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EBRAINS Closed loop AI and robotics workflows 
(D5.11 – SGA3) 

 

An integration of in-silico simulation capabilities of lower body assistive robotics in the HBP 
Neurorobotics Platform, based on the CESPAR (Closed-loop Exoskeleton Simulation for Personalised 
Assistive Rehabilitation) project - see Clarification about subject matter. 

 

 
Figure 1: Human musculoskeletal systems and robotic assistive device in-silico simulation 

environment 
CESPAR adds a feature to the HBP Neurorobotics Platform, to perform experiments with a closed-loop, biologically 
plausible control architecture. It comprises a neuromuscular model of human gait with an attached assistive robotic 
device (An exoskeleton for lower limb from Autonomyo SARL). The aim is to study simulated neurorehabilitation of 
patients with lower limb motor control diseases. 
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Clarification about subject matter 
The title and the task description of this deliverable, D5.11, as defined in the HBP SGA3 Grant 
Agreement, mistakenly duplicated those of deliverable D5.9: 

● D5.9 Title: EBRAINS Closed loop AI and robotics workflows 

● D5.9 Description: Neurorobotics Platform release with improved functionality, extended 
content, and updated inventory of related closed-loop models, tools, and services prepared for, 
or released through the EBRAINS portal. 

● D5.11 Title: EBRAINS Closed loop AI and robotics workflows 

● D5.11 Description: Neurobotics Platform release with improved functionality, extended 
content, and updated inventory of related closed-loop models, tools, and services prepared for, 
or released through the EBRAINS portal.1 

The intended focus of the deliverable D5.11 is defined in the description of the Task responsible for 
it, Task T5.20, in the same SGA3 Grant Agreement, which reads as follows: 

Task T5.20 Personalised human musculoskeletal model and exoskeleton coupling 

CEoI Wave 2: Engagement of Industry, SMEs and start-ups 

This Task will enhance the capabilities of HBP SGA3 WPO5.2 objectives. It will be a direct usage of 
the HBP NRP in the industrial and clinical applications. An add-on tool will be provided that will 
allow physiotherapists and patients to avoid exhausting experiments as well as allow exoskeleton 
companies to design their products while having an ability to adjust their solutions with a closed-
loop simulation environment. The integrated add-on tool aims at enabling users (e.g. an exoskeleton 
or prosthesis company, biomechanics researcher, computational neuroscientists, physiotherapists) 
to simulate the interactions between brain and spinal cord models, external devices and the human 
musculoskeletal model of a patient. The tool will embed the biomechanics, virtual muscles, deep 
neural networks for the control and adjustment of the exoskeletons/prosthesis. The implementation 
will be based on a modular control architecture that will allow users to adapt their devices to study 
the interest of therapy regimes, and will focus on lower-limb rehabilitation strategies. The partner 
(company) will evaluate the maturity level of the developing technology/tool and elaborate a full 
exploitation plan for that technology, to be updated every six months. The plan will demonstrate 
that the technology will be ready for scientific and/or industrial exploitation through EBRAINS, and 
make special emphasis on the IP strategy, market approach, and the steps taken to eventually obtain 
further public and/or private funding. 

List of Outputs to which this Task contributes: 

● OP5.41 (M15-M30): Automation of the modelling and personalised human musculoskeletal 
simulations along with exoskeleton coupling. 

● OP5.42 (M21-M35): Optimisation pipeline of the human gait and rehabilitation scheme. 

● OP5.43 (M24-M39): Clinical experiments and validation of the add-on tool for the patients with 
motor control disorders. 

  

 
1 By the time this error was detected, it was too late to correct it by modifying the Deliverable title and 
description via an amendment of the Grant Agreement. 
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1. Introduction 
The fundamental role of the Central Nervous System (CNS) lies in its ability to perceive changes in 
the environment and execute appropriate motor skills. These motor skills encompass a wide range 
of actions that individuals perform to achieve their goals, driven by amusement, survival instincts, 
or curiosity. Remarkably, the CNS can acquire new motor skills and integrate them with existing 
ones, thereby reorganising the sequence of learned actions and enhancing motor control capabilities. 
Research has shown that these learned motor skills can persist throughout an individual's lifetime, 
indicating the long-term storage capacity of the CNS through a mechanism of retained plasticity. 
However, there is still active research interest in understanding the division of labour involved in 
acquiring new motor skills and executing integrated ones, as well as the role of perception and 
sensory integration across distributed motor areas. 

Controlling the musculoskeletal system poses a computational challenge because it involves 
managing a complex, dynamic system consisting of multiple interconnected bodies. These bodies 
have the ability to move in various ways, which are quantified by degrees of freedom. Degrees of 
freedom represent the number of independent variables required to describe the system's motion 
fully. Additionally, the musculoskeletal system possesses redundant muscle units, meaning there are 
more muscles available than strictly necessary for accomplishing a particular movement or task. In 
simpler terms, the challenge lies in effectively coordinating and managing the movements of a 
dynamic, multi-part system with many possible ways of moving and more muscles than needed. 

Specifically, controlling skeletal joints with antagonistic muscle pairs is an ill-posed nonlinear 
problem that requires robust methods. To address this scientific challenge, computational models 
of human motor control systems have been developed with the aim of uncovering the underlying 
structure of human mobility, its capabilities and limitations. These models take into account both 
neuroscientific and biomechanical perspectives, as the motor control system represents a closed 
action-perception loop within the CNS. Specifically, neuromechanical simulations have been used to 
create computational models that evaluate and validate physically accurate movements of a human 
musculoskeletal system. While there have been significant advancements in biologically plausible 
motor control models that explain principles of human mobility such as goal-directed behaviours, 
walking, and running, the application of neuromechanical simulations to motor control-related 
diseases and traumas remains a significant challenge. Conditions like amputation, paraplegia, muscle 
weakness due to ageing, cerebral palsy and stroke pose complex problems that necessitate further 
exploration and development of accurate computational models to better understand and address 
them. 

In this deliverable, we describe a two-fold optimisation and learning framework, the CESPAR 
exoskeleton simulator, that tackles the computational challenges arising from mechanically coupled 
assistive robotic control and human musculoskeletal system. This coupling allows us to study how 
the exoskeleton influences and interacts with the human musculoskeletal system. Essentially, we 
also explore how assistive robotics and the human body work together and influence each other in 
our computational simulations. In the first part of our framework, we employed meta-heuristic 
model optimisation to generate energy-efficient skeletal trajectories that closely mimic human 
movements. This optimisation process enabled us to obtain desired trajectories for the 
musculoskeletal system. In the second part, we utilised deep reinforcement learning techniques to 
determine a sequence of stimuli that should be applied to the actuators of the assistive robotics 
device to achieve the desired skeletal trajectories of an impaired movement. It is noteworthy that 
efficient construction of the desired muscle stimulus relied on integrating the state and control input 
in a closed-loop setting, emulating the proprioceptive integration observed in spinal cord circuits. 

The Human Brain Project’s Neurorobotics Platform2 (HBP-NRP) aims to bridge the gap between 
computational models and physical reality by establishing connections between physical sensors, 
actuators, devices and simulated brains. The primary objective is to facilitate realistic closed-loop 
experiments that encompass the perception-cognition-action loop. By leveraging the capabilities of 
the HBP-NRP, computational models can be enhanced to gain a deeper understanding of the human 

 
2 https://neurorobotics.net/ 
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motor control system. In this deliverable, we applied this approach to the field of clinical 
neurorehabilitation, specifically focusing on patients with motor control diseases. 

Our work involved evaluating a biologically plausible motor control architecture by integrating 
exoskeletons/exosuits into the HBP-NRP. This integration allowed for the assessment of how these 
devices interact with the patient's motor control system. To accomplish this, we introduced an 
additional tool within the HBP-NRP that enables users, such as exoskeleton companies, biomechanics 
researchers and computational neuroscientists, to incorporate their models or devices into the 
human musculoskeletal model of the patient. This tool also facilitated the coupling of exoskeletons 
with the patient's musculoskeletal system, driven by a spinal cord model. 

By leveraging the HBP-NRP and utilising this novel tool, we anticipate significant advancements in 
the field of clinical neurorehabilitation. The ability to integrate exoskeletons and assess their impact 
on the patient's motor control system within a realistic closed-loop experiment will provide valuable 
insights for designing effective rehabilitation strategies. This research endeavour represents a 
crucial step toward improving the quality of computational models and expanding our understanding 
of motor control in individuals with motor control diseases. 

This deliverable addresses two key aspects of our software development activities, specifically 
highlighting their implications for users in the fields of neurorehabilitation and assistive robotics. 
The first aspect is a tool that allows integration of assistive robotic devices, scaling them to a 
patient’s anatomy and coupling them to the patient’s musculoskeletal model, without limiting the 
joints’ range of motion. The second is an optimisation and learning pipeline that finds optimal 
musculoskeletal control actions to reproduce a human movement in simulation and also allows for 
the design and integration of control architecture for assistive robotic devices. To achieve the second 
objective, we employed large-scale simulations utilising the EBRAINS infrastructure, predominantly 
leveraging the Piz Daint supercomputer located in Lugano, Switzerland. 

By integrating scaling techniques into our software, we aimed to enhance the applicability and 
versatility of the developed solutions for users in the neurorehabilitation and assistive robotics 
industries. The automated adjustment of human musculoskeletal modelling provides a flexible 
framework that can be tailored to individual users' needs, enabling personalised and optimised 
rehabilitation or assistance. Furthermore, coupling patients’ musculoskeletal models with assistive 
robotic devices allows for a better understanding of human-machine interactions and makes it 
possible for more fine-grained assistive control schemes to be implemented. 

Our optimisation and learning pipeline should play a crucial role in achieving human-like 
musculoskeletal movement and controlling the assistive robotic devices. By mimicking human 
movements, we showed that we could generate realistic trajectories that should facilitate effective 
rehabilitation or assistance. Simultaneously, the control architecture of the assistive robotic devices 
should benefit from a robust learning process that adapts to the user's specific needs and 
requirements, resulting in more efficient and intuitive device operation. 

To support the development and evaluation of these advanced functionalities, we have leveraged 
the powerful computational capabilities of the EBRAINS infrastructure. The Piz Daint supercomputer, 
known for its high performance, has enabled us to conduct large-scale simulations that validate the 
effectiveness and feasibility of our proposed approaches. By utilising these resources, we can 
optimise our software and ensure its practical viability before implementation in real-world 
scenarios. 

In summary, this deliverable describes the integration of scaling, automated adjustment of human 
musculoskeletal modelling and coupling with assistive robotic devices, all within an optimisation and 
learning pipeline. Leveraging the computational power of the EBRAINS infrastructure, specifically 
the Piz Daint supercomputer, we have demonstrated the potential value of our software in the 
context of neurorehabilitation and assistive robotics. This research should pave the way for improved 
solutions that can significantly benefit users in these domains, help people who have lost the ability 
to walk, to do so in a natural manner with the assistance of an exoskeleton and enabling more 
efficient and intuitive control of assistive robotic devices. 
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2. Neuromechanical models of human locomotion 
Walking is a critical aspect of daily life, and the ability to move without pain, fatigue or gait deviation 
is strongly associated with a good quality of life. Moreover, mobility plays a crucial role in 
maintaining overall health, as it provides protective effects against various conditions such as heart 
disease, osteoporosis, diabetes and dementia (CDC of the USA, 20233). However, neurological 
disorders like stroke often lead to significant motor impairments, including walking difficulties. 
Stroke survivors typically undergo rehabilitation to enhance their sensory, motor and functional 
capabilities. Robotic solutions can aid in this rehabilitation process, particularly during the acute 
phase, by increasing the intensity of therapy, and may also be useful for aiding post-surgery 
rehabilitation, in cases where patients need help in “relearning” how to use their legs. The 
integration of robotics, such as the use of exoskeletons for gait rehabilitation, continues to improve 
and influence rehabilitation practices. However, there are several unresolved challenges that 
impede the rapid adoption of exoskeletons for stroke patients. 

One of the challenges lies in developing an effective interaction strategy between the exoskeleton 
and the human user. This requires ensuring efficient back-drivability of the device and considering 
the user's intention in the control process. Currently, many existing devices primarily target 
individuals with complete paraplegia, where pre-computed gait trajectories can be implemented 
without much adaptation. However, a distinction must be made between mobilisation and walk-
assistance. Mobilisation involves providing a defined desired gait using precomputed trajectories, 
while walk-assistance requires continuous adaptation of joint actuation to the user's intent and 
capabilities. To design personalised exoskeleton control and rehabilitation schemes, it is crucial to 
quantify the patient's intent, capabilities and restrictions. This involves adapting precomputed gait 
trajectories to the patient's musculoskeletal conditions, considering the capabilities of the 
exoskeleton, and optimising the rehabilitation protocol accordingly. 

To address these challenges, this project established a closed-loop musculoskeletal and exoskeleton 
simulation, allowing clinicians to study rehabilitation strategies and enabling exoskeleton companies 
to customise their physical devices to meet the specific needs of individual patients. The integration 
of this simulation within the HBP-NRP provides a virtual environment for clinicians and researchers 
to explore and refine rehabilitation approaches. By leveraging the capabilities of the HBP-NRP, 
valuable insights can be gained, contributing to the advancement of personalised rehabilitation and 
the development of more effective exoskeleton systems. 

2.1 Early Models of Locomotion 
Extensive research spanning several decades has been dedicated to the investigation of locomotion 
control, particularly in the context of animal locomotion. Early studies involved surgical removal of 
the cerebrum and transection of the spinal cord, allowing researchers to examine locomotion in the 
absence of descending signals from the brain and spinal cord above the transaction point (Flourens, 
18244; Sherrington, 19105). Notably, Sherrington observed that the release of a hind limb from a 
flexed position triggered a series of locomotor-like movements characterised by alternating 
contractions of the muscles. This observation led to the proposition that locomotion control relies 
on a chain of spinal reflexes. However, further investigations challenged this reflex-based 
perspective. 

 
3 Physical activity helps prevent chronic diseases (2023) Centers for Disease Control and Prevention. Available 
at: https://www.cdc.gov/chronicdisease/resources/infographic/physical-
activity.htm#:~:text=Regular%20physical%20activity%20helps%20improve,depression%20and%20anxiety%2C%20
and%20dementia. 
4 Flourens, MJP. (1824). ‘Recherches expérimentales sur les propriétés et les fonctions du système nerveux 
dans les animaux vertébrés’, Paris: Crevot. 
5 Sherrington, C.S. (1910) ‘Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and 
standing’, The Journal of Physiology, 40(1–2), pp. 28–121. doi:10.1113/jphysiol.1910.sp001362. 

https://www.cdc.gov/chronicdisease/resources/infographic/physical-activity.htm#:%7E:text=Regular%20physical%20activity%20helps%20improve,depression%20and%20anxiety%2C%20and%20dementia
https://www.cdc.gov/chronicdisease/resources/infographic/physical-activity.htm#:%7E:text=Regular%20physical%20activity%20helps%20improve,depression%20and%20anxiety%2C%20and%20dementia
https://www.cdc.gov/chronicdisease/resources/infographic/physical-activity.htm#:%7E:text=Regular%20physical%20activity%20helps%20improve,depression%20and%20anxiety%2C%20and%20dementia


   

 

D5.11 (D100) SGA3 M39 PU = Public 7-Jun-2023 Page 9 / 26 
 

T.G. Brown, a student of Sherrington, conducted experiments with spinally transected cats and 
questioned the reflex-driven nature of locomotion control. Despite the transection of sensory nerves 
entering the spinal cord, Brown observed coordinated contractions of the extensor and flexor 
muscles in the hind limbs (Brown, 19116). This finding suggested the presence of an intrinsic factor 
within the spinal cord capable of generating alternating locomotor-like motions without the 
involvement of descending signals from the brain or sensory inputs. This intrinsic factor was later 
referred to as the Central Pattern Generator (CPG) by Grillner (Grillner, 19757). CPGs have since 
been identified in various species of vertebrates and invertebrates, highlighting their widespread 
presence and significance in locomotion control (Grillner, 1975). 

The discovery and characterisation of CPGs have greatly advanced our understanding of the 
underlying mechanisms of locomotion. These intrinsic neural networks within the spinal cord play a 
vital role in generating coordinated patterns of muscle activity necessary for locomotor behaviours. 
Their existence across different species suggests a fundamental, conserved role in the control of 
movement. The study of CPGs continues to shed light on the intricate interplay between neural 
circuits and motor behaviours, furthering our knowledge of locomotion control in both physiological 
and pathological conditions. 

2.2 Feedback Models 
While CPGs have been extensively studied as a fundamental mechanism underlying locomotion 
control, there are research groups that explore locomotion control models without relying on a CPG 
layer. In these alternative models, locomotion is predominantly driven by reflexive feedback control 
mechanisms that utilise sensory inputs from various muscles or muscle groups, adapting to the 
environment and the body's requirements (Geyer & Herr, 20108; Song & Geyer, 20159). 

Unlike CPG-based control, which involves intrinsic neural networks within the spinal cord, reflexive 
feedback control relies on sensors distributed throughout the body, including the spinal cord and, in 
the case of humans, the supraspinal nervous system. These sensors provide essential feedback signals 
that inform the control system about the current state of the muscles and the environment, allowing 
for adaptive and context-dependent locomotion control (Geyer & Herr, 2010; Song & Geyer, 2015). 

By focusing on reflexive feedback control, these research efforts contribute to a comprehensive 
understanding of the different mechanisms involved in locomotion control. While CPGs provide an 
important framework for generating rhythmic patterns of movement, reflexive feedback control 
highlights the significance of sensory feedback and the integration of multiple sources of information 
to achieve effective locomotion in diverse conditions. The investigation of these alternative control 
strategies offers valuable insights into the complexity and versatility of locomotion control 
mechanisms and their role in adapting to changing environments. 

2.2.1 H. Geyer’s Reflex Controller  

In a study conducted by H. Geyer and colleagues in 2010, a bipedal walking model was introduced 
that incorporated      muscle reflexes to emulate the intricate interactions between the environment 
and the body during walking (Geyer & Herr, 2010). The model aimed to capture the fundamental 

 
6 Brown, T.G. (1911) ‘The intrinsic factors in the act of progression in the mammal’, Proceedings of the Royal 
Society of London. Series B, Containing Papers of a Biological Character, 84(572), pp. 308–319. 
doi:10.1098/rspb.1911.0077. 
7 Grillner, S. (1975) ‘Locomotion in vertebrates: Central mechanisms and reflex interaction’, Physiological 
Reviews, 55(2), pp. 247–304. doi:10.1152/physrev.1975.55.2.247. 
8 Geyer, H. and Herr, H. (2010) ‘A muscle-reflex model that encodes principles of legged mechanics produces 
human walking dynamics and muscle activities’, IEEE Transactions on Neural Systems and Rehabilitation 
Engineering, 18(3), pp. 263–273. doi:10.1109/tnsre.2010.2047592. 
9 Song, S. and Geyer, H. (2015) ‘A neural circuitry that emphasizes spinal feedback generates diverse 
behaviours of human locomotion’, The Journal of Physiology, 593(16), pp. 3493–3511. doi:10.1113/jp270228. 
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principles of legged mechanics and replicate a stable and robust walking gait similar to that observed 
in humans. 

The basis of this model lay in a conceptual bipedal spring-mass framework, which served as a 
foundation for understanding the dynamics of bipedal locomotion. By augmenting this framework 
with principles derived from legged mechanics, the model integrated crucial aspects such as 
compliant leg behaviour, ground reaction forces, and energy transfer mechanisms during walking 
(Geyer & Herr, 2010). 

The inclusion of muscle reflexes in the control scheme added an additional layer of realism to the 
model. These reflexes, driven by sensory feedback from the environment and the body, enabled the 
adaptation of the walking pattern in response to changes in terrain or disturbances. By incorporating 
reflexive control mechanisms, the model demonstrated the ability to generate walking gaits that 
exhibit stability and robustness similar to those observed in human locomotion (Geyer & Herr, 2010). 

The work by Geyer and colleagues highlighted the significance of legged mechanics and muscle 
reflexes in achieving realistic bipedal walking. By encoding these principles into their model, a 
comprehensive understanding of the underlying mechanisms and control strategies involved in 
human walking could be gained. Such models serve as valuable tools for studying locomotion and 
contribute to the development of bipedal robots and assistive devices that aim to replicate human-
like walking patterns and enhance overall stability and adaptability. 

 
Figure 2: Geyer Model Architecture [Geyer & Herr, 2010] 

As depicted in Figure 2, the model constructed by Geyer and colleagues in 2010 represents a 
simplified human body configuration, consisting of a trunk and two legs composed of hip, knee and 
ankle joints. Figure 2A depicts the starting point of the lower body model as a point-mass trunk with 
two massless springs representing the legs. In Figure 2B, positive force feedback (F+) was added to 
the SOL and VAS muscles to generate compliant leg behaviour. In Figure 2C, a positive force feedback 
was added to the GAS muscle to prevent knee overextension and inhibition of the VAS muscle. In 
Figure 2D, the trunk was compelled to a lean angle by the hip muscles (GLU, HAM and HFL), with 
the HAM muscle preventing hyperextension of the knees. In E, swing motion of the legs was aided 
by increasing/decreasing the constant stimulation of HFL and GLU, respectively, and VAS was 
inhibited proportionally to the load that the opposite leg bears. Finally, in Figure 2E, the model is 
complete with the addition of negative length feedback (L-) from the HAM muscle, positive length 
feedback (l+) from the TA muscle to flex the ankle, and positive force feedback from GLU and HAM 
muscles enabling the leg to be retracted and straightened during the swing. The leg segments are 
divided into three segments each, enabling a direct comparison to the corresponding joints found in 
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human locomotion. In terms of muscle actuation, each sagittal leg incorporates seven Hill-type 
muscles, mirroring the muscle groups utilised by humans during walking. 

The 2D neuromuscular model developed by Geyer et al. predominantly operates through a feedback 
mechanism, devoid of a feedforward component. This characteristic highlights the reliance on 
sensory information and reflexive responses to generate a stable,      human-like walking gait. The 
absence of a feedforward component signifies that the model does not incorporate anticipatory 
control strategies. 

Expanding upon Geyer et al.’s work leads to introducing a 3D neuromuscular model. This enhanced 
model builds upon the principles established by Geyer et al., aiming to achieve a more 
comprehensive representation of human locomotion, within a three-dimensional context. These 
models, through their inclusion of realistic joint structures and muscle actuation patterns, contribute 
to the understanding of biomechanics and provide valuable insights for the development of humanoid 
robots and assistive technologies aimed at achieving human-like locomotion. 

2.2.2 Adapted musculoskeletal model in CESPAR 

In the CESPAR project, we made adaptations to the model proposed by Geyer et al. (2010) to 
facilitate various experimental investigations. Our modifications entailed simplifying the model and 
shifting the control paradigm to a 2D framework, thereby eliminating the inclusion of the 3D HAB 
(hip abductor) and HAD (hip adductor) muscles present in the original model as shown in Figure 3 
(left). 

By making these adjustments, we aimed to streamline the experimental setup and focus on specific 
aspects of locomotion control within a 2D domain. This allowed for a more targeted analysis of the 
underlying mechanisms and dynamics involved in generating stable walking gaits. By removing the 
3D HAB and HAD muscles, we effectively reduced the complexity of the model, while maintaining 
its core features and functionality. 
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Figure 3: (left) Removed muscles. (right) Adapted Musculoskeletal model in CESPAR. 

As a result, the revised model now incorporates a total of nine muscles per leg, namely GAS 
(gastrocnemius), BFSH (biceps femoris short head), GLU (gluteus maximus), HAM (hamstrings), HFL 
(hip flexors), RF (rectus femoris), SOL (soleus), VAS (vastus), and TA (tibialis anterior). In addition, 
the model comprises seven segments, encompassing the thigh, shank, foot, and trunk representing 
the upper body as shown in Figure 3 (right). Within this framework, three internal degrees of freedom 
(DOFs) are taken into account, specifically hip flexion, knee, and ankle DOFs, resulting in a total of 
six internal DOFs in the musculoskeletal model employed for this project. Furthermore, the model 
retains the inclusion of the four contact points per foot. 

The utilised model is characterised by a state vector consisting of 85 variables, including: muscle 
states (length, velocity, and force) for both legs (54 variables); joint states and angles (16 variables) 
of the hip, knee and ankle; ground contact information (6 variables), reflecting ground reaction 
forces (GRF); and pelvis state (height, pitch, roll and 6 velocities), totalling 9 variables. The outputs 
of the controller are described by an 18-dimensional vector representing the muscle activations of 
the 9 muscles in each leg, with activation values ranging between 0 and 1. These activations are 
generated by the spinal reflex modules, contributing to the control of motion in the model. 

In summary, this model connects the three segments of each leg through joints and governs its 
motion through the excitation of muscles. It offers a comprehensive representation of the 
musculoskeletal system and provides a detailed set of variables and activations that capture the 
dynamics and control of locomotion. 
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2.3 Assistive robotic device coupling with human 
musculoskeletal system 

The primary challenge associated with fine-tuning exoskeleton controllers in the absence of a closed-
loop simulation lies in the substantial time and effort required from physiotherapists and patients to 
execute this task. Conducting tests with human subjects under the supervision of physiotherapists 
proves to be not only time-intensive and expensive but also an unpleasant experience for both 
patients and practitioners. The core objective of the presented deliverable is to automate the 
personalization process of exoskeleton controllers and rehabilitation schemes, utilizing the closed-
loop simulation architecture of the HBP-NRP along with biologically plausible models and controllers. 
The tool for personalized exoskeleton adjustment and rehabilitation suggestions aligns with the 
principles of HBP-NRP, enabling researchers to replicate traditional experiments in a virtual 
environment before applying their hypotheses to real-world scenarios. The deliverable involves the 
utilisation of an existing exoskeleton, Autonomyo, previously tested for Spinal Cord Injury (SCI) 
patients and developed by the Laboratory of Robotic Systems (LSRO) at EPFL Switzerland. 
Autonomyo, a walk assist exoskeleton with six actuated degrees of freedom, addresses key points 
such as the abduction/adduction of the hip joints in addition to the flexion/extension of the hip and 
knee joints to enhance lateral balance. The control over hip adduction/abduction is crucial for 
dynamic control of lateral step length, a significant factor in stability during double support phases. 
Autonomyo, weighing less than 25 kg, incorporates cable-driven transmissions from electrical 
motors, all positioned at the back, contributing to its highly backdrivable nature.  

This deliverable was dedicated to addressing the challenges associated with predictive 
neuromechanical simulations and neurorehabilitation. The primary objective was to develop 
predictive simulations for exoskeleton applications within the context of neurorehabilitation. The 
overarching idea is to generate motions and desired behaviours without direct reliance on 
experiments involving human subjects and rehabilitation assistants. The focus of these studies is on 
comprehending the impact of assistive robotics devices on human subjects. By successfully predicting 
motions that align with the needs of human subjects using exoskeletons, the aim is to expedite 
rehabilitation treatments while minimising the reliance on experiments involving patients and 
rehabilitation assistants. This approach not only accelerates patient rehabilitation but also reduces 
the associated burden on both patients and rehabilitation assistants, thereby potentially lowering 
the overall procedural costs. Introducing such simulation platforms aims at a potential enhancement 
to streamline these experiments and facilitate necessary adjustments of the exoskeleton according 
to the specific requirements of the subjects involved. 

As a part of the deliverable, we integrated the Autonomyo exoskeleton into the OpenSim 
musculoskeletal simulation framework which is an open-source software to facilitate biomechanical 
modeling, simulation and analysis (see Figure 410), aiming to establish a robust mechanical coupling 
between the exoskeleton and the human musculoskeletal model. With this integration, we enhanced 
the capabilities of OpenSim to delve into the interconnected mechanics of the human 
musculoskeletal system and exoskeletons. Our project, CESPAR, extends the functionalities of 
OpenSim to specifically focus on the study of the interaction and integration between exoskeletons 
and the human body. This integration offers the first proof-of-concept enabling realistic simulations 
and evaluations of exoskeleton-assisted human locomotion, and represents a significant 
enhancement of the capabilities of the HBP Neurorobotics Platform, not to mention an advance in 
neurorobotics as a discipline.      To ensure an accurate representation of the exoskeleton, meticulous 
adjustments and validations were conducted on the inertial properties of its various components. 
Through comprehensive analysis and experimental validation, the exoskeleton model's inertial 
parameters were refined, contributing to the fidelity and realism of the simulation. 

Building upon the validated exoskeleton model, subsequent modifications and scaling were applied 
to align it precisely with the human musculoskeletal model, primarily focusing on achieving 
compatibility in the sagittal plane. By adjusting the exoskeleton's dimensions, joint positions and 

 
10 The details of this integration are provided as part of the source code documentation at 
https://github.com/alpineintuition/cespar/blob/main/md_files/opensim.md. 

https://github.com/alpineintuition/cespar/blob/main/md_files/opensim.md
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segment lengths, an initial configuration was established that closely resembled the human 
musculoskeletal system's biomechanical characteristics. To achieve a physically integrated coupling 
between the exoskeleton and the human musculoskeletal model, straps were employed to attach 
the exoskeleton securely to the corresponding anatomical landmarks. This mechanical connection 
ensured a reliable and stable interaction between the two systems during simulations and provided 
a foundation for analysing the dynamic interactions between the exoskeleton and the underlying 
musculoskeletal structure. The development of the automation of the alignment and scaling between 
human musculoskeletal system and exoskeleton was performed jointly by Alpine Intuition and 
Autonomyo. Autonomyo also provided engineering support for building the model generator and 
automatic scaling scripts that apply the individualised scaling factors to each of the following five 
body parts: torso, pelvis, femurs, tibias and feet, along with their corresponding joints in the 
exoskeleton. 

The final implementation achieved congruence in terms of size and geometry between the 
musculoskeletal and exoskeleton models. This alignment significantly reduced assembly errors and 
joint range limitations, enhancing the overall accuracy of the simulation. The primary objective was 
to establish a seamless, synchronised movement by both the exoskeleton and the musculoskeletal 
system. By enabling the exoskeleton to faithfully replicate the movements generated by the 
musculoskeletal system, and vice versa, a fully integrated and mechanically optimised coupling was 
achieved. This coupling technique paves the way for more efficient and natural human-assistive 
robotic devices interactions. 

To ensure the stability and consistency of the coupling in a simulation environment, point-in-line 
constraints were employed. These constraints acted as virtual anchors, allowing precise control of 
the interaction forces and ensuring a stable, reliable mechanical connection between the 
exoskeleton and the musculoskeletal model. To foster collaboration and facilitate further 
advancements, the initial implementation of this coupling methodology and the developed 
simulation framework, were shared with the HBP Neurorobotics team. This collaborative effort 
aimed to enhance the HBP Neurorobotics Platform, integrating our new software into its framework. 
By doing so, researchers and practitioners in the field would gain access to a powerful tool for 
studying and optimising exoskeleton-assisted locomotion, ultimately enhancing the development and 
deployment of exoskeleton technologies in real-world applications. 

The procedure of the mechanical coupling in simulation between exoskeletons and human 
musculoskeletal system is the following:  

Adding Exoskeleton model to the musculoskeletal model 

To incorporate the exoskeleton into the musculoskeletal model, one has to include the exoskeleton 
components into .osim file of the target musculoskeletal model. Then it is necessary to establish the 
connections between the exoskeleton parts by defining their relationships. In the <parent_body> 
subsection, specify the part to which the exoskeleton component will be attached. It is 
recommended to have one fixed exoskeleton part, serving as an anchor, and then connect the 
remaining exo parts. For instance, in the context of a lower limb exoskeleton, the exo torso is 
initially fused to the musculoskeletal pelvis. The attachment sequence for exo parts (e.g., exo's feet 
⟶ exo's shins ⟶ exo's femur ⟶ exo's hips ⟶ exo's torso) is preferable over connecting them with 
their musculoskeletal counterparts to prevent misalignment. To link exo parts, create a joint using 
options like WeldJoint, PinJoint, SliderJoint, BallJoint, EllipsoidJoint, FreeJoint, or CustomJoint. 
For instance, using the PinJoint for foot joint, specify the parent body knee joint  to which it is 
attached and define the joint position in both parent and child body frames through 
<location_in_parent> and <orientation_in_parent>. After adding the body part and creating the 
joint, use the Opensim window's navigator tab, as in Figure 4, to edit the parent and child frames, 
aligning them as desired.  
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Figure 4: Coupled system’s translation and position details in OpenSim 

In OpenSim 4.1, it is necessary to input the exact mass value in the 'Mass' field of the post-scaling 
model as what is initially specified in the current model's 'Mass' field. This is because the scaling 
algorithm multiplies each body part's mass by the product of the part's scaled factors and then 
multiplies it by the ratio of the new target mass to the original mass. Consequently, regardless of 
whether the scaled model is larger or smaller, the mass value entered should match that of the 
original model. This approach ensures that the scaled parts have their mass adjusted in relation to 
their scaling factor, resulting in a total mass for the accurate new model. This practice eliminates 
the need for manually calculating the new mass of the scaled model. Concerning inertias, the 
OpenSim algorithm considers only the total scaled mass to total original mass ratio, not the scaled 
factors. Therefore, the required mass value for inertia calculations is the original mass multiplied 
by the scaling factor of a body part. Consequently, to obtain the correct inertia tensor for each 
scaled body part, the scaling process needs to be repeated for each distinct scaled body part. This 
procedural aspect proves useful for aligning the rotation axis of exoskeleton joints with their 
musculoskeletal counterparts or adjusting the exoskeleton width to match that of the 
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musculoskeletal model, as observed in the discrepancy between the skeleton's feet and the 
exoskeleton's feet. 

Integrating Actuators 

In this section, incorporate the available actuators for your exoskeleton, ensuring attention to proper 
indentation. The Figure 5 below provides a visual representation of the actuators' arrangement in 
the .osim files, with these actuators corresponding to the exo joints equipped with motors. 

 

Figure 5: Inserting actuations into the Exoskeleton joints 

Scaling Tool 

To align the selected exoskeleton with the musculoskeletal model, the Scaling Tool can be employed. 
As its name implies, this tool facilitates the adjustment of the target exoskeleton parts to the 
preferred length along a specified axis by applying scaling factors. Upon launching the program, a 
graphical user interface (GUI) allows users to input scaling factors for the skeleton bones. When the 
"Create Model" button is activated, the program adjusts the size of the bones, along with their 
physical properties such as mass, mass center, and inertias. This scaling also applies to equivalent 
exoskeleton parts, muscle attachment points, joint locations, contact surface placements, and the 
initial height position. To execute the program, open a terminal, activate the virtual environment 
opensim-rl, install the sympy library using the command conda install sympy, navigate to the 
directory containing the git repository, and run the command python model_generator.py. A window 
will open with fields corresponding to different bones where users can input scale factors (x_factor, 
y_factor, z_factor) for the desired bones. It's noteworthy that there is a function for scaling 
PointOnLineConstraints, though its utility depends on the specific exoskeleton configuration. 
Notably, the y coordinate (y_factor) corresponds to the length of femurs and tibias, while the x 
coordinate (x_factor) corresponds to the length of feet. When scaling feet, only the x coordinate is 
considered for both the skeleton and exoskeleton. Scaling the head currently has no impact on the 
newly created model, and fine-tuning the new initial position of the pelvis's height is required, with 
variations expected in its positioning relative to the ground. The resulting coupled system for 
exoskeleton and human musculoskeletal model can be seen in Figure 6.  

The primary objective was to mechanically integrate the Autonomyo exoskeleton with the 
musculoskeletal system following a change in the robotic devices. The process involved adjusting 
the inertias of various exoskeleton parts, implementing modifications and scaling to confine 
exoskeleton movement to the sagittal plane and ensure compatibility with the musculoskeletal 
model. The coupling between the two systems was then refined to emulate the real-life straps of 
the exoskeleton. In adjusting the inertia of exoskeleton parts, each component was initially 
represented by a simplified 3D geometrical object to verify the physical correctness of their inertias 
and prevent issues during walking simulations. Using a Python program, the dimensions of these 
simplified objects were determined by solving the system of equations derived from inertia tensors, 
subsequently compared with the true dimensions of exoskeleton parts. We then rely on an assembly 
error metric between the musculoskeletal model and exoskeleton. The assembly error reflects how 
well the model adheres to constraints governing the linkage between the two systems. In OpenSim, 
an assembly error below or equal to 1e-10 is considered indicative of the model complying with 
imposed physical constraints. With extensive automated adjustments in coupling, the resulting 
assembly error measured by the physics engine of the OpenSim simulator remained below 1e-10. 
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Figure 6: Autonomyo Exoskeleton Coupled with the CESPAR Musculoskeletal Model 

 

3. Usage in the HBP Neurorobotics Platform 
In this deliverable, we also provided an example of integration of the coupled human musculoskeletal 
system and assistive robotics device gait optimisation experiment into the HBP Neurorobotics 
Platform. This integration focuses on achieving seamless coordination between the reflex controller 
and the musculoskeletal model, enabling the exoskeleton to facilitate healthy walking patterns 
within the HBP Neurorobotics Platform. 

The experiment employs a reflex controller, which modulates activation of the model’s muscles. By 
leveraging this controller, a user  can effectively synchronise the movements of the exoskeleton with 
the underlying musculoskeletal system, ensuring harmonious, natural walking patterns. This 
integrated approach aims to optimise gait patterns during exoskeleton-assisted locomotion. By fine-
tuning the reflex controller's parameters and dynamically adjusting the model's muscle activations, 
a user can achieve adequate synergy between the exoskeleton and the human body. Based on our 
progress thus far, a user has the ability to refine the gait optimization process with comprehensive 
simulations and analysis. Future work could study the intricate interplay between the reflex 
controller and the musculoskeletal model, which could help us to unlock new insights into the 
biomechanics of exoskeleton-assisted walking, ultimately leading to enhanced performance, 
stability and user comfort. 
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Furthermore, by integrating the coupled gait optimisation experiment into the Platform, we provide 
researchers and practitioners with a powerful tool to explore and advance the field of exoskeleton-
assisted locomotion. This integration should foster collaboration, enabling the exchange of 
knowledge and the development of novel strategies for optimising gait patterns and maximising the 
benefits of exoskeleton technology. We anticipate that this integration will pave the way for 
transformative advancements in the field, propelling us closer to the realisation of exoskeleton 
systems that integrate seamlessly with the human body, restoring mobility and enhancing the overall 
quality of life for individuals with impaired mobility. 

3.1 How to conduct an experiment using the new CESPAR 
capability on the NRP  

To run the experiment on the HBP-NRP, begin by navigating to the ‘nrp’ directory of the publicly 
available CESPAR source code (https://github.com/alpineintuition/cespar.git). Details of this 
integration are provided as a part of the source code documentation, as well as details of the 
software integration in https://github.com/alpineintuition/cespar/blob/main/md_files/nrp.md. 
Then, run the following commands: 

sudo chmod +x nrp_initializer.sh 

sudo ./nrp_initializer.sh                                     

pip install git+https://github.com/stanfordnmbl/osim-rl.git   

pip install deap scikit-learn mpi4py                         

./experiment_initializer.sh 

You can adjust the desired simulation duration in the ‘simulation_config.json’ file located in the 
‘test_cmaes’ directory in the ‘nrp’ directory. It is set to 10 seconds by default. 

4. Optimisation and Learning Pipeline 
Given the prevalence of optimisation processes throughout evolution, it is logical to approach the 
study of locomotion as a mathematical optimisation problem in order to emulate biological 
optimisation. Mathematical optimisation involves selecting the best possible solution from a feasible 
solution set based on a specific criterion. Typically, this involves minimising or maximising a fitness 
function. Several algorithms exist to handle different optimisation problems, including particle 
swarm optimisation (PSO), genetic algorithms and others. 

Initially, a metha-heuristic optimization approach known as Particle Swarm Optimization (PSO) with 
a Central Pattern Generation (CPG) was employed at the project's onset. In this configuration, the 
controller managed the walking model, while the CPG controller learned various reflex signals. 
Subsequently, after a specified timeframe (typically three seconds), the CPG assumed control by 
generating replicas of the reflex signals. In this phase, the project aimed to optimise the CPG 
parameters, including frequency, amplitude, trunk angle, and phase-shift, with a focus on speed 
modulation and stability through PSO. However, the reported stability of the solution was deemed 
suboptimal for most parameters, underscoring the necessity for a more sophisticated methodology 
to enhance the model's stability. 

4.1 CMA-ES Implementation details 
In our project, we introduced a coupled neural network controller alongside the reflex controller. 
By using a neural network, the coupled controller model could learn and adapt to spinal reflex 
signals, leading to improved locomotion modulation. Since the chosen controller model includes 
numerous adjustable parameters, finding the optimal parameter set to maximise a given fitness 
function was challenging.  

https://github.com/alpineintuition/cespar.git
https://github.com/alpineintuition/cespar/blob/main/md_files/nrp.md
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To tackle this issue, we employed an optimisation algorithm called Covariance Matrix Adaptation 
Evolution Strategy (CMA-ES) by Hansen and Ostermeier in 200111. CMA-ES, as a population-based 
algorithm, offers a robust approach for identifying the optimal parameter set within a complex 
parameter space. By leveraging evolutionary principles, CMA-ES evolves a population of candidate 
solutions iteratively, using a covariance matrix to adapt the distribution of the solutions and guide 
the search towards promising regions of the parameter space. This allowed us to explore efficiently 
the vast solution space and discover the parameter configuration that optimises the desired fitness 
function. 

The integration of CMA-ES within our project enabled us to fine-tune the parameters of the coupled 
controller and reflex controller, optimising their performance and enhancing the overall locomotion 
capabilities of the system. By iteratively refining the parameter values, we strove to achieve 
locomotion patterns that closely resemble biological optimisation 

To summarise, the optimisation process employed in this project followed the Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES). The initial population of individuals was generated by 
sampling from a Gaussian distribution. The width of the distribution corresponded to the estimated 
covariance matrix, while the centre (µ) represented an estimation of the mean of the individuals. 
Subsequently, at each generation, a new population was created using an updated estimate of the 
covariance matrix based on the present generation. 

In order to select the individuals for the next generation, the best-performing individuals from the 
previous generation were chosen as parents, based on their fitness values. This selection process 
ensured that individuals with superior fitness contribute to the subsequent generations. As a result, 
over the course of the generation sequence, individuals with increasingly improved fitness values 
were generated. 

To implement the CMA-ES strategy in this project, we utilised the “Distributed Evolutionary 
Algorithms in Python” (DEAP) framework, which serves as an evolutionary computation framework. 
DEAP is built upon the principles outlined by Hansen and Ostermeier in 2001, providing a robust 
foundation for implementing and executing the CMA-ES optimisation approach. 

By employing the CMA-ES algorithm within the DEAP framework, our project achieved an efficient 
and effective optimisation process. This strategy allowed us to iteratively refine the parameters of 
the locomotion control system, driving the evolution of individuals with progressively enhanced 
fitness. The combination of the CMA-ES approach and the DEAP framework enabled us to explore the 
parameter space effectively, leading to the discovery of optimal parameter configurations that 
maximise the desired fitness function. 

Muscle parameters and joint ranges are sourced from Geyer and Herr in 201012, while the parameters 
of the lower limbs rely on anthropometric data extracted from David A. Winter in 200913. The 
optimization process focuses exclusively on the parameters linked to the sensors-muscles mapping, 
with the corresponding rules. 

The optimisation process used in this deliverable involved tuning several tuneable hyperparameters 
to ensure the effectiveness of the optimisation algorithm. These hyperparameters included the 
number of generations, the number of individuals per generation, the initial width of the parameter 
distribution, the optimisation mode (2D or 3D), the maximum simulation duration, and the initial 
and target speeds of the simulation, among others. These hyperparameters played a crucial role in 
shaping the optimisation process and determining the quality of the resulting controller parameters.  

To optimise the controller parameters, various text files were utilised, each containing the specific 
parameters that are subject to optimisation. In the case of the adapted reflex model, there were 37 
optimisation parameters that required fine-tuning for the model to achieve robust and human-like 

 
11 Hansen, N. & Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strategies. 
Evolutionary computation, 9(2), 159-195. 
12 Hartmut Geyer and Hugh Herr. A muscle-reflex model that encodes principles of legged mechanics produces 
human walking dynamics and muscle activities. IEEE Transactions on Neural Systems and Rehabilitation 
Engineering, 18(3):263–273, June 2010. 
13 David A. Winter. Biomechanics and Motor Control of Human Movement. John Wiley & Sons, Inc., Hoboken, 
NJ, USA, September 2009. 
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walking behaviour. However, before applying the CMA-ES algorithm, it was necessary to scale these 
parameters appropriately. 

The adapted model encompasses 37 optimization parameters essential for achieving robust and 
human-like walking in a healthy manner. For the successful implementation of CMA-ES, which 
initialises a multi-dimensional Gaussian with a diagonal covariance matrix, it becomes necessary to 
scale these parameters adequately. This scaling is facilitated by normalising the state space of the 
parameters to ensure uniform width for each dimension. In the code, this normalisation is achieved 
through the definition of a parameter range, denoted as par_space, and a linear search of finding 
the best hyperparameter is implemented. This range consists of two arrays representing the lower 
and upper bounds of the parameters, both of the same length. The circuitry involves 37 control 
parameters per leg, signifying the influence of reflex modules on each muscle's activation throughout 
the gait cycle, the trunk lean angle, and additional parameters pertaining to reactive foot 
placement. 

To achieve parameter scaling, the CMA-ES algorithm initialised a multi-dimensional Gaussian 
distribution with a diagonal covariance matrix. Therefore, the state space of the parameters needed 
to be normalised, ensuring that each dimension had the same range. This normalisation process was 
implemented in the code by defining a parameter range, denoted as ‘par_space’ which consists of 
two arrays representing the lower and upper bounds of the parameters. Both arrays had the same 
length, and their values determined the acceptable range of each parameter. 

In the model, the walking cycle is partitioned into three distinct phases (swing, stance, and stance 
end). The activity of each muscle during these cycle phases is determined by a linear combination 
of signals sourced from various inputs, including muscle length and force sensors, joint sensors, and 
ground sensors. This model, denoted as feedback-based locomotion, incorporates sensory modalities 
from muscles (such as Golgi tendon and muscle spindle), feet (pressure sensors), and the vestibular 
system. These modalities are represented as affine transformations of muscle length, proportionality 
to muscle forces, and a PD control for the vestibular system that aims to align joint angles (e.g., the 
trunk) with a reference angle. Muscle activity is then derived as a nonlinear combination of these 
diverse sensory inputs. Through the integration of these sensory modalities, a closed action-
perception loop is established, embodying a closed-loop control architecture that emulates the 
motor control system found in the human body. 

The controller parameters under consideration included 37 control parameters per leg. These 
parameters govern the contributions of the reflex modules to each muscle's activation throughout 
the gait cycle. Additionally, the controller parameters include the trunk lean angle and parameters 
related to reactive foot placement. By appropriately adjusting these parameters through the 
optimisation process, the model can achieve a more refined and natural walking pattern that 
emulates human locomotion. 

A fitness function serves as an objective measure determining the proximity of a given design solution 
to achieving predefined goals. In this context, the candidate solution is the input to the problem, 
and the resulting output signifies the fitness of this candidate solution concerning the optimization 
objectives. The simulation continues until the human model completes 10 seconds (i=1000) or when 
the pelvis descends below 0.6 metres. Throughout these simulations, various costs are accumulated, 
including a survival cost for each timestep i (with an initial weight of 0.1), a footstep cost whenever 
a new footstep is taken (with an initial weight of ten), and a success cost (with an initial weight of 
one). The total cost  is thus characterised by these components. 

 
In the context of this equation, the comprehensive fitness function is the sum of three distinct cost 
functions. Firstly, R_alive assesses whether the model remains 'alive' throughout the entire 
simulation, denoted by the model staying above 0.6 metres. Secondly, R_step, the footstep cost, 
evaluates the model's step behaviours rather than its instantaneous actions. Lastly, R_success 
examines whether the model avoids falling for the entire simulation duration, typically 10 seconds. 
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R_step is designed to be high when the model walks with minimal effort at target velocities, 
incorporating a step cost to prevent the model from getting stuck (w_step · r_step), a penalty 
component (w_vel · c_vel) for deviations from the target velocity, and an effort penalty (w_eff · 
c_eff) to discourage excessive effort. 

The outcome from the optimization trial reveals a convergence of the error, falling below the 
specified acceptance criteria of 0.05. To enhance visualisation, the error in the y-axis is presented 
in log-scale. The x-axis corresponds to the number of evaluations, encompassing the entirety of the 
optimization process, where a convergence of the error is achieved approximately after 175 
evaluations, see Figure 7. 

 
Figure 7: Convergence of error in log-scale. 

The coupled reflex model exhibits joint angles that closely resemble those observed during human 
walking, as demonstrated in Figure 8. To achieve this similarity, the joint angles throughout the 
entire gait cycle were normalised to a standardised distribution consisting of 100 data points, 
representing 0% to 100% of the stride. This normalisation process allows for a direct comparison 
between the model's joint angles and the corresponding joint angles observed in humans walking at 
speeds ranging from 1.00 m/s to 1.25 m/s, commonly referred to as free speed. Figure 8 shows the 
hip joint angles obtained from 7 experiments with our modified reflex controller compared against 
healthy human hip joint trajectory during walking. Initially, the analysis focuses on the first three 
experiments, where the sole variation lies in the initial width of the probability distribution, termed 
"init," aiming to scrutinise its impact. A wider init is noted to provide increased flexibility in 
parameter selection due to the expanded width of the probability distribution. Subsequently, 
Experiment 4 and subsequent iterations involve diverse initial and target speeds, exploring the 
model's capability to attain the specified speed during optimizations. In the subsequent experiments, 
both initial and target speeds are progressively reduced, culminating in Experiment 7's objective of 
achieving a velocity of 0.5 m/s. Notably, the initial speed differs between Experiments 4 and 7, as 
maintaining a significant disparity between initial and target velocities resulted in model capabilities 
to avoid a fall. All results were normalised over one gait cycle. The vertical red line indicates the 
end of the stance phase. 
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Figure 8: Hip Joint Angles for seven experiments with the RFX-model.  

In the context of various experiments employing the model, the focus centres on the hip joint angles, 
which have been normalised across a single gait cycle. The presentation distinguishes between two 
sets of experiments: Experiments 1 to 3 are depicted in the left figure, while Experiments 4 to 7 are 
represented in the right figure. Notably, a vertical line is incorporated in the visualisations to signify 
the conclusion of the stance phase. In order to analyse the effectiveness of the combined coupled 
reflex controller, a series of optimisation experiments were conducted within the OpenSim 
environment. Specifically, we focused on seven experiments, each with a simulation duration of 10 
seconds. To ensure a smooth gait initialisation, the coupled reflex controller was activated after 0.4 
seconds into the simulation. Convergence of the optimisation process was ensured by using a large 
number of generations, and multiple repetitions of each experiment were performed to validate the 
reproducibility of the results. The parameter space consists of the 37 parameters from the reflex 
model and 44 parameters from the coupled controller (four centres, four variances and 36 weights). 
In the seven experiments conducted, we also varied the weightings or relative importance of the 
parameters used in the coupled controller model. It was observed that a proximo-distal gradient in 
neuromechanical control leads to more natural locomotion. Through these optimisation 
experiments, we aimed to assess the performance and similarity of the combined coupled reflex 
controller, leveraging insights from the literature to guide our analysis. The diverse range of 
experiments allowed for a comprehensive evaluation of the controller's behaviour and its ability to 
generate human-like locomotion patterns. The connection weights after the optimisation and 
learning framework are given in Figure 9. The figure shows weight matrices used in two different 
experiments. In the first (left), the target speed was set to 1.3 m/s while in the second (right), it is 
set to 1.5 m/s. Each column of the weight matrices represents a motor primitive and each row 
represents a muscle activation. The connection weights between muscle activations and motor 
primitives are set to be only positive. The darker the square colour, the more positive the weight. 
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Figure 9: Weight matrix used for experiments with a target speed of 1.3 m/s, and 1.5 m/s 

 

4.2 Deep neural network and implementation details 
We also integrated a neural network implementation with reinforcement learning to obtain the 
actuations in the exoskeleton joints. The state space for the Reinforcement Learning (RL) 
implementation is delineated by the length and velocity of the contractile elements in the muscle 
model mapped to the joint angles of the exoskeleton. The output of the neural network serves as 
the stimulus vector directed to the activation dynamics of the exoskeleton actuators, governed by a 
first-order differential equation that incorporates neural delay. The transition probability is 
articulated through the probabilistic policy function alongside a continuous reward function. Various 
approaches exist for formulating reward functions in RL problems, ranging from high-level goals like 
achieving forward motion to reaching specific positions in joint space. Alternatively, reward 
functions can be engineered as combinations of objectives, such as minimising energy while attaining 
a goal position. In this approach, akin to imitation learning problems, the reward is defined as a 
metric indicating the proximity of the musculoskeletal system's state to a given joint trajectory 
obtained through human gait data. Consequently, policy search is not framed as a high-level goal, 
like a position-specified reward function, but rather as the imitation of a desired trajectory used as 
a reward function in the RL formulation. 

As a result, the reward function is articulated as a sequence of joint positions and velocities for the 
coupled system, structured to minimise the disparity between the provided and actual trajectories. 
Formulating the reward function in this manner, emphasising the minimization of motion trajectories 
and their disparities, aligns with the principles of an inverse Reinforcement Learning (RL) 
formulation. However, it is acknowledged that determining a comprehensive reward function 
capable of solving the entire inverse RL problem exceeds the scope of this deliverable. Notably, 
human movements are characterised by the creation of smooth trajectories with minimal tremors. 
In order to encourage the Deep RL solution to exhibit such smoothness, an additional term penalising 
high acceleration is integrated into the reward function as a regularisation component, aimed at 
reducing trembling movements and promoting overall smoothness. In summary, the reward function 
is expressed as the sum of weighted differences between desired and actual trajectories, 
encompassing not only position differences but also velocity differences. 
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The deep neural network employed in this study adopts an actor-critic architecture and makes 
necessary extensions to suit coupled control problems. Both the actor and critic networks utilise 
feedforward layers, comprising five hidden layers for the actor and three for the critic. The neurons 
in the critic network's layers are activated using PReLu (Parametric Rectified Linear Unit), with a 
linear layer conveying the network's output to a single value representing the value function. A 
similar design principle is applied to the actor network, where the neurons in the hidden layers are 
activated by the Tanh function. A crucial aspect of the actor network lies in its last layer, responsible 
for providing the probabilistic distribution of the action values. 

This deliverable delves into the examination of a diverse range of movement generation within a 
musculoskeletal system and exoskeleton control, leveraging the CMA-ES and deep reinforcement 
learning. Multiple experiments of varying complexity are conducted to evaluate the efficacy and 
quality of the introduced learning and optimization framework. In comparison and also to validate 
our approach to assess the quality, versatility, and readiness of our solution, we conducted 
experiments that are based on data derived from human walking contrasted with information 
extracted from the solution of our experiments. Figure 10 depicts the comparison of joint angles 
between human data (grey area) and the model, revealing higher correlation values in hip, knee and 
ankle flexions. The shaded region depicts the range within which various joint angles are expected 
to fall, representing the joint angle values of a healthy individual. The percentage indicated 
alongside each joint angle denotes the extent to which the model's values align with the healthy 
range. A total of 9 steps were executed, each having an average length of 1.59m and a duration of 
1.47s. The alignment between the human data and the joint trajectories of the exoskeleton indicates 
the resulting controller allows users to reach a healthy gait pattern, see Figure 11. Our optimization 
and learning framework provides users with the flexibility to interact with the solution according to 
their specific needs. The solution itself encompasses a comprehensive toolchain, allowing users to 
integrate an exoskeleton, connect it with a human musculoskeletal model, personalise its scaling 
based on individual data, and subsequently engage in the optimization of the control architecture 
tailored to specific subject requirements. While acknowledging the current solution's need for 
thorough clinical validation, preliminary outcomes indicate that a requisite level of validation has 
been achieved. This prompts the initiation of a clinical study to further establish the viability of the 
solution for real-world application in patient settings. It's worth noting that the validation process 
in the highly regulated MedTech field requires additional scrutiny, extending beyond the scope of 
the existing deliverable. 

 
Figure 10: Comparison between human data and exoskeleton, gait cycle (Hip, Knee, Ankle) 
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Figure 11: Comparison between human data and exoskeleton, joint trajectories (Hip, Knee, 

Ankle) 

4.3 Summary of work performed 
Based on our in-silico optimisation and learning pipeline, we presented a collaborative effort 
between Alpine Intuition and Autonomyo to build a complete workflow of an-silico experimentation 
environment of assistive robotics and human musculoskeletal systems. We demonstrated the 
implementation of the models as controllers in various scenarios. The exoskeletons are intended to 
assist abnormal gaits of subjects with a continuous interaction in a comfortable way. To address this, 
we proposed and implemented in-silico experiments with neural network-based controllers by 
employing computational models and leveraging state-of-the-art optimisation and learning 
techniques. The implementation of our in-silico experiments effectively validated our workflow 
replicating both healthy individuals as well as subjects with spinal cord injuries (SCI) presenting 
various abnormalities as an ongoing effort. These initial but promising outcomes have implications 
for leveraging the innate dynamics of musculoskeletal dynamics of the human motor control system 
to expand and adapt the design principles of exoskeletons as wearable devices. The outcome of our 
deliverable also allows our users to validate the actuation of exoskeletons capable of adapting to 
changing environmental conditions. 
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5. Looking Forward 
In this deliverable, we aimed to help overcome the challenges of exoskeleton adaptation for SCI 
patients by building an extensive in-silico experimentation environment for predictive 
neuromechanical simulations and neurorehabilitation. Our goal was to provide predictive simulations 
for exoskeleton and prosthetic usage in neurorehabilitation. The idea was for the simulation to 
produce motions and desired behaviours without directly involving human subjects and rehabilitation 
assistants. These studies aim at better understanding the effect of prosthesis or orthosis in human 
subjects. Successfully predicting motions that reliably fit human subjects’ needs while using 
exoskeletons/exosuits could be used to accelerate the rehabilitation treatments of the patients 
while reducing the burden of experiments on the patients and rehabilitation assistants. Our 
predictive simulation environment will also allow researchers to study human motor control models 
in a realistic virtual environment. 

The CESPAR exoskeleton simulator will allow users to exploit the capabilities of HBP-NRP with the 
integration of exoskeletons/exosuits/prosthetics into the human musculoskeletal simulations. The 
major advantage of HBP-NRP for exoskeleton simulations is its core design principle of closed-loop 
action-perception simulation. With the incorporation of our CESPAR simulator, the HBP-NRP will 
allow users to validate brain and spinal cord models and directly test them in clinical applications, 
either with or without assistive devices and in different rehabilitation schemes. Our simulator will 
allow interested communities to extend this research, while also making an exoskeleton simulation 
readily available for HBP partners. 

Furthermore, we hope that our work will highlight that modelling, predicting and assisting human 
locomotion is a complex and useful undertaking, worthy of public attention and funding as it should 
help to accelerate the development of robotic solutions for people suffering from motor control 
diseases and people affected by injuries that require short- and long-term rehabilitation. 
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