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Proof of concept simulations for validity solutions 
(D1.9 – SGA3) 

 
Figure 1: How to make the Virtual Brain think? 

To develop steps towards functionally relevant information processing in the Virtual Brain, biologically realistic full 
brain network modelling is linked with machine learning approaches for pattern discrimination in the visual and 
auditory domain.  
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and demonstrate the functionality of individual key elements relevant to model 
integration (such as plasticity via deep learning, Structured Flows on Manifolds 
(SFM) for Motion Description Language, or auditory discrimination). 

Tasks contributing to this Deliverable: T1.5, T1.11, T2.1, T2.4, T2.9 and T3.1 

Abstract: 

The Virtual Brain models successfully predict evolution of brain activity within the 
anatomical constraints and can be personalized in order to describe changes of 
subject's brain activity across brain states and a range of diseases. However, these 
models currently lack the capacity to represent functionally meaningful processes 
such as cognition. This report presents the outcome of WP1-WP2-WP3 interactions, 
culminating in prototypes of virtual brain models capable of executing cognitive 
tasks. These prototypes draw inspiration from visual and auditory discrimination 
tasks, and despite their early stages they offer the potential for experimental 
validation and deeper insights into underlying brain mechanisms. 
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1. Introduction 
Today the virtual brain does not think. What this phrase is meant to communicate is the fact that 
no functionally meaningful processes such as cognition, memory, or pattern discrimination are 
represented in the brain activation patterns when simulated by the The Virtual Brain (TVB). What 
the latter does successfully is to predict the evolution of brain activity under the anatomical 
constraints imposed upon the brain model. Virtual brains can be personalised through the use of 
individual brain imaging data and describe a subject’s brain activity changes under influence of 
variation of diseases such as epilepsy, stroke, neurodegeneration. This makes the virtual brain useful 
in clinical applications (WP1, WP2). It also is deeply rooted in physiology and explains the generation 
of well known brain states, such as details of the up and down states for neural populations and 
characteristics of ageing, sleep, or anaesthesia (WP2). But virtual brains do not address brain 
function in service of cognitive task performance. WP3 builds such brain network models that 
successfully simulate a range of brain functions with the goal to address the challenge of performing 
ecologically valid tasks in complex environments. This includes the generation of saccadic eye 
movements, in hand object manipulation and spatial navigation. Their models, while biologically 
inspired, are not realistic or extended enough to explain multiscale activity patterns and full brain 
dynamics. Some of the modelling activity in WP2 and WP3 takes an intermediate position in the 
range of biological realism, developing largely micro and mesoscale data-driven models addressing 
different brain states (physiological and pathological) and cognitive tasks such as object recognition.  

This deliverable presents the outcome of WP1-WP2-WP3 interactions with the objective to tackle 
the issues that arise when integrating task relevant brain function and task-related learning into 
activity-based models (see Figure 1). We did not expect to provide a fully functional virtual brain 
model (this activity started only 9 months ago), but we aimed to identify the barriers and questions, 
when attempting this task. Taking a constructive approach, we worked together to develop a first 
blueprint or prototype of a virtual brain model capable of some form of brain function (D3.19 at 
M40), relying on the emergence of low-dimensional functionally meaningful brain activity dynamics 
(Structured Flows on Manifolds). In this endeavour, for concrete implementations, we chose visual 
and auditory stimulus discrimination tasks, for which experimental structural and functional brain 
imaging data are available.  

For the visual task, the dataset consists of whole-brain, high-resolution fMRI measurements of 
healthy adult subjects. While viewing thousands of colour natural scenes, subjects were engaged in 
a continuous recognition task in which they reported whether they had seen each given image at any 
point in the experiment. These data constitute a massive benchmark dataset for computational 
models of visual representation and cognition and can support a wide range of scientific inquiry. 
When translating this data set into virtual brain modelling, several challenges arise including how to 
represent the visual stimulus and the corresponding processes leading to activation patterns in V1 in 
the virtual brain. A spatial dimension of the image in pixel space needs to be maintained, which 
requires a high-resolution virtual brain as developed in SGA3. Other pre-processing steps like early 
visual processing, such as cortical magnification, need to be addressed and there is a range of options 
that can be considered (integration in the cortical node, phenomenological ad-hoc pre-processing, 
or introduction of novel pathways). The arriving stimulus in V1 then activates through the 
connectome other brain areas and network propagation occurs, depending on the granularity of the 
encoding of the stimulus in V1. Such will result in different activation patterns, which are expressed 
in the corresponding fMRI signals for both, in silico and empirical data sets.  

For the auditory task, we implemented a simple paradigm to simulate auditory discrimination using 
the virtual brain. We exploit a decision-making mechanism that was previously implemented using 
the AdEx mean-fields (Baspinar et al., 2023), and which forms the basis of the discrimination 
performed by the prefrontal cortex in this model (Turan et al., 2023).  This very simple simulation 
shows that the activity evoked by different stimuli can be routed to the prefrontal cortex decision 
mechanism, which can trigger (or not) a motor action.  Further work will be needed to develop this 
preliminary model, but one can already see a great advantage of using the TVB-AdEx: the model can 
predict the activity of excitatory and inhibitory neurons underlying this simple cognitive task.  
Therefore, it opens the route towards experimental testing of these predictions, where experiments 
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and theoretical models can cooperate to yield a deeper understanding of the underlying brain 
mechanisms. 

We have made certain implementation choices, which are described in the subsequent sections, 
leading to a first prototype capable of entertaining a critical discussion of how to link connectome-
based and artificial convolution-based brain networks. 

2. Technical specification for the visual task  
The current prototype consists of three integrated components: high-resolution brain network 
model, mean-field models capturing distinct brain states (awake, sleep), and a deep neural network 
processing of visual input. The virtual brain modelling workflow (Schirner et al 2022) comprises a 
high-resolution Brain Network Model (BNM) implemented in The Virtual Brain simulator, receiving 
inputs to the V1 mapped from the output of a CNN processing naturalistic scene images. Figure 2 
details this workflow in a diagram and comprises the two streams of information processing using 
the virtual brain (lower branch) and artificial neural network (middle stream). The prototype is 
available here: https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-9-poc-simulations-for-validity 

We make use of the Natural Scenes Dataset (NSD; http://naturalscenesdataset.org), which serves as 
an input to both streams. This dataset features fMRI data from 8 individuals, each having observed 
between 9,000 and 10,000 unique coloured natural scenes, resulting in 22,000–30,000 individual 
trials spanning 30–40 scanning sessions. The scanning utilised a 7T environment with full-brain 
gradient-echo EPI at a 1.8-mm precision and a 1.6-second interval between repetitions. The natural 
scenes were sourced from the MS COCO database (Lin 2014). A subset of 73,000 images were used 
which were then modified to be square-shaped and displayed at dimensions of 8.4° x 8.4°. A specific 
of 1,000 were viewed by all participants, while the others were exclusive to each. These scenes 
were showcased for a 3-second period, with 1-second pauses. Participants maintained central focus 
and engaged in an extended continuous image recognition activity. To process the fMRI outputs, 
there was a single temporal adjustment to manage slice time disparities and a spatial adjustment to 
manage head movement. Subsequently, a general linear approach was deployed to discern single-
trial beta values. Using FreeSurfer, cortical surface renditions were formulated, leading to both 
volume and surface interpretations of the beta values. For our demonstration, we used the data 
(resting state and functional) from subject01. 

https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-9-poc-simulations-for-validity
http://naturalscenesdataset.org/
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Figure 2: Workflow diagram of the demonstrator 

The images from the Natural Scenes Dataset are passed through the convolutional neural network performing feature 
extraction, and the resulting activations are mapped against empirical fMRI recordings of the V1 area of a subject 
perceiving the same images. The resulting activation maps are used as a stimulus mask for the corresponding vertices 
of the high-resolution personalised virtual brain of the subject, generating a simulated evoked response. 

2.1 Brain Network Model 
The back-bone of whole brain network models is the personalised structural connectivity where the 
individual edges represent physical connections between neuronal populations represented as nodes 
(Ghosh et al 2008). The nodes are then in turn equipped with a mathematical model governing the 
dynamical evolution of the local state variables in time, given the network input, external stimulus 
and noise. 

 
Figure 3: High-resolution brain network model 

The system is defined by a network composed of local (short-range, cortico-cortical) and global (long-range, white 
matter) connectivity, connecting the nodes of the cortical mesh and subcortical areas. The node-level dynamics is 
governed by an appropriate neural mass model. 
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To accommodate the spatially detailed profile of the visual stimulus to the V1 area, this 
demonstrator employs a high-resolution BNM (Figure 3). In this case, the cortical surface is 
considered as a continuous domain, discretized into a triangular mesh. The mesh is a result of a 
pipeline adapted from Showcase 2, where the T1-weighted MRI is processed with Freesurfer package 
resulting in meshes with 27,099 vertices. Two connectivity matrices are then defined: long range 
connectome and the intra-cortical connectivity. The high-resolution connectome, gglobal, is derived 
from the DWI by reconstructing the white-matter fibres and computing the intersection of the fibres 
with the cortical mesh, resulting in a vertex-to-vertex connectivity. The intra-cortical connectivity 
glocal is defined by a translationally invariant gaussian kernel on the geodesic distances on the cortical 
mesh. Both connectivity matrices are sparse yielding 2% non-zero elements for the intra-cortical 
connectivity, and 0.01 % for the long-range connectivity. 

The nodes in the brain network mesh represent populations of neurons, whose activity is summarised 
by few state variables (e.g., mean firing rate, mean membrane potential...), and its evolution in 
time is prescribed by a system of differential equations. The demonstrator implements two mean 
field models to demonstrate the flexibility of the implementation and to integrate with efforts across 
work packages. Both mean field models show qualitatively the same behaviour (technically speaking, 
they have the same flow topology in state space). First, the Montbrio-Pazo-Roxin (Montbrió et al 
2015) was chosen for the compactness of the model and the dynamical properties of bistability 
reflecting the up- and down-state and damped oscillatory dynamics in the up-state. Second model 
is the mean field AdEx (di Volo et al., 2019), which represents two excitatory and inhibitory sub-
populations with adaptation. AdEx models are also chosen in the auditory discrimination task of this 
demonstrator and have been extensively employed in WP2 to simulate among others response to 
external stimulus and spontaneous dynamics in wake- and sleep-like states (Showcase 3, WP2).  

As a baseline, both models were tuned to exhibit the spontaneous activity in the respective brain 
state. For the MPR model, this was achieved by setting the model parameters to a bistable regime 
and then scaling the coupling parameters of gglobal and glocal such that fluid dynamics (defined by 
time-variable functional connectivity) are observed. In the case of the AdEx model, models for two 
brain states were prepared differing by the amount of level of adaptation of the excitatory 
population: low adaptation for wake-like, higher adaptation for sleep-like state. Again, scaling of 
coupling parameters for the two connectivity types was performed to achieve asynchronous dynamics 
in the wake-like state and synchronised slow-waves in the sleep-like state. 

The external stimulus in the high-resolution BNM is applied with a given spatial mask defining the 
affected vertices, evoking local activity which then propagates through the network and interacts 
with the ongoing spontaneous dynamics (Spiegler 2020). In this demonstrator, we have applied a 
single pulse stimulus to selected vertices of V1. The weights for a particular image were determined 
as a distance-weighted sum of the activation values of the output layer of the CNN, which was 
spatially mapped to V1 mesh. 

2.2 CNN scene Processing 
To model the external stimulus to the V1, we process the input image (scene) through a shallow 
Convolutional Neural Network (CNN). While the layers of a typical CNN display characteristics of 
visual areas, they do not fully capture the biological properties of early visual processing, such as 
cortical magnification. In order to improve the biological plausibility of the CNN, the input image is 
preprocessed by distortion (Figure 4A) according to the ganglion cell distribution (da Costa et al., 
2023). The radius of distortion is kept the same as the field of view used in NSD (8.4°). The images 
in MS COCO dataset do not have a single label per image. Instead, an image is characterised by the 
presence of multiple objects. Hence, the last layer of our CNN has 80 nodes corresponding to 80 
object categories and each label is represented as a n-hot encoded binary vector. This CNN is trained 
on 73,000 images that were used in NSD. 
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Figure 4: Processing of visual input using CNN and retinotopic mapping 

(A) Each image is first distorted using a biologically plausible cortical magnification (da Costa et al, 2023) and then 
used to train a shallow CNN. (B) For every image, a feature bank is extracted from the CNN. For every feature, an 
overlap (element-wise product) is computed between that feature and an appropriate pRF candidate. These overlaps, 
across all the features, are then flattened out as a single vector which is used to predict the Betas of V1 voxels.  

The purpose of training such a CNN is to extract meaningful features from a (distorted) image. A 
bank of features is obtained from the last convolutional layer. In order to perform retinotopic 
mapping, the overlap between the features and a population receptive field (pRF) is computed. The 
pRF is modelled as a 2D isotropic Gaussian and the overlap is computed as an element-wise product 
between a feature and the corresponding pRF. We select an appropriate pRF for each image by 
searching over a grid of pRF parameters. Note that the same pRF is used for all the features (per 
image).  

The overlaps between the features and the pRFs are flattened out as a single vector. This single 
vector is then used to predict an activation (scalar value) in V1. We posit a straightforward linear 
relationship between the predictor (flattened vector) and its corresponding activation. The weights 
of this linear model are calculated using ridge regression. The activations are single-trial Betas, 
which are computed per image using GLMsingle (Prince et al., 2022). This process is described in 
Figure 4B. 

In summary, for every image that was presented, we extract a feature bank using a CNN. Then, for 
every V1 voxel, we estimate an appropriate pRF and a set of linear weights that would estimate a 
Beta value for that image. This pipeline is implemented in order to follow a retina-LGN-V1 like 
processing of the visual input. 

2.3 Brain network response to the visual stimulus 
In the final step of the demonstrator the V1 activation maps defined by the single-trial Beta values 
were mapped from the MRI voxel space to the corresponding vertices of the high-resolution brain 
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network model, and used as a spatial mask to define the stimulus I(x,t). The temporal profile of the 
stimulus was a single short pulse defined as a Gaussian kernel of width of 6 ms. This stimulus was 
applied to the excitatory firing rate of the AdEx mean-field tuned to the wake-like asynchronous 
regime. In response, the evoked activity propagated through the network carried both by the local 
connection within the cortical mesh, and the long-range connectivity. The propagation pattern is 
shown in Figure 5. Next step is the systematic parameter exploration of the weights for the local 
connectivity, global connectivity and stimulus to identify configurations where the model propagates 
the perturbation from the V1 without being locked in the hyper excited high-firing rate regime (a 
property of the AdEx mean field). This work is currently being performed using the EBRAINS HPC 
infrastructure.  

 
Figure 5: BNM activation map evoked by the stimulus in V1 

Snapshots of the simulated activation map of the BNM evoked by the stimulus that is derived from the spatial profile 
of the Beta value distribution in V1 and plotted over time. 

3. Technical specification for the auditory 
discrimination task 

Our aim is to build a whole-brain model to simulate a paradigm involving multiple brain areas, for 
instance auditory discrimination, using a paradigm designed for the macaque cortex. We are 
interested in the neuronal dynamics at the whole-brain scale and perform the simulations by 
employing The Virtual Brain (TVB) simulation environment. Adaptive Exponential (AdEx) neuronal 
population models (di Volo et al., 2009) are used to describe each node’s dynamics. For the 
connectivity, we use open-access CoCoMac connectivity dataset (Bakker et al., 2012), which is a 
matrix containing the connection weights between the nodes. We focus on a cognitive task that 
mainly involves the prefrontal cortex (PFC). In the auditory discrimination task, our pipeline starts 
from the primary auditory cortex stimulated by the auditory signals, it is then modulated in the PFC 
so that the stimulus discrimination occurs. Finally, it ends in the primary motor cortex which outputs 
the neuronal activity determining the motor action. The aim of this study is to demonstrate the use 
of whole-brain models to investigate simple cognitive paradigms, such as auditory discrimination in 
the macaque brain. 

It is important to note that a detailed report is available (Turan et al., 2023), where all information 
such as the model structure, are given in detail. This detailed report describes two different tasks 
of auditory discrimination, of which we describe here only the second task. 

This auditory discrimination task is described in Figure 6. The participant is provided simultaneously 
with two different auditory stimuli of different pitch and is instructed to push the button to indicate 
that it perceived the stimuli as different. Otherwise, the participant does not push the button, 
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indicating that it perceived the stimuli as the same (Figure 6A). The corresponding routing of 
information in the TVB model is shown in Figure 6B.  The two stimuli (S1, S2) activate different areas 
of primary auditory cortex (A1, Ra and Rb), which then provide input to prefrontal cortex (PFC), 
where a decision is made, which will activate (or not) the motor cortex and thus the motor action 
(pushing the button). The TVB simulation does not include the subcortical sensory input, nor the 
motor command.   

 
Figure 6: Scheme of the auditory discrimination task 

(A) Temporal organisation of the task. (B) Information routing from auditory cortex to motor cortex, with a decision-
making process occurring in the prefrontal cortex. 

Importantly, the key of the simulation is the decision mechanism implemented in the prefrontal 
cortex.  To do this, we implemented the decision-making model conceived in WP2, which was 
implemented in the AdEx mean-field model, with two competing AdEx cortical columns (Baspinar et 
al, 2023). This model was implemented in the TVB-AdEx framework (Goldman et al, 2020), which 
was conceived in the framework of Showcase 3 and with the help of WP1. Since both the TVB-AdEx 
and the decision-making model use the AdEx mean-fields, they are compatible and this compatibility 
was essential to the present integration. 

The behaviour of the model is depicted in Figure 7. Two stimuli of different pitch were activating 
A1 (Figure 7A).  The stimulus values were 0.001 and 0.02 here, and the output firing rates of A1 
regions are indicated. Depending on the output of each A1 region, a strong or weak stimulus is routed 
to the corresponding PFC region (PFC firing rates are shown in Figure 7B).  Here, the two competing 
PFC columns, PFCdl-Ra and PFCdl-Rb, receiving input from the two stimuli, maintain a different 
firing, showing that the model perceives the stimuli as different. Those outputs are compared to 
each other via the MSE thresholding. If MSE value is high, it triggers a strong increase of activity in 
M1, meaning that the decision is to push the button, otherwise a weak stimulus is provided to M1. 
The output of M1 is shown in Figure 7C.   

In the case the two stimuli are the same, or very close, there is little difference between the 
different brain regions, and the decision-making mechanism classifies the stimuli as “not different”. 
In this case, no motor output is generated (not shown; see Turan et al., 2023). 
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Figure 7: Auditory discrimination task simulated using TVB 

(A) Activity in the auditory cortex. (B) Activity in prefrontal cortex. (C) Motor output. 

In conclusion, we have shown here the TVB implementation of a simple paradigm to simulate auditory 
discrimination. We exploited a decision-making mechanism that was previously implemented using 
the AdEx mean-fields (Baspinar et al., 2023), and which form the basis of the discrimination 
performed by the prefrontal cortex in this model (Turan et al., 2023). This very simple simulation 
shows that the activity evoked by different stimuli can be routed to the prefrontal cortex decision 
mechanism, which can trigger (or not) a motor action. Further work will be needed to develop this 
preliminary model, but one can already see a great advantage of using the TVB-AdEx: the model can 
predict the activity of excitatory and inhibitory neurons underlying this simple cognitive task. 
Therefore, it opens the route towards experimental testing of these predictions, where experiments 
and theoretical models can cooperate to yield a deeper understanding of the underlying brain 
mechanisms. 

4. Looking forward 
Our prototypes described in this deliverable set the ground for discussion and developments. Our 
objective was to propose a first set of integrated virtual brain models that can be evaluated in 
cognitive tasks against empirical data. Although the current implementations clearly have many 
shortcomings, they nevertheless provide functional prototypes with all relevant ingredients including 
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external naturalistic stimulation, task context, neural representation, connectome based brain 
activity, physiological brain states, and realistic source-to-sensor mapping. As such, they represent 
first stepping stones towards a cognitive virtual brain and make progress in advancing our 
understanding of the connection between brain states and cognition - two routes that often advance 
in parallel and that we have connected for the first time. The use of the AdEx mean field model 
offers a systematic avenue for investigating the brain states’ dynamics (di Volo et al., 2019). By 
integrating this model with connectome-based data, we can obtain the emergence of intricate 
spatiotemporal patterns. Notably, this model has demonstrated promising outcomes when simulating 
two distinct brain states: wakefulness and NREM (Non-Rapid Eye Movement) sleep (Goldman et al., 
2022). During wakefulness, spontaneous brain dynamics exhibit irregular temporal patterns. Upon 
external stimulation, in a specific cortical region, complex spatiotemporal patterns emerge. In this 
state, information is processed across various spatial scales. For example, during a visual task, 
following the activation of early visual areas, activity propagates and amplifies in a top-down 
manner, engaging different cortical regions and facilitating cognitive processing. Conversely, during 
NREM sleep (also known as slow wave sleep) or deep anaesthesia, the brain's dynamics self-organise 
into slow oscillations (Sanchez-Vives et al., 2017). This state entails alternating periods of neuronal 
activity known as up-states and periods of relative silence referred to as down-states. These slow 
oscillations manifest as highly synchronised events, propagating as travelling waves predominantly 
in an anteroposterior direction (Massimini et al., 2004). In this state, information processing is 
disrupted. Perturbations in the system lead to stereotypical activation of cortical areas followed by 
periods of silence, disrupting propagation and resulting in a less complex spatiotemporal regime, 
where cognition is impaired (Casali et al., 2013). It's important to note that wakefulness and NREM 
sleep represent two extremes within a high-dimensional space (Harris & Thiele, 2011). In other 
words, various other brain states can manifest, contingent upon behavioural and experimental 
conditions. The significance of these states extends beyond unravelling the mechanisms of the 
healthy brain; it also pertains to understanding the pathological brain, particularly in cases of 
consciousness disorders where the brain may engage in slow oscillations (Rosanova et al., 2018). The 
AdEx mean field model integrated into a connectome-based dataset opens the possibility to address 
these questions. All its properties were maintained in the two discrimination tasks described here, 
and in fact exploited for the emergence of the network’s spatiotemporal dynamics. The model not 
only enables us to replicate sleep and awake dynamics, but it also opens the possibility to link brain 
dynamics to intrinsic neuronal properties, reproducing the regional variability observed in the human 
brain (Hawrylycz et al., 2012). For instance, the neurotransmitter acetylcholine is known to be 
involved in the awake-sleep transitions, as well cognitive processes (Hasselmo, 2006). With the 
recent studies of receptors map (Hawrylycz et al., 2012; Hansen et al., 2022), it becomes feasible 
to bind the model with receptors densities observed in the human brain. This not only makes the 
model more biologically plausible, but it also improves the similarity between model and data, as 
shown in (Deco et al. 2021).  

Considering these insights, a brain model that integrates cognitive tasks with spatiotemporal 
patterns opens opportunities to explore the relationship between cognition and brain states. This 
approach allows us to investigate under what conditions cognitive processes are impaired and their 
corresponding brain states correlates. 
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