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Showcase 3 – DEMO3.2 and Showcase 4 – DEMO4.2  
(D2.3 – SGA3) 

 

Figure 1: Showcase 3 - Simulation of brain states in mouse, macaque and human. Whole-brain 
simulations of wake-like (conscious) and anaesthesia (unconscious) states in three different 

species. 
Showcase 3 present simulations of spontaneous activity, together with results about brain responses to external 
stimuli in those brain states.  Simulations were done in TVB using the integration of AdEx mean-field models developed 
previously and were implemented on EBRAINS. A new framework of surface-based simulations is also presented, giving 
access to more accurate simulations. 

 

 
Figure 2: Showcase 4 - Development highlights and convergence of computational models of 

sensory predictions and object recognition. 
Showcase 4 presents an integrative suite of three complementary models that investigate sensory predictions and 
object recognition at different levels of biological detail: 1) a neurobiological model (lower left) incorporates mouse 
connectivity data and includes detailed postsynaptic dynamics (AMPA, NMDA and GABA-A) to simulate spiking cortical 
columns of four neuron types (pyramidal, E; three interneuron types, PV, SST, and VIP); 2) a cognitive model uses 
rate-based neurons and predictive coding architecture that learns invariant representations of visual objects from 
temporal continuity (e.g. translation, rotation, and scaling; upper left and right); and 3) a hybrid model introduces 
spiking neurons and feedforward gist to predictive coding architecture to implement biologically plausible algorithms 
for learning hierarchical latent representations of a visual scene (e.g. V1 to V3; middle, superimposed on human 
visual cortex) 
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actions, converge. Finally, we deliver advancements in the multi-scale, TVB-AdEx 
model of human brain, in which each mean-field represents a vertex, approaching 
the resolution of a cortical column, with resolution much finer than in the previously 
delivered region-based model. In accompanying videos, we begin to see the 
emergence of spatially localised propagating waves in response to perturbations. 
These findings demonstrate the universality of slow waves between species, and 
also between different mechanisms generating unconsciousness. 

In Showcase 4, we are starting to combine predictive coding models of perception 
with the dynamics and neuronal circuitry characteristic of the cortex. To this end, 
we developed an integrative suite of three complementary models with different 
levels of biological realism: a neurobiological model of spiking cortical columns, a 
cognitive model of object-invariant perception, and a hybrid model of a predictive 
coding based spiking neural network. In Showcase 4, we present the highlights of 
their development and elaborate how integration of knowledge gained from these 
models can improve our understanding of perception, and brain diseases.  

Keywords: Mean-field model, AdEX neurons, full-brain simulations, human neural activity, 
connectome, tractography, Homo sapiens (human), Mus musculus (mouse), Macaca 
mulatta (macaque), brain states, consciousness, sleep, anaesthesia, predictive 
coding, perception, object recognition, spiking neural network, object invariance, 
cortical columns, biophysical model. 

Target Users/Readers: Computational neuroscience community, computer scientists, Consortium 
members, HPC community, neuroimaging community, anaesthesiologists, 
neurologists, cognitive neuroscientists, physicists, neuroinformaticians, funders, 
neuroscientists, platform users, researchers, general public. 
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1. Showcase 3: Brain Complexity and 
Consciousness, Demo 2 

1.1 Introduction 
Understanding consciousness is one of the grand challenges of contemporary neuroscience. Why does 
it fade and recover during transitions across physiological, pharmacological and pathological brain 
states? How can we determine whether a behaviourally unresponsive patient is conscious? Can we 
quantify consciousness levels? Can we use our multi-scale understanding of brain-state transitions to 
devise strategies to induce recovery of consciousness? A brain-based quantification of the levels of 
consciousness is of the utmost importance because, each year, intensive care medicine is called 
upon to treat millions of patients whose level of consciousness is difficult to assess due to severe 
brain injuries and disconnections. Detecting the fundamental mechanisms of consciousness is crucial, 
not only for better diagnosis, but also to guide recovery in an optimal manner. Finally, it is critical 
to provide tools - such as eye tracking or brain computer interfaces - to provide communication 
channels for patients who have recovered consciousness but remain disconnected (e.g. locked-in 
patients). Another relevant requirement comes from the field of anaesthesiology - pharmacologically 
induced alterations of consciousness – which is used in millions of patients every year. The 
effectiveness of this approach is limited by a lack of systematic understanding of the underlying 
circuit mechanisms and a lack of reliable brain-based measures of anaesthesia depth. Therefore, 
deeper understanding of consciousness also paves the way to engineering novel methods of tracking 
the results of pharmacological interventions, as well as engineering next-generation, non-
pharmaceutical, direct methods for inducing states of non-responsiveness, with potentially fewer 
side effects and dangers. 

In the previous Demo 3.1 (See SGA3 Deliverable D2.1 (M9): Showcase 3 – DEMO3.1 and Showcase 4 – 
DEMO4.11), we demonstrated that the implementation of AdEx mean-field models (developed in 
SGA2) into the Virtual Brain (TVB) leads to a framework where one can evaluate the effect of 
“microscopic” parameters, such as spike-frequency adaptation, on the “macroscopic” behaviour at 
the level of the whole brain, such as the emergence of synchronised slow waves. We could replicate 
the TMS-EEG (Transcranial Magnetic Stimulation - Electroencephalography) experiments done in the 
wake-sleep cycle in humans (Goldman et al., 2021). 

In this second Showcase Demo 3.2, we extend such simulations of full brain activity to anaesthetised 
states, during spontaneous activity and after stimulation. Stimulation results in perturbed or evoked 
activity, with spatiotemporal interactions between areas that have a different fingerprint, 
corresponding to different brain states. These brain states can be physiological (sleep or awake), as 
shown before, but also pharmacological (e.g. anaesthesia levels), or due to disorders of 
consciousness (e.g. traumatic brain injury). For these reasons, we have used the simulation 
capabilities offered by the Human Brain Project’s (HBP’s) EBRAINS neuroscience research 
infrastructure to make access to the models as wide as possible. The simulations delivered here at 
SGA3 Month 22 (January 2022) illustrate how emergent patterns of activity can be reproduced in 
silico and shed light on their microscopic underpinnings. These simulations are presented with 
qualitative and quantitative analyses pioneered in empirical data, for direct comparison to activity 
recorded during different brain states in three species: human subjects, macaque monkey and 
mouse.  

1.2 Technical Specification 
We show here simulations of the whole-brain model, for mouse, macaque and monkey. We show 
both spontaneous activity (asynchronous and slow-wave states), and evoked activity. In each species 

 
1  https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-
5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf  

https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf
https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf
https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf
https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf
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we aim to simulate how evoked responses depend on brain state, with an emphasis on anaesthesia. 
Our models investigate how the loss of consciousness (induced by anaesthetics) influences the 
propagation of information, and more generally, how the brain processes external inputs. 

1.2.1 Mouse model of wake and slow-wave states 

We start by showing the experimental evaluation and modelling of perturbational complexity index 
(PCI) in the mouse, recorded using extracellular electrodes. This first experimental data set (Dasilva 
et al., 2021) consists of the same electric stimuli delivered in different states of anaesthesia (Figure 
3), showing that the PCI inversely follows the depth of anaesthesia (Figure 4). 

 
Figure 3: Complexity of the multiunit activity response to a stimulus on the mouse at different 

levels of anaesthesia. Adapted from Dasilva et al., 2021. 

 
Figure 4: Spontaneous wide-field calcium signal during intermediate or deep anaesthesia. 

A. Snapshot of the activity of the different cortical areas, colour code is the intensity of the fluorescence. B. Example 
traces of the averaged activity over all the cortical areas in each level of anaesthesia, before and after stimulation. 
C. Changes in duration of Up or Down states when increasing the level of anaesthesia. Data from n=4 subjects. D. 
Power spectral densities of the average of the cortical signal across trials and subjects. 
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Figure 5: Complexity of the wide-field calcium imaging data during intermediate or deep 
anaesthesia. 

A. Snapshots of the activity of the cortex during the response to a whisker stimulation in deep (top) or intermediate 
(bottom) anaesthesia, colour code is the intensity of the fluorescence. B. Example of the average response of the 
cortex across trials in one subject during intermediate (red) or deep (black) anaesthesia. C. Complexity of the 
response in each condition measured using PCILZ. D. Complexity of the response in each condition measured using 
PCIST. 

 
Figure 6: Spontaneous calcium activity of the mouse TVB model during different brain states. 

A. Snapshot of the activity of the different cortical areas. Colour code is the intensity of the fluorescence. B. Example 
traces of the averaged activity over all the cortical areas in each brain state: from wakefulness (top) to deep 
anaesthesia (bottom) by increasing the strength of adaptation (parameter b in the model). Same legend as in panel 
D. C. Changes in duration of Up or Down states when increasing the level of adaptation. D. Power spectral densities 
of the average of the cortical signals at each brain state (mean and standard deviation over realisations). Data from 
n=20 realisations of each condition. 
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Another set of data from LENS (Allegra et al., unpublished) consists of a similar protocol, recorded 
in calcium imaging, which also show the same trend (Figure 5). 

To model these data, we have considered the TVB simulation environment where we integrated the 
AdEx mean-field model with adaptation (di Volo et al., 2019). As shown previously, the TVB-Adex 
model can simulate slow-waves, which were provided here for mouse and calcium imaging signals 
(Figure 6). We estimated the PCI (Figure 7) and the functional connectivity in this model (Figure 8).  

Interestingly, the state-dependent PCI (PCIST) did not display the trend found experimentally, but 
the Lempel-Ziv PCI (PCILZ) provided simulations in perfect agreement with experiments (Figure 7). 

 
Figure 7: Complexity of the calcium response during different brain states. 

A. Response to a 60ms stimulation of the barrel field cortex in different brain states, from wakefulness to deep 
anaesthesia as modelled by increasing adaptation strength (b parameter). The Y axis is broken to show the full 
response of the stimulated area (top) and the smaller response of the remaining cortical areas (bottom). B. Complexity 
of the response in each condition measured using PCILZ. C. Complexity of the response in each condition measured 
using PCIST. Data from n=20 realisations of each condition. 

 
Figure 8: Functional connectivity at different brain states.  

A. Functional connectivity matrices at each level of consciousness showing an increase of pairwise correlations for 
synchronous states. B. Structural connectome of the mouse model.  
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1.2.2 Macaque model of wake and slow-wave states 

Next, we considered TVB simulations of the macaque brain (Figure 9). Similarly to human and mouse, 
the macaque TVB-AdEx model displayed asynchronous and slow-wave states (Figure 10, Figure 11). 
The evaluation of the functional connectivity (Figure 12) gave very different patterns in these two 
states. The response to stimuli, and the associated PCI, are in progress experimentally, and were 
not yet attempted in the model - they will be reported later. 

 
Figure 9: Macaque Brain in TVB. 

We used the macaque brain implemented in TVB. In particular, we used the COCOMAC connectome to run simulations 
of the AdEx mean-field model. 

 
Figure 10: Simulations of the Macaque Brain showing asynchronous state and synchronous 

states. 
Moving the spike frequency adaptation parameter from b=5 to b=60, we transit from an asynchronous state that 
models awake consciousness to a synchronous state that models sleep states.  
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Figure 11: Power spectrums of asynchronous and synchronous states. 

When the spike frequency adaptation parameter is set to b=5 we observe a single peak 6HZ in contrast to what we 
observe at b=60, where several peaks appear and the more pronounced ones are in the slow-wave regime.  

 
Figure 12: Functional connectivity matrices of asynchronous and synchronous states.  

In the asynchronous regime the functional connectivity matrix shows values close to zero showing no significant 
pairwise correlation between nodes. In the synchronous regime, we observe more pronounced correlations. 

 
Figure 13: Synchronous regime through hyperpolarisation. 

The synchronous regime can be generated by hyperpolarising cells. In this example, we transit from excitatory and 
inhibitory reversal potentials of -63mV and -65mV respectively to -75mV and -75mV respectively. 
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Regarding the effect of anaesthetics, the model exhibited slow waves arising from hyperpolarisation 
(Figure 13 and Figure 14; see Figure 15 for functional connectivity). We also simulated the BOLD 
signal in the macaque TVB-AdEx model (Figure 16, Figure 17), which will allow future comparison 
with fMRI data in macaque (work in progress). 

 
Figure 14: Power spectra for synchronous states generated by hyperpolarisation. 

When the spike frequency adaptation parameter is set to b=5, we observe several peaks, the more pronounced one 
near 3HZ. For b=60, we observe several peaks and the more pronounced is near 1HZ.  

 
Figure 15: Synchronous functional connectivities due to hyperpolarisation 

Here, for both spike frequency adaptation values b=5 and b=60, we observe high values of pairwise correlations.  

 
Figure 16: Experimental al simulated bold-like functional connectivity of awake macaques 

Left: functional connectivity obtained from experimental fMRI data of awake macaques in resting state. Right: we 
simulate Bold-like signals using TVB and the COCOMAC connectome using the parameters that generate asynchronous 
firing rate.  
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Figure 17: Experimental and simulated bold-like functional connectivity of anaesthetised 

macaques 
Left: functional connectivity obtained from experimental fMRI data of anaesthetised macaques using propofol. Right: 
simulated functional connectivity of Bold-like signals using TVB and the COCOMAC connectome using the parameters 
that generate synchronous firing rate.  

1.2.3 Human model of wake and slow-wave states 

The TVB-AdEx model was also used in human, where we could also simulate the emergence of slow 
waves with hyperpolarisation (not shown; see below). Here, the PCI was evaluated and showed lower 
values in anaesthesia (Figure 18). 

 
Figure 18: Trend to lower complexity of responsiveness in anaesthetised-like state compared 

to conscious-like state.  
Perturbational complexity index in the human whole-brain, region-based model, comparing an anaesthesia-like (left) 
to an awake-like (right) regime. 5 realisations are included in the analysis for each condition. Parameters changed to 
achieve the anaesthesia-like regime a E_l_e = E_l_i = -75, b=5, whereas in the awake-like regime, E_l_e = -65, E_l_i 
= -63, and b=5. These results show a convergence to reduced responsiveness by hyperpolarising the neuronal 
populations, a general mechanism shared by anaesthetics.  

1.2.4 Study of oscillatory states in human model 

To further understand the repertoire of oscillatory states in the TVB-AdEx model, we studied the 
various parameters that allow the emergence of oscillations (Figure 19). This study revealed that 
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besides asynchronous and slow-wave (Up/Down) states, a third state appears under the form of limit 
cycle oscillations. These oscillations occur for intermediate levels of spike frequency adaptation. 

 
Figure 19: Oscillatory states emerging at intermediate levels of spike-frequency adaptation.  

On the left, exploration of intermediate values of spike frequency adaptation strength (parameter b) showing the 
presence of a fixed point for values of b=0, 2, and 5, but limit cycles emerging for intermediate values of b, and 
bistable regimes observed for high values of b. In middle and right panels, the power spectra show a smooth transition 
of the power maxima, which shifts continuously rightward (to higher frequencies) with decreasing amounts of spike 
frequency adaptation, as expected (Dasilva et al., 2021, Tort-Colet et al., 2021). 

1.2.5 Human model at higher resolution 

Finally, we have investigated a new TVB model, characterised by a high resolution voxellisation of 
cerebral cortex, called the “surface-based model”. When equipped with the AdEx mean-fields, this 
model can also simulate Wake-Sleep-like states (Figure 20) and anaesthesia-like states (Figure 21) 
and their response to external stimuli (Figure 22). In addition, the surface-based TVB-AdEx model 
exhibits travelling wave activity at mesoscale (see videos in Section 1.3). 

 

Figure 20: Simulation of light and deep anaesthesia in the human surface brain model, with 
14,982 vertices. 

(Top) Firing rate of 50 randomly selected nodes in a human brain surface simulation showing spontaneous activity. 
To simulate light anaesthesia, the spike-frequency adaptation was slightly increased to b=5, the delay tau_i was 
increased to 7 to mimic longer GABAergic channel open time, and the membrane potentials of the nodes were 
hyperpolarised to E_L_e= E_L_i=-75. Here we see the emergence of a limit cycle. (Bottom). Firing rate of a human 
brain simulation with the surface model and a spontaneous activity. To simulate a deep anaesthesia, spike-frequency 
adaptation was increased to b=40, the delay tau_i was increased to 10, and E_L_e= E_L_i= -80 for the 
hyperpolarisation of nodes.  
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Figure 21: Simulation of spontaneous activity in the human brain with the surface model. 

(Left) Firing rate of a human brain simulation with the surface model and a spontaneous activity. The spike-frequency 
adaptation (b) value is equal to 5 and we display only 50 random nodes out of the 14,982 contained in the surface 
model. (Right) Firing rate with b = 60 and same 50 vertices.  

 
Figure 22: Simulation of evoked activity in the human brain with the surface model. 

(Left) Firing rate of neuronal populations in the surface-based human brain simulation. A stimulus is given at 4.25s to 
the right caudal middle frontal gyrus. The spike-frequency adaptation (b) value is equal to 5 and 50. Randomly 
selected nodes are displayed, some of which belong to the stimulated region. The stimulus is equal to 0.0001 Hz. 
(Right) Firing rate with b = 60, showing the same vertices responding to the same perturbation. 
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1.3 How to access the Showcase 

1.3.1 Showcase 3 Demo V2 video 

The Showcase 3 output is a video entitled: "Simulations of the complexity of evoked brain 
responses in different states of consciousness" (https://youtu.be/lP9NPwHwmTU) that introduces 
the motivation and background of our research and summarises the results obtained in the three 
species, as described here. 

1.3.2 Access to models of spontaneous activity 

To access the three species models of spontaneous activity, the following tutorials are available in 
EBRAINS: 

• For the mouse: https://drive.ebrains.eu/f/c9913afb062f472688f8/ 

• For the human: https://drive.ebrains.eu/f/781625de8ce14989ba98/ 

• For the macaque: https://drive.ebrains.eu/f/ded8f918007d4c97b579/ 

• For the human surface: https://drive.ebrains.eu/u/d/fb8953a5441d46ce80ba/ 

1.3.3 Access to tutorials in EBRAINS for the calculation of PCI 

There are two tutorials in EBRAINS for the calculation of PCI: 

Calculation of PCI in the mouse calcium TVB model at different levels of consciousness available at 
the following link: https://drive.ebrains.eu/f/4e3f129852444f789e9a/ 

Calculation of PCI in the human brain available in the following link: 
https://drive.ebrains.eu/f/c7b04ecf744049359595/ 

1.3.4 Access to short videos of different brain states on 
different species 

• For the mouse “awake” (b=0pA): https://drive.ebrains.eu/f/c412e190a4bb46f3b7dc/ 

• For the mouse “anesthetized” (b=60pA): https://drive.ebrains.eu/f/c3788843033640c9b067/ 

• For the human “Anesthetized” (b=5pA): https://drive.ebrains.eu/f/7da2a9b79e264614b6c7/ 

• For the human “Anesthetized” (b=40pA): https://drive.ebrains.eu/f/e246952d785c4b6e945a/ 

• For the human “Spontaneous awake-like”(b=5pA): 

• https://drive.ebrains.eu/f/22413e3d769a4cf0ac12/ 

• For the human “Spontaneous activity sleeping-like” (b=60pA): 

• https://drive.ebrains.eu/f/b2fa2fb3daec4ce4a1a4/ 

• For the human “Evoked activity awake-like” (b=5pA):  

• https://drive.ebrains.eu/f/56a3d9a3db7748108969/ 

• For the human “Evoked activity awake-like” (b=60pA):  

• https://drive.ebrains.eu/f/7b4de92c14c2467a8a3b/ 

• For the macaque “awake - Asynchronous” (b=0pA):  

• https://drive.ebrains.eu/f/81d27af467ca45c5966d/ 

https://drive.ebrains.eu/f/c9913afb062f472688f8/
https://drive.ebrains.eu/f/781625de8ce14989ba98/
https://drive.ebrains.eu/f/ded8f918007d4c97b579/
https://drive.ebrains.eu/u/d/fb8953a5441d46ce80ba/
https://drive.ebrains.eu/f/4e3f129852444f789e9a/
https://drive.ebrains.eu/f/c7b04ecf744049359595/
https://drive.ebrains.eu/f/c412e190a4bb46f3b7dc/
https://drive.ebrains.eu/f/c3788843033640c9b067/
https://drive.ebrains.eu/f/c3788843033640c9b067/
https://drive.ebrains.eu/f/7da2a9b79e264614b6c7/
https://drive.ebrains.eu/f/e246952d785c4b6e945a/
https://drive.ebrains.eu/f/22413e3d769a4cf0ac12/
https://drive.ebrains.eu/f/b2fa2fb3daec4ce4a1a4/
https://drive.ebrains.eu/f/56a3d9a3db7748108969/
https://drive.ebrains.eu/f/7b4de92c14c2467a8a3b/
https://drive.ebrains.eu/f/81d27af467ca45c5966d/
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• For the macaque “anesthetized - Synchronous” (b=60pA):  

• https://drive.ebrains.eu/f/df5d3c95a2ef4e769a34/ 

Despite the simplicity of the code used, some of the jupyter notebooks provided above have a 
memory demand that is higher than that provided by EBRAINS. Due to this fact, the kernel might 
restart even if the code runs well in a local computer. We expect to solve this issue in the following 
weeks or months. 

1.4 Looking Forward 
This work contributes to several areas of active work in the HBP. Firstly, it contributes to modelling, 
because it is the first time biophysical network models (with sophisticated biophysical features such 
as adaptation and conductance-based interactions) have contributed to “biologically-realistic” 
mean-field models (displaying several activity states). These models are integrated in EBRAINS to 
simulate, with computationally non-demanding methods, large-scale network-level (whole brain) 
simulations. Three distinct scales of modelling are thus integrated here: microscopic (network of 
neurons), mesoscopic (mean-field), and macroscopic (whole-brain). Secondly, this Showcase 
contributes to knowledge of Brain States, because the models simulate different brain states, from 
high consciousness brain states such as wakefulness to several levels of low consciousness brain 
states (anaesthesia or sleep-like) with synchronised dynamics. Thirdly, this Deliverable contributes 
to research in Cognitive Function because the model captures how information about stimuli are 
integrated by different brain areas, a situation which occurs uniquely in asynchronous states, 
consistent with the high-level sensory integration displayed by the brain in the awake state. Finally, 
the model delivered here is useful for contributing to knowledge of changes in dynamical complexity 
between brain states and helps identify mechanisms relating changes in relationships between 
structural and functional connectivity between different states. 

This work is of broad interest to computational neuroscientists, anaesthesiologists, neurologists, 
cognitive neuroscientists, and physicists. The generality of the tools offered by this Deliverable are 
due to the enormous flexibility of the models displayed in the Showcase that offer the means to 
connect knowledge of brain function across spatio-temporal scales and identify microscopic 
mechanisms as key to physiological changes in global brain networks. 

This Showcase is relevant for several downstream purposes. Firstly, this work is delivered in a manner 
consistent with the requirements of high-performance computing (HPC), allowing the scaling up of 
models to more detailed, higher-resolution representations of human brain activity, representations 
of personalised multi-scale brain activity, as well as parameter exploration and bifurcation analyses. 
These downstream HPC applications will enrich specific knowledge of individual variation in brain 
activity related to healthy and abnormal brain states. As such, this work will also bear clinical 
interest, as we will use the models delivered here to investigate states of consciousness, which will 
be used as a companion to better understand the results of empirical analyses of spontaneous human 
brain activity as well as that evoked by sensory stimuli and TMS stimulation in various brain states 
(in conjunction with HBP Work Package WP1). 

The next steps will be to investigate brain states with vanishing levels of consciousness. Besides 
sleep states investigated last year, and the states of anaesthesia investigated here, we plan to 
continue towards studying states of coma and minimal consciousness, as well as pathological states 
such as epilepsy and stroke if time permits. This will be done with data from our colleagues in the 
HBP. We will also pursue a similar approach as outlined here for mouse and macaque brain, using 
measurements such as EcoG, Ca imaging and fMRI. 

1.5 References 
• Dasilva, M., Camassa, A., Navarro-Guzman, A., Pazienti, A., Perez-Mendez, L., Zamora-López, 

G., ... & Sanchez-Vives, M. V. (2021). Modulation of cortical slow oscillations and complexity 
across anesthesia levels. Neuroimage, 224, 117415. P2595. 

https://drive.ebrains.eu/f/df5d3c95a2ef4e769a34/
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• Tort-Colet, N., Capone, C., Sanchez-Vives, M. V., & Mattia, M. (2021). Attractor competition 
enriches cortical dynamics during awakening from anesthesia. Cell Reports, 35(12), 109270. 
P2976. 

• Di Volo M, Romagnoni A, Capone C and Destexhe A. (2019) Biologically-realistic mean-field 
models of conductance-based networks of spiking neurons with adaptation.  Neural Comput. 31: 
653-680. doi: https://doi.org/10.1162/neco_a_01173. P1864. 

• Goldman JS, Kusch L, Hazal Yalcinkaya B, Depannemaecker D, Nghiem TA, Jirsa V and Destexhe 
A. (2021) A comprehensive neural simulation of slow-wave sleep and highly responsive 
wakefulness dynamics. BioRxiv 2021.08.31.458365; doi: 
https://doi.org/10.1101/2021.08.31.458365. P3023.  

https://doi.org/10.1162/neco_a_01173
https://doi.org/10.1101/2021.08.31.458365


  
  

 

D2.3 (D14) SGA3 M21 ACCEPTED 220520.docx PU = Public 20-May-2022 Page 18 / 24 
 

2. Showcase 4: Perception and Recognition of 
Objects and Scenes, Demo 2 

2.1 Introduction 
In the previous Demo 4.1 (See SGA3 Deliverable D2.1 (M9): Showcase 3 – DEMO3.1 and Showcase 4 – 
DEMO4.12), we demonstrated a successful implementation of predictive coding-based deep neural 
network model (MultiPredNet; Dora et al., 2021) on a rodent-like biomimetic robot and its 
counterpart on the EBRAINS virtual robotics platform (Whisk-Eye robot; 
https://www.youtube.com/watch?v=0blgdAE1cbk). The model and robot were able to integrate 
visual and tactile information gathered from a head-mounted camera and 24 artificial whiskers to 
perform autonomous navigation. This work was extended during the Demo 4.2 and is in press for 
publication (Pearson et al., 2021). 

For the second Demo 4.2, our goal was to elaborate on these models to build predictive coding 
models of perception which can be integrated with models of the dynamics, circuitry and neuronal 
spiking mechanisms of the cortex. More specifically, Showcase 4 progressed to provide highlights of 
three computational models (currently in further development) that aim to implement different 
levels of biological realism: 1) a neurobiological/cognitive hybrid model, which is constructed with 
a biologically realistic neuron model (i.e. spiking neuron) and a local learning rule (i.e. Hebbian 
learning) to perform object reconstruction; 2) a cognitive model, which is built with rate-based 
neurons to focus on extending the cognitive ability of the hybrid model by introducing movement 
invariance; and 3) a neurobiological model, which simulates a realistic spiking cortical column using 
available connectivity data from the literature and Knowledge Graph. Integrating the knowledge 
gained from the three models can improve the understanding of perception and sensory predictions, 
offer valuable insights in neural mechanisms of brain disorders such as autism or schizophrenia, and 
inspire neuromorphic and robotic applications.  

The models make use of and contribute to the EBRAINS Research Infrastructure (RI). The 
neurobiological model uses anatomical data from the Knowledge Graph and other external datasets, 
such as the Allen Institute for Brain Science, to estimate the connection strengths and probabilities 
derived from mouse visual cortex. In collaboration with NEST developers, the novel feature of the 
neurobiological model, exact postsynaptic NMDA receptor dynamics, is incorporated into an existing 
Simulation service tool (i.e. NEST) and is currently under further development by the NEST team. It 
also uses a Simulation service tool, ViSimpl, to visualise the spatial and temporal features of spiking 
cortical columns. The hybrid model also uses Community service of the EBRAINS Research 
Infrastructure (RI). Given our successful application for FENIX computing and storage resources, the 
hybrid model is trained to generate internal representations of visual input on a supercomputer 
(CSCS Piz Daint). In collaboration with the Scientific Liaison Unit (SLU), we plan to implement the 
hybrid model on the EBRAINS RI and add it to the list of Simulation service models. With intuitive 
GUIs, novice users will be able to run example simulations with a pre-trained version of the hybrid 
model. Advanced users or researchers in relevant fields can conduct sustainable simulations using 
the embedded model and compare their results with other models listed in the Simulation service. 

Given the generative nature of both cognitive and hybrid models, they have the potential for a wide 
range of downstream applications that can benefit from efficient learning of sensory inputs (e.g. AI, 
prostheses, robotics, etc.), as now demonstrated for the WhiskEye robot (see below and Pearson et 
al., 2021). Meanwhile, the local learning of connection weights and the asynchronous, event-driven 
activities of the spiking hybrid model can also contribute to the development of energy-efficient 
neuromorphic computing.  

Additionally, based on work described in SGA3 Deliverable D2.1, we further developed our deep 
network model for predictive coding which is now able to integrate information across sensory 

 
2  https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-
5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf  

https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf
https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf
https://www.youtube.com/watch?v=0blgdAE1cbk
https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf
https://sos-ch-dk-2.exo.io/public-website-production/filer_public/f8/b3/f8b31220-1d29-4d6f-a30a-5ae0eb01d871/d21_d12_sga3_m9_accepted_210504.pdf
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modalities (Pearson et al., 2021), to provide clues for better understanding how the brain generates 
consciousness, given that conscious experience has been argued to be based on a large-scale, 
internally generated representation of the world and body. In particular, the strong positive 
correlation found between pose and representation spaces inferred by the trained multi-sensory 
deep predictive coding network (MultiPredNet) has been developed further using the NRP. The 
original arena used for Showcase 4.1 (see SGA3 Deliverable D2.1) has been expanded in size and 
sensory richness for longer duration excursions of the WhiskEye simulated in the NRP of EBRAINS. 
This work has confirmed that the original statistical correlation between the two spaces is 
maintained in larger, more complex visual-tactile environments. We also demonstrated that, when 
coupled to a simple memory system, it can be used to robustly detect loop closure events sufficient 
for the robot to localise itself (Pearson et al., 2021). WP3 collaborates with WP2 to focus on bio-
plausible navigation. Thus, this robot demonstration project has led to uptake by WP3 and significant 
collaboration between WP2 and WP3. Specifically, the MultiPredNet and WhiskEye model in the NRP 
have been integrated with a spiking neural network model of rodent head direction cells. 
MultiPredNet now learns to associate natural visual scenes with the spike-based representation of 
head direction via the joint latent layer. Once trained, the network is capable of reconstructing a 
representation of head direction inferred from visual cues that can be used to inject a corrective 
signal into the head direction cell populations based on a coupled ring attractor network. The spiking 
network model is simulated using NEST whilst the MultiPredNet relies on the TensorFlow library 
coupled to the WhiskEye model within the NRP. Using this apparatus, we have conducted cue-conflict 
experiments to compare the spike response of our model to biological measurements taken from 
rodents experiencing similar conditions.  

2.2 Technical Specification 
The following section is divided into three subsections, each of which corresponds to one of the 
three computational models we developed and provides technical details. We note that the 
integration of these models into an expanded cognitive-neurobiological cortical architecture is 
planned for the next phase. 

2.2.1 Hybrid model: spiking neural network for predictive 
coding  

In order to account for the biological plausibility of predictive coding models, we developed a spiking 
neural network for predictive coding (SNN-PC, Figure 23), in which neurons communicate with event-
driven, asynchronous spikes instead of the non-linear, continuous, and clock-driven function 
approximator (i.e. a rate-based neuron) used in standard artificial neural networks. Our SNN-PC 
inherits the algorithmic legacies of previous predictive coding (PC) neural network models (Rao & 
Ballard, 1999; Dora et al., 2021), which infer the causes of sensory inputs via hierarchical 
interactions between error-computing and prediction-generating neurons and update the generative 
model for prediction using a form of Hebbian learning. In addition, we have introduced two novel 
features that further improve biological plausibility in the model. First, we introduce a direct fast 
feedforward pathway, constituted by sparse projections from input to higher layers, which generates 
and quickly transmits an abstract representation of input (i.e. a neural code for the gist of a scene). 
This provides a neurobiological alternative to arbitrary sample - or class-specific priors which are 
commonly used by other models. Second, we specifically consider two separate classes of error units, 
viz. positive and negative error-computing neurons, which better reflects the neurobiological 
constraint following from Dale’s principle (which states that a neuron’s outgoing projections are all 
either excitatory or inhibitory). After training with the hand-written digit dataset MNIST, SNN-PC 
was able to develop hierarchical latent representations and make inferences about the causes of 
samples it had not seen during training, as visualised by correct digit reconstruction. We used 
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HBP/EBRAINS high-performance computing resources within the FENIX infrastructure3 to train SNN-
PC and test its performance. SNN-PC suggests biologically plausible mechanisms by which the brain 
performs perceptual inference and learning. In addition, it may be used in neuromorphic applications 
that can utilise its energy-efficient, event-driven, local learning, and parallel information processing 
nature.  

 

 
Figure 23: Spiking neural network for predictive coding (SNN-PC). 

(a) Structure of the network. Each PC area consists of a prediction unit (𝑷𝑷) and two error computing units, one of 
which computes positive (𝑬𝑬+ ) and the other negative (𝑬𝑬− ) residual errors between prediction and actual synaptic 
current (i.e. prediction error). Each unit consists of multiple spiking neurons. (b) Reconstruction of novel image 
samples. The left panel shows a sample set of MNIST digits the network had not seen during training (i.e. novel image 
samples). The right panel shows top-down predictions about the novel images (i.e. from area 1 to 0) after training. 
(c) Representational similarity analysis on the latent representations of the novel image samples. Each box 
corresponds to representational dissimilarity matrices (RDMs) for a subset of MNIST dataset that SNN-PC had not seen 
during training (I) and its latent representations across the PC hierarchy (Area 1–3). We show that representational 
geometry of original input is retained across the PC hierarchy by computing the relatedness between RDMs of input 
and its latent representations in each PC area. 

 
3 We acknowledge the use of Fenix Infrastructure resources, which are partially funded from the European 
Union Horizon 2020 research and innovation programme through the ICEI project under Grant Agreement No. 
800858. 

https://amsuni-my.sharepoint.com/personal/k_lee_uva_nl/Documents/Conferences/CoSyne2021/ver2.docx#_msocom_1
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In the first semester of 2022, we plan to extend the model to a more realistic predictive-coding 
microcircuit model which explicitly incorporates differentiated types of inhibitory cells (such as PV, 
SST and VIP cells) and incorporate circuit-level dynamics, which will be an important step towards 
the final integrated cognitive-neurobiological model. We will continue to utilise the allocated 
EBRAINS HPC resource for the model development. 

2.2.2 Cognitive model: predictive coding to learn invariant 
representations of visual objects from temporal 
continuity 

To examine how a network of recurrently organised neurons may infer invariant object 
representations, we trained a predictive coding network (Rao & Ballard, 1999; Dora et al., 2021) on 
sequences of moving MNIST digits. Contrary to the case of the hybrid model above, this model (Figure 
24) uses simplified rate units to simulate neural activity, which allows us to focus on the complex 
computations underlying object representations with spatial invariance properties. Development of 
such representations is mediated purely by Hebbian learning which links slowly varying predictions 
from higher network levels (“object identity”) to different sensory patterns (“observed features”). 
As representations in lower areas of the network are driven both by bottom-up sensory input and 
top-down predictions, trained networks can complete occluded parts of previously observed scenes 
when presented with a sequence of a digit gradually disappearing behind a dark screen. Such 
behaviour is in line with observed decodability of occluded scene areas from activity patterns in 
early visual regions (Smith & Muckli, 2010). Overall, the proposed learning paradigm generalises 
predictive coding from static to dynamic inputs in a novel and more biologically plausible way than 
networks that learn to predict forward in time through backpropagation of self-supervised error-
gradients (Lotter et al., 2016). Our approach may both give a plausible explanation for learning and 
inference of invariant object representations and accounts for experimental evidence for top-down 
predictions where sensory input is scarce (Smith & Muckli, 2010). Next steps will be to extend the 
model with the capacity to perceive motion through motion detectors. This is expected to allow a) 
segmenting a moving object from its background (or vice versa) and b) allow feedback from these 
motion detectors to be used as spatiotemporal predictions. Soon, models will be trained on the high-
performance computing systems of HBP/EBRAINS resources within the FENIX infrastructure4. Results 
will be integrated with the biophysically more realistic models of 2.2.1 and 2.2.3 to extend the 
capability of these detailed models to more complex cognitive tasks. After publication, the 
integrated model will be added to the EBRAINS Knowledge Graph to facilitate interaction of other 
researchers with the simulation. 

2.2.3 Neurobiological model: spiking cortical column 

To complement the two models above and extend our understanding of predictive coding principles 
towards more neurobiologically realistic frameworks, we built a computational model of a cortical 
column in the visual cortex. The model was constrained using neuroanatomical and 
electrophysiological data and constitutes our first step towards a biophysically detailed model of 
object recognition under predictive coding principles. In order to develop such a model, we used 
available connectivity data from the literature (including, for example, openly available connectivity 
datasets from the Allen Institute for Brain Science (Billeh et al., 2020)) and Knowledge Graph. In 
particular, the current model (Figure 25) is based on average synaptic strengths and connection 
probabilities across four cell types (pyramidal, PV, SST and VIP neurons) observed in the cortical 
column of mouse V1. The model incorporates a laminar structure by including real cell-specific 
densities per layer and laminar connection strength and probabilities, and includes detailed post-
synaptic receptors dynamics for AMPA, NMDA and GABA-A. The first version of the model was entirely 

 
4 We acknowledge the use of Fenix Infrastructure resources, which are partially funded from the European 
Union Horizon 2020 research and innovation programme through the ICEI project under Grant Agreement No. 
800858. 
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built in Nest, a powerful simulator for spiking neural network models. Part of the simulations to 
understand the dynamics of the cortical column were performed using this tool. Then using ViSimpl 
we were able to develop a 3D visualisation of the column showing the level of activity of the different 
neuron types. By adjusting the influence of surrounding neurons to the ones in our network, we 
showed that the model can reproduce realistic levels of neural firing activity under spontaneous and 
stimulus-evolved conditions, taken from in vivo electrophysiological recordings (Billeh et al., 2020). 
In the upcoming months, we plan to study the effects of external input (both bottom-up and top-
down) in the network, calculate the simulated local field potentials corresponding to the network 
activity, and incorporate plasticity rules to allow modifications of the synaptic weights. 

In this next stage to upscale the model and perform fast simulations we will need HBP resources 
such as High Performing Computer (HPC). The model will build an important bridge between cellular 
models of cortical columns and perceptual function. 

 
Figure 24: Predictive coding on dynamic input sequences. 

a) Rate-based predictive coding architecture. 𝒚𝒚 denotes the representational activities in each layer that send down 
the descending predictions 𝒚𝒚� that are multiplied with the synaptic weights 𝑾𝑾. 𝜷𝜷 denotes the error neuron activities.  
b) Inference on sequential input images (digit 6, of varying size in a looming movement scenario) are fed to the lowest 
network area and are represented at different levels of the processing hierarchy. Neural activity is maintained in all 
areas except the input area from one timestep to the next (red arrows). 

 
Figure 25: Graphical representation of spiking cortical column model. 

In each layer excitatory neurons (E), and 3 inhibitory neuron types are present (PV, SST, VIP). Each neuron receives 
inputs from the other neurons through 3 distinct receptors (NMDA and AMPA receptors for excitatory connections and 
GABAA receptors for inhibitory connections). Each ionotropic receptor is modelled with its own distinct dynamics.  
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2.3 How to access the Showcase 

2.3.1 Showcase 4 Demo V2 video 

The Showcase 4 Output is a video entitled: A suite of models for visual perception and invariant 
object recognition (https://youtu.be/zaoN2KDLBjs) that introduces the motivation and background 
of our research and summarises the three models (2.2.1, 2.2.2 and 2.2.3) at a level that can be 
understood by both lay audiences and scientific communities. 

2.3.2 Access to code for the models 

The neural network (Dora et al., 2021) and robotics implementations (Knowles et al., 2021) of our 
work have been published and can be accessed via the following link: 
https://search.kg.ebrains.eu/instances/2164c2b9bbb66b42ce358d108b5081ce. 

The deep neural network model for predictive coding with Hebbian learning (Dora et al., 2021) has 
been published and can be accessed via the following link (soon to be incorporated to EBRAINS): 
https://github.com/shirindora/DGHPC  

The example code for the hybrid model will be uploaded to EBRAINS in the first semester of 2022. 
Codes for the cognitive and neurobiological models are still under development and will be uploaded 
to EBRAINS as soon as they fulfil the necessary efficiency and reproducibility requirements.  

The information about the novel feature incorporated to the NEST simulation in relation to the 
neurobiological model is currently under development by the NEST team. The current code can be 
accessed via this link: https://github.com/stinebuu/nest-simulator/tree/nmda_model_wang  

2.4 Looking Forward 
So far, we have described the different computational models of sensory predictions and object 
recognition (from neurobiologically detailed to cognitive oriented to hybrid versions) and established 
the basis to do so in neurobiologically detailed models. The goal of the research illustrated in 
Showcase 4, however, is to integrate the knowledge we gain with each of these models. 

In the first semester of 2022, the three models will be further developed in parallel, and they will 
start to converge in certain aspects. First, Lee et al. will build a modified spiking model at the hybrid 
level which will be closer to the neurobiological model while conserving the achieved properties for 
object recognition in predictive coding. In particular, the new hybrid model will incorporate the 
different cell types which are already present in the cortical column model (i.e. pyramidal neurons, 
PV, SST and VIP cells). This will allow us to explore the role of these cell types in SNN-PC, and to 
make predictions about the consequences of, for example, optogenetically silencing specific cell 
types in predictive coding computations.  

Second, the cognitive model will advance to incorporate mechanisms to perceive motion using 
motion detectors. This will be an important step to allow the model to discriminate between a 
moving object and its static background, and therefore perform a figure-background segregation 
operation, as observed experimentally (Self et al., 2015). This will also permit the feedback signals 
from these motion detectors to be used as spatiotemporal predictions. 

Third, the neurobiological model will incorporate realistic learning rules to allow for activity-
dependent changes in synaptic weights of both excitatory and inhibitory neurons. In particular, the 
incorporation of plasticity rules will allow us to extend the model towards multiarea networks, so 
that we can simulate storing of high-level object representations in cortical areas higher in the 
hierarchy (resembling the ‘ventral stream’ model of object recognition). The presence of NMDA 
receptors, which have been successfully introduced in the current version of the model, will play a 
major role in the ability of long-term encoding of neural representations. This will then lead us to 

https://eu-central-1.protection.sophos.com/?d=youtu.be&u=aHR0cHM6Ly95b3V0dS5iZS96YW9OMktETEJqcw==&i=NWZkYjRiODc3M2ZiN2EwZGZmZjA0Y2Jl&t=ZG8vajh5dnhNa1Fma3dYT0hxOEt6SzdQYWRickt1RExyeUZMYVBWaUhnTT0=&h=c8738adcd6aa450987d0998975f48dbb
https://search.kg.ebrains.eu/instances/2164c2b9bbb66b42ce358d108b5081ce
https://github.com/shirindora/DGHPC
https://github.com/stinebuu/nest-simulator/tree/nmda_model_wang
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test our hypothesis for object recognition under predictive coding in a highly detailed neurobiological 
framework. 

In addition to these converging efforts, WP1 and EBRAINS will provide intuitive GUI support for the 
hybrid (2.2.1) and the neurobiological models (2.2.3; e.g. by using visualisation tools such as VISimpl, 
which we used to display the preliminary results of the neurobiological models in the Demo V2 video), 
through which users of any level of expertise can readily establish better understanding of the model 
and judge its potential use cases in the upcoming months. 

It is worth to mention that the three models will be entered in the Knowledge Graph by the end of 
HBP SGA3. 
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