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1. INTRODUCTION 

The Human Brain Project (HBP) (https://www.humanbrainproject.eu/en/) is a highly 

multifaceted and multidisciplinary project where various research groups – mostly 

neuroscientists and computing scientists - work together to understand the multi-scaled 

anatomy and functioning of the human brain and accordingly replicate those mechanisms in-

silico. 

This report has been developed by the Innovation group of the HBP. The group, which is part of 

the HBP Management and Coordination subproject (SP11) and based in the Universidad 

Politécnica de Madrid (UPM), provides innovation management support and research 

commercialization advice to the HBP´s partners. Among other activities, this transversal support 

includes the elaboration of specific technology exploitation plans, assistance on IP aspects, 

training on the assessment of technologies maturity, evaluation of innovation potentials, the 

matching of available and mature HBP results to (academic and non-academic) users´ needs, and 

the involvement of external players, specially industrial players, in the utilization and co-creation 

of the developing HBP infrastructure (EBRAINS, https://ebrains.eu/).  

Frequently, researchers and developers´ cannot devote too many resources and time to devise 

new forms of technological innovation or plan their own protection and exploitation strategies. 

Their expertise and networking potential is critical, however, to increase the possibilities of an 

eventual and successful commercialization and utilization of their results. It seems useful 

therefore to provide researchers with a big picture of existing initiatives, key actors, market 

insights and expected trends in their area of work, thus enabling them to identify more easily 

strategic opportunities (e.g. those leading to obtain further research funding) and get the most 

out of their valuable specialized knowledge. This would contribute to equip them with enough 

skills and means to exploit their results, define their own roadmaps to the market and assess the 

possibilities of using other present and upcoming tools on their own research processes. 

Based on this rationale, this report presents an updated and concise overview of a particular area 

of Neurocomputing hardware, the market of Neuromorphic chips1. The document is halfway 

between a complete research work and a full market analysis. The study has also tried to adopt 

a foresight perspective that helps to draft some basic technology roadmaps and envision some 

future trends. 

One challenging aspect of the study has been to simultaneously capture the attention of 

neuromorphic experts while also trying to raise the curiosity and interest of a broader audience. 

In this sense, initiated readers and leading computing scientists may hopefully find the report 

motivating enough to reflect on the pivotal parts of the Neuromorphic science around which 

useful, practical and innovative applications could happen. 

 
1 This report will be regularly updated and refined during next phase of the HBP 

https://www.humanbrainproject.eu/en/
https://ebrains.eu/
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2. ARTIFICIAL NEURAL NETWORKS 

An Artificial Neural Network (ANN) is a combination and collection of nodes that are inspired by 

the biological human brain. The objective of ANN is to perform cognitive functions such as 

problem-solving and machine learning. The mathematical models of the ANN have been started 

in the 1940s however, it was in silent for a long time (Maass, 1997). Nowadays, ANNs became 

very popular with the success of ImageNet2 in 2009 (Hongming, et al., 2018). The reason behind 

this is the developments in ANN models and hardware systems that can handle and implement 

these models. (Sugiarto & Pasila, 2018) 

The ANNs can be separated into three generations based on their computational units and 

performance (Figure 1).  

 

Figure 1- Generations of Artificial Neural Networks 

The first generation of the ANNs has started in 1943 with the work of Mc-Culloch and Pitts 

(Sugiarto & Pasila, 2018). Their work was based on a computational model for neural networks 

where each neuron is called “perceptron”. Their model later was improved with extra hidden 

layers (Multi-Layer Perceptron) for better accuracy - called MADALINE - by Widrow and his 

students in the 1960s (Widrow & Lehr, 1990). However, the first generation ANNs were far from 

biological models and were just giving digital outputs. Basically, they were decision trees based 

on if and else conditions.  

The Second generation of ANNs contributed to the previous generation by applying functions 

into the decision trees of the first-generation models. The functions work among each visible and 

hidden layers of perceptron and create the structure called “deep neural networks”. (Patterson, 

2012; Camuñas-Mesa, et al., 2019) Therefore, second-generation models are closer to biological 

 
2 ImageNet: ImageNet is an organisation that published a “Large-Scale Hierarchical Image Database” in 2009. They 
conduct a large-scale visual recognition challenge since 2010. This competition gave birth to the AlexNet neural 
network model which achieved the challenge with only 15.3% error in 2012. (Krizhevsky, et al., 2017) Since then, AI 
become an area of interest and Deep learning become primary method for solving cognitive tasks; such as image, 
audio recognition. (Zheng & Mazumder, 2020)  

Artifical Neural 
Networks

1st Generation ANNs
"Perceptrons" 

2nd Generation ANNs
"Deep Neural 

Networks"

3rd Generation ANNs
"Spiking Neural 

Networks"
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neural networks. The functions of the second-generation models are still an active area of 

research and the existing models are in great demand from markets and science. Most of the 

current developments about artificial intelligence (AI) are based on these second-generation 

models and they have proven their accuracy in cognitive processes. (Zheng & Mazumder, 2020) 

Some of the common second-generation models that are used are (Table 1) (Kennis, 2019); 

 

Table 1 Most common 2nd generation ANN models  (Kennis, 2019) 3 

The Third generation of ANN is termed as Spiking Neural Networks (SNNs). They are biologically 

inspired structures where information is represented as binary events (spikes). Their learning 

mechanism is different from previous generations and is inspired by the principles of the brain 

(Kasabov, 2019). SNNs are independent of the clock-cycle based fire mechanism. They do give an 

output (spike) if the neurons collect enough data to surpass the internal threshold. Moreover, 

neuron structures can work in parallel (Sugiarto & Pasila, 2018). In theory, thanks to these two 

features SNNs consume less energy and work faster than second-generation ANNs (Maass, 1997). 

 
3 FNN: Feed Forward Neural Networks; RNN: Recurrent Neural Network; CNN: Convolutional Neural Network 
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The advantages of SSNs over ANNs are: (Kasabov, 2019) 

• Efficient modeling of temporal - spatio temporal or spectro temporal - data 

• Efficient modeling of processes that involve different time scales  

• Bridging higher-level functions and “lower” level genetics  

• Integration of modalities, such as sound and vision, in one system  

• Predictive modeling and event prediction 

• Fast and massively parallel information processing  

• Compact information processing  

• Scalable structures (from tens to billions of spiking neurons) 

• Low energy consumption, if implemented on neuromorphic platforms  

• Deep learning and deep knowledge representation in brain-inspired (BI) SNN 

• Enabling the development of BI-AI when using brain-inspired SNN  

Although there seems to be a lot of advantages of SNNs compared to ANNs (Table 2), advances 

in associated microchips technology, which gradually allows scientist to implement such complex 

structures and discover new learning algorithms (Lee, et al., 2016) (Furber, 2016), are still very 

recent (after the 2010s). Spiking Neural Networks technology, with only ten-year implementation 

in the area, is relatively young, therefore, compared to the second generation. So, it needs to be 

further researched and more intensively implemented to leverage more efficiently and 

effectively its advantages. 

 

Table 2 ANN-SNN Comparison Table  (Tsinghua University, 2018) 4 

 
4 Hebb’s Law: Canadian Neuropsychologist Donald Hebb’s rule of learning; “In a sense, then, cells 
that fire together wire together” (Zheng & Mazumder, 2020) 
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Large scale SNNs can be implemented both in brain simulator software like “NEST” with high-

performance computing or in Neuromorphic chips which are inspired by SNNs (Knight & 

Nowotny, 2018). SNN simulations implemented on Central Processing Units (CPUs) or Graphics 

Processing Units (GPUs) are not well-suited to express the energy-efficiency and parallelism of 

the spike communication. (Knight & Nowotny, 2018) SNNs can fully show their competitive 

advantages of low energy consumption and massively parallel working when they are 

implemented on Neuromorphic chips (see section 3). Nowadays, the Neuromorphic chip sector 

has a huge interest around the world (Figure 23)(Figure 28) and the chips are gradually being 

achievable for scientific and industrial use. In parallel to the availability of chips, AI scientists are 

also improving and discovering new and more efficient SNNs learning mechanisms.  

3. NEUROMORPHIC HARDWARE 

The traditional von Neumann systems are multi-model systems consisting of three different 

units: processing unit, I/O unit, and storage unit. These modules communicate with each other 

through various logical units in a sequential way (Kasabov, et al., 2016). They are very powerful 

in bit-precise computing (Kasabov, 2019).  

However, neural-networks are data-centric; most of the computations are based on the dataflow 

and the constant shuffling between the processing unit and the storage unit creates a bottleneck. 

Since data needs to be processed in sequential order, the bottleneck causes rigidity (Kasabov, 

2019) (Zheng & Mazumder, 2020). 

GPUs have massively parallel computing power compared to CPUs (Zheng & Mazumder, 2020). 

Therefore, they quickly become the dominant chips for implementing neural networks. 

Currently, data centers are mainly using millions of interconnected GPUs to give parallelism on 

processes, but this solution causes increased power consumption (Kasabov, et al., 2016). 

GPUs have expedited deep learning research processes, support the development of algorithms 

and managed to enter the markets. However, future edge applications such as Robotics or 

autonomous cars will require more complex artificial networks working in real-time, low latency, 

and low energy consumption inference (Zheng & Mazumder, 2020). 

 
STDP: Spike-Timing-Dependent Plasticity; It is based on the Hebb’s rule; STDP contributes to the 
rule by relating the impact of exact timing of pre and post synaptic neurons with the change in 
synaptic strength (Zheng & Mazumder, 2020) 
DVS Camera: It is an event-based visual sensor that capture brightness changes asynchronously 
(Gallego, et al., 2019) 
LIF: Leakey Integrate and Fire model; It is one of the most used Spiking Neuron model that 
represents the behavior of biological neurons (Zheng & Mazumder, 2020)¡Error! No se encuentra el 

origen de la referencia. 
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The requirement of energy-efficiency has oriented the industry to accelerators that are specially 

designed for deep learning such as the Application-Specific Integrated Circuits  (ASICs) and the 

Field-Programmable Gate Arrays (FPGAs). ASICs are hard-wired chips designed for processing a 

specific type of application. FPGAs, on the other hand, are reconfigurable hardware to handle a 

variety of operations. Both solutions are more energy-efficient compared to GPUs (Figure 2).  

  

Figure 2 Current AI-hardware solutions  (Microsoft, 2020) 

The ASICs are costly to design and not reconfigurable because they are hard-wired, but this hard-

wired nature also contributes to their optimization. Throughout the data-flow optimization, they 

can perform better and more energy-efficiently than the FPGAs. Therefore, FPGAs serve as a 

prototype chip for further designing costly deep learning ASICs (Zheng & Mazumder, 2020). 

Deep learning accelerators are energy-efficient and effective for current data sizes. However, 

they are still limited to the bottleneck of the architecture, i.e the internal data link between the 

processor and the global memory units (Kasabov, et al., 2016), as the load of the data size is 

increasing faster than the prediction of the Moore’s Law5. It would be difficult for a built edge 

system that enables the process of these data (Pelé, 2019). Novel approaches beyond the von 

Neumann architecture are needed therefore to cope with the shuttling issue between 

memory/processor. 

 
5 Moore’s Law: “Gordon Moore predicted in 1965 that the number of transistors per integrated circuit chip would 
continue to double in each technology generation” (Lundstrom, 2003) 
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Figure 3 von Neumann vs Neuromorphic architecture  

Left: The central point shows the data communication bottleneck in the von Neumann 
architecture (used in traditional computers). 

Right: In the neuromorphic architecture the processing and memory is decentralized across a 
network of neuronal units (see nodes) and synapses (lines connecting the nodes), “creating a 
naturally parallel computing environment via the mesh-like structure” (Kasabov, et al., 2016). 

 

As it is mentioned in the previous section, the development of SNN opens a new way of hardware 

architectures beyond the traditional von Neumann systems, called “Neuromorphic” (Table 3). 

Neuromorphic hardware (Figure 21) is a specific brain-inspired ASIC that implements the SNNs. 

It has an object to reach the ability of the massively parallel brain processing in tens of watts on 

average. The memory and the processing units are in single abstraction (in-memory computing) 

(Figure 3). This leads to the advantage of dynamic, self-programmable behavior in complex 

environments (Kasabov, 2019). Instead of traditional bit-precise computing, neuromorphic 

hardware leads to “the probabilistic models of simple, reliable and power and data-efficient 

computing” as the “highly stochastic nature of computation of our brain” (Kasabov, 2019). 

Neuromorphic hardware certainly suits more for cognitive applications than precise computing. 
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von Neumann Sequence Neuromorphic 

Representation of the data Sequence of binary numbers Spike(event) timings 

Memory 1. Volatile  
2. Non-volatile 

1. Long term memory  
2. Short term memory 

Plasticity (Learning) No Adaptable via:  
1. Long-term potentiation and 
depression  
2. Short-term potentiation and 
depression 

Processing 1. Deterministic  
2. Centralized   
3. Sequential 

1. Stochastic  
2. Decentralized  
3. Parallel 

Good At 1. High accuracy pattern 
recognition 
2. High precision number 
crunching 
3. Batch processing of data sets 

1. Real-time processing of low-
dimensional data 
2. Ultra-low-power 
classification of sensory signals 
3. Low-latency decision making 

 

Table 3 von Neumann vs Neuromorphic difference table in a nutshell (Kasabov, et al., 2016) (Indiveri, 2019) 

 

3.1 Advantages of Spiking Neural Networks 

Learning of SNNs with neuromorphic chips can be handled both by native SNN algorithms and 

with the conversion of the 2nd generation algorithms of ANN into SNN.  

Native SNN algorithms are theoretically promising efficient and effective, however, the practical 

issues with them continue. Huge efforts are made to improve these algorithms so that they can 

compete with 2nd generation ANN algorithms and eventually surpass them in both inference 

speed, accuracy and efficiency in the area of artificial intelligence. (NICE, 2019) 

Another advantage of SNNs is the possibility of getting the benefits of the 2nd generation ANNs 

algorithms by conversion, i.e. deep learning networks (2nd generation ANN models) are mapped 

throughout, either empirically or mathematically, into SNN neurons. Therefore, successful deep 

learning operations can be converted into SNNs without any training algorithm (Zheng & 

Mazumder, 2020). Through this method, SNNs can reach the inference accuracy of cognitive 

applications with low energy consumption. (Figure 4) (Figure 5) 

Applied Brain Research group, the owner of brain simulator Nengo, published a paper on 2018 

to compare the Intel neuromorphic chip Loihi Wolf Mountain with conventional CPUs and GPUs 

(Blouw, et al., 2018). The methodology consisted in applying the 2nd generation ANN on GPUs 

and CPUs, and convert the 2nd generation to SNN to apply to Loihi. According to their result, for 
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real-time inference, (batch-size=1) neuromorphic Intel chip consumes 100x lower energy 

compared to GPUs which are the most common chips for implementing 2nd generation ANNs 

(Figure 4). Moreover, compared to Movidius, Loihi conserves the speed of the inference and the 

energy-consumption per inference as the number of neurons increases (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Loihi vs other semiconductors 

 Compared to Nvidia JETSON, Intel Movidius, and GPU, Loihi consumes minimum energy per inference (Blouw, et 
al., 2018) 

 

Figure 5 Performance of Loihi when implementing large scale-networks.  

Loihi continues to perform in real-time even the network size increases (left). Loihi maintains the energy efficiency 
on the large scale networks (right)  (Blouw, et al., 2018) 



 

11 
 

Even though the neuromorphic chips are not designed for 2nd generation of ANNs, this 

experiment indicates that neuromorphic chips can even outperform the traditional ones in real-

time inference for large network sizes. 

For the native SNN algorithms, Mike Davies -The Director of Intel's Neuromorphic Computing 

Lab- demonstrates that SNNs are not only energy-efficient and scalable but also more accurate 

and faster on specific applications (Sparse Coding, 100-1000x faster, 10000-100000x energy 

efficient compared to CPU). Davies also demonstrates the current achievements of SNNs with 

neuromorphic chips (Figure 6) and expects to see real-world applications (Davies, 2019). 

 

Figure 6 Current applicable algorithms by SNNs with neuromorphic chips  (Davies, 2019) 

Another advantage of SNNs is their capacity to operate with event-based sensors energy-

efficiently without the need for signal conversion (Gallego, et al., 2019). Event-based sensors are 

neuromorphic hardware that consumes less energy, while efficiently, under noise conditions.  

 

3.2 Neuromorphic hardware implementations  

Neuromorphic chips can be designed digital, analog or in a mixed way. All these designs have 

their pros and cons. 

Analog chips resemble the characteristics of the biological properties of neural networks better 

than the digital ones. In the analog architecture, few transistors are used for emulating the 

differential equations of neurons. Therefore, theoretically, they consume lesser energy than 

digital neuromorphic chips (Furber, 2016) (Schemmel, et al., 2010). Besides, they can extend the 

processing beyond its allocated time slot. Thanks to this feature, the speed can be accelerated to 

process faster than in real-time. However, the analog architecture leads to higher noise, which 

lowers the precision. Also, the analog nature of the architecture causes leakage on signals which 

limits long-time learning in STDP (Indiveri, 2002). 

Digital ones, on the other hand, are more precise compared to analog chips. Their digital 

structure enhances on-chip programming. This flexibility allows artificial intelligent researchers 
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to implement various kinds of an algorithm accurately with low-energy consumption compared 

to GPUs. 

Mixed chips try to combine the advantages of the analog chips, i.e. lesser energy consumption, 

and the advantages of the digital ones, i.e. precision. (Milde, et al., 2017) 

Yet the analog chips are more biological and promising, digital neuromorphic chips are on higher 

demand because they are easy to implement for real-world applications. As the learning 

algorithms for SNNs and hardware technology improve, analog architectures could eventually 

have the potential to take the position of digital. 

3.3 Neuromorphic hardware leaders 

3.3.1. IBM - TrueNorth 

IBM with the collaboration of the DARPA SYNAPSE program6 built the chip “TrueNorth”. 

TrueNorth is a digital chip produced to speed-up the research on SNNs and commercialize it 

(Merolla, et al., 2014). It is not an on-chip programmable so it can be used just for inference. (Liu, 

et al., 2019). This is a disadvantage for the on-chip training research and at the same time limits 

the usage of the chip in critical applications (such as autonomous driving which needs continuous 

training) Efficient training - as mentioned before - is an advantage of neuromorphic hardware 

that unfortunately does not occur in the TrueNorth. 

One IBM´S objective is to use the chip on cognitive applications such as robotics, classification, 

action classification, audio processing, stereo vision, etc. The chip has actually proven usefulness 

in relation to low energy consumption compared to GPUs (DeBole, et al., 2019). However, the 

TrueNorth is not yet on-sale for end-users, being only possible to request it for research reasons. 

The chip is relatively old (5 years) and IBM presently seems not to be planning any new chip 

design but scaling it. IBM aims to invest in research focused on learning algorithms of SNNs and 

to take real-world applications to the market. With this goal, IBM is not only funding research 

(IBM labs around the world) but also sponsoring main neuromorphic hardware workshops 

(Neuro Inspired Computational Elements Workshop (NICE), Telluride Workshop). 

IBM has also agreements with US security companies. In 2018, in partnership with The Airforce 

Research Laboratory, IBM unveiled the largest Neuromorphic supercomputer (Figure 22) “Blue 

Raven” (Figure 7). The objective is to have an intelligent, on-board, power-efficient systems on 

the battlefield for robust decision making (O'Brien, 2018) (Seffers, 2018). 

 
6 “Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program is to develop low-power 
electronic neuromorphic computers that scale to biological levels.” (DARPA, n.d.) 

http://www.research.ibm.com/articles/brain-chip.shtml
http://www.research.ibm.com/articles/brain-chip.shtml
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Figure 7 Blue Raven – A Large scale digital System  (AFRL, 2018) 

 

3.3.2. Intel - Loihi 

Intel released its neuromorphic chip “Loihi” in 2018 (Davies, et al., 2018). The chip is digital and 

on-chip programmable. This gives flexibility to the chip so that researchers can work on a variety 

of learning methods, from DNN to SNN conversions, native SNN, etc. Currently, Loihi is the most 

effective and energy-efficient chip for cognitive applications (among the neuromorphic chips). 

Like IBM, Intel is also investing in the commercialization of the neuromorphic chips and learning 

methodologies. Mike Davies’ Lab collaborates with universities and research facilities to expand 

the visibility of Loihi.  

Intel does not have much intention to research brain neurons, but they are more interested in 

cognitive applications. They expect to have a killer-app to solve real-world problems. And they 

believe that such an app should be related to the robotic sector, which is the one where the 

neuromorphic chips can more markedly express their competitive advantages, i.e. a “real-time 

inference with low energy consumption”. 

According to Mike Davies in his presentation on NICE 2019, one of the main objects of Intel is to 

expand the neuromorphic research society by sponsoring various workshops. The group has their 

special event called “Telluride Workshop” to foster their main ambition to have “real-world 

applications”. The chips are not for sale at the moment, so only the close collaborators can 

benefit from the chip for research purposes. Various scale-size boards from USB to 

supercomputer scale (Figure 8)(Table 4) are in development for research users, while some 

recent agreements are progressing with Accenture, Airbus, GE, and Hitachi (Intel, 2019). 

https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
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Figure 8 Intel roadmap for Loihi systems  (NICE, 2019) 

 

3.4 Neuromorphic hardware research chips 

There are mutual relationships and interdependency between neuroscience and neuromorphic 

hardware. As neuroscience researchers discover the physical brain communications, mapping 

and learning mechanisms of the neural networks, these findings are designed and implemented 

in neuromorphic hardware. In turn, neuromorphic chips contribute to the effectiveness of 

neuroscience by emulating the brain models and allowing neuroscientists to make more complex 

and efficient experiments.  

Different visualizations on the contribution of neuromorphic chips, key people and actors, 

integrated circuits in the market, and interconnections in the area have been included in the 

annex (elaborated with the road mapping software tool, ´Sharpcloud´) to facilitate an overview 

of the area. 

3.4.1. The University of Manchester - SpiNNaker 

SpiNNaker (Figure 9)(Figure 25)(Figure 26) is a digital, on-chip programmable hardware designed 

by the University of Manchester, under the supervision of Steve Furber (Figure 24) (Furber, et al., 

2013). SpiNNaker was the first on-chip programmable digital chip, so a large variety of research 

has been conducted around it.  

https://apt.cs.manchester.ac.uk/projects/SpiNNaker/SpiNNchip/
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Figure 9 SpiNNaker - Large Scale digital Neuromorphic System (Jordan, 2018) 

Within the Human Brain Project, the focus of the University of Manchester is the study of the 

brain neurons rather than cognitive applications. However, as it is flexible, it can serve as a chip 

for cognitive applications too. Therefore, the Neurorobotics Platform of HBP is taking advantage 

of the SpiNNaker chip as hardware for robotic applications. The first generation SpiNNaker can 

be used on-cloud through HBP collaboration portal and the physical boards can be sold for 

research aims. Currently, SpiNNaker-1 is the world’s largest neuromorphic computing platform 

and will assist EBRAINS. It has around 100 external users who can access the machine through 

the HBP Collaboratory. And there are around 100 SpiNNaker-1 systems in use by research groups 

around the world. 

Even though the CMOS technology of the first SpiNNaker chip dates from the last decade, the 

recent study of Steve Furber and his team reveals that it manages to simulate Julich cortical unit7 

in real-time and in an energy-efficient way. SpiNNaker-1 surpasses the HPC (runs in 3 times 

slower than real-time) and GPU (runs 2 times slower than real-time) in terms of processing speed 

and consumes significantly lesser energy compared to HPC and GPU (Oliver, et al., 2019). This 

study expresses the high flexibility and the long-term potential of the SpiNNaker architecture, 

and contributes to the competitive advantage of neuromorphic technology. 

 
7 Julich cortical unit is the Cell-Type Specific Cortical Microcircuit founded by Tobias Potjans and Markuss 
Diessman. (Tobias & Markus, 2014) 
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Steve Furber expects that the neuromorphic technology will take the place of current solutions 

once they significantly show their commercial advantages in a specific application area (“killer 

app”) “There are many promising potential applications, but none has yet met this critical 

threshold”, he expresses in our internal communication. His second generation of the SpiNNaker 

chip has been produced in HBP as a prototype and it is 10 times more energy-efficient and more 

effective in cognitive processes (Mayr, et al., 2019). The large scale version of this second 

generation of SpiNNaker will be deployed in TU Dresden with funding from the Saxon Science 

ministry (HBP Press Release, 2019). 

3.4.2. Heidelberg University - BrainScaleS 

BrainScaleS (Figure 10) (Figure 27) is an analog, on-chip STDP programmable hardware designed 

by the Heidelberg University currently under the supervision of Johannes Schemmel (Schemmel, 

et al., 2010). BrainScaleS is suited for brain-research applications that serve to discover and 

emulate the neuronal activities of biologic structures, as its architecture is the closest to the 

biological one. It is an accelerated system that runs 10000 times faster than biological speed, thus 

enabling the discovering of the various parts of the brain quicker (Schemmel, et al., 2017). 

However, the analog structure and acceleration (signal loss during such a rapid transmission) 

causes noise in signals and decreases the accuracy compared to other neuromorphic digital chips. 

 

Figure 10 BrainScales – A Large Scale Analog Neuromorphic System 

(HBP Neuromorphic Computing Platform, n.d.) 

https://brainscales.kip.uni-heidelberg.de/
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In the Human Brain Project, the main objective of the Heidelberg University neuromorphic 

research group is to contribute to the study of the neural networks of the human brain instead 

of focusing on commercial cognitive applications (Schemmel, et al., 2010). Due to its mentioned 

accuracy issues, it is not well-suited for real-word commercial applications yet. However, as the 

STDP learning methodologies and hardware improves, the evolution of the chip is promising in 

terms of both accuracy and energy consumption. 

BrainScales 2 is on the prototype stage of maturity, and closer to its objective of supporting brain 

emulation. The chip will gradually help to capture more essential parts of the brain complex bio-

structures in parallel with the advancements in neuroscience (Schemmel, et al., 2017) 

(Schemmel, 2019). 

3.4.3. Stanford University – Braindrop & Neurogrid 

Neurogrid (Benjamin, et al., 2014) and Braindrop (Neckar, et al., 2019) are subthreshold analog 

mixed-signal neuromorphic hardware built by the Stanford University under the supervision of 

Kwabena Boahen. Neurogrid dates from 2014 and Brarindrop has been recently launched in 

2019. Stanford University designs chips for the research purposes, rather than commercial. 

The object of Standford University was to capture the attention of the research community in 

the area of neuromorphic hardware with the NeuroGrid. The new object is to expand it to a  wider 

community with its user-friendly programmability. Their designs on neuromorphic hardware 

stand out for their lower energy consumption compared to other chips. Especially,  the new 

Braindrop chip claims to consume lower energy than the Intel Loihi and the “energy-efficient” AI 

accelerator of the Tesla chip.   

3.4.4. Zhejiang & Hangzhou Dianzi University – Darwin 

Darwin is the first neuromorphic chip from China. However, the chip remains in the prototype 

stage. (SHEN, et al., 2016) A recent post from the university reveals the fact that they are working 

on the 2nd version of this chip. (Zhejiang University, 2019) 

3.4.5. CEA-Leti 

CEA-Leti is the research institute of The French Alternative Energies and Atomic Energy 

Commission. They claim that their “SPIRIT” is the first non-volatile resistive memory 

neuromorphic chip in the world. The resistive memories are analog memories that surprisingly 

resemble the plasticity of brain synapses. Therefore, it can boost the potential of neuromorphic 

chips in the future. The prototypes will be available in 2021 (CEA-Leti Press Release , 2019). 

  

https://web.stanford.edu/group/brainsinsilicon/neurogrid.html
https://neuroscience.stanford.edu/events/braindrop-mixed-signal-neuromorphic-system-presents-clean-abstractions-kwabena-boahen
http://www.leti-cea.com/cea-tech/leti/english/Pages/Industrial-Innovation/Demos/Spirit.aspx
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Neuromorphic 
Systems 

Chip 
Number of Chips 

and Cores 

BrainDrop Board BrainDrop 1 X 4096core 

BrainScaleS System Hicann 
1 Wafer Scale (352 

chip can fit) 

BrainScaleS 2 System Hicann 2 
1 Wafer Scale 

(under 
development) 

Kapaho Bay Loihi 2 x 128core 

Nahuku Loihi 32 x 128core 

Pohoiki Springs Loihi 768 x 128core 

Wolf Mountain Loihi 4 x 128core 

NeuroGrid Board NeuroGrid 16 x65536core 

102 Machine SpiNNaker 1 4 x 18core 

103 Machine SpiNNaker 1 48 x 18core 

104 Machine SpiNNaker 1 576 x 18core 

105 Machine SpiNNaker 1 5760 x 18core 

106 Machine  SpiNNaker 1  57600 x 18core 

SpiNNaker 2 System  SpiNNaker 2 70000 x 144core  

NS16e TrueNorth 16 x 4096core 

NS16e-4 TrueNorth 64 x 4096core 

NS1e Board TrueNorth 1 x 4096core 

NS1e-16 TrueNorth 16 x 4096core 

SyNAPSE Board TrueNorth 16 x 4096core  

 

Table 4 Neuromorphic Systems and their origin chip.  

The detailed version can be found in the UPM SharpCloud (the performance comparison is not available since there 
is no universal benchmarking for neuromorphic chips) 

 

3.5 Neuromorphic hardware start-ups 

Market-Ready, end-user programmable chips are an essential need for neuromorphic computing 

to expand its visibility and to achieve a variety of “real-world applications” with an increasing 

number of users. As large technology companies are waiting for the technology to become more 

mature, some start-ups are planning to release their chips in 2020 to fill the gap and to have a 

competitive advantage against those tech-giants. Three start-ups below are very active in the AI 

fairs and workshops and presenting the capabilities of their chip transparently.  
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3.5.1. Brainchip - Akida 

Brainchip is an Australian company with the ambition of producing its own neuromorphic chip 

Akida. The chip enables to implement native SNN based algorithms or CNNs through their 

CNN2SNN converter software. The main advantage of Akida is that they can be on the market 

very soon, thus giving them the advantage of spreading out the technology among the early 

adopters of the SNN. They expect to begin sampling processors in early 2020 (Demler, 2019). 

The company has started to sell Akida IP in mid-2019 and targeted applications in vision and 

acoustic systems. They are evaluating to open two innovation centers in one Australia (due to 

historical roots) and the second one in China (due to China’s high potential in edge computing) 

(BrainChip Holdings Ltd., 2020). The Japanese manufacturer SocioNext is investing in Akida to 

manufacture the chip and plan to offer the chip to the customers through their platform (Smith, 

2020).  

3.5.2. aiCTX 

aiCTX is a Zurich based start-up founded by Giacomo Indiveri who is one of the top researchers 

in the area. They have a variety of products in their catalog based on the DYNAPs (Moradi, et al., 

2018) chip researched at the University of Zurich. They have modified and improved this original 

chip into different purposes. The chip DYNAP-SE2 is suitable for real-time applications in the area 

of robotics and medical health applications. DYNAP-SEL enables on-line learning and real-time 

implementation of large-scale models with its large fan-in and fan-out network connectivity. The 

latest available chip DYNAP-CNN is adapted for Spiking Convolutional Neural Networks which 

makes it the best candidate for visual processing applications via input from event-based vision 

sensors. (aiCTX, 2020) 

Development kits for all these three chips are already available with the names of “Rockpool”, 

“CorTeX ConTroL” and “Sinabs” respectively. Therefore, we can expect to see them in the market 

very soon. 

aiCTX, with its innovative implementations, is on the radar of the investors, e.g. Pre Angel Capital 

(2018) and Baidu Ventures (2017). Moreover, the CES Asia Innovation award winner DYNAPs chip 

provided them with a very competitive EU grant (aiCTX, 2020). 

Recently, the company researches the product “SPECK” with the collaboration of iniVation (an 

event-based camera producer). “SPECK” is an event-based mobile camera with an embedded 

neuromorphic chip. This allows the utilization of low latency and energy-efficient visual 

applications.  

 

 

 

https://www.brainchipinc.com/
https://aictx.ai/
https://inivation.com/
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3.5.4. GrAI 

GrAI is founded in 2016 within the iBionext Start-up Studio in Paris by Ryad Benosman, Bernard 

Gilly, Giacomo Indiveri, Xavier Lagorce, Sio-Hoi Leng, Bernabe Linares-Barranco and Atul Sinha. 

“GrAi One” is a hybrid neuromorphic chip that supports both SNN and ANN models, based on 

their technology “NeuronFlow” (Jonathan, 2020). The chip was produced in late 2019 and they 

have recently presented their hardware development kit at the tinyML Summit 2020. iBionext 

had funded 15 million dollars in 2017 (Nieke, 2019). They claim to consume lesser energy per 

inference than Intel Loihi and the IBM Truenorth (Jonathan, 2019). 

Besides the above mentioned start-ups that are orienting their chip design efforts in the spiking 

neuromorphic ASICs, other ones are producing ASICs and adopting novel approaches. These 

systems are hardwired in relation to the way they represent neural networks. Some initiatives 

are based on the optimization of the dataflow between the processing unit and the memory unit, 

e.g. “near data processing”, “High Bandwidth Memory”, “Hybrid Memory Cubes” (Ganguly, et al., 

2019). Other ones are using novel memory architectures such as memristors (Ganguly, et al., 

2019). For example, SCAiLE (SCalable AI for Learning at the Edge) is a consortium of three startups 

(Gyrfalcon Technology Inc., mtes Neural Networks Corporation (mNN) and Robosensing Inc.) 

whose objective is to combine advanced acceleration hardware, resistive memory (ReRAM), 

optimized neural networks “to create ready-made, power-efficient solutions with unsupervised 

learning and event recognition capability” (businesswire, 2019). Another start-up (Groq) has an 

on-chip memory for providing high-bandwidth of data source and eliminate the need for external 

memory (Gwennap, 2020). The outcomes from these non-Neuromorphic but innovative start-

ups will certainly contribute as well to the Neuromorphic area since the visibility of chips and 

achievability of novel memory solutions will increase. 

4 SOME APPLICATION AREAS 

During the next decade, we will see how Neuromorphic computing gradually transforms the 

nature and functionalities of a wide range of scientific and non-scientific applications. In this 

report, we will briefly describe three specific but very large areas on which this emerging field of 

computing science is likely to impact more rapidly and intensively: 1) mobile applications, which 

are dramatically affecting our daily lives, are increasingly demanding more powerful processing 

capacities and abilities, 2) adaptive robotics, whose technological advance runs in parallel and is 

intimately linked to the progress of AI, needs to draw on the ´human thinking´ mechanisms 

provided by neuromorphic chips to offer solutions more closely and effectively matched to the 

domestic and/or industrial users´ necessities, and 3)  event-based vision sensors, that although 

may look, in principle, a less impactful area of application than the previous ones, certainly allow 

adaptive robotics to be fed with reliable visual signals and react accordingly with precise human-

like responses. 

https://www.graimatterlabs.ai/


 

21 
 

4.1 Mobile Applications 

Intelligent software is essential for the current usage of mobile applications. They cover from 

image processing to text processing, audio processing, etc. (Table 5). 

These applications mostly require more processing power than mobile phones can currently 

handle. Therefore, they are using supercomputers via service calls to offer AI services. Although 

this way of service call works, it also has some critical issues such as (Pathak, 2017)  

• They are limited by the speed of the internet connection.  

• Their responsiveness depends on the service speed. 

• They are causing privacy concerns (Howard, 2019). 

On-device AI, therefore, is essential to solve these problems and enable leading-edge 

technologies. 

Since the Snapdragon 820/836 (2016) mobile phones include processors with AI accelerators 

(Ignatov, et al., 2019). The most advanced chips at the time (2020 January) are Apple A13, 

Qualcomm Snapdragon 865 and Huawei Kirin 990. These chips can handle some edge AI 

applications such as face recognition, real-time translation, photo segmentation, voice 

recognition. However, their processing capacity is still limited for large-scale, complex or parallel-

tasking services. Embedding extra processing power is not sustainable with the limitations of 

battery technology. Therefore, neuromorphic chips can have a big impact in this sector with their 

efficiency in real-time AI services. 

 

Table 5 The detailed usage areas of AI processing on Smartphones  (Xu, et al., 2019) 
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Neuromorphic devices are just pointing out the state of art issues in terms of energy efficiency. 

New architectures, learning algorithms, memory advancements, chip materials are challenges 

under intensive research in both universities and technology companies. According to the 

founder of the RAIN Neuromorphics, if current trends on neuromorphic chips continue, the 

mobile-edge chips could be on the market by mid-2020s  (Kendall & Kumar, 2020).  

4.2 Adaptive Robotics 

Adaptive Robotics is a game-changer, an area with increasing demand and interest from 

enterprises throughout the world. Their smart sensing and autonomous decision capabilities are 

key features in the fourth industrial revolution. To increase autonomy and functioning in real-

world conditions, the following aspects should be addressed: 

• Sensors are needed that can capture high-dimensional data from the environment 

• Fast (low-latency response) and energy-efficient processing power 

• Self-learning capacity is needed to ensure precise behavior under dynamic and changing 

environments (Bing, et al., 2018) 

Nowadays, artificial neural networks are being used to handle intelligent motor controls which 

include perception and learning. ANNs often require GPUs to process real-time tasks (Glatz, et 

al., 2019). However, these systems have difficulties to process these high-demand operations 

(Bing, et al., 2018). Firstly, their training functionality requires expensive computational power 

to eliminate latency and sustain responsiveness. Secondly, they do consume a lot of energy to 

handle large-scale operations. In fact, this power-latency trade-off is one of the main 

disadvantages of ANNs that are working with GPUs (Bing, et al., 2018) (Glatz, et al., 2019). 

One of the solutions for addressing this issue is the cloud processing through service calls. The 

high processing capacity of the supercomputers allows them to handle learning and perception 

capabilities and enable them to control robots wirelessly. This option, while being functional in 

some cases, is not actually sustainable: 

• Communication Delays over the Cloud; a huge amount of data can arise from the robotic 

applications from perception to SLAM (Simultaneous Localization and Mapping) and 

navigation. This can cause considerable delays in Cloud-Robot communication. Moreover, 

if there is no connection available, this will cause inoperability (e.g. space mission robots, 

miner robots, underwater operation robots, etc.) 

• Privacy and Security in Cloud–Robot Systems; as the data is stored and processed over the 

cloud remotely, the robots are vulnerable to hacker attacks. This could lead to critical 

security issues such as changing the behavior of the robot or data-theft (Saha & Dasgupta, 

2018). 
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Edge computing, which is taking the processing capacity closer to the device, is therefore 

required. The power-latency trade-off issue of current von Neumann based processing units 

should be replaced with energy-efficient, parallel functioning, scalable ones.  

Neuromorphic chips are one of the best candidates to handle edge-robotic applications with their 

brain-like energy efficiency and scalable neuron systems. There is a huge amount of research on 

this area and Robotics is expected to be the killer-app for Neuromorphic chips.  

Neuromorphic chips need to work with traditional CPUs for communicating with robot actuators 

and sensors. This may diminish the leading advantage of the energy efficiency of these chips 

(Knight & Nowotny, 2018). However, recent researches from Yulia Sandemirkaya (Glatz, et al., 

2019) and hybrid Tianjic chip (Pei, et al., 2019) have already explored the state of the art of energy 

efficiency. In particular, Yulia Sandemirskaya and her team have managed to operate a robot with 

complete neuromorphic control eliminating the interference of the CPU. Therefore, they have 

shown the possibility of energy-efficient adaptive robotics with a visual sensor (Glatz, et al., 2019) 

(Pei, et al., 2019). On the other hand, Tsinghua University from China has presented the first 

neuromorphic hybrid chip “Tianjic” (Figure 11). 

 

Figure 11 Autonomous driving bicycle with hybrid Tianjic chip  (Pei, et al., 2019) 

This programmable chip supports both ANN, SNN operations simultaneously by communicating 

with robotic actuators in an energy-efficient way. Their real-world application - which is 

controlled by the Tianjic chip - “smart bicycle” (Tsinghua University, 2019) can already compete 

with current adaptive robots in terms of intelligence. It is expected to have these hybrid chips in 

the market sooner than neuromorphic-only chips. 

4.3 Event-Based Vision Sensors 

Event-Based visual sensors are also bio-inspired – like neuromorphic chips - and they do also 

benefit from the low power consumption advantage. They measure the per-pixel brightness 

changes asynchronously, instead of capturing imaged with a fixed rate (Gallego, et al., 2019) 

(Unitectra, 2016). They do have critical advantages over conventional cameras, e.g. low latency, 
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less power consumption, high-temporal resolution, and high-dynamic-range. Their real-time 

working capability is essential for the artificial intelligence sector such as Robotics, autonomous 

vehicles, etc. Currently, most of the visual AI-applications have been researched and developed 

with these sensors: (Gallego, et al., 2019) 

• Feature Detection and Tracking 

• Optical Flow Estimation 

• 3D reconstruction 

• Pose estimation and SLAM 

• Visual-Inertial Odometry 

• Image Reconstruction 

• Motion Segmentation 

• Recognition 

• Auditory Sensors 

Two of these applications “Feature Detection” and “Motion Segmentation” are ready and 

available for customers´ use. The rest is still in the research phase because they cannot fetch the 

static object and “colors” by themselves. The processing unit is necessary for these applications, 

so traditional chips cannot be the long-term solution for event-based sensors. Real-time control 

of sensors with neuromorphic chips is an active area of research that aims to tackle this 

bottleneck. Yulia Sandemirskaya has recently worked on an event-based visual sensor with 

control of Intel Loihi chip and her team managed to achieve “Object tracking” (Renner, et al., 

2019). 

It is expected to have market-ready neuromorphic event-based systems in the horizon of two 

years. One example is the “SPECK” event-based vision sensor with DYNAPs neuromorphic control 

(Figure 12) (aiCTX, 2019).  

 

Figure 12 SPECK - Event-based camera with neuromorphic chip control  (Speck.ai, 2019) 
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Once successfully implemented with SLAM applications(Figure 29), these cameras can become 

the prior choice over traditional cameras used in the area of Robotics or autonomous driving. 

5 MARKET TRENDS OF AI CHIPS 

AI is very popular today and the market of chips is receiving an increasing interest and attention 

from the markets. A list of companies can be found in tables 6 and 7 of annex 2. Many applications 

are already adopted by end-users and numerous emerging applications are expected to happen 

in the short term. This rising demand will affect the plans of semiconductor companies. According 

to McKinsey's report “Artificial-intelligence hardware: New opportunities for semiconductor 

companies”, estimated CAGR (Compound annual growth rate) of AI-supported semiconductors 

will be 18-19% between 2017-2025 compared to 3-4% of non-AI semiconductors (Figure 13) 

(Batra, et al., 2018). Report from TMT Analytics also correlated with McKinsey´s and expects the 

market of AI-supported semiconductors to achieve 66 billion dollars by 2025 (Figure 14) (Kennis, 

2019). 

 

 

Figure 13 Market of AI & Non-AI semi-conductors between 2017-2025 

By 2025 AI-supported semiconductors are estimated to take %19 of the share (Batra, et al., 2018) 
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Figure 14 AI-supported Semiconductors market volume  (Kennis, 2019) 

Currently available semiconductors for AI applications are the CPUs and the AI accelerators. The 

AI accelerators are leading the market because of the computing limitations of CPUs. Available 

AI accelerators are the GPUs, ASICs, and FPGAs, as mentioned in chapter 3. 

GPUs have a lot of the parallel processing cores which give them a significant advantage for 

processing AI training and the inference. However, they do have a high power consumption cost 

which is not sustainable for future applications. Nvidia is at present the sector leader in the GPU 

area, especially for training. 

Emerging FPGAs, on the other hand, can have 10 times more power-efficiency than GPUs but 

have lower performance. In applications where energy-efficiency is the top priority FPGAs can be 

the alternative solution. Some key players in the FPGA semiconductors are Intel - with its chip 

series Agilex -, Baidu - with Kunlun - and Xilinx – which has a quite large offer of chips.  

Among AI Accelerators, ASICs shows the best performance, lesser power consumption, and 

efficiency. However, designing special functioning ASIC is highly costly and is not reconfigurable. 

Therefore, ASICs should be used when the market of specific AI applications is adequate for the 

design investment (Du & Du, 2018). Google is leading the sector with its chip Tensorflow 

Processing Unit (TPU). In parallel,  INTEL is investing in ASICs with the collaboration of startups, 

“Nervana” and “Habana” (Intel decided to continue with “Habana” by January 2020) (Synced, 

2020). 

AI usage can be classified into four quadrants. The quadrants are the result of combining 

“Cloud/HPC/Data-Center” and “Edge/Embedded Computing”, which refer to the implementation 

place, and the “Training” or “Inference”8, which are the purpose of AI utilization (Figure 15). 

There is no viable solution for edge training since the data-size is huge compared to processing 

power for edge devices. Neuromorphic chips can fill this gap by its novel solutions. 

 
8 Training: “Training refers to the process of creating a machine learning algorithm.” 
Inference: “Inference refers to the process of using a trained machine learning algorithm to make a prediction.” 
(Paul, 2019) 
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Figure 15 Current semi-conductor and their location of use  

There is  still a gap in the edge-training part (Tsinghua University, 2018) 

According to IBM supported research by “TIRIAS Research Group”, 95% of the AI processing is 

the “inference” one. This can clearly show that the inference AI chip market is dominating over 

training purposes (IBM PartnerWorld, n.d.). 

 

5.1 Cloud/Datacenter 

GPUs are currently dominating the cloud market for training services. Nvidia is the main actor in 

the field and this trend will likely continue during a couple of years. On the other hand, ASICs are 

emerging in the market and Google is already using their specified ASIC system “Tensor 

Processing Units” on its data centers. It is expected that ASICs will reach a 28 billion dollars chip 

market by 2026, which will be almost half of the total AI chip market (Bloomberg Business, 2019). 

FPGAs research and development are basically supported by Intel and Microsoft. However, their 

lower performance compared to ASIC or GPU will limit opportunities in a market that will only 

demand efficient AI solutions. Their expected market share will be around 9 billion by 2024 

(Bloomberg Business, 2018).  

The inference is presently dominated by the traditional CPU datacenters (Figure 16). The CPU 

dominance will be gradually replaced by ASICs as soon as the utilization of the latter will become 

widespread. As the complexity of the tasks increase and datasets becomes larger, the inference 

cost of CPUs will be much higher. ASICs can provide the solution to this dilemma by the “increased 

parallelism, memory transfer reductions, and workload reductions” (Wang, et al., 2019). 
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Figure 16 Data-Center semicondutors between 2017-2025 

Data-centers is expected to replace CPUs over ASICs by late 2020s in the area of inference,  GPUs are losing their 
dominance over ASICs in training by mid-2020s (Batra, et al., 2018) 

 

5.2 Edge Computing 

Edge computing represents the future of AI however, the amount of data transactions is 

increasing tremendously. Most of these data are just unnecessary bulky data which could make 

data-centers inadequate in the near future. Moreover, latency and real-time processing are 

crucial in some applications (health, space, robotics, etc.). Edge inference is inevitable to solve 

these issues. 

According to Chetan Sharma Consulting, the Edge Market size is expected to reach 4.1 Trillion 

dollars by 2030. And half-trillion of this size will be located in the edge hardware market, which 

also includes the chip sector (Figure 17) (Chetan Sharma Consulting, 2019). 

By 2018 the AI edge chip market was less than 100 million dollars; however, the demand will be 

huge. The top mobile chip producers, e.g. ARM architecture on Apple, Qualcomm, Huawei, have 

already edge inference and will certainly continue to invest. McKinsey believes that the edge 

inference chip market will get around 5 billion by 2025 and might surpass the data-center 

inference market by 2030 (Batra, et al., 2018). 
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At present, dominant processors in the edge market are CPUs. However, for large scale, real-time 

applications, CPUs will not be enough, and they will replace with ASICs by 2025 (Figure 18). On 

the other hand, edge training – even though being a very important area - is not efficient yet. 

There are some methodologies such as federated learning which boosts privacy and limits the 

data size. Unfortunately, this solution does not cover yet the latency related issues (Figure 19). 

 

 

Figure 17 Edge Internet Economy,  

The share of Hardware devices have an  incrementing graph;  around 500 billion dollars by 2030 (Chetan Sharma 
Consulting, 2019)  
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Figure 18 Market of Data Center & Edge-Computing semicondutors between 2017-2025 

Huge Interest in Data Center training and Edge inference mid-2020s;  Development in Edge training can be also 
seen in (Batra, et al., 2018) 

 

 

Figure 19 Edge-Computing semicondutors between 2017-2025 

ASICs are expected to take the place of CPUs in inference by mid-2020s. In edge training ASICs are again will rise, 
however, the total market is still low due to the technology inadequacy (Batra, et al., 2018) 
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5.3 Future Market of Neuromorphic Chips 

Compared to AI Accelerators, Neuromorphic chips seems to be the best option in relation to 

“parallelism”, “energy efficiency” and “performance”. They can handle both AI inference and 

training in real-time. Moreover, edge training is possible through neuromorphic chips (Kendall & 

Kumar, 2020). However, learning methodologies should be improved their accuracy. In addition, 

there is no yet market-ready neuromorphic chips to widespread and cope with the potential user 

size. The start-ups mentioned in chapter 3.5 are expected to release their chip in the market in 

2020. The success of aiCTX and BrainChip can be determinant for the future of neuromorphic 

computing. The hybrid research chip “Tianjic” has also tested on real-world applications and it 

could be a good sample for the transition period. 

Yole and TMT Analytics expect that the market size of neuromorphic chips can reach billion-dollar 

by mid-20s with a growth of 51% between 2017-2023 (Yole Development, 2019) (Kennis, 2019). 

If they can manage to get ahead and demonstrate their potential under the pressure of the 

currently-successful AI accelerators, Neuromorphic chips are expected to take a solid place in the 

market by mid-20s and possibly achieve market domination by 2030 (Figure 20). 

 

 

Figure 20 Expected waves for the semi-conductor dominance in the area of AI (Kendall & Kumar, 2020) 
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6 CONCLUSION 

In our emerging and dynamic AI-based society, research and development on AI is to a large 

extent focused on the improvement and utilisation of deep neural networks and AI accelerators. 

However, there is a limit in the architecture of traditional von Neumann systems, and the 

exponential increasing of data-size and processing requires more innovative and powerful 

solutions. Spiking Neural Networks and Neuromorphic computing, which are well-developed and 

known areas among neuroscientist and neuro-computing researchers, are part of a trend of very 

recent and novel technologies that already contribute to enable the exploration and simulation 

of the learning structures of the human brain. 

This report has explained the evolution of the artificial neuronal networks, the emergence of 

SNNs and their impact on the discovery of neuromorphic chips. It has been discussed the 

limitations of the traditional chips and the eventual influence of neuromorphic chips on 

demanding AI applications. The main players have been identified in the area, and have been 

related to current and future applications. The study has also described the market advantages 

of neuromorphic chips when comparing with other AI semiconductors. Neuromorphic chips are 

compatible with event-based sensors applications and emerging technologies such as photonic, 

graphene or non-volatile memories. They have a huge potential in the development of AI and 

can certainly be a dominant technology in the next decade. 

Hopefully, the report has served to briefly give some light on the complexity of this challenging 

computing area. While staying loyal to our objective of offering a practical description of the most 

recent advances, we have also tried to be instructive enough so that to increase the interest and 

visibility of the topic to the non-specialised audience. For other readers the study may represent 

a promising and challenging step towards a more profound understanding of the area that could 

eventually support the creation of roadmaps, the exploration of new industrial applications, or 

the analysis of synergies between these novel chips and other related emerging trends.  
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Figure 21 Neuromorphic Chips.  

The detailed version can be found through interactive UPM SharpCloud. The interactive diagrams give information about each actor (can be the chip, person, event, etc.) and 
their connection among them.  
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Figure 22 Neuromorphic Scale-Systems. 

 The detailed version can be found through interactive UPM SharpCloud. The interactive diagrams give information about each actor (can be the chip, person, event, etc.) and 
their connection among them.  
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Figure 23 UPM relationship diagram of Neuromorphic Computing.  

The detailed version can be found through interactive UPM SharpCloud. The interactive diagrams give information about each actor (can be the chip, person, event, etc.) and 
their connection among them.  
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Figure 24 Neuromophic Computing Family, Sample.  "Steve Furber” and his connections.  

The detailed version can be found through interactive UPM SharpCloud. The interactive diagrams give information about each actor (can be the chip, person, event, etc.) and 
their connection among them.  
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Figure 25 Neuromophic Computing Family, Sample B "SpiNNaker” 

 The detailed version can be found through interactive UPM SharpCloud. The interactive diagrams give information about each actor (can be the chip, person, event, etc.) and 
their connection among them.  
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Figure 26 Neuromophic Computing Family, Sample C "SpiNNaker” in detail.  

The detailed version can be found through interactive UPM SharpCloud. The interactive diagrams give information about each actor (can be the chip, person, event, etc.) and 
their connection among them.  
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Figure 27 Neuromophic Computing Family, Sample D.  "Schemel J.” and his connections. 

 The detailed version can be found through interactive UPM SharpCloud. The interactive diagrams give information about each actor (can be the chip, person, event, etc.) and 
their connection among them 
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Figure 28 Neuromophic Computing Family, Sample E "Wold-Map”  

The detailed version can be found through interactive UPM SharpCloud. The interactive diagrams give information about each actor (can be the chip, person, event, etc.) and 
their connection among them.  
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Figure 29 UPM roadmap for Event-Based Sensors  

The application availability diagram for both control with traditional chips (light-green) and control with neuromorphic chips (pink). The detailed version can be found through 
interactive UPM SharpCloud.  
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9 ANNEX 2 

Tables 6 and 7 present some private companies that could be potentially interested in collaborating with HBP or exploiting 

neuromorphic chips. 

In particular, table 6 provides basic info about the companies. Note that the table includes companies of different sizes (micro for 1-

10 employees, small 10-50, medium 50-250, large more than 250) 

The table 7 shows a basic assessment of the companies´ exploitation potential, based on the following criteria: 

(scale: 1 - minimum - to 5 – maximum) 

- “Innovativeness”: novelty of the product (s) portfolio or area of work of the company. 

- “Knowledge”: expertise and specilisation of the company about neuromorphic technology. 

- “Economic Interest”: economic impact of the potential product for the HBP partners. 

- “Effective Integration”: feasibility of the integration of neuromorphic technology into an available product (s) of the 

company. 

- “Capacity to Reach Market”: potential of the company to connect with relevant market actors and materialize exploitation.  

- “Accessibility”: commercial/collaboration dialogue with the relevant company can be easily established.  
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Table 6 Basic info on potentially interested Companies 

Id Company Website Location Sector Size Area 
Relation to 
Neuromorphics 

Products 

1 Neurons Inc https://neuronsinc.com/  Denmark Biotechnology Medium 
Neurosicenes 
devices 

Interested in robotics 
but want to set up 
partnerships with 
industrials. Their 
Machine Learning 
Applications can be 
implemented 
through 
neuromorphic chips 

Neurons Inc applies 
neuroscience tools and insights 
to help business to better 
understand unconscious and 
conscious responses. 
"Neuromarketing", "Retail", 
"UXD", "Innovation and R&D", 
"Management & Leadership", 
"Consultancy" 

2 GoodAI 
https://www.goodai-
solutions.com/  

Czech Republic 
Industry AI 
Solutions 

Small 

Artificial 
Intelligence, 
Machine Learning, 
Software 

The company can use 
our neuromorphic 
chips for its AI 
solutions. 

AI solutions such as "Predictive 
Maintenance", "Visual 
Inspection", "Asset 
Management" or "custom" for 
industries (manufacturing, gas, 
electricity etc.) 

3 SPIXII https://www.spixii.com/ 

United 
Kingdom 

AI Customer Service Small 
Chatbot, machine 
learning, exploring 
voice 

Cogntive Virtual 
Assistant can be 
implemented 
through 
Neuromorphic Chips 

SPIXII vritual chatbot for data 
analysis and task aoutomation 

4 ec2ce easy to see https://www.ec2ce.com/ Spain 
Agricultural AI 
Solutions 

Small 

Agriculture, Artificial 
Intelligence, Big 
Data, Machine 
Learning 

The company can use 
our neuromorphic 
chips for its AI 
solutions. 

AI solutions such as "Prediction 
of weekly production", 
"Prediction of  productivity", 
"Pest Management" or 
"Optimization of fertigation", 
"Crop Quality", "commodity 
price"  for agriculture 

5 Think Silicon https://think-silicon.com/  Greece GPU producer  Small 

Artificial 
Intelligence, 
Computer Vision, 
Internet of Things, 
Semiconductor 

They are producing 
AI accellerator for 
end users. SpiNNaker 
might be marketed 
through them to 
increase user-size. 

They sell Low-Power AI 
accellerator based on GPU 

6 
Deep learning 
partnership 

http://www.deeplp.com/ 

United 
Kingdom 

Consultancy about 
AI 

Micro 
AI, Blockchain, deep 
learning 

 They do have 
training of 
neuromorphic 
programming (theory 
to practice) As they 
are based in London, 
SpiNNaker can be 

Consulting Company that gives 
training and workshor about AI 

https://neuronsinc.com/
https://www.goodai-solutions.com/
https://www.goodai-solutions.com/
https://www.spixii.com/
https://www.ec2ce.com/
https://think-silicon.com/
http://www.deeplp.com/


 

52 
 

used in training 
activities.  

7 CENTURY Tech https://www.century.tech/ 

United 
Kingdom 

Education Small Machine learning 

Neuromorohic chips 
can be used in their 
AI solutions (data 
analyses and insight 
from platform users) 

CENTURY is a personalised 
learning platform combining 
A.I., big data and behavioural 
science to provide real-time 
insights to educators. 

8 MBDA 
https://www.mbda-
systems.com/ 

France Defence Systems Large 

Artificial intelligence 
for aeronautics, 
spatial and 
armaments 
indutries 

Very interested by Ai 
and by using 
innovation patform 
as a watch tool 

They are producing air missiles 
and recently acquired Numalis 
for AI solutions for smart missile 
sytems (detect, track, intercept 
and destroy aerial targets.) 

9 
CogniCor 
Technologies 

https://www.cognicor.com/ India AI Customer Service Medium 

Analytics, Artificial 
Intelligence, 
Banking, Big Data, 
FinTech, InsurTech, 
Natural Language 
Processing 

Cogntive Virtual 
Assistant can be 
implemented 
through 
Neuromorphic Chips 

Virtual Assistant platform for 
Enterprises 

10 Sum&Substance https://sumsub.com/ 

United 
Kingdom 

IT Services Medium 

Artificial 
Intelligence, 
Computer Vision, 
FinTech 

AI Visual recognition 
system can be 
implemented on 
neuromorphic chips 

Sum&Substance is an 
independent developer of 
solutions for remote 
identification and verification of 
customers, partners and 
employees. 

11 Cybernano https://www.cybernano.eu/  France 
Medical Data 
Science 

Micro 

in vitro assays, 
patients following, 
physiologic signals 
interpretation 
(cardiomyocites and 
potentially soon 
neurons) 

1- Neuromorphic 
chips can be used for 
machine learning 
solutions. 2- 
Neuromorphic can 
be advantagous if 
they plan to analyse 
neuronal signals 

Data Science for Health 
Innovation (the analysis of 
cardiac signals) (Quality-by-
Design for Medical Device & 
Drug Development) (Biomedical 
Signal Processing)(automate the 
analysis of your Biological Data) 

12 BASF https://www.basf.com/ Germany Chemistry Large 
AI, robotic, system 
biology 

Their recent 
agreement with TUM 
for integration AI 
solutions. The joint 
research work will 
investigate issues 
such as the solubility 
of complex mixtures 
or dyes as well as 
predicting the aging 
process of catalysts. 
Joint agreement can 
be done for research 

Our portfolio is organized into 
six segments: Chemicals, 
Materials, Industrial Solutions, 
Surface Technologies, Nutrition 
& Care and Agricultural 
Solutions.  

https://www.century.tech/
https://www.mbda-systems.com/
https://www.mbda-systems.com/
https://www.cognicor.com/
https://sumsub.com/
https://www.cybernano.eu/
https://www.basf.com/
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13 Sundance https://www.sundance.com/ 

United 
Kingdom 

Hardware Retail Medium 
Artificial 
Intelligence, 
Wireless 

They are selling 
embedded chips and 
boards for end users. 
SpiNNaker might be 
marketed through 
them to increase 
user-size. 

embedded processors and 
boards 

14 
AURA Innovative 
Robotics 

https://aurarobotix.com/  Spain Medical devices Small 

Biotechnology, 
Health Care, Science 
and Engineering 
(Neurological 
diseases, 
exoskeleton) 

Currently, they are 
engaged with 
OSCANN & ORTE. 
They will incorparate 
AI and OSCANN for 
diagnose. 
Neuromorphic chips 
can be a solution 
with visual detection 
capabilities. 

OSCANN & ORTE, OSCANN is a 
diagnosis platform that 
combines the analysis of ocular 
and oculocephalic movements, 
ORTE is an innovative medical 
robotic solution for the 
diagnosis, treatment and 
rehabilitation of the human 
upper-limb, that combines a 
sophisticated musculoskeletal 
computer model of the upper-
limb with a sensorized 
exoskeleton that helps the 
patient to perform the 
treatment prescribed by the 
therapist and monitors 
progress.  

15 SimplicityBio https://www.quartz.bio/ Switzerland BioInformatic Micro 
Machine learning 
for pharmaceutical 
industry 

Machine learning is 
used for data 
analysation therefore 
neuromorphic chips 
can be used. 

QuartzBio- Data integration, 
Analayse and Visualisation tool 

16 Sensimed https://www.sensimed.ch/ Switzerland Smart Lenses Small 
Lenses Medical 
devices for data 
collection 

Collected data can be 
used for detection of 
Glaucoma. 
Therefore, 
neuromorphic chips 
can be useful 

SENSIMED Triggerfish is a smart 
lens is device that provides 
insights into the ocular volume 
changes throughout the day and 
night for glaucoma treatment 

17 
Green Running Ltd 
(creators of Verv) 

https://verv.energy/  

United 
Kingdom 

Smart Wthite 
Goods 

Small 

Artificial 
Intelligence, Energy, 
Energy Efficiency, 
Energy 
Management, 
Machine Learning, 
Peer to Peer, Smart 
Building, Smart 
Home 

Neuromorphic chips 
can be used in AI 
anomaly detection 
solutions 

Verv specialises in high-speed 
data acquisition and AI, 
providing cutting-edge fault-
finding technology to white 
goods manufacturers to make 
their appliances smarter and 
more sustainable 

18 GreenSoft http://www.greensoft.com.ro/  Romania 
Software Service 
Provider 

Small Data management 
Their monitoring, 
data analyse 
solutions can be 

GreenSoft is a software service 
provider that incorporates 
innovation and technology from 

https://www.sundance.com/
https://aurarobotix.com/
https://www.quartz.bio/
https://www.sensimed.ch/
https://verv.energy/
http://www.greensoft.com.ro/
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implemented on 
neuromorphic chips 

AI to improve client 
competitiveness on market.  

19 Guerbet https://www.guerbet.com/  France Pharmaceutical Large DM, AI for radiology 

Recent Agreement 
with IBM Watson for 
medical imagining. 
Canbe a partner in 
neruomorphic 
implementation. 

Guerbet is a leader in medical 
imaging worldwide, offering a 
wide range of pharmaceutical 
products, medical devices, 
digital and AI solutions for 
diagnostic and interventional 
imaging, to improve the 
diagnosis and treatment of 
patients 

20 ImaBiotech https://www.imabiotech.com/  France Pharmaceutical Small 
Molecular imaging, 
big data software 

Machine learning 
solutions for element 
detection , 
localization and 
quantification can be 
done by 
neuromorphic chips 

Molecular Imaging 

21 Seldon https://www.seldon.io/  

United 
Kingdom 

Software Library Micro Machine learning 

Their library can be 
researched on 
neuromorphic chips 
but not a potantial 
market opportunity. 

Machine learning optimization 
library 

22 Bioptimize http://www.bioptimize.com/ France Bio Technology Micro AI  

Developed a AI 
algoryhtm that allow 
to treat data set with 
a weak number of 
data. This can be 
implemented on 
neuromorphic chips 

BIOptimize is a company that 
delivers data mining tools and 
predictive models, using a 
specific methodology, focused 
on exhaustivity, simplicity and 
interactivity. 

23 ASPertise https://www.aspertise.net/  France 
Software 
Consultancy 

Small 
AI and data 
management 

They might increase 
theirconsultancy 
portfoilio with 
neuromorphic 

Providing IA, Big Data and 
Cybersecurity services powered 
by unique cognitive skills of 
Atypical experts (Aspergers, 
Gifted) 

24 Heuro Labs http://www.heurolabs.com/ Germany Data Science Small Data management 

No twits since 2017. 
A recent company, 
their object to have 
cognitive 
applications, robotics 
through data 
analyse. These 
applications can be 
implemented on 
neuromorphic chips. 

their object to have cognitive 
applications, robotics through 
data analyse.  

 

https://www.guerbet.com/
https://www.imabiotech.com/
https://www.seldon.io/
http://www.bioptimize.com/
https://www.aspertise.net/
http://www.heurolabs.com/
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Table 7 Assessment of exploitation potential  

Id Company Usage 
Current 
Situation 

Innovativeness Knowledge 
Economic 
Interest 

Effective 
Integration 

Capacity to 
Reach 
Market 

Accesability 
Exploitation 
Potential 

1 Neurons Inc Use chip for AI solutions Active 5 3 4 4 4 4 24 

2 GoodAI Use chip for AI solutions Active 4 3 4 4 4 4 23 

3 SPIXII Use chip for AI solutions Active 3 3 4 4 4 5 23 

4 ec2ce easy to see Use chip for AI solutions Active 4 3 4 4 3 4 22 

5 Think Silicon Distribution Active 4 3 4 4 3 4 22 

6 Deep learning partnership Workshops, Training Active 2 5 2 5 2 5 21 

7 CENTURY Tech Use chip for AI solutions Active 4 2 3 4 4 4 21 

8 MBDA Use chip for AI solutions Active 4 1 5 3 4 4 21 

9 CogniCor Technologies Use chip for AI solutions Active 3 3 4 4 3 4 21 

10 Sum&Substance Use chip for AI solutions Acrtive 4 2 4 3 4 4 21 

11 Cybernano Use chip for AI solutions Active 4 2 3 3 4 4 20 

12 BASF Use chip for AI solutions Active 3 2 4 2 5 4 20 

13 Sundance Distribution Active 2 2 4 4 3 4 19 

14 AURA Innovative Robotics Use chip for AI solutions Active 4 2 3 3 3 4 19 

15 SimplicityBio Use chip for AI solutions Active 3 2 3 3 4 4 19 

16 Sensimed Use chip for AI solutions Active 4 2 3 2 3 4 18 

17 Green Running Ltd (creators of Verv) Use chip for AI solutions Active 4 2 4 2 3 3 18 

18 GreenSoft Use chip for AI solutions Active 3 2 3 2 4 4 18 

19 Guerbet Use chip for AI solutions Active 3 1 3 2 4 4 17 

20 ImaBiotech Use chip for AI solutions Active 3 2 4 3 3 2 17 

21 Seldon Use chip for AI solutions Active 3 2 2 2 4 4 17 

22 Bioptimize Use chip for AI solutions Active 3 2 3 2 3 4 17 

23 ASPertise 
Use chip for AI 
solutions,  
Workshops, Training 

Active 2 2 2 2 2 5 15 

24 Heuro Labs Use chip for AI solutions Active 2 2 2 2 2 3 13 



 

 

 

 

 

 

 

 

 

 

 


