-art neuroinformatic tools to generate subject-specific cortical and subcortical 
parcellations, surface- tessellations, structural and functional connectomes, and region-wise 
aggregated blood oxygen level-dependent (BOLD) functional MRI (fMRI) time-series. The output files 
of the pipeline can be directly used as input for TVB. The regional heterogeneity was accounted for 
by the regional variance of GABAa and NMDA receptor densities relevant for anaesthesia through 
propofol and ketamine. The mean-field AdEx model developed within the HBP was adopted for this 
variation (Goldman et al. (2022)): a fast (for GABAa) and a slow (for NMDA) synaptic currents were 
included to the original equations with saturation constants proportional to the receptor density 
observed from empirical data. Spatial distribution of the GABAa receptor densities was loaded from 
the Human Brain Atlas via the siibra interface and correspondingly parcellated to constrain the 
regional parameters. Further parameters of the model, especially the regional gains associated to 
GABAa receptors, were fitted by running simulations and comparing spatio-temporal statistics of the 
resulting functional interactions between regions to those observed from empirical BOLD signals. 
Empirical BOLD from healthy volunteer during resting awake and propofol sedation were fitted to 
compare the efficacy of accounting for the regional receptor distributions 
(https://search.kg.ebrains.eu/instances/ceac8277-dc73-4083-8b5b-b029d097f400).GABAa receptor 
densities were only available for 20 cortical regions out of 214, thus we interpolated missing data. 
The demonstrator was accomplished in three different versions: employing the standard TVB and 
employing two alternative backends of TVB that allow for faster simulations: RateML running the 
simulations in GPUs and TVB-C++ for CPUs. 

The third component establishes the distributed execution of systematic parameter exploration and 
optimisation on the High-Performance Computing (HPC) infrastructure available in the FENIX RI4. 
The unified access to the federated infrastructure is enabled by the pyunicore5 library providing a 
concise API to the common tasks such as compute job submission and management. Simplified 
interfaces for the jupyterlab environment are created for the user to run the parameter 
explorations. For the inter-subject variability, we have implemented a custom library for distributed 
simulations compatible with the controlled data access through the Human data Gateway. In the 
1000BRAINS cohort, optimising the virtual brain model for each subject for maximal fluidity, the 
same behaviour of FCD variation is found in simulations in Figure 3C as in the empirical data. For the 
intra-subject variability, we make use of the “Learning to Learn” (L2L) (Yegenoglu et al. 2022), 
which is a gradient-free optimisation framework. It defines an API that makes it easy to optimise 
(hyper-) parameters for any task. The optimization cycle starts when the optimiser generates a set 
of parameters. Then, the framework evaluates how well this set of parameters performs and returns 
a “fitness” vector for each parameter in the set. Lastly, the optimiser generates a new set of 
parameters using the fitness vector it got back. The optimization process involves enhancing the 
performance of a TVB simulation utilizing the TVB AdEx (Goldman et al., 2023) model. This 
simulation is generated by RateML (van der Vlag et al 2022) specifically for GPU processing, and it 
yields a fitness vector at the conclusion of each generation. For this model, you have the option to 
utilize either a custom-designed or a sample connectome available in the TVB library. It also enables 

 
4 https://fenix-ri.eu/infrastructure  
5 https://github.com/HumanBrainProject/pyunicore  

https://search.kg.ebrains.eu/instances/ceac8277-dc73-4083-8b5b-b029d097f400
https://fenix-ri.eu/infrastructure
https://github.com/HumanBrainProject/pyunicore
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users to integrate GABA receptor densities by providing the capability to input a vector with values 
for each brain region. In our implementation, the fitness function is defined to minimise the distance 
between empirical and simulated BOLD signals through the swFCD observable. Once properly 
configured, L2L allows running the simulation for a “mean” subject signal built as an average of all 
individual subjects in the dataset, or for each such individual subject. This execution is distributed 
on top of the computing capabilities of the Jülich Supercomputing Centre, which allows computing 
in a matter of minutes which otherwise would take several days. In the current implementation, a 
systematic parameter sweep was used to guarantee accurately finding a global minimum of the 
parameters to fit.  

The fourth component integrates a Bayesian framework for inference of the full posterior values of 
the parameters using Simulation Based Inference (SBI; Gonçalves et al., 2020). A deep neural 
estimator is trained to provide a relationship between the parameters of a model (black box 
simulator) and selected descriptive statistics of the observed data. Neurotransmitter modulation is 
quantified by the working point G and is estimated independently using SBI (Figure 3D). As numerous 
repeated simulations are at the core of the training phase of SBI (sampling of the prior parameter 
distributions), the implementation reuses the infrastructure for the systematic parameter sweeps 
on the HPC infrastructure. Specifically, for inter-subject variability, an estimator was trained on 
2,000 simulations per subject to independently retrieve the parameters linked to neuromodulation 
(in particular dopaminergic subsystems) hypothesised to provide compensation mechanisms in 
healthy aging. Virtual aging of a young individual brain is simulated by gradual degeneration of inter- 
hemispheric connectivity in Figure 3E. The inference of coupling strength G in Figure 3F 
independently validates the increase of G with age for each individual subject when maximising the 
fluidity in Figure 3D and E. Furthermore, for a subset of the subjects (N=220), longitudinal data from 
a follow-up visit (mean 5 years) was studied. The distribution of rate of change of the structural 
interhemispheric connectivity confirmed the negative cross-sectional trend (Figure 3G). The virtual 
aging model predicts an individual increase of the global strength of G to maintain a high degree of 
fluidity. Failure of such compensation would result in loss of cognitive performance. Figure 4H 
confirms this prediction and shows increased compensation for larger loss of structural connectivity 
on an individual basis. This relationship holds particularly well in cases of large cognitive decline 
(Figure 3I). The empirical fMRI time series data have not been made publicly available yet at time 
of writing, and the procedure is thus demonstrated in the Jupyter notebooks on simulated data only.  

All the previous steps are implemented as a series of Jupyter notebooks and Python scripts with very 
low barrier for adoption by scientists with intermediate level of training in digital neuroscience. The 
demonstrator is portable across the EBRAINS services providing support for interactive computing in 
JupyterLab such as the Collaboratory, Health Data Cloud, HIP, and the individual sites of the ICEI. 
The diversity of the interactive computing services is reflected in the demonstrator by examples of 
relevant steps tailored to the individual sites. For example, the computational resources of the 
Collaboratory lab are rather modest, allowing basic data and model exploration, however, are 
accessible to all users of EBRAINS. This basic exploration can serve as a stepping stone for a user to 
apply for access to one of the ICEI sites, where the user can continue with the other parts of the 
demonstrator dedicated e.g. to customized parameter inference. Finally, the same project structure 
and codes support the modelling and analysis of the sensitive data of the 1000BRAINS in the HDC. 
Here, a dedicated section of the documentation of the demonstrator helps the prospective users to 
transfer the data between the HDC core and secured HPC infrastructure and run the compute 
intensive steps of the workflow. 
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Figure 3: Inter-individual variability of structure and function in empirical and virtual ageing  

The structural decline in interhemispheric connectivity (A) is accompanied by the functional decline reflected in 
decreased fluidity of brain activity (B). Personalized brain models built on the structural data replicate the empirically 
observed functional decline (C), while showing gradual increase in network modulation of empirical cross-sectional 
data (D) and simulations of virtual aging (E). The increase in modulation is larger for subjects with higher cognitive 
decline (F). In the longitudinal data, the structural decline (G) is confirmed. The virtual aging model predicts an 
individual increase of network modulation, which is also confirmed in the longitudinal data (H). The rate of the 
structural decrease correlates with the rate of network modulation increase in subjects with high cognitive decline 
(I). 

2.3 Progress from M21 
The M21 Deliverable D 1.2 (D8) constituted all the steps of the complete workflow of the Showcase 
1 together with curated data available in EBRAINS and established scientific results on the inter-
individual variability.  

The progress from M21 to M42 comprises the following: 

1) Integration of all data inputs with the atlas services through Siibra-python 
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2) Portable implementation of the demonstrator with examples for the Collaboratory, ICEI 
interactive computing environments, and Health Data Cloud 

3) Extension of the aging analysis to the longitudinal aspect of the data and validation of virtual 
aging model.  

4) Use of interactive widgets to lower the barrier of entry for beginner users. 

2.4 How to access the Showcase 
Showcase 1 is implemented as a series of interactive Jupyter notebooks covering the individual 
logical steps and can be accessed in a dedicated public EBRAINS Collab. The Collab can be found at: 
https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1 

The EBRAINS Collab consists of interlinked Drive, Bucket, Wiki, and Lab. The Drive provides small 
file storage and contains the notebooks and all supporting code. The Bucket is a large file storage 
service and holds the pre-computed results of the extensive parameter sweeps and model 
optimisations to allow skipping the computationally demanding steps. The documentation of the 
Showcase implementation is collected in the Wiki. The Lab service is an instance of JupyterLab—an 
interactive computing environment where the notebooks can be run and worked with. The notebooks 
in this Collab will load all required Python modules including siibra and The Virtual Brain, and the 
interfaces for launching the computationally demanding parts in the HPC infrastructure. Running the 
notebooks requires an EBRAINS account with permissions to access the Lab and the Knowledge Graph 
API. In addition, to be able to interact with the HPC infrastructure, the user must have access to an 
active allocation on the corresponding FENIX site. Depending on the scope and character of the data, 
the showcase can be also executed in the other interactive computing environments of EBRAINS 
beside the Collaboratory: The Health Data Cloud for sensitive data processing and the jupyterlab 
instances on the individual FENIX sites (e.g. http://jupyter.cscs.ch/ or https://jupyter-jsc.fz-
juelich.de/) for more feature-full access to the HPC resources. 
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3. Showcase 2: Improving epilepsy surgery with the 
Virtual Big Brain, Demo 3 

3.1 Introduction 
About 50 million patients worldwide suffer from epilepsy. First line therapy consists in anti-seizure 
medication, which is successful in about two thirds of the cases. Patients with drug refractory 
epilepsy can be candidates for surgery, which targets to remove the most epileptogenic part of the 
brain. The success rate of this procedure resides around 60% to 70%. A precise delineation of epileptic 
and non-epileptic tissue is required for a seizure-free outcome with few adverse effects. 
Computational methods have been developed to aid in this identification, which use patient specific 
empirical imaging data, such as MRI and SEEG to construct a structural model of the patient brain. 
Usually, the brain is divided into around 160 brain regions, where the precise location and extent of 
each region is given by structural T1w MR imaging. Each brain region is equipped with a dynamical 
neural mass model, the Epileptor (Jirsa et al. 2014), which describes epileptic neural activity. From 
diffusion weighted MR imaging and tractography the connections between regions are derived to 
form a brain network along which seizure activity can propagate. Inference and machine learning 
methods, together with the patient's empirical SEEG seizure recordings, are applied to estimate the 
parameters, i.e. the epileptogenicity, of each region in the network model. This personalized 
modelling approach is called the “virtual epileptic patient” (VEP) and has fully been developed in 
HBP during SGA1, SGA2, and SGA3. It has been initially validated in a retrospective study of a cohort 
of 50 patients (Jirsa et al. 2017, Wang et al. 2023) and is currently being confirmed in the clinical 
trial EPINOV with 356 prospective epilepsy surgery patients. 

Showcase 2 targets the construction, simulation and inference of high-resolution patient specific 
epilepsy brain models. It uses neural fields, which represent the brain on the level of ~1 mm2, instead 
of the previously applied approach of neural masses, which approximated the activity of a full brain 
region by a single point in space, representing on average a surface area of ~16 cm2. Neural activity 
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can now propagate locally along the cortical surface and globally along white matter pathways. Local 
propagation can account for phenomena such as travelling waves, which have been observed 
empirically in seizure recordings. Below we display the construction, simulation and inference on 
the high-resolution virtual brain model. 

3.2 Technical Specification 
The final demonstrator for Showcase 2 constitutes an uninterrupted workflow for the construction 
of an individual high-resolution virtual epileptic brain model. It comprises all steps for the 
construction of the high-resolution brain personalized model using individual's data, simulation of 
synthetic SEEG data and model inversion for estimating the patient-specific epileptogenic zone. 
Figure 4 shows the detailed workflow diagram of Showcase 2. 

 

 
Figure 4: Showcase 2 workflow diagram 

3.2.1 High-resolution virtual brain model of epilepsy 

To construct the virtual brain model we use an image processing pipeline based on the software 
toolboxes Freesurfer (Dale et al. 1999), FSL (Jenkinson et al. 2012) and MRtrix3 (Tournier et al. 
2019). T1w structural MR images are processed with Freesurfer to reconstruct the cortical surface 
and obtain a subcortical grey matter segmentation. On the resulting triangulated surface mesh single 
vertices represent on average an area of 0.8 mm2. Subcortical nuclei are represented by volumetric 
grids. Diffusion weighted MR images are processed using FSL and MRtrix3 to estimate white matter 
connectivity. The intersection of single tracts with the cortical mesh or subcortical grids is computed 
(Figure 5A) to obtain a full brain global connectivity matrix (Figure 5B). Local, intracortical, 
connections are estimated by a distance-based approach. Connection strength between neighbouring 
vertices decreases exponentially with increasing distance. In order to compare surface structures 
with volumetric structures (i.e. subcortical nuclei), each cortical vertex is assigned a volume, 
according to the cortical thickness. This volume is used to weigh the local connectivity matrix. 

In Figures 5 and 6 we used data from a patient with drug-resistant focal epilepsy, with an 
epileptogenic zone estimated to be in the left anterior temporal lobe (Figure 5C). The rest of the 
brain is assumed to be sufficiently stable, i.e. not epileptogenic or healthy zone, so it does not 
interfere with the seizure. We equipped the patch of cortex with a dynamical model, the 2D 
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Epileptor, and parameterized it to be in an excitable regime. Thus, in the absence of perturbations, 
the system would settle on the stable focus point (Figure 6A). However, slight perturbation can cause 
the system to do an excitation which can travel through the network and excite other parts of the 
system. This model was chosen to model re-entry dynamics in seizures. Re-entry happens when a 
previously activated part of the system goes through its refractory period and is activated again by 
incoming excitation. This phenomenon has previously been observed in in-vitro studies (Keren et al. 
2016). To simulate the excitable system we initialised the full cortical patch on the stable focus, 
only the onset zone (Figure 5C), was initialised slightly below in order to kick-off the seizure. 
Snapshots of the seizure simulation can be seen in Figure 5D. The cortical patch is shown from the 
mesial side. The seizure starts from the onset zone on the most anterior part of the temporal pole 
and a wave of activity passes to the posterior parts of the patch. Re-entry due to delays in long 
range connections excites anterior parts of the cortical patch again sustaining the seizure. This 
example of the re-entry phenomenon illustrates a unique application of high-resolution virtual brain 
modelling that would not have been addressable by precedent approaches. 

 

 
Figure 5: Construction and simulation of patient-specific high-resolution brain networks 

(A) Construction of the high-resolution connectome, by calculating intersections between fibre tracts and the cortical 
surface. (B) Resulting high-resolution connectivity matrix. (C) Simulated epileptogenic zone (EZ) in the left anterior 
temporal lobe, while the rest of the brain is assumed to healthy (HZ). (D) Simulated seizure on the epileptogenic zone 
showing travelling waves and re-entry dynamics. Each panel is a snapshot of the cortical surface at different time 
points (indicated by the numbers above the panel), to show the temporo-spatial evolution of the seizure. 

 

Next to the exploration of seizure dynamics across the parameter space we test different 
intervention approaches. Beside epilepsy surgery, less invasive methods such as laser ablation or 
radiofrequency thermocoagulation have been developed which target the epileptogenic tissue with 
more precision and introduce lesions in the brain (Shamim et al. 2022). We implemented this 
approach in our high-resolution model by placing 3 virtual lesions into the white matter of the left 
anterior temporal lobe (Figure 6C). Any tracts passing through these virtual lesions have been 
removed from the connectome, thus weakening connectivity in the network. Exemplary simulations 
of the network without (Figure 6B) and with (Figure 6D) lesions show that the intervention effectively 
stopped prolonged seizure activity. Apart from lesioning, closed-loop electrical stimulation devices 
are used in clinical practice which have an electrode implemented into the estimated epileptogenic 
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zone and sense ongoing neural activity (Shamim et al. 2022). As soon as the measured signal 
surpasses a set threshold, a stimulus is delivered to the brain area aiming to stop the developing 
seizure. Currently used clinical closed-loop stimulation devices administer a burst of high frequency 
pulses. However, it has also been found that a single phase-dependent pulse could terminate seizure 
activity in-vivo (Osorio et al. 2009) and in after-discharges clinically (Motamedi et al. 2002). We 
tested this in the high-resolution model by implementing virtual electrodes into the brain and 
computing the electrical field they would exert onto the neural tissue (Figure 6E). A seizure is 
simulated, and one contact is used to measure the electrical signal produced by the neurons (Figure 
6F). From the signal we compute the instantaneous phase and deliver 3 phase-dependent pulses, 
effectively stopping the seizure.  

 

 
Figure 6: High-resolution seizure simulation and virtual interventions 

(A) Phase plane of the excitable dynamical model, used to model seizure dynamics on the neural field. (B) Time-space 
plot of a simulated seizure. (C) Probing the model by introducing a lesion into the white matter, causing 
disconnections which could prevent seizure propagation. (D) Seizure simulation after disconnection, which results in 
only brief excitatory activity but no prolonged seizure. (E) Electrical field estimation after virtual implantation of 
contacts for electrical stimulation. (F) Seizure simulation with electrical stimulation. After sensing seizure activity on 
a given contact for 500ms (middle panel, Amplitude), a 3 phase-dependent pulses are applied to the neural field, 
effectively terminating ongoing seizure activity.   

3.2.2 Model inversion with high-resolution virtual brains 

The limited spatial resolution of the parcellation-based BNMs is one of the key limitations also for 
the model inversion used for estimation of the epileptogenic zone in the Virtual Epileptic Patient 
(VEP, Jirsa et al 2017). However, increasing the resolution of the model inversion is very challenging 
as the evaluation of the gradients, required to perform the inversion, is even more computationally 
intensive than the already expensive forward simulation. Furthermore, the dimensionality of the 
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parameter space scales linearly with the spatial resolution. In this demonstrator we employ a novel 
technique where the continuous neural field of the cortical surface is mapped onto a spherical 
surface and the parameter space is reparametrized to the spherical harmonic mode coefficients 
using a pseudo spectral method. This results in a tractable Bayesian model inversion for the Epileptor 
model on a continuous domain of the cortical sheet.   

The workflow was evaluated first on synthetic data with respect to the hyperparameters such as the 
cortical mesh resolution or number of spherical harmonic modes, and the signal to noise ratio. The 
method provides good performance in terms of precision and recall for the spatial resolution from 
the whole range between 8192 to 32,768 vertices and is robust to observation noise (Figure 7A, C). 
The accuracy of the EZ estimation decreases for higher numbers of considered spherical harmonic 
modes (Lmax>25, Figure 7B), implying that earlier truncation not only helps to lower computational 
complexity, but also helps to reduce the structural degeneracy of the model. 

Validation of the workflow was performed on a retrospective cohort of 12 patients who underwent 
the surgery, and for which the outcome of the surgery was known (7 seizure-free). The precision and 
recall are higher for the seizure-free group implying the predicted EZ matched with the resection 
area in successfully operated patients but showed a mismatch for patients where the surgery failed 
(Figure 7E).  Furthermore, when compared to the low-resolution workflow (Figure 7D), the high-
resolution model inversion significantly improved the precision, reducing the number of areas falsely 
identified as epileptogenic. 

 
Figure 7: High-resolution model inversion 

The model inversion with high-resolution model was evaluated on the synthetic data with known ground truth (left 
column), and validated on empirical data (right column). While the precision and recall for the synthetic dataset was 
not affected by the increased resolution of the mesh (A) or signal to noise ratio (C), the high numbers of spherical 
harmonic modes decreased the recall (B). On the empirical dataset based on a retrospective cohort, precision for the 
high resolution model (E) is improved over the low-resolution model inversion (D) for patients with positive outcome 
of the surgery. 
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3.2.3 Co-simulation 

Fundamental questions related to epilepsy such as the mechanisms of ictogenesis have to be 
addressed taking both the micro- and macro-scopic scales into consideration. Showcase 2 integrates 
co-simulation technology developed during SGA3, where a selected region of interest is represented 
at cellular scale and connected to a high-resolution neural field model of the rest of the brain (Kusch 
et al. 2022). Construction of this model is enabled by the unique data available in EBRAINS that is 
the microscopic resolution images of the BigBrain, and the high-resolution connectivity.  

Here, the CA1 subregion of the right hippocampus was constructed using an automatic cell-body-
placement analysis based on grayscale image thresholding in order to obtain a realistic cell density 
distribution.  The CA1 network connectivity was computed starting from the realistic morpho- 
anatomical connection strategy adopted for the point-neuron modelling of the mouse CA1 
hippocampal subregion (Gandolfi et al. 2023). 

The interface between the two simulators translates the activity between the TVB nodes connected 
to CA1, and the neurons in the NEST model. In one direction, the continuous activity of the TVB 
nodes is converted to spike trains using inhomogeneous Poisson generators, and in the opposite 
direction the spiking activity is reported as instantaneous firing rate. While both of the simulators 
are running in parallel, the simulation of the human CA1 microcircuit relies heavily on high-
performance computing resources of the EBRAINS. The current demonstrator assesses the construct 
validity of the co-simulation by the response to single-pulse stimulus within single transversal slices 
(Figure 8). In agreement with the empirical observations, the stimulation of the slice in the proximity 
of the CA3 side showed a strong activation directionality towards Subiculum. In addition, the 
stimulation of the slice in the proximity of the Subiculum showed no backpropagation towards the 
CA3 region, as expected from empirical findings. 

 
Figure 8: TVB-NEST co-simulation 

The co-simulation connects the NEST neuronal model to the high-resolution whole-brain model implemented in TVB. 
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3.3 Progress from M21 
The M21 Deliverable D1.2 (D8) constituted all the steps to construct the high-resolution model and 
perform inference on the neural mass level. 

The progress from M21 to M42 is following 

1) Applying the high-resolution model for realistic seizure simulations 

2) Developing and testing novel intervention strategies via targeted stimulation 

3) Inference on high-resolution virtual brain models 

3.4 How to access the Showcase 
Showcase 2 is implemented as a series of interactive Jupyter notebooks covering the individual 
logical steps and can be accessed in a dedicated public EBRAINS Collab. The Collab can be found at: 
https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-2 
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4. Looking Forward 
The workflow on causal relationship between brain’s structure and function demonstrated in 
Showcase 1 has become a benchmark in terms of individual predictive capacity for other large 
national and international projects. This includes the Virtual Brain Twin for personalized treatment 
of Psychiatric Disorders (starting in 2024; https://www.ebrains.eu/news-and-events/virtual-brain-
twins-ebrains-proposal-awarded-funding-by-horizon-europe), and the French Digital Health project 
with applications in neurodegenerative disorders (specifically subproject Brain Health Trajectories 
started in September 2023; https://anr.fr/fr/france-2030/programmes-et-equipements-
prioritaires-de-recherche-pepr/sante-numerique/). 

Similarly, the Showcase 2 presents a benchmark for high-resolution patient specific brain models to 
be used for diagnostic stimulation in diseases such as epilepsy and Alzheimer’s Disease, and 
therapeutic stimulation for disorders such as epilepsy, depression and Parkinson’s Diseases (several 
future projects are in the final stage of review). 

The real leapfrog in terms of virtual brain’s capacity to represent real digital twin brains (Amunts et 
al. The coming decade of digital brain research — A vision for neuroscience at the intersection of 
technology and computing), however, will be achieved with the integration of tools and workflows 
from both showcases. A first application in this direction would be a model that implements 
multiscale neuromodulatory aspects and more detailed representation of the cortex and subcortical 
regions, with the model inversion workflows, all of which have been implemented in the above two 
showcases. This strategy has been foreseen in EBRAINS.  
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