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Showcase 6: Release of closed-loop sensorimotor demonstrators 
(D3.3 – SGA3) 

Release of a set of functional, closed-loop demonstrators, connecting developed cognitive 
architectures to relevant physical agents, demonstrating the performance of a range of 

sensorimotor tasks. 

 

 
Figure 1 Simulation demonstrator; scene rendered (left), camera viewpoint (top right), computed 

salience map (mid right), and segmentation masks (bottom right). 
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1. Context 
The work conducted within Work Package 3 (WP3) is structured around a number of integrative 
demonstrators, which motivate contributions from and active collaboration of most tasks (and 
corresponding areas of expertise) in the WP. These demonstrators address a range of functions, 
typically starting from lower abstraction sensorimotor loops, progressing towards cognitive skills, 
including planning and decision-making. They operate at different levels of description and biological 
plausibility, from detailed spiking models (emphasising functional description) to more abstract rate-
based representations (emphasising functional performance). These demonstrators implement a 
functional modular approach, helping prototype a supporting modular cognitive framework, in close 
collaboration with EBRAINS Service Categories (SCs). They emphasise embodiment, and consider 
implementation on NeuroMorphic Computing (NMC) hardware where relevant. 

Outline of the Showcase Demonstrator: Neural Architecture Supporting Safe Human-robot 
Interactions  
The demonstrator discussed in the following lies at the more functional, less biologically plausible 
end of the spectrum. It addresses a cobotics scenario, in which a human is physically interacting 
with a robotic arm. The ambition consists in being able to demonstrate by M42 (safe) collaborative 
assembly, with a degree of task complexity comparable to that found on a factory assembly line 
(e.g. in automotive). Development of the demonstrator is being pursued starting from lower levels 
of abstraction (with aspects related to physics, embodiment, action, and perception), with a 
demonstration of sensorimotor loops by M21 (as illustrated by the demonstrator that the present 
document accompanies). Functions involved in this demonstration include perception, motor 
control, and planning, their development primarily conducted by contributors from Task 3.4. This 
demonstrator is to be built upon to include a number of cognitive functions, to be demonstrated in 
the M42 Deliverable D3.6: Closed-loop demonstrators addressing advanced cognitive and 
sensorimotor functions. In this perspective, the specifics of the demonstrator were selected to 
motivate contributions from a variety of participants in WP3. In particular, the considered scenario 
emphasises the need for robust scene understanding (investigated in Task 3.6, Task 3.1), with the 
ambition of providing safety guarantees for the human worker, without having to rely on substantial 
limitations of the robotic systems’ speed of movement (thus preserving productivity). Developing 
the ability of the artificial agent to provide support in the assembly task motivates the integration 
of forms of hierarchical planning (Task 3.7), breaking down the overall assembly task in elementary 
steps. The ability to manipulate a wide variety of parts to assemble motivates the development of 
solutions to facilitate learning of grasping affordances (Task 3.4). The emphasis on safety also 
motivates the development of measures anticipating possible risks encountered by the human 
worker. This may be pursued by attempting to anticipate collisions and shocks (considering 
respective kinematics of robot and human movements), but also the mechanical stress applied to 
the muscle-tendon complexes of the worker engaged in the task (considering dynamic exchange of 
efforts between the robotic arm and human arm, for example). This can be pursued by extracting 
informative contextual cues from employed models and available sensors, and exploiting a model of 
working memory (as investigated in Task 3.7) to match emerging contexts with appropriate reactions 
from the artificial agent. Technical integration of the demonstrator is conducted in close 
collaboration between Task 3.4 (leading aspects related to embodiment), Task 3.1 (with relevance 
to the development of the supporting architecture framework), and Task 3.10 (software support). It 
is made possible by the support from partners in infrastructure WPs, in particular providing support 
on aspect related to modelling (SC3), embodiment (SC4), High Performance Computing (HPC) and 
NMC (SC6). The demonstrator discussed hereafter is chiefly developed and implemented on EBRAINS 
in a simulated scenario. A reduced-scope counterpart of this scenario, focusing on key functions and 
features, is being implemented on physical systems, relying on NMC hardware (in particular 
SpiNNaker, in collaboration with Tasks 5.8 and 5.10) to allow real-time operation. This is 
accompanied by an emphasis on functional Spiking Neural Networks (SNNs); with support from Task 
3.3, in particular on aspects related to learning for SNNs. 
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2. Sensorimotor Demonstration  
In the following, we summarise the developments conducted by M21 on sensorimotor aspects, 
describe the manner in which they come together to allow demonstration of sensorimotor loops, 
discuss the different scientific and technical problems addressed, and articulate the relation 
between the work presented and ongoing development of EBRAINS, in particular as pertains to 
functional modelling and embodiment SCs. 

2.1 Specifications of the M21 Demonstration 
Work conducted on motor control explores the complementarity between functional cerebellar and 
spinal cord models, for the purpose of motion control of upper limbs. This work builds upon previous 
investigations in the use of cerebellar models to address the overall control problem, and on spinal 
cord models to support rhythmic movements, typically for lower limbs. The cerebellar model 
supports motor learning and adaptation. It takes the form of a functional SNN that integrates the 
main cerebellar synaptic plasticity mechanism (Spike-Timing-Dependent Plasticity, STDP). It 
features five cerebellar layers: Mossy Fibres (MF), Granule Cells (GC), Purkinje Cells (PC), Climbing 
Fibres (CF), and Deep Cerebellar Nuclei (DCN). Inputs are applied through the MF (sensory signals) 
and CF (instructive signal). The MFs project the sensory information to GCs, which project through 
their axons (Parallel Fibres, PF) to PCs. PCs also receive excitatory inputs from CFs. At the PF-PC 
connection, STDP is balanced through Long-Term Potentiation (LTP) and Long-Term Depression 
(LTD), driven by the instructive signal from CFs. DCN neurons drive the final cerebellar output, 
receiving excitatory input from MFs and CFs, and inhibitory input from PCs (the only inhibitory 
connection in the cerebellar loop). The model used is presented in (Abadía, Naveros and Garrido, et 
al. 2019) and (Abadía, Naveros and Ros, et al. 2021). The spinal cord model relies on rate coding, 
following an approach similar to that in (Tsianos, Goodner and Loeb 2014). It reproduces the stretch 
reflex and reciprocal inhibition between antagonists for each muscle based on Prochazka’s spindle 
rate. The former provides regulation of muscle length, while the latter limits co-contraction. The 
cerebellar and spinal cord models, together, control movements of a musculoskeletal model of a 
human upper limb, with a muscle model adapted from (Thelen 2003). The motion control problem 
addressed is that of trajectory generation for waypoint manoeuvring. In the M21 demonstration, the 
musculoskeletal model includes two Degrees of Freedoms (DoFs, single rotations at the shoulder and 
elbow) and seven muscle-tendon complexes. The cerebellum model is implemented using the Event-
Driven Look-Up Table (EDLUT) simulation tool discussed in (Naveros, Luque, et al. 2014), (Naveros, 
Garrido, et al. 2017). The spinal cord model is implemented using Python with the FARMS library. 
The musculoskeletal model implementation was adapted from OpenSim and integrated in the Bullet 
physics engine (same physics engine used in the NRP). The trajectories followed are designed with 
consideration for natural human movement characteristics, as discussed in (Plamondon, et al. 1993). 
The cerebellum model is trained to adjust produced motor commands so that the effective, produced 
trajectory matches the prescribed one, as discussed in (Medina 2019). The integration of cerebellar, 
spinal cord, and musculoskeletal models in the demonstrator allows simulation of natural upper limb 
movements, including both kinematics and dynamics. The latter is of special interest for the 
considered demonstration scenarios, making it possible to explore exchange of efforts between the 
robotic system and a human worker’s upper limb (robotic arm model and skeletal model shown in 
Figure 2, left). Such interactions may occur, for instance, in situations in which there is a handover 
from human to robot (or conversely), or when both human and robot act upon the same parts being 
assembled.  

The work performed on perception primarily addresses the visual modality. It builds upon previous 
developments in Co-Design Project 4 (CDP4) on visuo-motor integration, combining specific models 
developed in CDP4 with a deep predictive coding model to pursue segmentation of objects of interest 
in the scene. More specifically, the saliency map computation model discussed in (Kroner, et al. 
2020) is combined with a predictive coding model adapted from that in (Lotter, Kreiman and Cox 
2017). The Predictive neural Network (PredNet) exploits the salience information to direct attention 
(in terms of prediction error computation, weighing prediction error as a function of computed 
salience of the corresponding part of the frame) towards more informative parts of the frame. 
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Further, the PredNet model is adjusted to include connection time delays, as described in 
(Hogendoorn and Burkitt 2018), to elicit emergence of a hierarchical representation of temporal 
features. The predictive network is trained to achieve next-frame prediction (unsupervised 
learning). The model is extended with a decoder, trained to infer segmentation masks from the 
information contained in the PredNet’s latent variables (see Figure 1, camera frame top right, 
salience map middle right,  segmentation masks bottom right). Specifically, the decoder combines 
the different pooling levels of the latent variables using the up-sampling structure discussed in (Long, 
Shelhamer and Darrell 2015). The scene rendered by the demonstrator’s simulation model is used to 
automate generation of training data. The combined saliency computation, PredNet model and 
decoder is used to detect and localise relevant segments of the human model (in particular, its 
arms). The information obtained allows inferring the location of these segments within the frame 
and within the scene. The localisation of the human arms is used to inform movements of the robotic 
arm, allowing movement coordination so that robot and human model are able to interact in a 
productive, useful manner (e.g. exchanging tools from human hand to robotic gripper, interacting 
together with parts being assembled). Work has begun on implementation of a complementary 
sensing modality, exploiting capacitive measures to infer proximity of the human, as described in 
(Schlegl, et al. 2013). The strategy under consideration involves relying on the visual modality to 
establish the overall scene structure, and relying on the proximity detection to ascertain the position 
of the human’s hand and arm relative to that of the robotic manipulator. To that end, a capacitive 
sensor model was implemented in the simulation model, and an array of such sensors has been 
integrated in the robotic arm’s segment supporting the end-effector. Note that measures from a 
single such sensor have been shown informative enough to allow approximate regulation of the 
gripper’s position relative to that of the human hand (shown in Figure 2, left). The same PredNet 
and decoder structure as that used for vision has been adapted to infer the pose of the human arm 
relative to that of the robotic arm. Current results demonstrate adequate performance in terms of 
relative position estimation, with improvements still required from the relative attitude estimation. 
Networks used for perception were implemented using Python with TensorFlow. 

In complement to the above, work was performed to develop the planning function necessary to 
guide movements of the robotic arm. In particular, efforts have targeted direct interactions between 
the human worker and the robotic system. Special attention is afforded to the process of handing 
over tools or relevant assembly parts (from the robot to the human and conversely), which remains 
an active area of investigation in robotics, as discussed in (Ortenzi, et al. 2021). The objective is to 
inform movements of the robotic arm with human expectations, in such a manner that interactions 
(e.g. when handing over an object) feel natural and comfortable to the worker. Such qualities are 
expected to lead to a quantifiable, positive impact on productivity, for instance, as measured by 
speed of completion of a given collaborative task, but also with consideration for the mental charge 
and fatigue of the worker. The planning model integrated in the M21 demonstrator relies on a Long 
Short-Term Memory (LSTM) model to predict movements of the human, and on a complementary 
Artificial Neural Network (ANN) to assess the rendezvous point for the handover. The information 
produced by these models informs a Dynamic Movement Primitives (DMP) framework prescribing 
robot movements. The approach allows performing the considered handover task without requiring 
a priori definition of the expected handover location. Further, the solution provides robustness to 
external perturbations such as an unexpected, external push on the human hand, or unpredictable, 
erratic hand movements from the human. Networks involved were implemented in Python. Training 

Figure 2 Close-up of robotic arm and gripper (left), motion capture setup to train planning (right). 
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relied on data sets collected using a motion capture setup (shown in Figure 2, right). Recordings of 
a representative set of free human hand motions were used to train the human movement prediction 
model (LSTM), while recordings of human-to-human handovers were used to train the rendezvous 
point predictor (ANN). Networks were trained using gradient descent. Learning hyper-parameters 
were selected using Bayesian Optimisation and the Asynchronous Successive Halving Algorithm (ASHA 
scheduling). 

The functional models described above were integrated into a single simulation model designed to 
be forward-compatible with the upcoming version of the NeuroRobotics Platform (NRP, developed 
in SC4). The simulation is anchored by a Gazebo model, providing rendering of the considered scene, 
with physics simulated using the Bullet physics engine. Bullet was extended to include a novel 
contact-resolution model (based on models of material deformation), to provide physically faithful, 
computationally stable resolution of contacts. This development proved necessary as off-the-shelf 
solutions (typically, constraint-based, such as those natively integrated in Bullet) struggle to reliably 
describe efforts produced by closed kinematic chains, such as those encountered in grasping. Bullet 
was also extended by the integration of a muscle-tendon model, as described in the paragraph on 
motor control. The robotic arm model considered is a Kuka iiwa, the gripper is the Robotiq 3-Finger 
Adaptive Gripper (see Figure 3, left). Functional integration of aforementioned neural models was 
performed through a lightweight Python signal coordination layer, built upon insights gathered from 
the NRP’s Integrated Behavioural Architecture (IBA). Design of this communication layer was 
conducted in coordination with SC4 developers (Task 5.10), with insights provided by contributors 
to Task 3.1 on cognitive architectures, and benefitted from discussions with contributors to the 
Infrastructure Voucher on Cognitive Architecture for Therapy Robots and Avatars (CATRA), which 
addresses comparable problems.  

The integrated simulation model illustrates the ability to inform movements of the robotic arm with 
information gathered by the perception function. It also demonstrates the capacity to simulate 
exchange of efforts between the human arm model and the robotic arm. This is demonstrated 
through three distinct simulation scenarios. In the first such scenario, the human (represented by a 
skeleton model) is firmly gripping a cylindrical rod. The robotic arm is also made to grip the rod, 
and attempts to pull it away from the human. This demonstrates the ability to rely on the visual 
perception to infer the location of the rod in the scene, allowing the robot to reach and grasp it. It 
also illustrates the ability to describe effort exchanges between the (relatively stiffer) robotic arm 
and (more compliant) human arm model, with the connected multibody systems forming a closed 
kinematic chain. Compliance of the gripper’s fingers was adjusted to show slippage and release of 
the object by the robotic system upon crossing a given effort threshold. The second simulation 
scenario builds upon the first one to demonstrate a simulated handover. The human arm brings a 
tool within the workspace of the robot; vision allows inferring the position of the tool. Based on this 
information, the robotic planner adjusts movements of the robot to come within grasping range of 
the tool. The tool is then grasped (see Figure 3, right), brought to a storage bin, and released. The 
third simulation scenario provides a proof of concept illustrating the ability of the physics simulation 
model and combined sensorimotor functions to support simulation of an assembly task. The task 

Figure 3 Closeup of robotic arm, gripper, and human model (left), example of handover (right). 
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considered involves affixing an interior panel onto the frame of a car door. The robotic arm is made 
to collect the panel from a resting position, and brings it into position, aligned with the direction 
required for clasping onto the assembly. The human worker then pushes the panel into the car-door 
frame. 

Complementary to the simulation model discussed above, the same problem of supporting safe 
interactions between a robotic system and a human worker was investigated in a real-world setting, 
in a physical demonstrator (see Figure 4, left). Real-world developments being more effort-intensive 
than simulation models, the scope of the work considered is more limited than that in simulation, 
focusing on key technical and scientific challenges. A deliberate choice was made to investigate 
different approaches and technologies in this physical setup, as opposed to constraining ourselves 
to directly implementing (parts of) the models investigated in simulation. Specifically, this has 
allowed us to cover a greater overall scope, making the most of relatively limited resources. The 
physical demonstrator has focused on functional spiking technology, in particular using Dynamic 
Vision Sensors (DVS camera) for vision, and targeting implementation on SpiNNaker for real-time 
operation. Dedicated hardware was developed to achieve the input/output bandwidth (between 
real-world sensor and SpiNNaker system) required to support real-time operation, in particular 
allowing inflow of events from DVS cameras to SpiNNaker (Figure 4, right). Similarly, low-abstraction 
level software developments on SpiNNaker were required to implement operations necessary to 
support visual processing (e.g. convolution operations). This work was conducted in close 
collaboration between model developers (Tasks 3.4, 5.10), experts in learning for SNNs (Task 3.3), 
and core SpiNNaker personnel (Task 5.8), exemplifying the co-design process driving EBRAINS 
developments. The developed technology was exploited to implement event-based visual 
segmentation of objects of interest. The model developed builds upon that discussed in 
(Ronneberger, Fischer and Brox 2015), its development facilitated by the Norse library (Pehle and 
Pedersen 2021). Three distinct data sets were assembled to support training. The first data set was 
generated in simulation (using the NRP), collecting frames together with events for a set of tools in 
a given static scene. The second set considered a number of reference 3D-printed tools (e.g. 
hammer, wrench, or screwdriver) made to move in space, with events collected by stereo Davis346 
event cameras. A third data set considers a reference shape (circular pattern), with events collected 
by three DVXplorer event cameras. The data was used to train SNNs to achieve segmentation, in 
real-time, on SpiNNaker. The model was trained with backpropagation through time, using the 
SuperSpike surrogate gradient method discussed in (Zenke and Ganguli 2018). The segmentation 
information is used to infer the object’s location, which in turns is used to inform movements of a 
robotic arm.  

2.2 Scientific and Technological Problems Addressed 
The work conducted addresses a wide range of problems in computational neuroscience, but also in 
automation, control, robotics, and Artificial intelligence (AI). The central motivation consists in 

Figure 4 Physical robotic setup (left) and developed SpiNNaker I/O interface board (right). 
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investigating research problems that EBRAINS’ tools and services on modelling, embodiment, and 
NMC for real-time applications allow one to consider. These efforts enable informing ongoing 
infrastructure developments, highlighting specific needs using concrete examples. Each area of 
investigation also addresses a number of scientific problems as discussed below.  

In particular, the work conducted on motion control allows exploring functional complementarity 
between spinal cord and cerebellum for non-cyclical movements, building upon previous efforts 
investigating embodied functional performance of standalone cerebellar models for motor control. 
Specifically, the implementation allows interrogating assumptions that have informed development 
of the considered models, specifically in terms of separation of functional concern (i.e. respective 
responsibility of the different models to support functions required to achieve the overall motor 
behaviour). In detail, the approach enables verifying improvements (e.g. facilitated, faster training) 
when the spinal cord fulfils its expected functions (e.g. muscle coordination), freeing the cerebellum 
from the corresponding functional burden. More generally, this perspective is similar to that pursued 
within Task 3.2 on functional scaffold models (work discussed in Deliverable 3.4), where part of the 
work focuses on composing models to describe the range of functions involved in sensorimotor loop. 
Active areas of collaboration are emerging in this respect, with functional models involved in the 
presently discussed demonstrator providing connections to embodiment for models investigated in 
Task 3.2. Further, from a dynamical system and control theory perspective, activities pursued on 
motor control aspects explore the merit of bio-inspired controller architectures, along an avenue of 
investigation that has proved particularly fruitful in pursuing legged and swimming robotic 
locomotion over the past decade. Specifically, the general approach relied on the use of a functional 
spinal model to support DoF coordination for locomotion, leaving the motion control problem to be 
addressed by a complementary control algorithm, whose output’s role becomes comparable to that 
of descending signals. This perspective is here explored for upper limbs, with relevance to control 
of robotic arms, but can be generalised to address the broader problem of control in latent spaces. 
The spirit of this perspective involves the development of simplifying changes of variables, known 
to be of special import for instance in the control problem for non-minimum-phase nonlinear 
systems. 

Work on perception aims to build upon HBP developments to implement solutions for robust scene 
understanding. The approach followed involves exploring merit (from a performance point of view) 
in this perspective of functions previously developed to implement a functional model of human 
vision processing, and of combining them with complementary deep networks. Of special interest is 
the notion of gainfully exploiting scene-representative information contained in latent variables 
emerging from trained deep networks. In addition, the work considered may explore the possibility 
of supplementing purely visual information with additional contextual cues, characterising relations 
in a broad sense between objects composing the scene. The objective in this respect involves going 
beyond label assignment to detected, classified objects, to include consideration of their role within 
the task at hand (e.g. relation between the detected tool and the current operation foreseen at the 
current stage of the assembly task underway), and additional contextual constraints (such as safety 
considerations in the situation of human-robot interactions).  

The work conducted on planning aspects considers a problem in robotics that remains largely open, 
revolving around natural interactions between human and machine. In addition to addressing the 
aforementioned scientific questions, the technology developed with this demonstrator is expected 
to prove of relevance in several additional areas, most explicitly in industrial robotics, directly 
addressing some of the challenges that remain intrinsically related to the notion of Industry 4.0, in 
which the central promise of man-machine synergies has remained largely unfulfilled.  

2.3 Relation to EBRAINS 
The work involved relies on the HBP’s Research Infrastructure and actively contributes to its co-
design. In particular, it directly builds upon the NRP’s IBA to support functional integration of a wide 
range of neural models with embodiment. The specific framework developed to support the 
demonstrator relaxes a number of requirements of the IBA (related to the corresponding version of 
the NRP) to facilitate integration. It was designed in collaboration between the technical engineering 
and scientific coordination task (Task 3.10), contributors to Tasks 3.1 and 3.4 with expertise on 
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development of functional cognitive architectures, and contributors to the CATRA infrastructure 
Voucher. Further, the work conducted contributes to defining requirements in terms of required 
tools and services to support this type of research. This is in particular the case for aspects related 
to learning. Training of the functional models considered in the demonstrator (including event-based 
vision models, intended to be applied to real-world problems) makes use of simulation-generated 
data sets. Generation of such data sets can be supported by exploiting the type of digital 
embodiment afforded users by the NRP. The demonstrator provides a meaningful number of distinct 
motivating examples in this respect, helping establish what functionalities are useful for the 
platform to support. This involves aspects related to experiment scripting (for training-data 
generation), and deployment of parallel simulation instances on High-Performance Computing (HPC) 
platforms (SC6). A similar co-design approach is pursued in the use of NMC (SpiNNaker, SC6) to 
support real-time computation for vision (and in the middle term, motor control), with special 
emphasis on advancing the state of interfaces (in terms of usability and bandwidth) between 
SpiNNaker boards and physical systems (sensors and actuators). This work is enabling in nature, 
allowing materialising the potential of NMC (in terms of computation speed and energy consumption) 
for real-time, real-world visual processing. Relevance of this work extends beyond the considered 
robotic manipulation scenarios. It is of special interest for visual processing in embedded systems, 
providing attractive alternatives to currently used visual processing solutions in mobile systems. 
Prospective applications include unmanned vehicles (drones), but also driving automation. This 
development provides EBRAINS a unique capability in relation to NMC, contributing to its unique 
value proposition. Finally, the work conducted contributes to the development of closed-loop 
demonstrators showcasing the type of research made possible by combining functional neural models 
with embodiment, which corresponds to the specific value proposition of the NRP. It has motivated 
the development of a library of functional modules, which prospective users may train to support a 
range of sensorimotor and planning functions. As such, the work performed will expand the portfolio 
of content available for the NRP. We will investigate, in the near term, the opportunity of hosting 
and making discoverable such models on the Knowledge Graph. 

2.4 How to access the demonstrator 
The simulation demonstrator (including all relevant models) can be downloaded from the following 
location, https://drive.ebrains.eu/d/11cf313d0a724aa2807e/. Please refer to the document titled 
Installation and Execution.odt (found at the above link) for the requisite steps involved. A short 
video descriptive of the status of the physical demonstrator can be found at the following location, 
https://drive.ebrains.eu/f/b4dca37faeef42a99361/?dl=1. The simulation demonstrator is in the 
process of being ported to the current version of the NRP. 

3. Perspectives 
In the following, we discuss upcoming work, building upon the results achieved by M21. We 
distinguish specific contributions to the showcase demonstrator, which define specifications for the 
M42 showcase, and activities that extend beyond the scope of the demonstrator, including 
collaborations emerging from the work conducted. 

3.1 M42 Showcase Specifications 
Work on motor control will extend the number of skeletal DoFs considered (and corresponding 
required muscle-tendon complexes), to achieve a broader range of movements (at the shoulder, 
elbow, and wrist), extending the arms’ workspace. Work on validation of the model will be 
conducted. To that end, electromyography (EMG) data is being collected to investigate the efficacy 
of the developed spinal cord model in reproducing human muscle recruitment profiles, for a battery 
of arm trajectories. Further, the developed models will be used to investigate to which extent the 
learning of movements is assisted by spinal circuits. Performance in this respect will be quantified 
in terms of speed of convergence and movement accuracy. Similarly, the contribution of spinal 

https://drive.ebrains.eu/d/11cf313d0a724aa2807e/
https://drive.ebrains.eu/f/b4dca37faeef42a99361/?dl=1
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circuits to perturbation rejections will be 
investigated, with performance quantified in terms 
of perturbation force magnitude and resulting 
trajectory deflection. Activities on aspects related 
to perception will explore the development of 
multimodal perception models, combining visual and 
(capacitive) proximity perception. Work in this 
respect has begun, in collaboration with contributors 
to Showcase 4. An approach similar to that used in 
this demonstrator is investigated, building upon the 
Multimodal Predictive Coding Network model 
(MultiPredNet) discussed in (Pearson, et al. 2021). 
Similarity between considered problems greatly 
facilitates the collaboration. In particular, each 
included capacitive sensor in the present model fulfils 
a role qualitatively comparable to that of a given 
whisker in the Showcase 4 model. In addition, 
performance of the perception model developed will be benchmarked in comparison to alternative 
solutions found in the literature, with a special emphasis on quantifying performance improvements 
(in accuracy and computational burden) obtained from the use of salience computation and 
consideration of temporal patterns. The model developed for motion planning of the robotic arm 
will be extended to include functions of collision avoidance. Benchmarking will be performed to 
assess performance in terms of quantifiable metrics (e.g. task completion time or robotic arm idle 
time), but also accounting for qualitative aspects. These include subjective impression of safety and 
comfort of the human worker during interactions. Data collection in this perspective has begun. 
More broadly, the Showcase Demonstrator will be extended in the direction of greater abstraction, 
integrating cognitive functions in collaboration with relevant tasks in the WP. This includes the 
implementation of a hierarchical planning model, building upon sensorimotor functions to address 
an assembly task (expanding upon the initial proof of concept, shown in Figure 5). In addition, a 
model of working memory will be implemented to adjust behaviour of the artificial agent in response 
to contextual cues. Such cues will characterise human-robot collision risks (based on kinematic 
information) and stress applied to the human’s muscle-tendon complexes. The robotic arm’s 
behaviour will be altered to mitigate detected risks. Including support for flexible planning and 
working memory functions will lay the foundations for external users to adapt the presently 
described showcase demonstrator to address alternate tasks of interest to them. 

3.2 Emerging Collaborations 
In addition to the above, a number of productive collaborations have emerged from the work 
described. In particular, activities related to motor control constitute a natural extension of those 
on scaffold models in Task 3.2 (D3.4). A roadmap is being defined to provide Task 3.2 contributors 
with models developed for the present demonstrator, supporting embodiment (specifically, 
functional spinal cord and musculoskeletal models). The opportunity of extending this collaboration 
will be investigated, with the long-term perspective of developing functional models able to describe 
the mapping from skeletal movements to neural plasticity stimulation, with applications to the 
specialisation of post-stroke physical rehabilitation treatments. Another emerging area of 
collaboration is that with contributors to Showcase 4. In particular, specific aspects considered in 
the perception model discussed above (related to temporal patterns and decoding of internal, 
implicit information) are of relevance to the work conducted in WP2, where they are being 
investigated in a different setting. This illustrates the complementarity between work performed in 
both WPs, which approach comparable problems from different perspectives (with respective 
emphasis on biological plausibility in WP2, and functional performance in WP3). Finally, discussions 
are emerging on the possibility of merging (relevant aspects of) both showcases in WP3; for instance, 
including the anthropomorphic manipulator considered in Showcase 5 (and corresponding dextrous 
manipulation capabilities) in the present demonstrator to extend the range of tasks performed.  

  

Figure 5 Human model affixing interior 
panel to a car door’s frame. 
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