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Figure 1: Selection of models of cortex, cerebellum, and basal ganglia. 

Top: clustered multi-area model of macaque cerebral cortex, described in Sec. 4.3. Bottom left: Cerebellar control 
system described in Sec. 2.3. Bottom right: Striatal action selection circuit described in Sec. 3.2. 
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Abstract: 
The research described herein concerns the development of computational models 
that simulate the neural mechanisms involved in visuo-motor coordination. These 
models incorporate multiple brain regions and are implemented using simulation 
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software. The simulations demonstrate their functionality and enable evaluating 
working hypotheses in closed-loop scenarios with neurorobotics. 
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1. Introduction 
The objective of the present work was to develop a collection of biologically based neural network 
models of various brain regions for two main purposes: 1) bring together biological realism with 
sensorimotor function to gain neuroscientific insights into sensorimotor, and in particular visuomotor 
coordination; 2) serve as testbeds for the HBP software and hardware (high-performance computing 
(HPC), neuromorphic systems) simulation tools and the Neurorobotics Platform (NRP). The results 
encompass spiking models of cerebellar, basal ganglia, and cortical circuits along with associated 
nuclei, implemented using EBRAINS tools including the Brain Scaffold Builder (BSB), Snudda, NEST, 
NEURON, Arbor, SpiNNaker, and the NRP. Through the development of the given models, substantial 
advances in these tools and platforms were achieved. For example, the large-scale multi-area 
models of cerebral cortex have served as performance benchmarks for NEST on HPC systems and 
have directly inspired improvements in the simulation kernel of NEST. In collaboration with UNIMAN, 
T3.2 partners have further worked on porting a multi-area cortical model to the SpiNNaker 
neuromorphic hardware as the largest model to be simulated on that platform to date. This work 
has helped expose and resolve bottlenecks of SpiNNaker relevant for simulating any model using 
many of its boards. The basal ganglia modelling has made extensive use of Snudda and thereby driven 
forward its development, while the cerebellar modelling has extensively used the BSB and 
substantially advanced its development. Virtual robotics applications implemented using the NRP 
show how knowledge of the brain can help create functional cognitive architectures that 
simultaneously enable neuroscientific insights. The models that have emerged from this work are 
made publicly available via the EBRAINS Knowledge Graph (KG)1. The work described herein should 
be of interest to experimental and computational neuroscientists, developers of simulation tools 
(software and hardware), neuroroboticists, AI researchers, consortium members, scientific funding 
agencies, policymakers, platform users, students, and the general public. Besides the 
abovementioned contributions to Computing, it can contribute to AI applications and Robotics by 
providing ideas on brain-inspired solutions to computational problems, particularly related to 
sensorimotor coordination. For instance, insights are provided into the role of the neuromodulators 
dopamine and acetylcholine in action selection and decision-making within the basal ganglia. The 
work may further inspire applications in Medicine through insights provided into disorders including 
Parkinson’s disease and dystonia. 

 
1 https://search.kg.ebrains.eu/?category=Model 

https://search.kg.ebrains.eu/?category=Model
https://search.kg.ebrains.eu/?category=Model
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2. Cerebellar-based systems in sensorimotor tasks 

2.1 Cerebellar plasticity and classical eyeblink 
conditioning 

Figure 2: A) Model overview. B) Experiment to simulation. C) Conditional response learning. 

According to Marr’s motor learning theory, plasticity at the parallel fibre to Purkinje cells synapse 
(pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing 
fibre control. However, the discovery of multiple forms of plasticity distributed over different 
cerebellar circuit synapses prompts to remap the cerebellar learning sites. UNIPV simulated classical 
eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding upbound and 
downbound modules that are subject to multiple plasticity rules (Long-Term Depression and 
Potentiation – LTD and LTP) (Figure 2A). Simulations show that synaptic plasticity regulates the 
cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. 
CEBC was supported by plasticity in both the pf-PC synapses and in the feedforward inhibitory loop 
passing through the molecular layer interneurons, but only the combined switch-off of both sites of 
plasticity compromised learning significantly. By differentially engaging climbing fibre information 
and related forms of synaptic plasticity, both modules contributed to generate a well-timed 
conditioned response, but it was the downbound module that played the major role in in this process. 
The outcomes of our simulations closely align with the behavioural and electrophysiological 
phenotypes of mutant mice (Knock-Out, KO) suffering from cell-specific mutations that affect 
processing of their PC or MLI synapses. Our data highlight that a synergy of bidirectional plasticity 

A

B

C
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rules distributed across the cerebellum facilitate finetuning of adaptive associative behaviours at a 
high spatiotemporal resolution.2 

A similar system architecture was applied to investigate the mechanisms in dystonia. UNIPV modified 
structural or functional local neural features in the network reproducing alterations reported in 
dystonic mice. The work suggests that only certain types of alterations, including reduced 
olivocerebellar input and aberrant PC burst firing, are compatible with the eyeblink conditioning 
changes observed in dystonia, indicating that some cerebellar lesions can have a causative role in 
the pathogenesis of symptoms (Figure 3)3. 

 
Figure 3: A) Purkinje cell and DCN activity. B) CR dependence on olivocerebellar input. 

2.2 Cerebellar STDP in saccadic control 
In collaboration with SSSA, UNIPV developed a system able to generate saccadic eye movements, 
which play a crucial role in visuo-motor control by allowing rapid foveation onto new targets. 
However, the neural processes governing saccades adaptation are not fully understood. Saccades, 
due to the short time of execution (20–100 ms) and the absence of sensory information for online 
feedback control, must be controlled in a ballistic manner. Incomplete measurements of the 
movement trajectory, such as the visual endpoint error, are supposedly used to form internal 
predictions about the movement kinematics resulting in predictive control. To characterize the 
synaptic and neural circuit mechanisms underlying predictive saccadic control, we have 
reconstructed the saccadic system in a digital controller embedding a spiking neural network of the 
cerebellum (in NEST) with spike timing-dependent plasticity (STDP) rules driving parallel fibre-
Purkinje cell long-term potentiation and depression (LTP and LTD) (Figure 4A). This model 
implements a control policy based on a dual plasticity mechanism, resulting in the identification of 
the roles of LTP and LTD in regulating the overall quality of saccade kinematics: it turns out that 
LTD increases the accuracy by decreasing visual error and LTP increases the peak speed. The control 
policy also required cerebellar PCs to be divided into two subpopulations, characterized by burst or 
pause responses. To our knowledge, this is the first model that explains in mechanistic terms the 

 
2 Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink 
conditioning. A Geminiani, C Casellato, H-J Boele, A Pedrocchi, C I De Zeeuw, E D’Angelo. BioRxiv; doi: 
10.1101/2023.06.20.545667; P4054 
3Geminiani A, Mockevičius A, D'Angelo E, Casellato C. Cerebellum Involvement in Dystonia During Associative 
Motor Learning: Insights from a Data-Driven Spiking Network Model. Front Syst Neurosci. 2022 doi: 
10.3389/fnsys.2022.919761; P3309 
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https://www.biorxiv.org/content/10.1101/2023.06.20.545667v1
https://www.biorxiv.org/content/10.1101/2023.06.20.545667v1
https://www.frontiersin.org/articles/10.3389/fnsys.2022.919761/full
https://www.frontiersin.org/articles/10.3389/fnsys.2022.919761/full
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visual error and peak speed regulation of ballistic eye movements in forward mode exploiting spike-
timing to regulate firing in different populations of the neuronal network. The cerebellar spiking 
neural network learning by means of dual plasticity rule led to decrease in end foveal error and 
increase in peak speed across repeated movements (Figure 4B).4 

 
Figure 4: A) Schematic of the control loop. B) Eye movement kinematics. 

DI: Displacement integrator; BG: Burst generator. 

2.3 Multiscale modelling of the cerebellar involvement 
in Parkinson’s Disease 

In collaboration with POLIMI, UNIPV then incorporated the spiking cerebellum into a multiscale 
computational model of the rodent brain, in which basal ganglia (BG) and cerebellum are the two 
spiking components while thalamocortical nodes are mass models. Simulations showed that a direct 
effect of dopamine depletion on the cerebellum must be taken into account to reproduce the 
alterations of Parkinson’s disease (PD) neural activity, particularly the increased beta oscillations 
widely reported in PD patients. Moreover, dopamine depletion indirectly impacted spike-time-
dependent plasticity at the parallel fibre-Purkinje cell synapses, degrading associative motor 
learning as observed in PD. Overall, these results suggest a relevant involvement of cerebellum in 
PD motor symptoms (Figure 5)5. 

 
4 Fruzzetti L, Kalidindi HT, Antonietti A, Alessandro C, Geminiani A, Casellato C, Falotico E, D'Angelo E. Dual 
STDP processes at Purkinje cells contribute to distinct improvements in accuracy and speed of saccadic eye 
movements. PLoS Comput Biol. 2022 doi: 10.1371/journal.pcbi.1010564; P3878 
5 Gambosi B, Sheiban F, Biasizzo M, Antonietti A, D’Angelo E, Mazzoni A, Pedrocchi A. Dopamine-dependent 
cerebellar dysfunction enhances beta oscillations and disrupts motor learning in a multiarea model. bioRxiv 
doi: 10.1101/2023.07.18.549459; P4096 

A

B

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010564
https://www.biorxiv.org/content/10.1101/2023.07.18.549459v2
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Figure 5: Firing rate change with dopamine depletion only in BG vs. in cerebellum + BG. 
The values are computed considering the most severe pathological scenario (depletion level = 0.8). The reported 
values have been obtained by normalizing the difference between the firing rates in pathological and physiological 
conditions with respect to the physiological firing rate (0 = no difference, 1 corresponds to a pathological firing rate 
that is two times the physiological one). 

2.4 Neurorobotic whisker system on the NRP 
In collaboration with POLIMI, UNIPV further developed a peripheral whisker system (trigeminal 
ganglion, trigeminal nuclei, facial nuclei, and central pattern generator neuronal populations) 
connected to an adaptive cerebellar network controller (NEST), exploiting the Neurorobotic Platform 
(Figure 6). The whole system was able to drive active whisking with learning capability, matching 
neural correlates of behaviour experimentally recorded in mice6. 

 
6 Antonietti A, Geminiani A, Negri E, D'Angelo E, Casellato C, Pedrocchi A. Brain-Inspired Spiking Neural 
Network Controller for a Neurorobotic Whisker System. Front Neurorobot. 2022 doi: 
10.3389/fnbot.2022.817948; P3741 

Figure 6: A) Virtual robotic mouse. (B) Rodent whisker system. (C) SNN implementation. 
In panel C, numbers in each block represent the size of the neural populations included in that brain region. Arrows 
represent excitatory connections, circles inhibitory connections. 

https://www.frontiersin.org/articles/10.3389/fnbot.2022.817948/full
https://www.frontiersin.org/articles/10.3389/fnbot.2022.817948/full
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2.5 Upper limb motor control: spino-cerebellar 
integration 

Different parts of the central nervous system act in the motor control of our body, performing 
different but intertwined roles and implementing different control mechanisms sustained by specific 
neural structures. To further study how multiple brain regions coexist in performing motor control, 
UGR in collaboration with EPFL integrated a cerebellar model and a spinal cord model in a closed 
loop, operating a musculoskeletal upper limb model consisting of two joints (shoulder and elbow) 
actuated by eight muscles. 

 
Figure 7: Spino-cerebellar integration in closed-loop control of an upper limb. 

The cerebellar model was equipped with STDP at the parallel fibre – Purkinje cell synapses (PF-PC), 
allowing motor adaptation and learning. The spinal cord model implemented fast and direct control 
of the upper limb muscles by means of stretch reflex and reciprocal inhibition. The spino-cerebellar 
integration thus allowed for a hierarchical neural structure, in which the cerebellum provided 
adaptation to the desired motor task through a gradual learning process (Ito, 2000), and the spinal 
cord allowed fast muscle reactions and low control primitives (Pierrot-Deseilligny & Burke, 2012). 
The idea behind the study was to determine whether the fast action of the spinal cord facilitated or 
hindered the cerebellar motor adaptation.  

The spinal cord directly controls and regulates muscle activation; thus, it significantly impacts the 
body plant dynamics which need to be acquired by higher brain regions (i.e., cerebellum in our 
case). In our setup, the integrated model faced several repetitions of a set of upper limb motor tasks 
(2 DOF flexion-extension movements involving the shoulder and elbow joints). Continued exposure 
to the desired motor tasks allowed the cerebellum to adapt the motor behaviour to minimise the 
mismatch between the desired and actual state of the upper limb (Medina, 2019). The cerebellar 
gradual motor adaptation coexisted with the spinal cord fast and direct regulation of muscle activity. 
Results showed that the spinal cord action facilitated and simplified motor learning in the 
cerebellum, i.e., the interplay of these two brain regions favours the control of the upper limb 
dynamics7 (also cf. Figure 7). 

2.6 Further work on cerebellar modelling 
Further work by UNIPV and partners brought the Brain Scaffold Builder (BSB)8 to EBRAINS, interfacing 
with the simulators NEURON, Arbor, and NEST9; cf. also T1.15. Using the BSB and atlas data, a 
pipeline was developed for detailed in silico cerebellar reconstruction, in collaboration with the 

 
7 Bruel, A., Abadía, I., Collin, T., Sakr, I., Lorach, H., Luque, N., Ros, E., & Ijspeert, A. (2023). The spinal cord 
facilitates cerebellar upper limb motor learning and control; inputs from neuromusculoskeletal simulation. 
bioRxiv, 2023-03, https://doi.org/10.1101/2023.03.08.531839, P4072 
8https://www.ebrains.eu/tools/bsb 
9 De Schepper, et al. (2022) “Model simulations unveil the structure-function-dynamics relationship of the 
cerebellar cortical microcircuit”, Commun Biol. 5, https://doi.org/10.1038/s42003-022-04213-y; P3729 

https://www.ebrains.eu/tools/bsb
https://doi.org/10.1101/2023.03.08.531839
https://www.ebrains.eu/tools/bsb
https://doi.org/10.1038/s42003-022-04213-y
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Marie Skłodowska‐Curie project CEN (“Cerebellum and emotional networks”). This pipeline was 
illustrated with a use case on the declive10. 

At the systems level, UNIPV implemented Bayesian integration in a spiking neural system for 
sensorimotor control11 and investigated embodiment during sensorimotor tasks in a NEST-based 
cerebellar model integrated with further brain regions and a simulated body using PyBullet and 
MUSIC12. A simplified version of the cerebellar circuit simulating the classical delayed eyeblink 
conditioning protocol was implemented on a neuromorphic low-power microcontroller13. Finally, the 
cerebellar circuit model was ported to SpiNNaker as the first simulation of a large-scale, 
biophysically constrained cerebellum model performed on neuromorphic hardware14. 

3. Basal ganglia models 

3.1 Introduction 
The present section details collaborative work by UGR, KTH, and KI to bring functional aspects into 
spiking models of the basal ganglia and connected brain regions. 

3.1.1 Roles of the basal ganglia 

Choosing the right action among many available choices represents a primary but also challenging 
behaviour for animal species. Multiple stimuli spanning different sensory modalities continuously 
converge to the brain, and adequate responses (taking into account these inputs) need to be decided. 
The consequences (good or bad) of all these decisions need to be remembered, in order to make 
better decisions in the future and to be able to avoid fatal mistakes. 

The basal ganglia (BG) play a key role in action-selection and reinforcement learning. They are a 
collection of highly interconnected nuclei located in the deepest part of the brain. They receive 
action proposals from the cortex and select the most appropriate actions based on past experiences. 

Biological studies (Graybiel, 1998; Grillner et al., 2005; Hikosaka et al., 2000) and relevant 
computational models (Gurney et al., 2001) also have proposed the association between the BG and 
the action-selection and reinforcement learning. Specifically, the cortex and other brain structures 
send action proposals to the basal ganglia, which select the appropriate ones to be executed in the 
current context. Past experiences weigh the selection favouring the ones that resulted better in 
similar contexts. 

3.1.2 Functioning of the basal ganglia 

The basal ganglia network consists of several interconnected nuclei (Figure 8). Two of them are an 
input nucleus called the corpus striatum (STR), with its main cell type being the medium spiny 
neurons (MSNs), and the output nucleus called substantia nigra pars reticulata (SNr) which projects 
to the thalamus. A third nucleus, called the substantia nigra pars compacta (SNc), inputs reward 
information into the network. 

 
10 HBP Summit in Marseille 2023; E 6419 
11 Grillo M, Geminiani A, Alessandro C, D'Angelo E, Pedrocchi A, Casellato C. Bayesian Integration in a Spiking 
Neural System for Sensorimotor Control. Neural Comput. 2022. doi: 10.1162/neco_a_01525; P4060 
12 Gambosi et al., NEST Conference 2022; E6693 
13 Gandolfi et al., 2022 J. Neural Eng. 19 036022; P3310 
14  Petruţ A. Bogdan, Beatrice Marcinnò, Claudia Casellato, Stefano Casali, Andrew G.D. Rowley, Michael 
Hopkins, Francesco Leporati, Egidio D'Angelo, Oliver Rhodes, 2021. Towards a Bio-Inspired Real-Time 
Neuromorphic Cerebellum, Frontiers in Cellular Neuroscience, Vol. 15, doi: 10.3389/fncel.2021.622870, P2905 

https://www.zotero.org/google-docs/?Tjt9LV
https://www.zotero.org/google-docs/?x0qBlB
https://direct.mit.edu/neco/article/34/9/1893/112384/Bayesian-Integration-in-a-Spiking-Neural-System
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202688/pdf/fncel-15-622870.pdf
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The connections within the basal ganglia network form three main pathways: the direct pathway, 
the indirect pathway, and the hyperdirect pathway. The direct and indirect pathways are 
traditionally considered to promote or inhibit behaviour based on selective disinhibition or inhibition 
of the motor thalamus. 

 

Figure 8: Basal ganglia structure showing direct, indirect, and hyperdirect pathways. 

In addition to these broad pathways, important neuromodulators like dopamine (DA) and 
acetylcholine (ACh) influence different parts of the circuitry. For example, there are dopaminergic 
projections from the SNc to the MSN and other nuclei with modulatory effects (see shaded box in Fig 
7). Also, thalamic projections innervate cholinergic interneurons in the STR, influencing the amount 
of ACh in this nucleus (Xiao and Roberts, 2021). Phasic DA is generally thought to carry 
reinforcement-related signals to the STR (Hart et al., 2014), although its full role is still under debate 
(Berke, 2018). Meanwhile, pauses in ACh seem to define the time window for phasic dopamine to 
induce plasticity (Reynolds et al., 2022). However, it remains a topic of discussion how these 
mechanisms combine to enable the striatum to solve action-selection problems. 

The BG is well situated for reinforcement learning as it serves as a neural interface between 
reinforcement signals, primarily through DA, and action representations via cortical input pathways 
(Mogenson et al., 1980). The STR and its main population of MSNs constitute this interface, where 
cortical inputs establish plastic synapses modulated by DA. The adjustment of the weights of these 
cortico-striatal synapses in response to reward signals influences which actions are prioritized in the 
future (Gurney et al., 2015; Reynolds and Wickens, 2002). 

3.2 Computational models of the basal ganglia 

3.2.1 Channel structure 

Computational models of the basal ganglia have been developed, incorporating the concept of 
cognitive streams or channels representing potential actions (Gurney et al., 2001; Suryanarayana et 
al., 2019). The BG are thought to act as an action selection machinery by inhibiting every 
nonselected action in the thalamus with the SNr, based on their corresponding activity level or 
salience (Redgrave et al., 1999). 

According to recent research, this segregation through the entire cortical-BG-thalamic loop shows a 
very high specificity to almost neuron-to-neuron level (Foster et al., 2021; Hunnicutt et al., 2016), 
which could mean that it seems feasible to impact behaviour at different levels of detail. 

https://www.zotero.org/google-docs/?jMLF4d
https://www.zotero.org/google-docs/?ygVmHz
https://www.zotero.org/google-docs/?3P8P0p
https://www.zotero.org/google-docs/?pLIFpV
https://www.zotero.org/google-docs/?cWmiTd
https://www.zotero.org/google-docs/?YFRVVS
https://www.zotero.org/google-docs/?rHxxNg
https://www.zotero.org/google-docs/?rHxxNg
https://www.zotero.org/google-docs/?7c8oPD
https://www.zotero.org/google-docs/?nwzcPH
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3.2.2 Action selection 

Previous models of the Basal Ganglia (BG) used population models, in which each node symbolises a 
group of neurons rather than individual ones. These models represent average neuronal activity 
rather than individual spikes. However, more detailed Spiking Neural Networks (SNNs) represent 
individual neurons, providing a more precise representation of brain computation at the neuron 
level. 

This specificity is crucial to understand the interaction between various channels during action-
selection processes. Burke et al.'s model proposes an explanation for the co-activation of D1 and D2 
Medium Spiny Neurons (MSNs), which control behaviourally contrasting pathways. This is achieved 
by introducing asymmetric lateral connectivity in the striatum and lateral inhibition between 
neurons of the same receptor type, with stronger D2 to D1 neuron inhibition (Figure 9). This model 
helps to explain phase-dependent activation synchronization between D1 and D2 MSNs from different 
channels, which is essential for designing models that can perform action selection. 

 

Figure 9: Connectivity model used for channels in the STR. 
A) Each column indicates an action channel made up of D1 and D2 MSN subgroups. Inhibition is seen within each 
subgroup and from D2 to D1 subgroups in the same channel. Lateral inhibition only occurs between different channels 
of the same type. Except for D2 to D1 inhibition within a channel, all inhibitory synapses are weak. B-E) These are 
adapted figures from Burke et al. (2017) displaying activity resulting from various connectivity patterns. The 
connectivity model used in this study matches the structural asymmetrical pattern (E), where lateral inhibition from 
the active channels limits the activity of other silent channels. 

3.2.3 Learning 

In SNNs models, a widely used learning rule is spike-timing-dependent plasticity (STDP), a synaptic 
model with weight adaptation demonstrated in biological systems (Levy and Steward, 1983) and 
more particularly in the BG (Fino and Venance, 2010). This is a learning rule where the synaptic 
weight changes based on the relative timing of pre- and post-synaptic spikes. No weight change 
occurs if the spikes are far apart in time, but as the spikes get closer in time, the weight change 
becomes more significant. The direction of the weight change typically depends on the order of the 
spikes: the weight increases if the presynaptic spike comes before the postsynaptic spike and 
decreases if it comes afterwards. This rule allows neurons to detect and recognize repetitive 
patterns, useful in unsupervised learning tasks. 

In reinforcement learning tasks it is common to learn not just any repetitive patterns, but the ones 
associated with reward. Reward-modulated STDP (R-STDP) is a modified version of STDP, where the 
amount of dopamine (DA) influences the weight change, biasing the learning process towards 

https://www.zotero.org/google-docs/?SdnjHl
https://www.zotero.org/google-docs/?vaOdm5
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patterns that correlate with reward signals. It uses eligibility traces, temporary storage of potential 
synaptic changes, to account for delays between stimuli and rewards. 

Spike-Timing-Dependent Eligibility (STDE; Figure 10) is a more flexible model that captures features 
found in the biological medium spiny neurons (MSN) of the basal ganglia. Different learning kernels 
can be used depending on the amount and type (reward or punishment) of reinforcement received. 
Despite some limitations, this model has proven successful in action selection tasks, driven by the 
timing of input and reward signals. 

 

Figure 10: Different kernels used in spike-timing-dependent plasticity-like rules. 
(Left) Typical STDP kernel shape, showing the relationship between the relative spike timing and the weight change. 
(Right) An example of kernel used in STDE learning rule, where the weight change depends not only on the post-pre 
time difference but also on the available amount of dopamine. 

3.2.4 Dopamine and acetylcholine modulation in a 
reinforcement learning striatal model (recent 
unpublished work) 

In this study, UGR in collaboration with KI and KTH  used a modified version of STDE to include the 
influence of neuromodulator acetylcholine (ACh) in addition to DA. ACh (modulated at STR by 
thalamic inputs) seems to have an important role regulating learning in MSNs, as ACh pauses define 
the time window for phasic dopamine to induce plasticity (Reynolds et al., 2022). However, it 
remains under discussion how these two mechanisms combine to make the striatum able to solve 
action-selection problems. In the present work, a striatal learning rule is proposed that uses DA as a 
global reward signal that modulates the kernel of the STDP-like learning rule, and ACh as a local 
population feedback that signals the responsibility of the recent actions. 

UGR, KI and KTH have developed a reinforcement learning computational model of the striatum that 
demonstrates how the combination of DA and ACh influences action selection and facilitates 
learning, even in more complex tasks. The model was enriched with lateral connectivity and 
homeostatic mechanisms, increasing its robustness to parametric changes. The model demonstrated 
proficiency in recognizing relevant patterns and consistently selecting rewarded actions, while its 
homeostatic mechanisms facilitated robust learning and recovery from policy changes. Notably, 
incorporating ACh feedback expedited the learning process as the number of potential actions 
increased. This study's findings provide a promising basis for future exploration into the intricate 
learning mechanisms of the brain and the role of neuromodulators therein. 

https://www.zotero.org/google-docs/?b7Jv8N
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Figure 11: A) Cortico-striatal network for RL task. B) Different STDE learning kernels used. 

The network, modelled after15 and shown in Figure 11A, consists of Leaky Integrate-and-Fire (LIF) 
neurons organized into channels, with each representing a potential action. Each channel 
encompasses two MSN populations (D1 and D2 neurons), with lateral inhibition incorporated. Action 
neurons, which simplify other basal ganglia nuclei by integrating excitatory activity from D1 neurons 
and inhibitory activity from D2 neurons, select an action if the activity balance between its D1 and 
D2 neurons leans toward D1, causing the corresponding action neuron to spike. 

The environment generates a 200 ms delayed reinforcement signal based on the last action taken 
and the expected action. A dopaminergic neuron sends a global reward signal to all MSNs. The 
learning rule uses eligibility traces that decay exponentially with a time constant of 400 ms to store 
the potential weight changes and apply them according to current DA level, similarly to (Gurney et 
al., 2015; Izhikevich, 2007). All plastic synapses share a global DA level that decays exponentially 
with a temporal constant of 20 ms. 

Importantly, as a novel addition in this work, action neurons also transmit information about the 
decision made back to the MSNs, and if the action was taken, ACh levels momentarily dip. Learning 
is only possible when the ACh level is low in a channel. 

To evaluate the robustness of the combined synaptic and homeostatic rules, UGR, KI and KTH 
simulated an action-selection experiment. In this scenario, the simulated network was presented 
with multiple possible actions to choose from. There are as many input patterns as possible actions, 
and these patterns were randomly shown during the simulation 80% of the time, with noise 
representing the remaining 20%. Each input pattern corresponded to a specific action that, if chosen, 
would yield a reward. Any other action would result in a punishment. If no action was taken, neither 
punishment nor reward was given. 

This task was tested under various conditions, such as differing numbers of possible actions and with 
or without the presence of ACh. As the number of potential actions increased, the task's difficulty 
naturally escalated. This can be seen in Figure 12, where the difficulty of the task increases with 
the number of possible actions, as it takes longer to achieve high accuracy. The graph also shows 
that with ACh the model learns much faster with a higher number of actions than the model without 
ACh. The only situation with no difference is where only two actions are used. 

 
15 González-Redondo, Á., Garrido, J., Naveros Arrabal, F., Hellgren Kotaleski, J., Grillner, S., Ros, E., 2023. 
Reinforcement learning in a spiking neural model of striatum plasticity. Neurocomputing 548, 126377. 
https://doi.org/10.1016/j.neucom.2023.126377; P4039 

https://www.zotero.org/google-docs/?3Cv7no
https://www.zotero.org/google-docs/?3Cv7no
https://doi.org/10.1016/j.neucom.2023.126377
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Figure 12: Accuracy evolution with and without ACh solving tasks of different difficulties. 

The findings of this study suggest that the developed network model can effectively recognise 
relevant input patterns and make consistent, rewarding action choices in response to sensory inputs. 
An interesting observation was that the inclusion of ACh feedback expedited the learning process, 
particularly as the number of actions increased. In actual brains, ACh is modulated at STR by thalamic 
inputs. The present model suggests a potential role for this input in facilitating learning by confining 
it to specific subpopulations within the STR. This finding, along with others, offers an exciting path 
for further exploration in our understanding of the brain's complex learning mechanisms. 

3.2.5 Pro- and anti-saccadic task simulation 

UGR, KI and KTH further tested the previous striatal model using an abstract pro- and anti-saccadic 
task (Figure 13). In this classic task, a subject observes a dot on a screen. The dot's colour indicates 
the trial type: blue for pro-saccadic and pink for anti-saccadic. After 1 second, another dot of the 
same colour appears on either side of the screen. The subject must look towards the new target for 
a pro-saccadic trial, and in the opposite direction for an anti-saccadic trial, with correct actions 
rewarded. 

The stimuli in this experiment are abstracted and represented as sets of input populations, with 
each population representing a state in the task. There are two trial types (pro and anti), and each 
trial is subdivided into five steps, resulting in a total of ten input populations. Each population 
contains ten neurons, with subsequent population steps overlapping by five neurons. These 
populations represent different states in the task and fire at a rate of 50 Hz when active and 1 Hz 
at the basal level. 

Successful completion of a trial triggers a phasic DA increase, influencing the plasticity of the 
connectivity between the input and the MSNs. Incorrect actions or failures to respond result in a DA 
decrease (Figure 14). ACh levels are generally high, dropping locally within a channel when that 
channel activates sufficiently to take an action. 
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Figure 13: Diagram of the classical pro-saccade (left side) and anti-saccade (right side) tasks. 

The colour of the fixation point indicated the trial type (cyan for prosaccades; magenta for antisaccades). The arrow 
indicates the correct direction of the saccade. Figure adapted from Jamadar et al. (2015). 

 
Figure 14: Experimental run example of the full model. 

The horizontal axis represents time in all subplots. The top row symbolically displays the experiment status, using 
cyan and magenta lines for pro- and anti-saccade trials, respectively. The second row presents the spiking activity of 
the state populations, each trial type comprising five sequentially activated overlapping state populations. 
Considering the two trial types and two possible stimulus directions, there are four potential sequences and twenty 
total populations. The last two rows exhibit the activity of each decision channel (left and right) along with their 
respective MSN D1 and D2 layers. Black vertical bars indicate an action triggered by the channel. 

The model's performance was evaluated based on its timely response. Correct responses are scored 
positively, whereas incorrect responses or non-responses negatively impact the score. The average 
performance over time is calculated using a moving mean (Figure 14). 

https://www.zotero.org/google-docs/?FSIv54
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Figure 15: Performance measured as number of rewards/punishments per second. 

Each trial lasts two seconds, so the maximum number of rewards is 0.5 per second. The complete network model can 
learn the task very fast. 

The learning of the network in this task was also tested without the use of ACh neuromodulation 
(Figure 16), which resulted in failure (Figure 17). The model does not converge and is only capable 
of responding inconsistently to a single direction. 

 
Figure 16: Experimental run example of the ablated model without ACh. 

The network is not able to learn the task. As punishments are being received continuously, D2 MSN activity has 
increased to stop the generation of wrong decisions, effectively making the network silent. 
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Figure 17: Performance of the ablated model without ACh. 

This model fails to consistently learn the task. 

4. Models of the cerebral cortex 

4.1 A new computational role of cortical oscillations 
Evolutionary pressure has endowed the brain with powerful mechanisms to deal with uncertain 
sensory inputs and perceptual multistability. Could these biological mechanisms be beneficial for 
neural network models that struggle to switch between interpretations (attractors) of the data? We 
know, on the one hand, that simulated tempering (Marinari and Parisi, 1992) helps neural networks 
to regularly escape the modes by flattening the probability landscape with periodical temperature 
modulations. On the other hand, it is known that rhythmic neural activity oscillations occurring in 
different frequencies are ubiquitous periodic phenomena in the brain (Buzsáki and Draguhn, 2004). 
In this line of research, we combined the two ideas and investigated the hypothesis that neural 
oscillations implement tempering and help the brain mix between interpretations. 

In our model, LIF neurons receive functional input from the local network (within functionally 
adjacent brain areas) and background input from other areas (see Figure 17a). UBERN in 
collaboration with JUELICH abstract excitatory and inhibitory background inputs as stochastic 
Poisson processes with characteristic rates (see Figure 18a). In the high-rate regime of the cortex 
(Destexhe et al., 2003), a neuron’s membrane potential is Gaussian distributed, and its response 
function can be approximated by a logistic function16 17. With increasing rate, the standard deviation 
of the Gaussian increases, and the response function slope decreases (Figure 17b). An LIF network 
can then sample from a Boltzmann distribution15, and a unit’s probability of being active given all 
other states is a logistic function with the inverse Boltzmann temperature as slope. From this, the 
relationship between the background input rate and the spiking neuron’s temperature was derived. 

 
16 Mihai A. Petrovici, Ilja Bytschok, Johannes Bill, Johannes Schemmel and Karlheinz Meier, 2015, The high-
conductance state enables neural sampling in networks of LIF neurons, 24th Annual Computational 
Neuroscience Meeting: CNS*2015, doi: 10.1186/1471-2202-16-S1-O2, P3570 
17 Mihai A. Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, and Karlheinz Meier, 2016, Stochastic 
inference with spiking neurons in the high-conductance state, Physical Review E, Vol. 94, No. 4, 
doi:  10.1103/PhysRevE.94.042312, P1213 

https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-16-S1-O2
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.042312
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UBERN and JUELICH showed that high temperatures lead to a more uniform network state 
distribution (Figure 18c). Thus, temperature variation achieves the desired flattening of the 
distribution. Varying the temperature periodically via the rate (e.g., as a sine wave) induces periodic 
entropy changes, hence implementing tempering (lower part of Figure 18d). 

The mixing problem is pronounced in high-dimensional representations that are, e.g., encoded by 
training a hierarchical network on realistic visual data. If the model runs in generative mode, it 
becomes clear how oscillations shape the output into something useful. Under constant-rate noise 
(Figure 18e, upper), only one image class is produced, while under constant high-rate noise (Figure 
18e, middle), the images are a blurry overlap of many different classes. Under tempered noise 
induced by cortical oscillations, the network produces diverse and clear images (Figure 18d and e, 
lower). The desired behaviour under tempered noise occurs because high temperatures enable 
switching the mode, and the subsequent temperature decrease stabilizes the new mode (Figure 
18d). 

With different statistical measures, it could be shown that tempering greatly improves mixing speed 
and enables increased target distribution coverage. Mode duration decreases for a broad range of 
sine wave parameters (Figure 18f). However, representation accuracy, vital for mixing quality, is 
guaranteed only for a smaller part of the parameter space. The trade-off between these measures 
revealed that the best tempering effect occurs for slower waves, suggesting links to, e.g., various 
phases of sleep. 

This study thus identifies a new, fundamental computational role of cortical oscillations. It connects 
them to various phenomena in the brain, such as sampling-based probabilistic inference, memory 
replay, multisensory cue combination, and place cell flickering. 

 
Figure 18: Cortical oscillations implement spike-based tempering. 

Background input from other brain areas can be abstracted as Poisson processes with specific rates ν (a). In the high-
conductance state, the activation function has a sigmoid shape, the slope of which changes with input rate (b). This 
observation leads to a temperature definition that has the desired effect of flattening the state distribution for high 
temperatures (c). Oscillating between high and low temperatures can free the network in high-dimensional data sets 
from deep local minima (d) and produce simultaneously diverse and clear images in contrast to constant-rate scenarios 
(e). This happens robustly for an ample oscillation parameter space (f). 

4.2 Anomalous phase transitions in spiking neural 
networks 

As a relatively new field of research, theoretical neuroscience has been able to draw on significant 
inspiration from several other well-established disciplines such as mathematics, physics, and 
computer science. In particular, statistical physics has played an important role in explaining many 
aspects of neuronal activity, both for computation and for understanding large-scale ensemble 
phenomena. In this regard, two of the most influential models have been the Hopfield network and 
the Boltzmann machine, both inspired by spin glasses and the Ising model of magnetism. 

Recently, these models have also been used very successfully to model the activity of spiking neuron 
ensembles (see Figure 19a). A significant contribution to this body of work has been made from 
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within the HBP itself 15 18 19 20 21 22. One detail that all these models have in common is that they 
assume a binary form of the neuronal interaction. While this approximation holds in the more noisy, 
high-conductance regime of cortical activity, the less noisy regime – present, among others, in 
cortical down states, has previously not been explored in as much detail. The mathematical 
framework for spike-based sampling developed in the HBP allowed us to study both regimes in more 
depth (see also Sec. 4.1.1). 

 
Figure 19: Interaction kernels strongly influence ensemble properties of spiking networks. 

Partly adapted from 20. Cortical neurons exhibit stochastic activity due to background noise (a), similarly to spins in 
magnetic lattices (b). However, ensemble behaviour depends strongly on PSP shapes (c). For biologically realistic PSP 
shapes, the phase diagrams of spiking networks are very different from those suggested by classical models such as 
Hopfield networks or Boltzmann machines (d). 

In ensemble theory, the low-noise regime corresponds to a low temperature. As this temperature 
parameter drops, the exact shape of the synaptic interaction (PSP) between neurons plays an 
increasingly important role. In classical theories, neuronal lattices (see Figure 19b) undergo a phase 
transition at the so-called Curie temperature, where they spontaneously fall into either of two states 
– a highly active, synchronous state, or a state of (near) absolute silence. However, UBERN in 
collaboration with UHEI has shown that for a more realistic PSP shape, the phase transition is 
significantly more complicated (see Figure 19c, d). In particular, activity in cortical sub-networks 
can switch twice as the surrounding cortical activity drops: first, from a balanced state to a low-
activity state, and then back up into a highly active state. 

This represents a radical shift in our previous understanding of spiking ensembles and can play a 
significant role in understanding out-of-equilibrium cortical states or pathologies. It could also play 
an important role in computation: Under a more conventional view, transient states of high activity 
can help our brain switch between different interpretations of its sensory inputs (see also Sec. 4.1.1). 
However, our new insights into the low-activity regime suggest that it too might be able to facilitate 
such a phenomenon. Even more so, the sharp transitions between high and low activity in the low-

 
18 Luziwei Leng, Roman Martel, Oliver Breitwieser, Ilja Bytschok, Walter Senn, Johannes Schemmel, Karlheinz 
Meier, Mihai A. Petrovici, 2018, Spiking neurons with short-term synaptic plasticity form superior generative 
networks, Scientific Reports, Vol. 8, No. 1, doi:  10.1038/s41598-018-28999-2, P1334 
19 Akos F. Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baumbach, Dominik Dold, Alexander 
Kugele, Eric Müller, Christoph Koke, Mitja Kleider, Christian Mauch, Oliver Breitwieser, Luziwei Leng, Nico 
Gürtler, Maurice Güttler, Dan Husmann, Kai Husmann, Andreas Hartel, Vitali Karasenko, Andreas Grübl, 
Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici, 2019,  Accelerated Physical Emulation of Bayesian 
Inference in Spiking Neural Networks, Frontiers in Neuroscience, Vol. 13, doi: 10.3389/fnins.2019.01201, P1360 
20 Dominik Dold, Ilja Bytschok, Akos F. Kungl, Andreas Baumbach, Oliver Breitwieser, Walter Senn, Johannes 
Schemmel, Karlheinz Meier, Mihai A. Petrovici, 2019, Stochasticity from function — Why the Bayesian brain 
may need no noise,  Neural Networks, Vol. 119, doi: 10.1016/j.neunet.2019.08.002, P1447 
21  Jakob Jordan, Mihai A. Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz Meier, Markus 
Diesmann, Tom Tetzlaff, 2019, Deterministic networks for probabilistic computing,  Scientific Reports, Vol. 9, 
No. 1, doi: 10.1038/s41598-019-54137-7, P843 
22 Agnes Korcsak-Gorzo, Michael G. Müller, Andreas Baumbach, Luziwei Leng, Oliver J. Breitwieser, Sacha J. 
van Albada, Walter Senn, Karlheinz Meier, Robert Legenstein, Mihai A. Petrovici, 2022, Cortical oscillations 
support sampling-based computations in spiking neural networks, PLOS Computational Biology, Vol. 18, No. 3, 
doi: 10.1371/journal.pcbi.1009753, P2806 

http://dx.doi.org/10.1038/s41598-018-28999-2
http://dx.doi.org/10.3389/fnins.2019.01201
http://dx.doi.org/10.1016/j.neunet.2019.08.002
http://dx.doi.org/10.1038/s41598-019-54137-7
http://dx.doi.org/10.1371/journal.pcbi.1009753
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noise regime might allow particularly robust switching between different thoughts or memories 
without the longer transients incurred by slower cortical oscillations. 

4.3 Multi-area models of macaque visual cortex 
JUELICH developed multi-area models of all vision-related areas in one hemisphere of macaque 
cortex, based on previous work23 24. The models are implemented in NEST running on HPC systems 
and contain the full density of neurons and synapses in each local circuit, for a total of around 4 
million neurons connected via 24 billion synapses. The usage and scaling of this model was described 
in a book chapter25. In collaboration with UNIMAN, work was done to port the published model to 
SpiNNaker. JUELICH developed a PyNN version of the model and UNIMAN so far ran the 32 isolated 
microcircuits of the model as well as a subset of the microcircuits with their full interconnectivity 
successfully. The model was further implemented on a GPU cluster and the simulation performance 
was compared with that of NEST running on CPUs26. This work contributed to the incorporation of a 
GPU component into NEST. 

In new work, JUELICH incorporated joint clustering of excitatory and inhibitory neurons into the 
model (Figure 20) to support inter-area propagation. As a positive side effect, JUELICH showed that 
such clustering leads to more plausible firing rate distributions across all vision-related areas (Figure 
21). Furthermore, the clustered model reproduces a reduction in trial-to-trial variability, as 
measured by the Fano factor, upon stimulation. 

 
Figure 20: Schematic illustration of the clustered multi-area model of macaque visual cortex. 

 
23 Maximilian Schmidt, Rembrandt Bakker, Kelly Shen, Gleb Bezgin, Markus Diesmann, Sacha Jennifer van 
Albada, 2018, A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual 
cortical areas, PLOS Computational Biology, Vol. 14, No. 10, doi: 10.1371/journal.pcbi.1006359, P1457 
24 Maximilian Schmidt, Rembrandt Bakker, Claus C. Hilgetag, Markus Diesmann, Sacha J. van Albada, 2017, 
Multi-scale account of the network structure of macaque visual cortex, Brain Struct Funct, doi: 
10.1007/s00429-017-1554-4, P1036 
25 Sacha J. van Albada, Jari Pronold, Alexander van Meegen, Markus Diesmann, 2021, Usage and Scaling of an 
Open-Source Spiking Multi-Area Model of Monkey Cortex, Lecture Notes in Computer Science, doi: 
10.1007/978-3-030-82427-3_4, P2890 
26 Gianmarco Tiddia, Bruno Golosio, Jasper Albers, Johanna Senk, Francesco Simula, Jari Pronold, Viviana 
Fanti, Elena Pastorelli, Pier Stanislao Paolucci, Sacha J. van Albada, 2022, Fast Simulation of a Multi-Area 
Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster, Frontiers in Neuroinformatics, Vol. 16, doi: 
10.3389/fninf.2022.883333, P3318 

http://dx.doi.org/10.1371/journal.pcbi.1006359
http://dx.doi.org/10.1007/s00429-017-1554-4
http://dx.doi.org/10.1007/s00429-017-1554-4
http://dx.doi.org/10.1007/978-3-030-82427-3_4
http://dx.doi.org/10.1007/978-3-030-82427-3_4
http://dx.doi.org/10.3389/fninf.2022.883333
http://dx.doi.org/10.3389/fninf.2022.883333
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Figure 21: The model supports plausible firing rate distributions and inter-area propagation. 

4.4 Spatially resolved large-scale model of macaque V1 
In further ongoing work, JUELICH has modelled an expanded version of the primary visual cortex 
(V1) component of the macaque cortical model, measuring 16 mm2, and incorporated distance-
dependent connectivity. The resulting large-scale model is implemented using NEST and run on the 
JUELICH supercomputers. The connectivity was further refined at the level of cortical layers and 
populations based on a collation of axonal tracing data (Vanni, 2020), and by incorporating push-pull 
connectivity (Antolik et al., 2018). The model reproduces various aspects of visual orientation maps 
(Figure 22) based on the input from effective thalamic units (Sadeh and Rotter, 2014). In future 
work, the resting-state activity of the model will be explored and made increasingly compatible with 
available experimental data; and the interactions between V1 and higher cortical areas will be 
explored. 
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Figure 22: Orientation map of the macaque V1 model. 

Dots highlight the elliptical nature of patchy connections. Black dots represent post-synaptic, white dots pre-synaptic 
neurons. 

4.5 Retinal sampling explains aspects of visual cortex 
How we perceive the world is an interplay of various neural structures and mechanisms. The retina, 
with its non-uniform distribution of retinal ganglion cells (RGCs), plays a pivotal role in visual 
perception. The fovea, the central region of the retina, boasts the highest RGC density, ensuring 
high-resolution processing of visual stimuli. As one moves away from the fovea, the density of RGCs 
diminishes, leading to reduced visual acuity in the periphery. This non-uniformity underpins our need 
for eye movements, focusing on salient regions in the visual field to extract meaningful information. 
To emulate this eccentricity-dependent distribution of RGCs within computational models, partner 
UM (P117) recently developed a retinal sampling layer27 (RSL). 

At its core, the RSL is designed to transform uniformly sampled square images into non-uniformly 
sampled counterparts, reflecting the RGC distribution in the human retina. To map visual field 
coordinates to ganglion cell coordinates, the RSL integrates and subsequently inverts an empirically 
derived function that relates ganglion cell density to eccentricity in the visual field.  

Convolutional Neural Networks (CNNs) have in recent years become increasingly adopted as a model 
of sensory neural structures, especially in the domain of vision. However, a generic CNN lacks the 
biological realism that the human visual system exhibits. The introduction of the RSL into CNN 
architectures addresses this gap. By pre-processing input images using the RSL before they are fed 
into a CNN, the network's overall realism can be enhanced. Indeed, when CNNs were augmented 
with the RSL, they began to display organizational principles reminiscent of the primate visual 
cortex, such as cortical magnification and eccentricity-dependent receptive field size. Furthermore, 
these CNNs showcased a radial bias, a phenomenon wherein orientation tuning of neural populations 
is biased towards radial orientations (i.e., those orientations that if they were extended beyond the 
receptive field of the population would intersect with the origin). Most notably, the CNN exhibits 
radial bias only for grating stimuli whose spatial frequency exceeds a certain threshold whereas low 
spatial frequency stimuli elicit a bias towards orientations that are orthogonal to the radial axis. 
These findings have led to novel hypotheses about the origin of radial bias that are currently being 
investigated with ultra-high-field imaging. This underscores the potential of integrating biologically 
accurate modules like the RSL into deep neural network architectures (also cf. Figure 23). 

 
27 Danny da Costa, Lukas Kornemann, Rainer Goebel, Mario Senden (2023), Unlocking the Secrets of the Primate 
Visual Cortex: A CNN-Based Approach Traces the Origins of Major Organizational Principles to Retinal Sampling, 
BioRxiv, http://dx.doi.org/10.1101/2023.04.25.538251, P3995 

http://dx.doi.org/10.1101/2023.04.25.538251
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Figure 23: Retinal sampling of a square image. 

The input image (left) is sampled according to RGC distributions, resulting in a retinal ganglion cell representation. 
The image shows an enhanced central region (foveal vision) with progressive loss of information as eccentricity 
increases (peripheral vision). Inverting the sampling process transforms the retinal ganglion cell representation into 
a representation similar to human perception. Note that while the distortion caused by retinal sampling may appear 
extreme, the perceptual image reveals that a significant amount of information is retained. 

5. Looking Forward 
To obtain a more integrated picture of brain function at the spiking level, it will be important to 
combine the models described here into more unified architectures, enabling the investigation of 
coordinated information processing in the various brain regions. Functions covered should go beyond 
simple visuomotor functions such as eye and arm movements to more closely approximate ongoing 
sensorimotor coordination in natural environments. Further, the partners will continue to enhance 
the modelling tools to which the present work has contributed, including the Brain Scaffold Builder 
and Snudda, extending their functionality, documentation, compatibility with different computing 
platforms and softwares, and integration into unified workflows. 
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