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Long-COVID mechanisms: Hypothesis for long COVID based on AI 
and modelling (D1.8 – SGA3) 

 

 
Figure 1: Multi-modal Magnetic Resonance imaging (MRI) data  

Multi-modal Magnetic Resonance imaging (MRI) data was acquired on a cohort of healthy controls, COVID-19 and long 
COVID participants. Biophysically meaningful feature maps were generated to contribute to a voxel-based of this 
cohort.  Featured extracted from macro-areas can be used for classical statistical models to determine mechanisms 
of long COVID and to explain clinical scores. Random Forest machine learning pipelines can be then used on small 
sample data to determine the most significant features classifying long COVID subjects compared to COVID and healthy 
controls. The virtual brain model (TVB) can then be run on functional series and diffusion connectomic for identifying 
patterns of excitatory/inhibitory balance for each participant. 
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Abstract: 

In this study we acquired a rich magnetic resonance imaging (MRI) dataset that 
provided voxel-based metrics of inflammation, microstructural integrity, myelin, 
and metabolic alterations in people who were infected with the SARS-CoV-2 virus 
(COVID cohort), developed long COVID or were never exposed to it (control cohort). 
A cohort of 127 subjects was recruited and 124 subjects underwent MRI. Maps 
sensitive to iron accumulation were also extracted to be entered in statistical 
analysis and assess whether this could be a mechanism of long COVID. Raw data 
went through automatic pipelines to generate the maps and macro-areas were 
averaged to provide a table of biophysically meaningful features (BMF) to be entered 
in statistical analysis. Linear regression models and random forest algorithms were 
run to identify the most significant features distinguishing control subjects from 
COVID and long COVID subjects.  

Resting state functional imaging data were analysed to search for signatures of 
anosmia in an initial cohort of subjects, and the virtual brain (TVB) analysis was 
performed to extract alterations in excitatory/inhibitory balance. TVB metrics were 
included in the table of features. Long COVID subjects have alterations of several 
metrics, suggestive of inflammation, iron accumulation and myelin damage that 
should be followed up longitudinally to understand the evolution of brain tissue 
property alterations and suggest potential interventions.  

Keywords: 
Magnetic Resonance Imaging, MRI, quantitative imaging, microstructure, COVID-19, 
long COVID, the virtual brain modelling, myelin, iron, functional, biophysically 
meaningful features (BMF) 

Target Users/Readers: 
Neuroscientists, clinicians, neurologists, MR Physicists, computer scientists, 
biomedical engineers, radiographers, MRI manufacturers, the general public 
affected by COVID, pharma companies 
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1. Introduction 
Long-COVID has been defined clinically. Subjects show persistent neurological symptoms, e.g. 
anosmia, fatigue, brain fog (memory) and depression. Mechanisms are still unclear. We have applied 
a rich advanced quantitative Magnetic Resonance Imaging (qMRI) protocol to a cohort of people with 
long COVID and compare objective measures of tissue features between long COVID and those who 
had COVID, but recovered from it, as well as with people who never contracted the SARS-CoV-2 virus 
(control cohort). From the qMRI data we extracted quantitative maps of biophysically meaningful 
features (BMFs) of the brain that can then be used to model possible mechanisms of long COVID. Our 
initial results show that inflammation is present in people with long COVID symptoms. We also found 
that there are functional alterations in people with persistent anosmia (Wingrove et al, 2023), with 
possible iron overload, prominent damage to the brainstem and an altered excitatory/inhibitory 
balance. In people with long COVID, metrics of myelin damage are the most altered of all in long 
COVID subjects. 

As long COVID is still elusive, we have applied brain modelling methods such as the virtual brain 
(TVB) developed in HBP and part of the EBRAINS tools. We have also contributed to expand the atlas 
database available on EBRAINS by sharing the features and maps for a cohort of a total of 124 
subjects, once published. We have explored machine learning algorithms available on the Medical 
Informatics Platform (MIP) of EBRAINS and wrote a wrapping routine for applying Random Forest (RF) 
machine learning (ML) algorithm as a classifier of long COVID patients, using BMFs calculated in 
macro-areas of the brain to reach a ranking of importance in the classification task. TVB metrics and 
iron specific BMFs will be added to the database and RF run to see whether the classification changes 
and COVID mechanisms are identified. The RF code is shared on GitHub. 

Overall, we have contributed to acquire and share data, apply brain modelling and ML tools for 
classification and shown how advanced qMRI BMFs that can help us understand mechanisms of long 
COVID, as summarised in Figure 1. This work will interest several communities of scientists, 
clinicians, physicists and biomedical engineers, neuroscientists and the population in general who is 
eager to know the neurological consequences of the SARS-CoV-2 pandemic. 
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2. Rich database creation 
During this project a rich database of biophysically meaningful features (BMFs) was created for 
uploading to EBRAINS. Description of the database includes the quantitative magnetic resonance 
imaging (qMRI) protocol, clinical and paraclinical scores as well as blood samples.  

2.1 Subjects 
The cohort of the study includes participants of an initial COVID-19 study and of a prospective cohort 
of long COVID and healthy control subjects. Overall, the cohort consists of 124 participants (see 
Table 1). 

We recruited people who either had recovered from a SARS-CoV-2 infection (COVID) or believed that 
they had not been infected (Control), or who were diagnosed with long COVID (long COVID). Subjects 
were either self-referred to us, recruited from other COVID-19 studies at UCL/UCLH (COVID-19 Staff 
Testing of Antibody Responses Study (Co-Stars, ClinicalTrials.gov: NCT04380896) and Finding Out if 
COVID-19 Infection Can be pREdicted by ChAnges in Smell and/or Taste (FORECAST, 
ClinicalTrials.gov: NCT04377815) or referred from the National Hospital for Neurology and 
Neurosurgery (NHNN) or UCLH long COVID clinics.  

The final inclusion criteria for the COVID group were:  

• History of a positive Polymerase Chain Reaction (PCR) or a positive lateral flow antigen test 
(LFT), followed by a negative test shortly before the MRI appointment; 

• Serum antibody positive test for SARS-CoV-2 infection using the EDITM Coronavirus COVID-19 IgM 
and IgG enzyme-linked immunosorbent assay (ELISA) kit (sensitivity and specificity of 92% and 
96.5%, respectively, at the time of scanning. 

Similarly, the final inclusion criteria for the Control group were: 

• A self-declaration of never having contracted the virus because they had not tested positive to 
either PCR or LFT since the beginning of the pandemic and had not suffered from symptoms 
suggestive of COVID-19 (in 2020) (e.g., fever, persistent cough and anosmia); 

• An EDITM ELISA serum antibody negative test for SARS-CoV-2 at the time of scanning.  

The inclusion criteria for the long COVID group were: 

• Subjects with at least one persistent neurological symptom of anosmia, brain fog (memory), 
fatigue or depression, persistent after >12 weeks since SARS-CoV-2 infection and not explained 
by the subject’ pre-COVID-19 clinical history. 

Table 1: Demographics and description of the cohort assembled for this project 

GROUPS Number of 
subjects 

Mean Age 
(Std Dev) Female/Male Description 

Healthy 
Controls 25 38(12) 13/12 

Participants who resulted negative to 
antibodies (pre-vaccine) or N-protein 

blood tests. 

COVID-19 41 38(11) 32/9 
Participants who had a history of positive 
SARS-CoV-2 tests results or had a positive 

antibody blood test. 

Long COVID 58 50(19) 42/16 
People clinically defined as suffering 

from long COVID syndrome by 
neurological clinics in the UK. 

Demographics and description of the cohort assembled for this project, comprising people who never contracted the 
SARS-CoV-2 virus (Healthy Controls) or who had COVID-19 or long COVID. 
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2.2 Quantitative Magnetic Resonance Imaging & 
Spectroscopy 

The qMRI protocol was developed previously at the NMR Research Unit, Queen Square Multiple 
Sclerosis Centre, to be ultra-fast and efficient for acquiring a large number of datasets and extract 
several BMFs sensitive to inflammation, microstructure changes, myelin, brain function (see Figure 
2 for an example of BMF maps) and metabolism (see Figure 3 for an example of magnetic resonance 
spectroscopy of the brainstem). The MRI acquisition protocol is described in Table 2 and included: 
Clinical fluid-attenuated inversion recovery (FLAIR) sequences for detecting brain abnormalities, 
3DT1 for brain volume measurements, quantitative PD for MTV calculations sensitive to the solid 
fraction, quantitative T2* for susceptibility weighted and quantitative susceptibility mapping (QSM) 
for microbleeds and tissue composition, multi-shell diffusion-weighted imaging (DWI) for 
microstructure assessment, resting state functional MRI (fMRI) for brain function, quantitative 
magnetization Transfer (qMT) and bound pool fraction (BPF) for myelin integrity, MR spectroscopy 
(MRS) for metabolic profiling and arterial spin labelling (ASL) for blood perfusion. The protocol has 
been submitted for publication, while the functional MRI (fMRI) data was analysed and published, 
demonstrating alterations of functional connectivity in people with persistent anosmia (Wingrove, 
2023). 

Table 2: Quantitative Magnetic Resonance Imaging (qMRI) acquisition protocol 

 
Voxel 
[mm] 

FOV 
[mm] 

# Slices Sequence details 
TE 

[ms] 
TR 

[ms] 
FA 
[°] 

FLAIR 
3'26” 

FH=1 FH=256 
176 
sag 

3D-IR, TSE-factor=182 
SENSE: AP=3, RL=2 

TI=1650 ms 
266 4800 40 AP=1 AP=256 

RL=1 RL=176 

3DT1 
1’55” 

FH=1 FH=256 
176 
sag 

3D-FFE, TFE-factor=225 
SENSE: no 3.1 6.9 8 AP=1 AP=256 

RL=1 RL=176 

fMRI 
6’47” 

FH=3 FH=230 
42 

axial 
FFE, EPI-factor=25, SENSE=3 

dynamic scans=100 25 4000 90 AP=3 AP=230 
RL=3 RL=146 

pCASL 
7’15” 

FH=3 FH=240 
30 

axial 

3D-SE, TSE-factor=27 
SENSE: AP=1.9, RL=1 

dynamic scans=12, delay=2000 
ms 

12.1 4266 90 AP=3 AP=240 

RL=3 RL=90 

b0 
31” 

FH=2 FH=224 
72 

axial 
SE, EPI-factor=55, SENSE=2 

fold-over direction: PA 96 6287 90 AP=2 AP=224 
RL=2 RL=144 

b0  
(AP) 
31” 

FH=2 FH=224 
72 

axial 
SE, EPI-factor=55, SENSE=2 

fold-over direction: AP 96 6287 90 AP=2 AP=224 
RL=2 RL=144 

DWI 
8’41” 

FH=2 FH=224 
72 

axial 

SE, EPI-factor=55, SENSE=2 
b-values={0, 1000, 2800, 2000} 

# directions={4, 20, 36, 20} 
96 6279 90 AP=2 AP=224 

RL=2 RL=144 

IR 
4’28” 

FH=2 FH=224 
72 

axial 

SE, EPI-factor=55, SENSE=2 
TI=[50-1910] ms,  

12 TIs, dTI=120 ms 
59 6885 90 AP=2 AP=224 

RL=2 RL=144 

qMT 
4’57” 

FH=2 FH=224 
72 

axial 

SE, EPI-factor=55, SENSE=2 
offset: {96(x2), 13.7(x5), 3(x5)} 

MHz 
FAs: {100(x2), 890(x5), 593(x5)}° 

59 7626 90 AP=2 AP=224 

RL=2 RL=144 

B1 FH=2 FH=224 72 SE, EPI-factor=55, SENSE=2 59 15 120/ 
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(DAM) 
30”/30” 

AP=2 AP=224 axial x103 60 

RL=2 RL=144 

B1 
(AFI) 

1’57” 

FH=4 FH=256 
44 
sag 3D-FFE, SENSE: no 2.2 30/ 

180 60 AP=4 AP=256 
RL=4 RL=176 

SPGR 
(multi-TE) 

4’6” 

FH=1 FH=256 
256 
sag 3D-FFE, SENSE: no 

2.3-25.4 
8 TEs 

dTE=3.3 
29 24 AP=1 AP=256 

RL=1 RL=176 

SPGR 
4’6” 

FH=1 FH=256 
256 
sag 3D-FFE, SENSE: no 2.3 29 4 AP=1 AP=256 

RL=1 RL=176 

MRS 
4’52” 

~FH=20 
SV-PRESS, NEX = 128, SW = 

2000Hz, NP = 1024 35 2000 90 ~AP=20 

~RL=20 

FH/AP/RL = feet-head/anterior-posterior/right-left; FOV = field of view; TE/TR/TI = echo/repetition/inversion time; 
FA = flip angle; FFE/TFE = fast/turbo field echo; (T)SE m= (turbo) spin-echo; (FLA)IR = (fluid-attenuated) inversion 
recovery; EPI = echo planar imaging; fMRI = functional MRI; pCASL = pseudo-continuous arterial spin labelling; DWI = 
diffusion-weighted imaging; qMT = quantitative magnetisation transfer; DAM/AFI = dual angle method/actual flip 
angle; SPGR = spoiled gradient echo; MRS = magnetic resonance spectroscopy; SV-PRESS = (single voxel) point-resolved 
spectroscopy; NEX = number of excitations; SW = Spectral width; NP = number of spectral points. All EPI-based 
acquisitions (shaded cells) were set with a unified readout. 

 
Figure 2: Maps of quantitative metrics calculated from the MRI protocol acquired in this study 

MD = Mean Diffusivity; FA = Fractional Anisotropy; MK = Mean Kurtosis; VFiso = volume fraction of the isotropic 
component; ODI = Orientation Dispersion Index; NDI = Neurite Density Index; T1 = longitudinal relaxation time; T2 = 
transverse relaxation time; T2* = transverse relaxation time affected by local magnetic susceptibility; T2b = 
transverse relaxation time of bound protons; BPF = Bound Pool Fraction; MTV = macromolecular tissue volume; CBF 
= Cerebral Blood Flow; fMRI = resting state functional MRI; 3DT1 = high structural resolution anatomical T1-weighted 
scan. 
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Figure 3: Magnetic resonance spectroscopy (MRS) of the brainstem acquired for this study 

a, b, c) Sagittal, coronal and axial view of the cubic MRS voxel positioning on the brainstem – yellow box, 1cm 
dimension; d) Example of fitted spectrum with main metabolite labelled: tNAA = total N-Acetyl Aspartate; Glx =. 
Glutamine + Glutamate; tCr = total Creatine; tCho = total Choline; mIns = myo-Inositol. 

2.3 Clinical and para-clinical scores 
Participants of the prospective cohort were asked to undergo a neurological assessment comprising 
tests for muscle strength (MRC Muscle Strength Scale for upper and lower limb), 
cognition (Symbol Digit Modality Test, SDMT) and the University of Pennsylvania Smell Identification 
Test (UPSIT). In addition, patient-reported outcome measures (PROMs) and cardiovascular risks 
factors were also collected. The PROMs included the Quality of Life questionnaire (EQ-5D-5L), the 
Modified Fatigue Impact Scale (MFIS) and the Patient Health Questionnaire-9 (PHQ-9) depression 
test.  The participant responses were inputted into a tablet computer using the REDCap mobile app 
and the data was uploaded to the MODEL-COV database on REDCap, hosted on the UCL server.  
Participants were also able to complete the questionnaires in paper form, if preferred.  

All data, i.e. BMFs from qMRI analysis, clinical and paraclinical scores as well as blood sample results 
were compiled in a database for classical statistics and RF analysis, which will be available on 
EBRAINS after publication. 

2.4 Blood samples 
We acquired blood samples from all subjects to confirm their COVID status. We analysed the stored 
serum and extracted antibodies for CoV-2 N, CoV-2 RBD and CoV-2 S. 

CoV-2 S was the major indicator of COVID-19 in pre-vaccination time. 

However, post vaccination time, it is almost impossible to find COV-2 RBD and COV-2 S antigens 
negative due to vaccination. However, CoV-2 N stays negative during vaccination and indicates 
whether the person was infected by the SARS-CoV-2 virus and therefore was ill with COVID-19 if CoV-
2 N is positive. We used these results to validate the inclusion of subjects in the Ctrl cohort. 

3. Data analysis 

3.1 EBRAINS contribution 
We have exploited, benchmarked and enhanced the EBRAINS infrastructure by:  

• Contributing to the EBRAINS Medical Data Analytics, by developing a flexible code to simplify the 
use of the Random Forest (RF) algorithm for classification and feature ranking 
(https://github.com/hex808080/MODEL-COV).  

• Sharing acquisition protocols with other sites who would like to acquire consistent data, after 
publication of the protocol. 

https://github.com/hex808080/MODEL-COV
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• Involving healthcare companies. We are open to liaise with manufacturers to share a simplified 
version of our protocol with other users through industry-driven networks. 

• Uploading on EBRAINS the atlas of features calculated for the MODEL-COV cohort and the csv file 
with all the BMFs entered in the statistical analysis (currently stored on the following Directories: 
https://drive.ebrains.eu/d/73dd614abae84beeb6c3/ and 
https://drive.ebrains.eu/d/46787f216a504ef4a529/ and available on EBRAINS at this link 
https://search.kg.ebrains.eu/instances/1a8c1e14-5c81-4d61-af2c-154beb771b97  at the end of 
the curation process). 

• Exploiting TVB tools already available from EBRAINS 
(https://drive.ebrains.eu/f/c0e09710330744588270/). 

• Identifying the brain network of anosmia and sharing the regions of interest (ROIs) through 
GitHub (https://github.com/marta-gaviraghi/olfactory_atlas.git). 

3.2 Statistical analysis 

3.2.1 Classical statistic 

An initial analysis of BMFs from macro-areas (white matter, grey matter, deep grey matter and 
brainstem) of 59 subjects acquired in 2020, pre-vaccination, seems to indicate that iron accumulates 
in tissue in the presence also of inflammation, especially in people with anosmia. This was obtained 
using linear regression models with age and gender as covariates (paper in preparation).  

On the overall cohort of 124 subjects, once the robust means of all the BMFs metrics have been 
computed using the interquartile range (IQR) rule, a descriptive analysis of individual variables will 
be conducted to identify potential erroneous values. Basic statistical moments will be explored 
within the R Studio framework, which also enables to obtain histograms for visualizing the 
distribution of each metric. 

Subsequently, differences between patients (COVID and long COVID) and controls will be assessed 
with a linear regression, with age and gender as covariates. The same approach will be employed to 
determine which set of BMFs will better explain the clinical scores in this cohort of patients, 
including SDMT, UPSIT, MSIF and PHQ-9 scores. 

Furthermore, an advanced latent variable model will be explored to identify which BMFs are related 
to neurodegeneration, myelin integrity and inflammation and how they may contribute to the 
explanation of the clinical scores. It will be interesting to understand the role of iron accumulation 
in the context of long COVID, where people have suffered symptoms for several months. 

Finally, a refinement of the linear model will be done performing a LASSO (least absolute shrinkage 
and selection operator) analysis. This process will help select the best set of predictors and improve 
the accuracy and interpretability of the resulting statistical model. 

3.2.2 Random Forest Machine Learning 

Given the relatively small number of subjects and the large number of variables, we have explored 
possible ML algorithms including those proposed as part of the Medical Informatics Platform (MIP). 
We chose to use a Random Forest (RF) approach to test differences between groups and extract the 
most significant BMFs that explain group belonging. Interestingly, metrics revealing myelin damage 
are those that most significantly explain group differences, together with BMFs that are descriptive 
of inflammation. This work is ongoing as we are extracting features of iron accumulation and we are 
running TVB analysis on the entire cohort (see 3.3.), which will provide extra BMFs to be included in 
the database that is fed to the RF algorithm. The RF code is available on GitHub.  

  

https://drive.ebrains.eu/d/73dd614abae84beeb6c3/
https://drive.ebrains.eu/d/46787f216a504ef4a529/
https://search.kg.ebrains.eu/instances/1a8c1e14-5c81-4d61-af2c-154beb771b97
https://drive.ebrains.eu/f/c0e09710330744588270/
https://github.com/marta-gaviraghi/olfactory_atlas.git
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3.3 Whole-brain simulation with TVB  
We exploited EBRAINS computational models, included in TVB framework, to create personalized 
virtual brains of control subjects and people affected by COVID and long COVID for investigating 
their whole-brain dynamics. In particular, the Wong-Wang model was used to extract subject-
specific parameters relevant to the global coupling between different brain regions, and their overall 
excitatory-inhibitory balance.  

We started from diffusion and resting-state functional MRI data of each single subject to build 
personalized whole-brain structural and functional connectomes, respectively. The subject-specific 
structural connectome was reconstructed by combining advanced probabilistic tractography results 
(using the Anatomically-Constrained Tractography framework with a high number of streamlines) 
with an ad-hoc parcellation atlas, including both cerebral and cerebellar structures. The subject-
specific functional connectome was instead created by computing the Fisher-z transformed 
coefficient resulting from the correlation of the time-course of BOLD signals between pairs of nodes. 
These connectomes were directly imported and used in the FAST TVB Neuroinformatics Platform, 
downloaded from EBRAINS, to simulate brain dynamics. The simulation step required tuning of the 
model to identify the optimal combination of global and local parameters at network-level, providing 
an evaluation of important physiological features such as the balance between the excitatory and 
inhibitory synaptic strengths. In detail, these parameters are G, which is the global coupling, Ji, 
which represents the strength of inhibitory synapses, and JNMDA and w+, which represent the 
strength of excitatory synapses.  

 
Figure 4: Boxplot of model parameters from simulating brain dynamics 

Parameters of Global coupling (G), inhibition (Ji), excitation (JNMDA) and recurrent excitation (w+) are extracted for 
each subject from the virtual brain simulations using the Wong-Wang model. Here we show the boxplot of these 
parameters for subset of participants divided into 5 groups of healthy controls (HC), persistent anosmia subjects 
(Persistent), young participants who recovered from anosmia (Young Recovered), subjects who recovered from 
anosmia and were age matched to the persistent group (Old Recovered) and participants who did not have anosmia 
but had contracted the SARS-CoV-2 virus (NO anosmia). *indicates significant differences (p<0.05). 

This pipeline was applied to 55 subjects divided as follows: 21 healthy controls, 8 COVID participants 
that recovered from anosmia, 8 young COVID participants who recovered from anosmia, 8 COVID 
participants with persistent anosmia, and 10 COVID participants without confirmed anosmia. A 
multivariate general linear model with age and gender as covariates demonstrated that all 
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parameters were altered in participants with COVID (Figure 4). The analysis will continue until we 
include the entire cohort of subjects.  

Interestingly, participants who recovered from anosmia showed significantly higher value for G and 
Ji with respect to the other groups, meaning that distant nodes were more strongly connected and 
showed higher synchronicity. This finding suggests that people recovering from anosmia may be 
characterized by hypersynchrony, which is typical of impaired brain networks attempting to create 
compensation mechanisms. Furthermore, young participants who recovered form anosmia showed 
significantly higher JNMDA values and lower w+ values with respect to persistent anosmia subjects, 
suggesting that acute or chronic phases are characterized by decrease excitation strength while an 
increment is related to the ability of NMDA receptors to perform neuroplasticity and to recover from 
injury. 

3.4 fMRI of anosmia 
Forty-six subjects underwent a resting state fMRI protocol to understand possible changes in resting 
state functional connectivity due to anosmia symptoms post COVID-19. The study found significant 
resting state connectivity difference between individuals who had persistent anosmia after 
contracting COVID-19 and those who recovered from it or never contracted the SARS-CoV-2 virus. In 
particular, there was hypo-connectivity between the left orbito-frontal cortex and a region in the 
left dorsal anterior cingulate cortex, known to be involved in odour processing. Interestingly there 
was hyper connectivity between the right anterior insula and the left crus I region of the cerebellum. 
Full results are to be found in Wingrove et al, 2023. We are in the process of repeating this analysis 
across the whole cohort of 124 participants. 

3.5 Olfactory circuit evaluation  
We were further interested in analysing how specific brain networks are affected by COVID. Since it 
is known that a significant percentage of people infected by SARS-CoV-2 present with anosmia, we 
investigated how the olfactory circuit was altered. To detect acute or chronic impairment, both 
participants with persistent anosmia and those who recovered were included in the analysis. 

An overall number of 35 grey matter nodes were identified based on structural and functional brain 
networks linked to anosmia, as reported in literature. The regions included the olfactory bulb, 
cortical areas (i.e. anterior olfactory nucleus, olfactory tubercle, piriform cortex, entorhinal cortex 
and orbitofrontal cortex), subcortical areas (i.e. amygdala, thalamus, hippocampus, hypothalamus, 
insula), brain stem, cerebellar area (i.e. crus I, crus II, lobule VI, lobule VIII, lobule IX and dentate 
nucleus). Most of them were extracted from standard parcellation atlases, such as Brodmann, 
Harvard Oxford, Juelich atlas, while the olfactory bulbs were manually drawn by three different 
operators and the final ROI segmentation was obtained considering the voxel segmented by at least 
two operators. 

To generate the white matter bundles of the olfactory circuit, high resolution whole-brain 
tractography of 10 healthy subjects of the Human Connectome Project were used. Starting from the 
identified 35 ROIs, for each subject, all the combinations of tracts connecting two ROIs were 
extracted. Only tracts existing in all subjects were then considered as realistically belonging to the 
network. Each resulting tract was registered into the common MNI space and the average tract of 
the 10 subjects was calculated. Our goal was to create an atlas of tracts, so each voxel was 
associated with one tract only, therefore if the voxel belonged to two or more tracts, the tract with 
the highest number of streamlines in that specific voxel was considered (Figure 5). 
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Figure 5: Atlas of the olfactory network white matter tracts 
Different colours show ROIs corresponding to different white matter axonal bundles. 

The atlas of ROIs and tracts obtained with this method has been subsequently applied to a subset of 
48 subjects of the COVID database (17 Controls, 14 COVID, 8 COVID anosmia, 9 COVID recovered 
anosmia) to investigate whether there are statistically significant variations, between the different 
groups, in the microstructural features and in the volume of the regions and tracts involved in the 
olfactory circuit. Results will be presented at scientific conferences as well as written up for peer 
reviewed publication. ROI files are available on GitHub and upon request after publication 
(https://github.com/marta-gaviraghi/olfactory_atlas.git). 

4. Looking Forward 
The database gathered during these last 18 months of HBP, thanks to the open call on COVID-19, 
allowed us to put together an extensive database of 124 subjects that will be further analysed for 
the months to come in order to gather as much information as possible on long COVID. 

The database will contribute to a rich atlas-based set of features of the human brain, obtained with 
MRI that will be available to others for research questions that may also be beyond long COVID. 

The research outcomes from this project will leverage publications that will have scientific and 
clinical impact. It will also potentially lead to further grant funding for longitudinal studies of long 
COVID cohorts.  

https://github.com/marta-gaviraghi/olfactory_atlas.git
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The richness of the protocol and the advanced statistical analysis, including ML algorithms and TVB 
brain modelling, will drive future technical innovations in terms of clinical impact of these tools in 
understanding new diseases such as the neurological consequences of SARS-CoV-2 infection. 
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5.2 Data 
• Ransom Forest wrapper code: https://github.com/hex808080/MODEL-COV  

• Olfactory network atlas: https://github.com/marta-gaviraghi/olfactory_atlas.git 

• NIFTI MAPS for the entire cohort: https://drive.ebrains.eu/d/73dd614abae84beeb6c3/ 

• METADATA for the entire cohort: https://drive.ebrains.eu/d/46787f216a504ef4a529/ 
• Link EBRAINS per database: https://search.kg.ebrains.eu/instances/1a8c1e14-5c81-4d61-af2c-

154beb771b97   
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