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Showcase 5 – Final demonstrator, in-hand object manipulation 
performed by robotic hand 

(D3.14 – SGA3) 
 

 
Figure 1: Image of the Shadow Dexterous Hand in the process of manipulating a cube. 
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Abstract: 
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1. Introduction 
The intricate skill of in-hand object manipulation engages a network that spans sensory, association, 
and motor regions of the brain. Despite considerable progress, our understanding of how the brain 
coordinates dexterous movements remains incomplete. Showcase 5 addresses this challenge by 
harnessing the capabilities of deep learning, robotics, and neuroscientific knowledge.  

The frontoparietal hand-action network executes sensorimotor transformations that are essential 
for performing goal-oriented actions. While decoding studies have provided important insights on 
the neural representations related to dexterity, they are ill-suited for characterizing the neural 
transformation performed by the frontoparietal network. To gain a complete understanding of 
dexterous actions, it is imperative to not only identify the representations carried by individual brain 
regions but also to examine computations that take place between these regions. The primary 
scientific objective of Showcase 5 is to shed new light on the transformations occurring in the 
frontoparietal hand-action network during in-hand object manipulation. 

To achieve this scientific objective, Showcase 5 utilizes and expands upon goal-driven modelling 
(GDM). Deep neural networks (DNNs) combine brain inspired computational principles with 
unprecedented efficiency in solving perception tasks. This makes DNNs highly suitable for revealing 
the types of representations and transformations that may underlie complex, high-level functions of 
biological systems. As such, GDM seeks to develop biologically plausible DNNs to formulate new 
hypothesis about brain functionality. However, GDM, has long been solely applicable to the 
neuroscience of perception. Its advantages naturally extend to sensorimotor processing, but its 
adoption is hindered by the engineering and computational challenges that arise when networks are 
in closed loop with an external environment. Training such networks is difficult using typical 
supervised learning techniques that require labelled datasets. Reinforcement-learning (RL) 
constitutes an alternative as it allows for online data generation by exploring the task environment 
to optimise the network based on collected rewards. The methodological objective of Showcase 5 is 
to develop a framework that enables neuroscientists to design and train biologically inspired deep 
neural networks of sensorimotor functions. 

The methodological goal was realized in the form of AngoraPy, a dedicated Python library unifying 
the design and training of goal-driven models and the construction of anthropomorphic tasks under 
the hood of an integrated, easy-to-use API. It targets neuroscientists who want to build biologically 
inspired, yet functionally performant models of the sensorimotor system without requiring them to 
have expert knowledge in RL or high-performance computing (HPC). 

AngoraPy allowed us to significantly advance on the scientific goal of gaining a deeper understanding 
of the frontoparietal hand-action network. Using AngoraPy, we trained a recurrent convolutional 
neural network (RCNN) to perform an in-hand object manipulation task with an anthropomorphic 
robotic hand. The architecture of the RCNN is based on functional and anatomical knowledge of the 
frontoparietal network in the primate brain involved in visually guided hand and arm movements. 
Training data was gathered from the agent's experience within a simulated environment. The 
representations transformations emerging in the trained architecture have subsequently been 
investigated using tools from neuroscience and machine learning to provide new insights and 
hypotheses as to how the brain coordinates complex hand movements. 

Showcase 5 relied heavily on the HBP’s EBRAINS research infrastructure. Training in-hand object 
manipulation as reported here requires several years of simulated experience. Generating this 
experience and optimizing upon it is computationally expensive and requires extensive 
parallelization, for which the use of HPC clusters (SC6) is essential. 

As we move forward, our primary focus will be on the continuous development and enhancement of 
AngoraPy. Our aim is to establish this toolkit as an open-source software that can facilitate research 
on the brain's sensorimotor system. In the period immediately following the HBP, we plan to dedicate 
our efforts towards building a robust community around AngoraPy. By fostering a community of users 
and contributors, we aim to ensure that AngoraPy continues to evolve and adapt to the changing 
needs of the neuroscience research landscape. 
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The work carried out in Showcase 5 contributes to the HBP Scientific Area of "Modelling". It uses 
goal-driven modelling to capture the comprehensive interplay between perception, cognition, and 
action in an ecologically valid manner through a model whose neurocomputational strategies 
automatically arise from parameter optimisation. 

Communities that should be interested in this work include neuroscientists, cognitive scientists, 
roboticists, and AI researchers. This is because the project provides a novel approach to 
understanding complex brain functions, offers insights into the application of deep learning in 
neuroscience, and presents a new method for training artificial agents to perform complex tasks. 

The downstream applications of Showcase 5 span across various domains, including neurohealth and 
robotics. The insights gained from this research could be instrumental in developing advanced 
strategies for individuals who have lost their motor skills due to neurological disorders or injuries. 
For instance, the principles learned from the project could be applied to design intelligent 
prosthetics that mimic natural hand movements, thereby improving the quality of life for these 
individuals. Furthermore, the work could contribute to the development of advanced robotic systems 
capable of complex, human-like manipulation tasks. The insights gained from this research could 
inform the design of robotic hands that can perform intricate tasks in various fields, such as 
manufacturing, healthcare, and service industries.  

2. Scientific Motivation 
Understanding the neurocomputational principles underlying human sensorimotor control is key to 
elucidating the mechanisms governing the human sensorimotor system. One prominent area of 
investigation concerns human dexterity, which involves highly precise movements of the hand and 
fingers. Showcase 5 is dedicated towards designing bioinspired models that can execute complex 
dexterous movements. To achieve this, showcase 5 employs deep learning to emulate biological 
brain regions and their functions. Deep neural networks provide exceptional effectiveness in solving 
ecologically valid tasks, and therefore have the potential to uncover the representations and 
computations that drive the complex, high-level functions of biological systems. 

During the M21 review, Showcase 5 presented an early iteration of the dexterity model, 
demonstrating the coordination of basic hand movements, such as touching the thumb with a specific 
finger and performing finger-opposition sequences. Since then, we have developed a more 
sophisticated model that integrates both the macro- and mesostructure of the frontoparietal and 
pericentral cortical networks and is trained on the much more complex task of manipulating objects 
in the hand. The bioinspired model goes beyond current state-of-the-art A.I. models in terms of 
performance, and it offers valuable insights into the sensorimotor representations and 
transformations that occur within the brain.  

Analysis of the biologically inspired model indicates that the Primary Motor Cortex (M1) and Premotor 
Cortex (PMC) in our model encode reward information. Furthermore, the model PMC is involved in 
action planning, while model M1 primarily executes current actions. These findings correspond with 
neuroimaging studies, thus validating the model. Furthermore, our analyses indicate that 
information becomes increasingly integrated and abstract as it travels from sensory and prefrontal 
regions to motor regions. This presents a novel hypothesis about the hierarchical nature of neural 
processing where complex, raw sensory data is progressively distilled into fewer, key components 
required for efficient movement planning. 

3. Technical Specification 

3.1 Goal-Driven Modelling of Sensorimotor Systems 
Goal-driven modelling traditionally requires substantial amounts of labelled data and has as such 
been confined to the neuroscience of perception where such data is readily available. However, the 
ability of deep neural networks to combine brain inspired computational principles with functional 
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performance can also be relevant for developing models of cognitive and sensorimotor processing. 
In particular, sensorimotor processing involves closed-loop systems where brain models act (via a 
body) on the environment and vice versa. Although efforts along this line exist, supervised learning 
under such conditions is difficult, as data is costly to collect and anatomically specific to the 
(potentially non-human) individuals recorded.  

Reinforcement learning presents a potent alternative to supervised learning that forgoes labelled 
datasets. Instead, RL algorithms collect data online by exploring the task environment to optimise 
model parameters based on collected rewards. A downside of the RL approach is, however, its 
computational cost and substantial engineering effort. For this reason, the scientific community can 
strongly benefit from modelling libraries through which neuroscientists circumvent much of the 
implementation efforts and that simultaneously alleviate the computational costs in a distributed, 
efficient design. Showcase 5 developed a framework for this purpose. Following the M21 review 
meeting, this framework was consolidated in the form of AngoraPy (Weidler et al., 2023, Frontiers 
in Neuroinformatics; https://github.com/ccnmaastricht/angorapy; 
https://doi.org/10.5281/zenodo.7770180), a dedicated Python library unifying the design and 
training of goal-driven models and the construction of anthropomorphic tasks under the hood of an 
integrated, easy-to-use API. It targets neuroscientists that want to build biologically inspired but 
functional models of the sensorimotor system without requiring them to have expert knowledge in 
RL or high-performance computing. 

3.2 Neural & Anatomical Model 
We applied AngoraPy to study human dexterity through the lense of in-hand object manipulation. 
The human hand is controlled by a large-scale frontoparietal and pericentral network (FPN) mapping 
sensory information to desirable motor commands. This network, alongside the hand’s anatomical 
capabilities, enables the human’s unmatched dexterous agility. We modelled the hand as an 
anthropomorphic robotic body based on the Dexterous Shadow Hand, and the FPN as a deep neural 
network implementation biologically constrained by structural connectivity and regional cell 
densities. 

3.2.1 Anatomical Model 

A simulated MuJoCo implementation of the Dexterous Shadow Hand constitutes the anatomical 
model of the motor plant the neural model of this demonstrator controls. This anatomical model 
comprises 24 joints with 20 degrees of freedom and thus poses a complex challenge of fine motor 
control. Control is applied to positional actuators directly moving the joints. Muscles were not 
modelled to avoid additional complexity and achieve better performance. Figure 1 shows a rendered 
image of the simulated robot, which is holding the cube it needs to manipulate. 

3.2.2 Network Model 

We implement the frontoparietal and pericentral network controlling the robotic hand as a deep 
recurrent convolutional neural network. The architecture is biologically inspired through constraints 
to pathways and bottlenecks. Partaking regions have been identified from previous work revealing 
their involvement in manual motor control. Pathways were sourced from structural connectivity data 
extracted by siibra from the Jülich Atlas. Computational bottlenecks manifest themselves in the 
number of units per modelled area. An area’s model unit count was determined as a relative mapping 
to the area’s cortical cell count. To calculate cell counts, densities were extracted from von 
Economo and cortical volumes from the Jülich Atlas. Figure 2 depicts the resulting model. 

 

 

https://github.com/ccnmaastricht/angorapy
https://doi.org/10.5281/zenodo.7770180
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3.3 Manipulation: An Ecologically Valid Dexterous Task 
The demonstrator at hand concerns the dexterous task of in-hand object manipulation. We adapted 
the task definition introduced by OpenAI. The model must rotate a uniquely faced cube (see Figure 
1) into a randomly sampled target orientation within 8 seconds. If the target is reached, a new goal 
is sampled and the agent can accumulate more reward, up to 50 times. If the target is not reached 
within the time limit, or the cube is dropped, the episode ends, and no more reward can be 
collected. 

The reward we use to incentivise a human-like solution to this problem is the sum of (i) a constant 
punishment incentivising speed, (ii) a progression term rewarding the rotational distance made up 
for within a timestep, (iii) a punishment for dropping the cube, (iv) a bonus for successfully achieving 
a target, and (v) an energy usage cost reflected by the squared force applied in the joints. 

 
Figure 2: Biologically constrained architecture implementing the frontoparietal network. 

3.4 Training 
The behavioural policies adopted by our model of the frontoparietal network (depicted in Figure 2) 
are trained in a reinforcement learning setup using proximal policy optimisation (PPO). PPO 
alternates between two phases: the gathering of experience based on its current policy and the 
updating of the policy based on the previously collected data. Experience is represented by the state 
of the environment, the action the agent decided to execute in this state and the reward it received. 
Based on an estimate of the average value of every state and the actual reward received, 
advantageous actions are fostered, whereas disadvantageous decisions are suppressed. Our 
implementation of this setup efficiently trains arbitrary neural network models with potentially 
multimodal input (vision, proprioception and touch). Since M21, this framework has been further 
improved to meet the challenge of in-hand object manipulation. On the technical side, we most 
notably developed a new parallelisation system for both the gathering of experience and the 
optimisation (Figure 3). This new, native MPI implementation integrates smoothly with the 
remainder of the software without requiring additional third-party packages. Additionally, it is 
tailored towards the setup of EBRAINS’ HPC cluster CSCS, on which we train the policies. Together, 
this enables substantially faster training on an arbitrary number of nodes, a crucial requirement for 
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the complexity of the tasks tackled in Showcase 5. To integrate the visual modality, the system now 
communicates all modalities of states in separate streams, allowing any possible architecture to 
process them flexibly. Furthermore, policy and value functions are now trained asynchronously. 
Whereas the policy only receives humanoid sensory inputs, the value function can access additional 
high-level information such as the object’s rotational and positional velocity. Thereby, the value 
function can make more precise predictions, which is crucial for effective learning, but the model 
retains its plausibility, since the dedicated parts of the network are omitted after training. Lastly, 
we shifted from a continuous, beta-distributed to a discrete, multi-categorical action space. While 
this substantially increases the dimensionality of the output space the model projects to, the 
predicted distribution is less complex. One should note that even using continuous actions, the agent 
learns reasonable policies. However, the performance in a multi-categorical distribution cannot be 
matched in reasonable training times. Regardless, since we directly predict joint angles and thereby 
already omit a biologically plausible translation from motor commands to actions, this does not harm 
the validity of our approach. 

 
Figure 3: Integrated Parallel Setup of Both Gathering and Optimisation During Training 

3.5 Performance & Analysis 

 
Figure 4: Learning curve of the FPN model developed for this demonstrator 

We use AngoraPy to train both our FPN model and a baseline based on the architecture introduced 
by OpenAI. Agents are trained on EBRAINS Fenix Infrastructure (specifically CSCS Piz Daint) 
distributed over 32 nodes on which 384 CPU workers collect experience, and 32 GPUs optimise the 
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network. After training on approximately 1.5 years of simulated experience, the FPN model is 
capable of chaining on average 35 goals. As Figure 4 shows, the brain-inspired model developed for 
this showcase significantly outperforms the baseline in convergence speed. 

3.6 Publications 
Weidler T, Goebel R and Senden M (2023). AngoraPy: A python toolkit for modeling anthropomorphic 
goal-driven sensorimotor systems. Front. Neuroinform. 17:1223687. doi: 
10.3389/fninf.2023.1223687 

Weidler, T., & Senden, M. (2023). AngoraPy - Anthropomorphic Goal-Oriented Robotic Control for 
Neuroscientific Modeling (Version 0.9.0). doi:10.5281/zenodo.6636482 

Weidler, T., Goebel, R., & Senden, M. (2023). Synergizing Anatomy and Function: A Goal-driven 
Model of Frontoparietal Dexterous Object Manipulation. In Conference on Cognitive Computational 
Neuroscience 2023 (pp. 147-150). 

4. Relations to EBRAINS 
The work greatly relies on HBP’s EBRAINS research infrastructure. Training in-hand object 
manipulation as reported here requires several years of simulated experience. Generating this 
experience and optimising upon it is computationally expensive and requires extensive 
parallelisation, for which the use of high-performance computing (HPC platforms, SC6) clusters is 
essential. Furthermore, the design of the RCNN is guided by the human brain atlas (SC2) to identify 
brain regions involved in complex hand movements, as well as their interconnectivity and local cell 
profile. This benefits from the development of the siibra atlas client, which gives direct 
programmatic access to data organised within the EBRAINS human brain atlas. It supports the 
multilevel character of this atlas, which defines cytoarchitectonic maps in multiple reference 
template spaces at different spatial resolutions (namely the MNI Colin, ICBM152 asymmetric as well 
as the BigBrain microscopic space). It links them with complementary maps related to brain function, 
connectivity and fibre architecture. 

Conversely, Showcase 5 informs the design of the supporting framework, in terms of specifications. 
We continuously communicate with the development team of the Neurorobotics Platform (NRP, SC4) 
to provide insights on the MuJoCo physics engine and its relevance for such training tasks, as well as 
essential requirements for transferring simulation of the RCNN onto the NRP, such as accelerated 
simulation time and the possibility to programmatically launch several instances of the NRP for 
deployment on high performance computing clusters. In fact, future versions of the NRP are now 
projected to include MuJoCo as an optional native simulator, which is further facilitated by the 
simulator’s recent move to a free-to-use model.  

Finally, AngoraPy has been incorporated into the corpus of EBRAINS tools. Standardised as a modular 
workflow, other researchers will be able to leverage the software without understanding in detail 
the underlying mechanisms.  

Crucially, this demonstrator motivates the emergence of infrastructure workflows that span a 
meaningful range of complementary services, from data services (SC2) to embodiment and function-
related services (SC4), with direct support from dedicated compute resources (SC6). No such 
combination of interoperable services is to be found outside of EBRAINS. Demonstrating the way 
EBRAINS thus empowers us to break new ground in cognitive computational neuroscience - and its 
practical application - contributes to establishing the infrastructure’s Unique Value Proposition. 

5. Looking Forward 
As we move ahead, our foremost objective is to continually develop and enhance AngoraPy. Our goal 
is to establish this toolkit as a freely accessible resource to facilitate a comprehensive understanding 
of the brain's sensorimotor system. By improving and expanding AngoraPy, we aspire to create a 
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novel computational and theoretical framework that enables a holistic study of the brain's 
sensorimotor system.  

Following the Human Brain Project (HBP), our focus will be on constructing a strong AngoraPy 
community. We aim to establish this community as a cooperating platform wherein members can 
contribute to enriching the toolkit. Members can do this through comprehensive documentation 
provisioning, additional showcases and examples development, and the introduction of new 
functionalities to AngoraPy.  

By fostering a user and contributor community, our goal is to ensure that AngoraPy continuously 
evolves and adapts to the changing needs of the neuroscience research landscape. This approach 
features collaboration, inclusivity, and versatility to enhance the utility of AngoraPy, pushing 
forward our understanding of the brain's sensorimotor system. 
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