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We are pleased to present the proceedings of the 1st Human Brain Project 
Student Conference - Transdisciplinary Research Linking Neuroscience, 
Brain Medicine and Computer Science - held in Vienna, Austria from 8 to 10 
February 2017. The conference provides an open forum for exchange of new 
ideas among young researchers working on various aspects of neuroscience 
relevant to the Human Brain Project (HBP). The scope of the conference 
offers a plethora of opportunities for extensive scientific discussions, both 
intra- and inter-disciplinary, among peers and faculty through a variety of 
discussion sessions, lectures and social events. 

We invited original high quality submissions describing innovative research 
in all research disciplines addressing the HBP research program. Particularly 
encouraged were submissions with a potential to inspire the research 
community by introducing new and relevant problems, concepts, and 
ideas, even if the work was at an early stage of development. The accepted 
abstracts cover a wide range of topics that emphasize theoretical and 
empirical foundations as well as novel approaches to specific problems 
with respect to the subprojects of the Human Brain Project.

We would like to use this opportunity to thank all authors for submitting their 
work to the 1st HBP Student Conference. We hope that the readers will enjoy 
the selected set of abstracts and that these contributions will inspire and 
encourage new interactions, discussions and opportunities beneficial to the 
authors, the Human Brain Project community as well as the communities of 
neuroscience, brain medicine and computer science.

Nikola Simidjievski, 
Program Committee Chair of the 1st HBP Student Conference
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Combining Robots with Neuromorphic Hardware: 
Case Study of a Visual Tracking Controller 
Embedding a Retina Circuit

Alessandro Ambrosano, Lorenzo Vannucci, Ugo Albanese,  
Egidio Falotico, Cecilia Laschi
Scuola Superiore Sant’Anna – The Biorobotics Institute, Pontedera, Italy
a.ambrosano@sssup.it

Introduction: One of the most important characteristics of the mammalian visual 
system is represented by the space-variant resolution retina with a high-resolution 
fovea that is fundamental for a detailed analysis of visual stimuli. The space-variant 
resolution of the retina requires efficient eye movements for correct vision. Two types 
of eye movements—saccades and smooth pursuit—enable us to fixate objects on the 
fovea. Saccades are high-velocity gaze shifts that bring the image of an object of interest 
onto the fovea, while the purpose of smooth pursuit eye movements is to minimize the 
retinal slip, i.e., the target velocity projected onto the retina, stabilizing the image of 
the moving object on the fovea. Shibata and colleagues suggested a control circuit for 
the integration of the most basic oculomotor behaviors (Shibata et al., 2001) including 
the smooth pursuit eye movement. A similar model of smooth pursuit and catch-up 
saccade (Falotico et al., 2010) was implemented on the iCub robot.

Robotic autonomy in unstructured environments is a challenging goal of great interest 
for many fields, with applications ranging from fully independent robots in a factory to 
self-driving cars. However, classical robotic controllers do not provide enough reliability 
for unpredictable variables that occur often, if not always, in such environments. For this 
reason many tracking controllers (Falotico et al., 2009; Zambrano et al., 2010; Vannucci 
et al., 2014, 2015) have been implemented embedding artificial neural networks com-
ponents, providing, to a certain extent, the ability to learn and some robustness with 
respect to environment changes. A special category of neural networks, the Spiking 
Neural Networks (SNNs), models every neuron in the network with a biologically 
inspired dynamic model, and represents the communication between neurons with 
synaptic action potentials, also known as spikes. Such a low level description detail 
makes this model suitable for biologically inspired controllers.

In this work our aim is to validate the visual pursuit controller described in (Ambrosano 
et al., 2016), by implementing a similar closed loop mechanism using the iCub human-
oid robot (Metta et al., 2010) and a SpiNNaker board (Painkras et al., 2013). The 
controller is embedding a retina modelling framework, which we used for wiring a 
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software circuit mimicking the red-green opponency pathway of the human retina, 
and a spiking neural network, executed on the SpiNNaker, for elaborating the retinal 
information.

Methods: In order to validate our controller on hardware, we tried to reproduce the 
same conditions we had on the simulated experiment (Ambrosano et al., 2016). We 
kept the same validation task, the smooth pursuit of a green target on a red background, 
where one single horizontal stripe near the center of the target is processed for imple-
menting the tracking algorithm. The controller we used for the proposed experiment, 
depicted in Figure 1, includes four components: an iCub humanoid robot, a red-green 
opponency software retinal circuit, a SpiNNaker board and a special module (transfer 
function) translating neural spikes to robotic motor commands. The retinal circuit 
has been developed using COREM (Computational framework for realistic REtina 
Modelling), a framework developed at the University of Granada by Martínez-Cañada 
et al. (2016). The framework includes a set of microcircuits that can be combined 
together in a complex circuit simulating one or more retina pathways. The SpiNNaker 
board is a biologically inspired, massively parallel computing engine designed facilitate 
the modelling and the simulation of large-scale spiking neural networks of up to a 
billion neurons and a trillion synapses in biological real time.

FIGURE 1: Block diagram of the implemented robot controller.
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FIGURE 2: Experiment setup for the pursuit task.

Input from an iCub eye camera is forwarded to the opponency retinal circuit, imple-
mented using the COREM retina modelling framework, which transforms visual stim-
uli into a series of spike trains, suitable for being processed by the SpiNNaker board. A 
Spiking Neural Network implemented on the board processes the spike trains arriving 
from the retina model and outputs spike trains localizing the moving target offset on 
the retina. The resulting spikes are eventually translated to motor commands for the 
eye version of the robot. Two different retinal sub-circuits have been implemented, 
one more sensitive to red objects entering green background and one more sensitive to 
green objects entering red background. The functional separation is kept in the neural 
networks, where each sub-circuit is processed by a two tier network, implementing a 
filter focusing the spike processing near the center of the eye by modulating the synaptic 
weight. Figure 2 depicts the final setup for the described controller.

We obtained the hardware controller rewiring the closed loop mechanism of the 
Neurorobotics Platform using a custom message passing library, deploying the origi-
nal brain model on the SpiNNaker board and keeping the original transfer function. 
In order to connect properly the SpiNNaker board to the retina circuit, we had to 
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implement DC generator devices, which were provided by the platform in the software 
implementation, and integrate and fire neuron dynamics.

The major difference between the original controller and our implementation is the 
lack of real-time requirements of the former, as the closed loop mechanism of the 
Neurorobotics Platform waits for every component of the loop to terminate a time 
step before running the next one. In particular, the COREM framework was able to 
provide output with a frequency of 16 to 18Hz, which is lower than our target processing 
frequency (30Hz). A possible source of error could also be identified in the different 
frequencies at which the components of the hardware controller receive or send mes-
sages. These frequency differences were not present in the software implementation.

Results: We tested the controller with a target moving along a horizontal sinusoidal 
trajectory with a frequency (0.05 Hz). Figure 3 shows the target position and estima-
tion, and the motor command generated by the controller during the pursuit task. 
The target estimation proved to be effective for the tracking task, even though it is not 
comparable to a classical image processing-based estimate.

FIGURE 3: Tracking results with a sinusoidal trajectory for the target at 0.05Hz (tracking error:  
4.29 degrees).

Discussion: In this work we presented a hardware implementation of an existing 
software visual tracking controller embedding a retina model. The transition from a 
simulated to a hardware implementation validated the suitability of the controller for 
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the pursuit task, even though there is still some lack of generality, because only one 
horizontal strip of pixel is processed by the controller. We plan to extend the same 
mechanism to the whole image to test the controller for 2-dimensional pursuit.

Due to the low frame rate achievable using COREM, in order to track faster targets, or 
implement more complex retinal circuits, it will be necessary to optimize the framework 
or implement the framework to work on faster hardware (e.g., GPU).
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Computer Aided Diagnosis System Based on 
Random Forests for the Prognosis  
of Alzheimer’s Disease

M. Wehenkel1,2, C. Bastin2, P. Geurts1, C. Phillips2

1Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
2GIGAResearch, University of Liège, Liège, Belgium
m.wehenkel@ulg.ac.be

Introduction: Over the last decade, a large number of computer aided diagnosis (CAD) 
systems have been developed by researchers in neuroimaging to study neurodegen-
erative diseases or other kinds of brain disorders (Klöppel et al., 2008; Garraux et 
al., 2013; Fu et al., 2008). Briefly, machine-learning (ML) techniques help doctors to 
distinguish groups of people (e.g., healthy vs. diseased) by automatically identifying 
characteristics in the images that discriminate the groups. The challenge in the mod-
elling of CAD systems is not only to perform well in terms of prediction but also to 
provide relevant information about the diagnosis, such as regions of interest in the 
brain that are affected by the disease.

In this abstract, we propose an original CAD system consisting in the combination of 
brain parcelling, ensemble of trees methods, and selection of (groups of) features using 
the importance scores embedded in tree-based methods. Indeed, on top of their ease 
of use and accuracy without ad hoc parameter tuning, tree ensemble methods such as 
random forests (RF) (Breiman, 2001) or extremely randomized trees (ET) (Geurts et 
al., 2006) provide interpretable results in the form of feature importance scores. We also 
compare the performance and interpretability of our proposed method to standard RF 
and ET approaches, without feature selection, and to multiple kernel learning (MKL) 
(Bach et al., 2004). The latter was shown to be an efficient method notably capable of 
dealing with anatomically defined regions of the brain by the use of multiple kernels.

Methods: Our CAD system is designed to discriminate older adults with Mild Cognitive 
Impairments (MCI) in terms of their clinical outcome 4 years later, based on their cur-
rent PET images. More precisely, 45 individuals presenting mild cognitive impairments 
(MCI) at the beginning of the study were followed during 4 years and their diagnostic 
updated based on neuropsychology tests (no further imaging was performed). Among 
those subjects, 22 patients were eventually diagnosed with Alzheimer’s disease (AD) 
in the course of the study. These were labelled “MCI converters” (MCIc). The others 
showed no cognitive decline and are thus denominated stable MCI (sMCI). The aim of 
such a CAD system is thus to predict the likelihood of progression to dementia based 
on the images acquired before the onset of the disease.
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The PET images were pre-processed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/
software/). This included spatial normalization to the MNI reference space and intensity 
normalization by the cerebellar intensities. Then a feature vector for each individual 
was built by extracting the voxel values within the brain volume.

The first step of our diagnosis system consists in learning a tree ensemble model and 
attributing a score per AAL region (Tzourio-Mazoyer et al., 2002) from the mean 
of the voxel importance scores in each region. In a second step, the k best regions 
according to these scores are selected and used to learn a new model (with k set to 
10 in our experiments). This approach is thus a combination of group selection and 
ensemble methods. The procedure used for its assessment is summarized in Figure 1.  
We evaluate it with a “leave 10% of subjects per group out” cross validation (CV) pro-
cedure for RF and ET respectively with default parameter values (M = 500 trees and 
K =  √N where N is the total number of features). Standard RF and ET (without feature 
selection) and MKL, all with default parameter setting, are also assessed for comparison 
with the same CV procedure. As RF and ET involve randomization, experiments were 
repeated ten times, called runs here under, to obtain mean and standard deviation of 
performance metrics.

FIGURE 1: Protocol to assess the proposed CAD system.

To interpret the results of the proposed method and to have insights about regions 
involved in the prognosis, we compute importance scores for each ensemble of trees. 
We then average the scores over the folds and the runs and we subsequently compute 
a score for each brain region. For MKL, we use the weights attributed to each brain 
area. Finally, as our proposed method embeds a selection process, we also analyze the 
frequency of selection of brain areas over the folds and the runs to have additional 
information about important regions.
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Results: Table 1 summarizes the accuracy, sensitivity and specificity obtained with 
each method. MKL is less efficient in terms of accuracy than tree-based approaches. 
Moreover, we observe that extremely randomized trees, which include supplemen-
tary randomization, provide better accuracy than RF. Our proposed CAD system 
obtains also a better accuracy with ET than RF. The preliminary step of group selection 
slightly increases mean values of accuracies and sensitivities of ensemble methods and 
decreases the variance caused by randomization with a large number of features (more 
or less 200,000 voxels to consider).

In terms of interpretability with weights for MKL and importance scores for the 
ensemble methods, we can observe in Table 2 the listing of the ten most contribut-
ing regions for each method for the discrimination between MCIc and sMCI. The 
areas TemporalMidR, AngularR, and TemporalMidL are common to the five models. 
Moreover, ParietalInfR, Vermis7, and TemporalInfR are identified among the most 
important by each of the tree-based methods. Finally, we analyse the regions that 
have been selected the most frequently over the folds and the runs during the selec-
tion process of our procedure. For RF, in order of decreasing frequency, the ten most 
frequent are TemporalMidR, AngularR, ParietalInfR, TemporalMidL, TemporalInfR, 
CuneusL, Vermis7, TemporalInfL, Cerebelum6R, and Vermis8 whereas ET identifies 
TemporalMidR, AngularR, TemporalMidL, ParietalInfR, TemporalInfR, Vermis7, 
TemporalInfL, Cerebelum6R, Vermis8, Vermis6 as the first ten. Nevertheless, the 
frequency of selection for the last three listed areas for both methods is at most half 
the time. Given this information, those regions should likely not be considered as 
informative to decide if an individual will convert to AD within 4 years following the 
start of cognitive impairments.

TABLE 1: Summary of method performance and corresponding p-values (obtained 
using a permutation test with 100 repetitions). The asterisk indicates a p-value <0.05. 
GS abbreviation is used for group selection.

Method Accuracy (%) Sensitivity (%) Specificity (%)
MKL 68.89 (0.02)* 59.09 (0.23) 78.26 (0.01)*
RF 77.11 ± 2.58 (0.01)* 71.82 ± 4.18 (0.02)* 82.17 ± 2.47 (0.03)*
ET 80.22 ± 3.22 (0.01)* 77.73 ± 5.85 (0.01)* 82.61 ± 4.10 (0.01)*
GS and RF 78.00 ± 1.26 (0.01)* 76.36 ± 1.92 (0.01)* 79.57 ± 2.93 (0.01)*
GS and ET 80.44 ± 1.75 (0.01)* 78.18 ± 3.59 (0.01)* 82.61 ± 0(0.01)*
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TABLE 2: Ranking of the first ten most contributing regions of AAL brain atlas.

Rk Method
MKL RF ET GS and RF GS and ET

1 TemporalMidR AngularR TemporalMidR AngularR TemporalMidR
2 AngularR TemporalMidR AngularR TemporalMidR AngularR
3 Vermis6 ParietallnfR TemporalMidL ParietallnfR ParietallnfR
4 ParietalSupR TemporalMidL ParietallnfR TemporalMidL TemporalMidL
5 TemporalMidL Vermis7 Vermis7 CuneusL Vermis7
6 FrontalSupMedialR CuneusL TemporallnfR Cerebelum10L TemporallnfR
7 Vermis8 TemporallnfR TemporallnfL Vermis7 Cerebelum6R
8 OlfactoryL Vermis 8 Vermis8 TemporallnfR Cerebelum10L
9 Cerebelum10L TemporallnfL Vermis6 ThalamusL TemporallnfL
10 ThalamusL TemporalSupR Cerebelum6R Cerebelum6R Vermis6

Discussion: We have shown that, at least for the data and problem considered here, 
tree-based ensemble methods are competitive methods and that they can outperform 
other advanced methods like MKL. They exhibit better accuracy, sensitivity and speci-
ficity and provide good interpretability through importance scores. Furthermore, group 
selection combined with ensemble of trees adds more insight about the regions that 
are relevant to diagnose a MCI patient who is likely to develop Alzheimer’s disease 
within 4 years. Indeed, group selection enables us to study the frequency of selection 
of a brain area among the whole set. It should also be noted that the results regarding 
the most involved regions are coherent with studies showing that MCI patients who 
are about to develop Alzheimer’s disease exhibit more hypometabolic temporopari-
etal areas than MCI patients who remain stable in the next few years (Chételat et al., 
2003). Another advantage of feature selection is that it improves the sensitivity of the 
diagnosis, which is the quantity relative to true positive (i.e., MCI converters), and 
largely reduces the variance induced by the initial huge number of features and the 
randomization process. Finally, the ET approach, with or without group selection, 
gives rise to accuracy slightly higher than that of RF. Nevertheless, supplementary 
tests are needed to assess if the differences of accuracy between the distinct methods 
are statistically significant.

To conclude, we show that using group selection combined with ensemble of trees 
compose a good CAD system which can help making a correct early prognosis of 
people suffering of mild cognitive impairments.



1st Human Brain Project Student Conference 

18 Frontiers in Neuroscience

REFERENCES

Bach, F., Lanckriet, G., and Jordan, M. (2004). “Multiple kernel learning, conic duality, and the SMO algorithm,” 
in Proceedings of the 21st International Conference on Machine Learning (p. 6). (Banff, Canada: ACM).

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/A:1010933404324 PMID:NOPMID

Chételat, G., Desgranges, B., De La Sayette, V., Viader, F., Eustache, F., and Baron, J. C. (2003). Mild cognitive 
impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 60, 1374–1377. 
doi: 10.1212/01.WNL.0000055847.17752.E6 PMID:12707450

Fu, C. H., Mourao-Miranda, J., Costafreda, S. G., Khanna, A., Marquand, A. F., Williams, S. C., et al. (2008). 
Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. 
Biol. Psychiatry 63, 656–662. doi: 10.1016/j.biopsych.2007.08.020 PMID:17949689

Garraux, G., Phillips, C., Schrouff, J., Kreisler, A., Lemaire, C., Degueldre, C., et al. (2013). Multiclass classifica-
tion of FDG PET scans for the distinction between Parkinson’s disease and atypical Parkinsonian syndromes. 
Neuroimage Clin. 2, 883–893. doi: 10.1016/j.nicl.2013.06.004 PMID:24179839

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Mach. Learn. 63, 3–42. doi: 10.1007/
s10994-006-6226-1 PMID:NOPMID

Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., et al. (2008). Automatic clas-
sification of MR scans in Alzheimer’s disease. Brain 131, 681–689. doi: 10.1093/brain/awm319 PMID:18202106

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated 
anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI sin-
gle-subject brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978 PMID:11771995



Frontiers in Neuroscience 19

 1st Human Brain Project Student Conference

Convergent Analysis of Genome-Wide Data 
Suggests Association of Zinc Finger Genes with 
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Introduction: Lithium has been used for over 50 years in the management of bipolar 
disorder (BD) for its effectiveness in the acute phases of illness and in the prevention 
of manic and depressive recurrences (Grof et al., 2002). Response to lithium is highly 
variable, and although 30% of patients are excellent responders, 70% show partial or 
no response (Malhi et al., 2012). The identification of reliable biomarkers to predict the 
clinical outcome would be of great help to limit side effects and toxicity in unresponsive 
BD patients. Response to lithium treatment is heritable, and a large body of evidence 
suggests that genetics plays a key role in modulating the degree of response (Malhi et 
al., 2012). Although genome-wide association studies (GWAS) are starting to provide 
promising results, the genetic bases of variability in lithium response are far from being 
elucidated. GWAS allow exploring the genome for genetic variants associated with 
the phenotypic trait, but their power is limited in that the function of many variants 
is not known. On the other hand, transcriptome studies allow investigating the role 
of differentially expressed genes in the phenotype under study. Deeper information 
on the genetics of lithium response would be given by the integration of data from 
multiple omic datasets. In this study we used a convergent approach integrating, for 
the first time, genome-wide expression and genome-wide genotyping data from BD 
patients characterized for lithium response to identify genes potentially involved in 
modulating the clinical efficacy of lithium.
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Methods

Sample: A study flow diagram is reported in Figure 1. We used two datasets: (1) 
genome-wide genotyping data from 205 BD patients characterized for lithium response; 
(2) transcriptome data from lymphoblastoid cell lines (LCLs) of a subsample of 10 full 
responders (FR) and 10 non responders (NR) to lithium, cultured with or without 
lithium chloride 1 mM for 1 week.

FIGURE 1: Study flow diagram. FR, full responders; GWA, genome-wide association; LCLs, 
lymphoblastoid cell lines; Li, lithium; NR, non responders.

Patients with a diagnosis of BD according to Research Diagnostic Criteria and DSM-IV 
criteria were recruited at the Lithium Clinic of the University Hospital of Cagliari, 
Italy. Lithium response was evaluated using the “Retrospective Criteria of Long-Term 
Treatment Response in Research Subjects with Bipolar Disorder” scale (Malhi et al., 
2012). The research protocol followed the principles of the Declaration of Helsinki 
and was approved by the Ethics Committee of the University of Cagliari, Italy. All 
participants signed informed written consent.
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Genome-wide association: DNA was extracted from peripheral blood samples. The 
sample is part of the Consortium on Lithium Genetics (ConLiGen) (Mangino et al., 
2012), and genome wide genotyping was carried out at the National Institute of Mental 
Health (Bethesda, USA), with Illumina 2.5 M Omni Chip arrays according to the 
manufacturers’ protocols.

Genome-wide gene expression and validation with quantitative real-time PCR: 
Microarrays were run using RNA extracted from LCLs. For each sample, complemen-
tary DNAs (cDNAs) were obtained and hybridized to GeneChip Human Gene 1.0 ST 
Arrays (Affymetrix, CA, USA). Genes showing convergent evidence for involvement 
in lithium response were validated with quantitative real-time PCR (qRT-PCR).

Statistical analyses: Transcriptome data were normalized using the Robust Multi-array 
Average algorithm. Genes were tested for differential expression after in vitro lithium 
treatment in both FR and NR using the paired t-test implemented in limma (Mishra 
and Macgregor, 2015), in R (v. 3.3.1). In order to include the largest possible number 
of genes at this step, significance was defined based on a false discovery rate threshold 
of 20%. We created a list of genes altered by lithium exclusively in FR, as these genes 
could be involved in modulating clinical efficacy of lithium.

Quality control of GWAS data was performed with PLINK 1.07 (Purcell et al., 2007). 
Single nucleotide polymorphisms (SNP) were excluded in case of minor allele frequency 
<0.05 or deviation from Hardy–Weinberg equilibrium with p < 0.0001. Population 
outliers were identified with principal component analysis using EIGENSOFT and 
removed. Association with lithium response was tested using logistic regression with 
lithium response as the outcome variable.

Gene-based analysis was performed with VEGAS2 (Schulze et al., 2010) using the list of 
SNPs and p-values generated by PLINK. VEGAS2 calculates the gene-based empirical 
association p-values taking into account gene-size, SNP density and linkage disequi-
librium between SNPs. We focused the analyses on the genes differentially expressed 
after lithium treatment exclusively in FR (n = 29) and applied a Bonferroni-corrected 
threshold of p = 0.0017 (i.e., 0.05/29).

Genes which were (1) differentially expressed after lithium treatment in FR but not 
in NR and (2) enriched for association with lithium response from the gene-based 
association analyses were selected for validation with qRT-PCR. Relative expression 
levels were calculated with the ∆∆Ct method and differences between baseline and 
lithium-treated samples were analyzed with a paired t-test using R.

Results: Lithium influenced the expression of 33 genes in FR and 15 genes in NR with 
a FDR <20%. Twenty-nine genes were altered by lithium exclusively in FR.
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Gene-set analyses identified 19 genes as significantly associated with lithium response. 
Of these genes, two were also regulated by lithium exclusively in FR: zinc finger protein 
429 (ZNF429, gene-set p = 0.0003) and zinc finger protein 493 (ZNF493, gene-set 
p = 0.0005).

The region in which ZNF493 and ZNF429 are located hosts several members of the zinc 
finger proteins genes cluster (Figure 2). Findings from qRT-PCR validated the lithi-
um-induced underexpression of ZNF493 in FR [fold change (FC) = 0.71, p = 0.036)], 
while ZNF429 showed a trend for downregulation (FC = 0.82, p = 0.06).

FIGURE 2: Regional association plot. Regional association plot of the region in which the genes 
associated with lithium response and affected by lithium treatment are located. The index SNP is the 
top-SNP of ZNF493 in the gene-set analysis (rs12975981).

Discussion: This study suggests for the first time that zinc finger proteins could be 
involved in lithium response and mechanism of action. We showed that ZNF429 and 
ZNF493 are downregulated by lithium treatment in LCLs of BD patients responders 
to lithium, while these genes were not affected by in vitro treatment in NR. Moreover, 
the two genes were enriched in genetic variants associated with lithium response, 
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suggesting that the differential sensitivity to lithium of these genes in FR and NR might 
be mediated by genetic variants located in their region.

Zinc finger proteins are a large family of small functional domains involved in several 
functions comprising transcriptional activation, regulation of apoptosis and protein 
folding. Another member of the Cys2His2 zinc finger class, zinc finger protein 804A 
(ZNF804A), was associated with BD and schizophrenia (Smyth, 2004). Both ZNF429 
and ZNF493 are located at 19p12, a region previously associated with telomere home-
ostasis (Squassina et al., 2015). Zinc finger proteins could modulate the expression 
of genes involved in telomere maintenance through their interaction with DNA or 
influence the posttranslational expression of a gene via binding with RNA or proteins 
(Squassina et al., 2015). Interestingly, lithium might normalize telomere dysfunction 
(Williams et al., 2011). It could be speculated that the impact exerted by lithium on 
telomere length could be partly mediated by its action on zinc finger proteins.

Limitations of this study include the limited sample size and the use of LCLs. Although 
LCLs represent a valuable model to test peripheral effects of medications, they do not 
constitute a brain model. The strengths of our study include the integration of geno-
typing and gene expression data from subjects characterized for lithium response using 
a well validated scale and the choice to include only subjects of Sardinian origin, a 
population with a high genetic homogeneity and a low level of stratification.

To our knowledge, this is the first evidence supporting the involvement of zinc finger 
genes in lithium’s mechanism of action and response.
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Introduction: Brain-Computer-Interfaces (BCIs) are a family of devices that pro-
cess recorded brain activity to perform a desired output. Recent development of 
Bidirectional Brain-Computer Interface (BBCI), neural implants that not only record 
single-neuron activity at precise spike-time resolution, but also stimulates neuronal 
sites, open the door to direct interaction with the dynamics of neural circuits in the 
brain and in the nervous system at large. Specifically, Bidirectional-Brain-Computer-
Spinal Cord Interfaces (BBCSIs) are implemented to record motor cortex (MC) activity 
and stimulate spinal cord (SC) sites to promote rehabilitation following spinal cord 
injury (SCI). Stimulation by implantable electronic circuits, named the Neurochip 
(Mavoori et al., 2005), aims at triggering neural plasticity to restore disrupted pathways 
by exploiting Spike-Timing Dependent Plasticity (STDP) rules. Our first goal was to 
capture artificially-induced neural plasticity by mimicking the BBCSI spike-triggered 
stimulation protocol on STDP-driven neural networks modelled by probabilistic firing 
rates modulated by external driving rates. Second, we investigated the differences in 
stimulating one site, either in MC or SC, or in both sites, modelling healthy and or 
SCI conditions. The aims of our study converged to the ultimate goal of contributing 
to the technological development of the Neurochip, in order to help restore impaired 
motor functions in human beings.

Methods: In a probabilistic model that we numerically simulate, MC and SC were 
represented by excitatory and inhibitory neurons, which were recurrently connected 
according to set connectivity probabilities schematising the corticospinal tract (CST). 
We investigated how spike-triggered stimulation protocols changed mean synaptic 
strength of existing excitatory synapses through a simple multiplicative STDP rule. 
We run different simulations stimulating either a group of neurons in MC or SC, or 
both, after set delays from the time of spiking of a recording neuron. Finally, we also 
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explored effects on SCI by testing a double-site stimulation protocol, after setting a 
low probability of connection between MC and SC.

Results: (1) Results were qualitatively matched previous experimental findings 
(Nishimura et al., 2013), by evolving in time consistently with the original computa-
tional model (Lajoie et al., 2017), while incorporating higher complexity, such as inhib-
itory populations. (2) As we hypothesised, synapses strengthened between recording 
group and stimulated groups, as well as between stimulated groups. The model indeed 
allowed to explore how stimulation of multiple groups, both in MC and SC, may 
cause linear and non-linear interactions of mean synaptic strengths between groups 
of neurons. (3) Investigation of SCI conditions suggested that temporal evolution of 
mean synaptic strength may depend on the mean probability of connection among 
groups of neurons.

Discussion: Although our research is in progress, these simulations highlight possible 
implications of eliciting plasticity along descending pathways of different size and by 
double-site stimulation protocols.
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Introduction: The Parkinson’s disease progression is typically described with motor 
assessment scores of the motor impact of the disease on the patients (MDS-UPDRS). 
The goal of this work is to search for groups of subjects that exhibit similar behavior 
in terms of the multiple motor assessment scores. The identified groups/clusters of 
subjects are then described using image features including Regions of Interest (ROIs) 
from fMRI scans, as well as DaT scans. This can save time, money and effort from 
specialists and can also provide an insight or even detect the biomarkers that indicate 
Parkinson’s disease at an early stage of the disease.

Methods: The three data sets used were acquired from the Parkinson’s Progression 
Markers Initiative (PPMI) database. We distinguish two variants of the merged dataset: 
baseline, where we consider only the earliest scores and imaging data for each patient 
resulting in 374 examples, and complete dataset, where we take all scores and imaging 
data for each patient resulting in 716 examples.

The task at hand is multi-target regression: the goal is to predict all of the scores for 
the motor impairment assessments from the extracted ROIs (of the fMRIs) and the 
DaT scans features. To this end, we use CLUS—a system for multi-target prediction 
based on the predictive clustering framework where we use predictive clustering trees 
(PCTs)—a generalization of the decision trees towards predicting structure outputs 
including multiple continuous target variables. Furthermore, we use two tree-based 
ensemble methods: bagging and random forests. The results from the predictive mod-
elling methods applied on the two datasets reveal that the lowest error (as estimated 
with 10-fold cross-validation) is achieved using random forests on the complete dataset 
that uses all of the imaging data and scores with performances ranging from 0.603 
to 0.883 as opposed to 0.889 to 0.926 for the baseline (measured as normalized root 
mean squared error—nRMSE). We also introduced a hierarchy in the output space and 
discovered that the introduction of such a hierarchy slightly improves the predictive 
performance.
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Results: The results from the analysis are indicative that both the descriptive and 
predictive power of all of the obtained models is good. The improved performance 
obtained on the complete dataset is mainly due to the fact that by using the additional 
samples, we introduced more variability in the target space. Namely, the baseline dataset 
contains measurements from subjects that are, more or less, at an earlier stage of the 
disease, hence the motor assessment scores are lower. Moreover, since it is impossible 
to investigate subjects that are the same stage of disease simultaneously, including 
information obtained throughout various disease stages helps to construct a better 
predictive model.
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Introduction: Accurate diagnosis of the sleep disorder known as Rapid-eye movement 
behavior disorder (RBD) is a clinical relevant problem given its predictive role in years-
later neurodegeneration (Postuma et al., 2015). Concretely RBD can evolve with a very 
large probability into various a-synucleinopathies, from which Parkinson’s Disease 
(PD), and Dementia with Lewy Bodies (DLB) are the most common ones. We aim to 
develop tools for diagnosis of RBD and even prognosis of PD and DLB based on the 
analysis of electroencephalography (EEG). We analyze therefore a data set acquired 
at the Center for Advanced Research in Sleep Medicine (CARSM) in Montreal while 
patients were exclusively diagnosed as RBD. Machine Learning (ML) algorithms have 
been already proposed to automatically discriminate across the different disorders 
(Soria-Frisch et al., 2014). However, there is still need for improving the accuracy of 
discrimination across these disorders. Especially the reduction of the feature space 
needs further attention. To this regard, it is necessary to find ways to extract the most 
meaningful information of the EEG extracted features in order to train the classifiers 
based on the most relevant representation of the data. Compression methods based 
on ML can serve as a tool to extract the most meaningful feature signatures. Among 
various ML methods, neural networks have been used for image compression (Jiang, 
1999). We are interested in investigating whether a particular type of deep neural 
networks known as auto encoders, which have been used for compression in images 
(Jiang, 1999), can serve for feature dimensionality reduction in prognostic and diag-
nostic tools of the aforementioned disorders, and whether they can complement or 
improve state-of-the-art ML methods.

Auto-encoders are a form of unsupervised neural networks, whose application may 
reveal interesting data structures by introducing constraints on the network. Moreover, 
it is not until recent years that deep neural networks have outperformed many conven-
tionally used learning algorithms. This is due to their capability of learning complex 
relationships within the data by using several levels of data representation through 
multiple layers. This study aims at exploring the accuracy of using auto-encoders as a 
feature projection tool, which is compared to a conventional feature selection method 
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based on a wrapper. Both types of feature reduction procedures are applied to EEG 
features.

Methods: Many types of auto-encoders exist, of which the most common is the de-nois-
ing auto-encoder. Auto-encoders are neural networks used to find a mapping function 
from the training data into itself. Its characterizing trait is the corruption of the data 
at the input layer, in order to avoid learning the identity function, and in order for the 
achieved mapping to be more robust to slight modifications of the input data. Auto-
encoders can form deep neural networks, known as stacked auto-encoders. The latter 
include auto-encoders one on the top of the other. Typically, it is suggested to use 
an unsupervised criterion to pre-train each layer in order to produce a higher-level 
representation of the feature space based on the lower-level representation of the pre-
vious layer. The rationale is to avoid getting stuck on poor solutions that may appear 
due to random initializations (Hinton and Salakhutdinov, 2006). Once this is carried 
out, a fine-tuning step is performed, in which all the network parameters are updated. 
In our case we used a deep auto-encoder with two hidden layers with 200 nodes in 
the first layer and {10, 20, 40, 60, 80, 100} nodes in the second layer. Each layer was 
pre-trained using a mini-batch gradient descent method with mini-batches of size 10, 
20 pre-training epochs and 800 fine-tuning epochs, a corruption level of 0.1 for each 
layer, the sigmoid function as the activation function, and the cross-entropy function 
as the cost function.

The data was whitened in terms of mean and standard deviation, i.e., so that to have 
zero mean and standard deviation 1, and then scaled so that they belong to the [0,1] 
space. The rationale for scaling in the [0,1] space is that given we use the cross entropy, 
which is a measure of similarity between two distributions, as error function, each 
distribution should be represented in the unit hypercube.

Regarding the input to the deep auto-encoder, the awake eyes-closed EEG signals of 
224 subjects (99 Healthy Controls—HC-, 21 PD, 15 DLB, and 98 RBD) were analyzed. 
All patients were diagnosed with RBD at the recording time, and some of them devel-
oped PD or DLB after 8 years in average. EEG data was recorded at 250 Hz, from 14 
electrodes (F3, F4, F7, F8, C3, C4, P3, P4, O1, O2, T3, T4, T5, T6, in the 10–20 EEG 
system). The signals were segmented into epochs of 30-s with 50% overlapping, and 
the noisy epochs were excluded from the analysis. The power of ten EEG frequency 
bands, namely delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), alpha1 (8–10 Hz), 
alpha2 (10–13 Hz), beta1 (13–22 Hz), beta2 (22–32 Hz), gamma (30–40 Hz), and 
custom (13–18 Hz) was estimated for each epoch and electrode. Relative band power, 
i.e., dividing the power in the bands by the total power, was thence computed. The 
concatenated vector of electrodes and bands, which presents 140 components, i.e., 
14 × 10, was used as the input feature to the deep network.
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In order to evaluate the performance of the deep auto-encoders, we also compare its 
performance with this of a wrapper feature selection method. The wrapper was based 
on sequential forward feature selection. In both cases classification was carried out 
using a Support Vector Machine (SVM) classifier in a leave-pair-subjects out cross 
validation scheme. This cross-fold validation scheme allows the computation of the 
Area Under Curve (AUC) using the Wilcoxon-Mann-Whitney statistic without rep-
resenting the ROC space (Postuma et al., 2015). Hence the wrapper feature selection 
was performed on the training set and tested on the pair of subjects that was left out 
as the test set. This procedure was repeated until all pair of subjects had been left out 
as the test set. The AUC and the optimal average accuracy were estimated to evaluate 
the performance of each method.

Results: Figure 1 presents an example of the convergence of a deep auto-encoder with 
200 nodes in the first layer and 10 nodes in the second layer. One can observe in Figure 1  
the convergence of all layers minimizing the cost function.

FIGURE 1: Pre-training and fine-tuning of a deep auto-encoder. (A) Pre-training, Hidden Layer 1.  
(B) Pre-training, Hidden Layer 2. (C) Fine-tuning.

The classification performance was estimated wrt the different tested number of nodes 
in the second layer, i.e., {10, 20, 40, 60, 80, 100}. 80 was the optimal number of nodes, 
which was selected as the one providing the largest average AUC across all classifica-
tion scenarios. The AUC and averaged accuracy for the deep auto-encoder and the 
wrapper is presented in Table 1.

One may notice from Table 1 that the deep auto-encoder outperforms the conven-
tional feature selection using a wrapper, for all classification scenarios, and significantly 
improves classification performance.
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TABLE 1: AUC and averaged accuracy (in brackets) achieved with SVM classification.

AUC (ACC)% Wrapper Deep Auto-encoder
HC vs. PD 63 (81.5) 75.5 (87.7)
HC vs. PD+RBD+DLB 63 (81) 71.5 (85.7)
PD vs. DLB 57 (78.4) 66.5 (83.2)
PD vs. RBD 67 (83.2) 71.4 (85.7)
RBD vs. PD+DLB 65.9 (82.9) 75.5 (87.7)

Discussion: In this study a deep auto-encoder with two hidden layers was applied to 
the relative band-power features extracted from EEG signals of patients with RBD, PD, 
and DLB. The results revealed that the deep-auto-encoder outperforms conventional 
feature selection using a wrapper, and it significantly improves classification perfor-
mance. This finding indicates that deep auto-encoders can right serve as a useful feature 
reduction scheme in RBD diagnostic and a-synucleinopathies (PD, DLB) prognostic 
tools. Further improvement of the AUC with deep auto-encoders is related to the 
parameterization of the deep network. For instance, mini-batch randomization, which 
is expected to improve classification performance by undertaking gradient descent in 
different subspaces, was not taken into account in this study. Moreover, some papers 
suggest to use dropout, i.e., to use only a part of the data, for extracting the network 
parameters in order for the model to be more generalizable. As a final improvement 
we plan to use regularization and a sparse parameter in the hidden layer. All these 
improvements are currently being investigated and will be communicated in the future.
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Introduction: For investigating brain structure and neural tracts, one of the most 
widely used techniques is tractography, which creates a 3D model of the neural fiber 
bundles using the voxel-wise fiber orientation distributions (FODs) estimated from dif-
fusion magnetic resonance imaging (dMRI) data. Tractography methods can be divided 
into two classes: deterministic and probabilistic algorithms. The first ones model the 
neural tracts in small successive steps by following the main direction of the fibers 
in every voxel, while probabilistic algorithms consider also other possible directions.

Various geometrical descriptors can be extracted from the modeled neuronal pathways 
to investigate the properties of white matter (WM). However, the configurations of 
the modeled tracts, and thus their geometry, may vary depending on which algorithm 
(probabilistic or deterministic) is used.

A tract is represented by a discrete 3D curve, so curvature can be extracted in each 
of its points and used in various applications. For example, fiber curvature has been 
employed for finding differences between patients with autism spectrum disorder and 
controls (Jeong et al., 2011). Moreover, curvature has been suggested as a local shape 
property for characterizing tracts’ diffusion properties (Gerig et al., 2004). Furthermore, 
it has been used to assess its role on the outcome of brain injuries (Zappalà, 2016) and 
it could be employed as a prior for preprocessing diffusion data (Jörgens et al., 2016). 
In our study, we investigate whether the choice of the tractography method can affect 
the local estimations of fiber curvature.

Methods: The data used in this study are two healthy adult subjects randomly selected 
from the 500 Subjects + MEG2 data release (November 2014) of the Human Connectome 
Project (HCP) (Van et al., 2012; WU-Minn Consortium Human Connectome Project, 
2014). Multishell HARDI data were available, consisting of 3 × 90 gradient directions 
at b-values 1,000, 2,000, and 3,000 s/mm2 and 18 b = 0 acquisitions. The data were 
affine registered as described by Zappalà (2016), obtaining images with voxel size of 
1 mm × 1 mm × 1 mm.



1st Human Brain Project Student Conference 

34 Frontiers in Neuroscience

The FOD of both subjects was reconstructed by applying constrained spherical decon-
volution (CSD) (Tournier et al., 2007), already implemented in the software package 
MRtrix (J-D Tournier, Brain Research Institute, Melbourne, Australia, https://www.
mrtrix.org) (Tournier et al., 2012). CSD was applied using a maximum harmonic order 
of 8 and combining the shells at b = 1,000 s/mm2 and b = 3,000 s/mm2.

The fiber trajectories of the two subjects were obtained by applying both a determin-
istic and a probabilistic tractography algorithm compiled in MRtrix: SD_STREAM 
(Tournier et al., 2012) and iFOD2 (Tournier et al., 2010), respectively. For each of the 
two algorithms, the following step sizes were tested: 0.1, 0.3, 0.5, and 0.7 mm. Default 
values were then set for most of the parameters of the tractography, such as the FOD 
amplitude cutoff (=0.1) for terminating tracks or the maximum angle between succes-
sive steps (90° stepsize/voxelsize). Finally, the number of modeled tracks per subject 
was set to 300,000.

For every tract of every tractography dataset, the angle of curvature θi was extracted 
in each of its 3D points Pi and the corresponding curvature κi was computed as 
κi = 2⋅sin(θi)/s (Moreno et al., 2011), where s is the step size. This procedure was car-
ried out on MATLAB (MATLAB R2015a, The MathWorks Inc., Natick, MA, USA). 
The final voxel-wise curvature κ of a given tract was computed as the average of all the 
curvatures κi associated to the tract’s points in that specific voxel.

Results: A large set of voxel-wise curvature values was obtained, each one correspond-
ing to a single tract of one subject in one of the tested tractography settings. From such 
values, it was possible to analyze the distributions of the voxel-wise curvatures κ for 
every experimental setting, which are shown in Figure 1. In Table 1, the 95% confidence 
intervals of the mean values of curvature are presented.

Discussion: From our results, it can be observed that the estimated local values of 
curvature are strongly dependent on both the choice of the tractography algorithm 
(probabilistic or deterministic) and its settings. The statistics obtained in this study 
are based on values of curvature computed from whole brain tractography results. In 
the future, more in-depth research may be performed by focusing on specific regions 
of interest.

In our work, very similar values were obtained between the two subjects when the 
same tractography algorithms and settings were applied. It remains to be seen whether 
the same finding will be made when running similar experiments on a larger number 
of subjects.



Frontiers in Neuroscience 35

 1st Human Brain Project Student Conference

FIGURE 1: Distributions of the voxel-wise curvatures κ of the tracts for every experimental setting.  
In every plot (each corresponding to one subject and one class of tractography algorithms, i.e.  
either probabilistic or deterministic), the distribution is shown for each of the tested step sizes (see 
color legend).
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In general, the curvatures obtained from probabilistic tractography are larger than 
those from deterministic one. Moreover, in the probabilistic datasets, the estimated 
mean of κ decreases almost linearly with increasing step size. On the other hand, in 
the deterministic case, κ increases with the step size, showing also similar mean values 
between the step sizes 0.1 and 0.3 mm and between 0.5 and 0.7 mm. These results could 
suggest that the probabilistic tracking tends to be more irregular and curved at a smaller 
scale, since it tests a larger number of possible directions, and becomes smoother as 
soon as the step size is increased. Instead, in deterministic tractography, the fitting 
may be quite smooth if small steps are used, but an increase in the step size yields 
larger variations in the directions, which are reflected in a larger curvature. We aim at 
conducting more experiments to test these hypotheses, for example by increasing the 
FOD amplitude cutoff in probabilistic tractography to reduce the number of possible 
tracking directions. Another possible approach could consist in computing curvature 
regarding more tracts’ segments, i.e., more than three subsequent points of the pathway.

We can conclude that, in studies where local curvature information is required, it is 
important to apply exactly the same tractography method to get comparable results. 
Curvature estimations are very sensitive to the choice of tractography parameters, and 
particular attention should be paid if curvature is studied at a small scale. Moreover, 
further investigations on the actual reliability of local curvature estimations should 
be performed.
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Introduction: Conventional EEG instruments were difficult to be used for real-time 
monitoring because they are uncomfortable to wear in daily life. In recent, most smart-
phone users widely wear earphones even they fall asleep. Therefore, a novel Earphone-
shaped EEG instrument, which measures EEG signals around the ear and in the ear 
canal while playing music, can help enable real-time brain state monitoring.

Since in-ear EEG concept was first introduced by Looney et al., a few research groups 
reported in-ear EEG prototypes and their signal properties (Looney et al., 2011; Looney 
et al., 2012; Kidmose et al., 2013; Hoon Lee et al., 2014; Mikkelsen et al., 2015; Bleichner 
et al., 2015). However, there are few reports on single trial signal analysis of in-ear EEG 
and no research on combining earphone and in-ear EEG acquisition system.

In this study, the signal validity of in-ear EEG signals was examined and their possi-
ble application of mental state monitoring was suggested using simple attention state 
classification.

Methods: Earphone-shaped EEG instrument was designed as the form of canal type 
and earhook earphone (Figures 1A,B). Electrodes to record ear-EEG signals and 
microphones were put on the canal part (Figure 1A, Ch. 1, Ch. 2, and Microphone). 
Electrodes were put on the earhook part to contact ear lobes and mastoid processes. 
The left electrodes on the earhook part was used for the reference channel and the 
right one was used for the common mode channel (Figure 1A, Ref. and GND). Lead 
wires connected to each channel and microphone were connected to the 2-channel 
circuit board for amplifying and filtering signals (Looxid Labs, sampling frequency 
125 Hz). Finally, preprocessed EEG signals were sent to computer with USB connector 
and earphone connector.

Ear-EEG signals were recorded from a 29-year-old male subjects for three states; eye-
closed resting state, eye-opened resting state, and eye-opened attention state in the 
both ear canals. In addition, to compare Ear-EEG and on-scalp EEG signals, the same 
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experiments were performed using on-scalp electrodes on the forehead (Fp2 according 
to 10–20 International Systems).

FIGURE 1: Earphone-shaped EEG instrument. The left figure is the design for Earphone-shaped EEG 
instrument (GND: common mode channel, Ref.: reference channel). The right figure shows the actual 
use of Earphone-shaped EEG instrument and the positions of electrodes.

Acquired EEG signals were segmented into 1-s epoch (125 data points) with the 
Hanning window and filtered with 0.5 Hz high-pass filter and 50 Hz low-pass filter. 
The power spectrum analysis was performed using the AR Burg method. As a result, 
50 frequency components (1–50 Hz) were obtained from the power spectrum anal-
ysis. To discriminate attention state and resting state, Fisher ratio and support vector 
machines (SVM) were adopted. Attention states were distinguished from eye-opened 
resting state using SVM with most discriminable frequency bands selected by Fisher 
ratio. To avoid over-fitting problem, the classification was repeated 100 times based 
on 10-fold cross validation.

Results: Power spectral densities obtained using the AR Burg method showed similar 
EEG patterns in both on-scalp EEG and in-ear EEG signals (Figure 2). In particular, 
alpha block and attenuation effect around 10Hz frequency was clearly observed in 
on-scalp EEG signals. Alpha waves are generally dominant during closing eye and 
reduce when opening eye. Although differences of in-ear EEG between eye-close and 
eye-open state were relatively smaller than those in on-scalp EEG, alpha power decrease 
during opening eye was observed.
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FIGURE 2: Power spectrum densities of on-scalp EEG and in-ear EEG signals. The left figure shows 
the EEG difference between eye-open and eye-close state. Alpha block effect was found in on-scalp 
EEG (Fp) and left in-ear EEG (LE). The right figure shows relative powers of conventional EEG 
frequency bands. All signals show alpha block effect. (Fp: on-scalp, LE: left in-ear, RE: right in-ear,  
EC: eye-close, EO: eye-open)

Attention state was distinguished from resting state using Fisher ratio and SVM. The 
10 frequency components which have the largest Fisher ratio were selected as features 
for SVM. Alpha frequency (11 Hz), beta frequency (23–25 Hz), and gamma frequency 
(37–38, 44–46 Hz) components were selected. The average classification accuracy using 
10-fold cross-validation was 73.35%.

Discussion: In this study, a novel Earphone-shaped EEG instrument was developed 
and their signal properties were examined. In-ear EEG signals showed similar char-
acteristics with those from on-scalp EEG signals. Besides, attention state could be 
distinguished from resting state using machine learning techniques. Inspired from 
those results, in-ear EEG signals and Earphone-shaped EEG instrument can be a useful 
device for real-time brain state monitoring.

This study has some limitations of the number of subject, insufficient classification 
accuracy, and offline experiment and analysis. In the previous study, our group made 
individually-fitted in-ear electrodes using ear-canal impressions. Acquired signals from 
those electrodes were finer than those from Earphone-shaped EEG instrument. They 
showed clear alpha peaks and successful classification of attention state (81.3%). In our 
ongoing study, well-contacted in-ear electrodes are going to be applied. Then, subject 
variability problem will be examined by performing experiment on multiple subjects. 
Furthermore, online experiments and adaptive algorithms will be performed for the 
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use of real-time brain state monitoring. After improvement of in-ear EEG instruments, 
various mental states, clinical features of neurological diseases, and influences of sound 
on in-ear EEG signals will be examined using these devices.
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Patients are often characterized by multiple, complex, and interrelated conditions, dis-
orders, or diseases often driven by a general inflammatory state. In the past 5 years we 
have developed methodology to model multi omic metabolic networks. We have shown 
the effectiveness of using multi omic metabolic models to identify pathways involved 
in phenotype changes, clustering environmental conditions, compute sensitivity and 
robustness. Now we would like to develop further the methodology to investigate the 
relation between drugs and pathways at the multi organ land at the multi drug levels.

This project addresses an important need in current biomedical engineering studies. 
The main aim is to identify principles in predicting effects when using cocktails of 
drugs and treatments at systemic level. We believe that the most meaningful way is to 
use multi omic metabolic models based on dynamic flux balance analysis that inte-
grate transcriptomics, proteomic and pathway data. The methodology will be based 
on multi layer networks and multi objective optimisation approaches. We will con-
sider Parkinson together with brain inflammatory factors for which we have obtained 
data from collaborations within UK and Europe. A second aim is to build a software 
platform that will allow predictive analytics on multiple drugs that consider targets in 
different organs. The omics era has generated a new approach to medicine, i.e., systems 
medicine. The definition of systems medicine is deeply related to complex networks: 
it involves a systemic view of the organism where the various building elements are 
considered in their interplay. A paradigmatic example is the networks of human dis-
eases. The diseasome is a bipartite network that connects human diseases (disease 
phenome) and human genes (disease genome). The strong connectivity of molecular 
systems implies that a specific dysfunction of an element propagates throughout the 
network of interactions and affects the activity of other components. Therefore, differ-
ent dysfunctions can lead to the same effect through different pathways. The concept 
of disease module has been proposed to indicate a group of network components the 
disruption of which leads to a particular disease phenotype. Single-target therapies may 
fail because they are not contemplating the underlying network characteristics during 
target identification. On the other side, a drug used for a disease could reveal itself of 
valuable use also for are diseases strongly connected to the original target node. The 
novelty is also in the fact that each patient status can be described by several networks, 
e.g., related to its genomic, proteomic or transcriptomic profile. For example, when gene 
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expression data are available, they can be mapped onto protein-protein networks, thus 
integrating general biological knowledge and sample-specific information at multiple 
levels (from whole network to single gene or pathway). By combining data coming 
from heterogeneous sources, the resulting networks will be very large in size.

The Parkinson’s Progression Markers Initiative (PPMI) is a large study that collects 
data from hundreds of people in an effort to identify the causes of Parkinson’s disease. 
Zeighami et al. have analysed MRI scans that were collected as part of this initiative, 
which show the structure of the brains of 230 people in the early stages of Parkinson’s 
disease (Zeighami et al., 2015). Moreover, the Brain Connectome Project maps net-
works in the living human brain, and a disease-causing agent might spread in such 
networks. Although we know a lot about brain’s structural connectivity, we can derive 
a better Parkinson disease model by integrating these connectivity information with 
transcriptomic, proteomic and pathway data collected through collaborations at the 
U.K. and Europe. A similar integrative approach has already been taken by Riedl et 
al. (2016), where researchers traced the directionality of the connectome based on 
where metabolic energy was being used. Tau proteins should be considered in the 
metabolic model as they are involved in motor proteins (which require more energy 
that could be used as in the Riedl et al. research (Riedl et al., 2016)) and there are 
studies that correlate them with the Parkinson disease (Spillantini and Goedert, 2013). 
In order to build a software platform that will allow predictive analytics on multiple 
drugs, statistical and machine learning techniques such as Bayesian networks will be 
used. There is no optimal machine learning algorithm that works best for all problems 
(Libbrecht and Noble, 2015). So, some approaches that were done already should be 
taken into account. For instance, Menden et al. (2013) developed machine learning 
models to predict the response of cancer cell lines to drug treatment, based on both 
the genomic features of the cell lines and the chemical properties of the considered 
drugs. Vidyasagar (2015) reviewed several techniques from machine learning in order 
to predict a drug response.

Figure 1 summarises how there could be many interactions and factors when modelling 
a neurodegenerative disease. This project is in an early stage of a PhD research pro-
gram funded by the W. D. Armstrong Trust Fund. The student will develop expertise 
in machine learning (particularly Bayesian approaches), network science (particularly 
multiplex and multi layer network models) and multi objective optimisation and control 
theory. As a preliminary result we want to show other a paradigm shift from the analytic 
to the systemic approach when dealing with neurodegenerative diseases, stating that it 
is important to consider the interactions of multiple factors. For instance, Zuddas et al. 
(Pierpaolo et al., 2013) suspect that even magnetic nanocrystals, possibly produced by 
cars, could have an important role in the nervous system, more specifically in causing 
diseases such as Alzheimer. Mankia and Emery (Kulveer and Emery, 2016) showed 
that it was possible to combine the predictive abilities of clinical, genetic, immunologic 
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and imaging biomarkers in order to identify the individuals with higher risk of having 
Rheumatoid Arthritis. This is a new vision appearing in medicine where the preclinical 
phase of a disease can be started much earlier, using machine learning and modelling 
capabilities for predictability but also to see its causalities.

FIGURE 1: Dynamics in a Neurodegenerative Disease Model.
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Introduction: The Human Brain Project (HBP)1 aims at creating and operating a 
European scientific Research Infrastructure for the neurosciences. A main goal is to 
gather, organise and disseminate data describing the brain and its diseases on the basis 
of experimental as well as simulated data. Therefore a lot of effort is put into the develop-
ment of tools for data registration, storage, access and sharing. The most prominent data 
type available through the HBP to date are anatomical data and data describing single 
cell dynamics. However, the need to include experimental and simulated large-scale 
functional data, and in particular, electrophysiological activity data, has been widely 
recognized. Such data are primarily created in neuronal network simulations as a core 
part of the HBP effort. An adapted strategy for data curation is needed, as the estab-
lished workflows are not yet considering the integration of electrophysiological data.

Another goal of the HBP is to provide a platform to facilitate collaborative research. 
For this the Collaboratory2 has been set up—a web portal which provides a com-
mon online workspace (Collab) for all members of a collaboration team. The Collab 
combines tools which are developed in the context of the HBP platforms and by this 
provides access to high performance computing (HPC), simulation tools and shared 
datasets. In particular, it is thought to act as a platform for interactive data analysis. 
Next to specialized tools which can be integrated or developed for the Collab, generic 
analysis can be performed by using Python Jupyter Notebooks3.

Motivation: Thus, data used in the HBP must be prepared in two respects: (i) inte-
gration into the HBP databases and (ii) use in analysis processes on the Collab. Due 
to the diversity of data (types) in electrophysiological experiments, standardized data 

1  https://www.humanbrainproject.eu
2  https://collab.humanbrainproject.eu
3  http://jupyter.org/
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and metadata models, and tools operating on these models, have only started to be 
developed (Denker and Grün, 2016; Zehl et al., 2016). A crucial step in further advanc-
ing and disseminating these efforts, and to ensure that individual components can 
be efficiently linked, is to embed these tools into workflows that recreate the actual 
scientific routine of a research project.

Methods: Here we consider the combination of 4 open source projects attempt to 
address these issues:

–  Neo provides a generic standardized representation for electrophysiological data, 
which is able to interface with a range of electrophysiological data formats (Garcia 
et al., 2014).

–  The Electrophysiology Analysis Toolkit (Elephant) offers methods ranging from 
the analysis of spike data to population signals, e.g., local field potentials. Elephant 
is based on the Neo data representation format4.

–  The open metadata Markup Language (odML) is based on XML and offers a 
hierarchical structure to store metadata related to electrophysiological experiments 
(Grewe et al., 2011).

–  NIX is a file format designed to combine electrophysiological data and metadata 
in a single, standardized format5, and is linked to both the Neo and odML data 
models.

Results and Discussion: Here we show in 3 stages how these open source programs can 
interact to form a structured, comprehensible workflow for electrophysiological spike 
data. Firstly, we demonstrate the loading of data and metadata and their integration 
into a single data representation. For this we start with the conversion of the raw data 
into a Neo object, which is then further annotated with metadata information. To 
obtain the metadata information, primary metadata are first converted to the odML 
format using the odMLtables tool6, which is then queried for annotating the Neo 
object. In a second stage, the final Neo object is saved as NIX file, which preserves the 
data-metadata relations formed in the Neo structure. In a last stage, the data structure 
from the NIX file is used for exemplary analysis of the spiking activity using Elephant.

In addition to the implementation of such a workflow in Python for use on a local 
machine, we demonstrate the setup of the workflow on the Collaboratory of the HBP 

4   https://github.com/INM-6/elephant
5   https://github.com/G-Node/nix
6   https://github.com/INM-6/python-odmltables
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and indicate how the interaction of multiple collaboration partners can benefit from 
the workflow realized in this setting. In addition, we discuss how the data, in particular 
the odML-based metadata, can be used for integration in the registration processes 
developed by the Neuroinformatics platforms.

Acknowledgments: Helmholtz portfolio theme SMHB, EU Grant 720270(HBP), DFG 
Priority Program SPP 1665 (Grants DE 2175/2-1 and GR 1753/4-2).
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Introduction: We developed a statistical analysis method, ASSET, capable of detect-
ing repeated sequences of synchronous events (SSE) in massively parallel spike trains 
(Torre et al., 2016). Yet we have not been able to apply ASSET in its full extent, given 
the high computational demand when assessing significance of the SSEs. This challenge, 
however, can now be overcome with the support from the High Performance Analytics 
and Computing Platform (HPAC), and their readily available modern infrastructure. 
Here we present the first steps towards analyzing electrophysiological recordings with 
ASSET on one of the new pre-commercial procurement machines, JULIA, which is 
based on Intel’s new Knights Landing (KNL) processor.

Motivation: ASSET is an analysis designed to detect and quantify activity in a synfire 
chain (Abeles, 1991), a feedforward neuronal network with high convergence and diver-
gence of connectivity between the layers (groups). Particular to such a network is that 
it favors the propagation of synchronous spiking activities, which appear in measure-
ments as SSEs. In ASSET, the repetitive occurrence of an identical SSE becomes visible 
in an intersection matrix as a diagonal structure (DS) (Schrader et al., 2008; Gerstein 
et al., 2012), which is evaluated automatically for significance. Currently, the ASSET 
method can only be applied to time segments that are considerably shorter than the full 
duration of a typical session of massively parallel electrophysiological recordings due 
to costly numerical steps in the analysis. However, these numerical computations are 
composed of independent steps and thus ASSET would profit from parallelization. A 
second challenge is the core of the algorithm, which makes extensive use of exponential 
and logarithmic operations. These operations are computational expensive and do not 
lend themselves to easy array vectorization on modern HPC hardware.
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Methods: After analysis and instrumentation of ASSET, an MPI version of the software 
was implemented, distributing the workload across multiple compute instances in a 
round-robin manner. After the work on the nodes, the partial results are collected on 
the master node and summed for the final results. In a parallel effort we optimized the 
core of the ASSET algorithm: the exponential and logarithmic operations are typically 
calculated using Taylor expansions. Approximate methods perform the same mathe-
matical operations faster at the expense of an error smaller than 1E-6. This speedup can 
be further improved on by (automatic) array vectorization of the code implementing 
these methods. These techniques were combined with C implementations using the 
Cython programming interface.

Results: The MPI implementation allowed us to leverage the large number of cores 
available in current hardware and showed an order of magnitude shorter time to solu-
tion. We will further report on the preliminary qualitative and quantitative analysis of 
the approximate methods and its effects on the runtime of the algorithm, including the 
results of running the algorithm on the KNL processors of JULIA. ASSET is currently 
available to the scientific community via the Electrophysiological Analysis Toolkit 
(Elephant)7, and as such is also available to all members of the Human Brain Project 
Consortium via the Collab.

Acknowledgments: Supported by Helmholtz Portfolio Theme Supercomputing and 
Modeling for the Human Brain (SMHB), EU grant 604102 (Human Brain Project, 
HBP), EU Grant 269912 (BrainScaleS), DFG Priority Program SPP 1665 (GR 1753/4-1 
and 2175/1-1).
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Summary: This research describes a new fully Bayesian spatiotemporal model to ana-
lyze fMRI studies. We have considered recent developments in Bayesian spatiotemporal 
models for detecting neuronal activation in fMRI experiments. The complete relation-
ship between the neuronal activation and the blood oxygenation level dependent signal 
has not been fully modeled yet. Our goal is to provide an analytical framework that 
considers the complex temporal and spatial correlation structures of fMRI data as well 
as the complex relationship between neuronal activity and its Hemodynamic Response 
Function, HRF. In the temporal dimension, we assumed an autoregressive structure 
on error terms and also parameterize the HRF’s shape parameter. So we modeled the 
data using the HRFs with the voxel-dependent shape parameters. We account for the 
complex three-dimensional spatial correlation structure of the voxels using an Ising 
prior on parameters that are for selecting the activated voxels. For inference, we com-
bine the component wise Markov Chain Monte Carlo technique with the Auxiliary 
variable method. We investigate the properties of the model through its performance 
on three-dimensional simulated data sets with the block design. Also we implemented 
the method on two real data sets. The first one is the n-back data from My Connectome 
Project and the second one is the auditory data.

Method: Let yvt be the time series of the observed BOLD signals for given voxel v,  
yvt = (yv1, yv2, …, yvt)

T, where T is the number of time points and v = 1, 2, …, N. We 
assume a voxel-wise GLM: yv = Xvβv + εv

Our proposed model allows estimating the voxel-dependent HRF’s parameter. Also 
complex spatial and temporal correlation structures of data are captured in the model. 
We achieved above objects via the choice of appropriate priors for the model parameters.
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 (a) Autoregressive structure for temporal correlation

 (b) Free parameter modeling of Poisson HRF

 (c) Ising model for spatial correlation

 (d) Zellner’s g-prior for regression coefficients

Simulation result: Our simulation study was designed to evaluate the performance of 
the proposed model in identifying the active voxels. For each scenario we simulate 10 
3D images of dimension 10 × 10 × 10. We performed a posterior inference on these 
data using our model.
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θ1
Fitted HRF True HRF Poisson Canonical Inverse Logit

0.1 Free parameter 
Poisson

Accuracy 95.12 99.10 99.2

Precision 92.06 99.00 100
FPR 1.67 0.80 0.15
FNR 7.84 1.00 0

Fixed parameter 
Poisson

Accuracy 86.65 98.40 99.00

Precision 74.16 97.94 100
FPR 0.77 1.12 1.86
FNR 21.03 2.12 0

0.4 Free parameter 
Poisson

Accuracy 97.30 99.80 99.95

Precision 95.97 95.65 100
FPR 0.33 4.35 2.08
FNR 6.22 0.1 0

Fixed parameter 
Poisson

Accuracy 86.40 99.70 99.90

Precision 78.42 95.65 100
FPR 0.41 8.33 4.00
FNR 26.22 0.1 0

Real data results: n-back data of my connectome project: The data obtained from a 
part of the My Connectome Project by Russell A. Poldrack to evaluate working mem-
ory. This data set is available at https://openfmri.org/dataset/ds000031/. An n-back 
task was performed using a blocked design, with a factorial combination of memory 
load (1 vs. 2 back) and stimulus type (faces, houses, and Chinese characters) across 
blocks. We grouped the conditions into two main categories: Images were partitioned 
into a 96 × 96 × 68 rectangular lattice with voxel size: 2.4 mm × 2.4 mm × 2 mm. Data 
preprocessing was accomplished using FSL software. 145,122 voxels were left. Then 
BOLD time courses were extracted for all voxels to be analyzed. Activation probability 
maps for some typical slices during the n-back experiment are reported as follow 
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Discussion: Our proposed method is a truly 3D spatiotemporal model that incorpo-
rates main characteristics of the data together in statistical modeling. As an important 
aspect of our work, our method estimates the shape parameter of HRF as voxel-based. 
The other important aspect of our work is that we consider the three-dimensional 
spatial correlation in the data as well as temporal correlation by appropriate priors.
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Introduction: The metric representation of space during navigation is attributed to grid 
cells in the entorhinal cortex. The cell responses form triangular grid-like patterns that 
tile the entire environment as an animal moves (Giocomo et al., 2011). Earlier findings 
suggest that the precision of place cells in the hippocampus (CA1 area) of a rodent’s 
brain is increased by the inter-connectivity from grid cells in the parahippocampal 
CA3 area (Moser et al., 2014). Figure 1, left, shows the grid cells organised into mod-
ules where the receptive fields of the cells in one module have the same spacing and 
orientation but the scale differs in others forming multiple spatially scaled modules 
that together precisely encode position over a large space.

Although the mechanisms through which these multiple spatially scaled modules 
emerge are still unknown, existing neural models attribute this modular behaviour to 
odometry such that the change of the triangular tessellating grid cell firing is influenced 
by the animal’s velocity and direction inputs.

In our auto-encoder model, we prescribe to evidence suggesting the existence of 
auto-associative networks within the entorhinal cortex which cohesively support the 
emerging activity patterns (Duigou et al., 2014; Rolls, 2007). We hypothesise that grid 
cell responses can arise in an auto-associative model using feed-forward circuitries and 
inhibition mechanisms. The inhibition is implemented at both spatial and temporal 
level, indirectly influencing scaling and firing field sizes within the cells. The emergent 
grid cells carry a compressed representation of localised place cells through trained 
weights that encode a virtual rat’s position in the environment with varying scales of 
grid patterns.

Methods: Figure 1, right, shows an example input vector to the model: simulated 
activities I of place cells and the trajectory of the place cells as a virtual rat randomly 
moves with constant velocity in a box arena.
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FIGURE 1: Left: In vivo imagery of four dMEC grid cell responses in a square arena (Moser et al., 
2014). The spacing of firing fields increases from left to right. Near right: Activities of place cells that 
serve as inputs I to our model; here, the virtual rat being at the lower-right part of the arena. Far right: 
a random trail taken by the virtual rat. The trail fades at the tail, the darker part showing the rat’s 
recent path.

The activity is modelled as a Gaussian function centred on the position of the rat. 
Our auto-encoder model is a simple feed-forward architecture with additional short-
range recurrent connectivity as shown in Figure 2, left. Neurons in the input layer are 
connected to the hidden layer with weight matrix W1 and the hidden layer neurons 
to the output layer with weight matrix W2. A fixed recurrent or lateral weight matrix 
W3 implements short-range spatial inhibition. W1 and W2 are randomly intialised, 
bias vectors b1 and b2 are added to the hidden and output layers. The size of the input 
space is 1,600 (40 × 40) neurons, the hidden layer has 16 neurons and the output 
space the same size as the input. This forms a compressing auto-encoder with strongly 
under-complete coding. The output layer activation is complemented with a compet-
itive softmax function to let only those place cells fire for which grid cells of several 
different scales agree.

FIGURE 2: Left: Auto-encoder architecture. W3 (red) is the short-range recurrent cell-to-
neighbourhood connectivity for spatial inhibition. Right: The temporal inhibition function H(t,i). The plot 
shows cell number (y-axis) over time (x-axis). Grey indicates self-inhibition of an activated neuron after 
time t. Faster cells (top) receive activity inhibition from recent history; slower cells from activity deeper 
back in time.
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Since we assume no prior knowledge of space, we implement a temporal inhibition 
mechanism, which is based on the notion that grid cells of high spatial frequency will 
be quickly activated and deactivated as a rat moves, while cells of low spatial frequency 
have slow activity changes. The inhibition mechanism allows cells to remain active only 
for limited times. Figure 2, right, shows the function H(t,i) which determines how much 
temporal inhibition hi neuron i receives from its previous activations Si, inhibiting fast 
cells more quickly from their own activities than slow cells:

h t H S t t( ) ( )i itt

T
′′′∑= ⋅ −  (1)

where T is the memory span, t is current and t’ previous time-steps.

The spatial inhibition via short-range inhibitory recurrent weights W3 causes distant 
neurons to fire independently. The net hidden layer S activity was then computed by 
applying a sparse transfer function g.

a t W I t W S t b h t( ) ( ) ( 1) ( )1 3

1
η= ⋅ + ⋅ − + − ⋅  (2)

S g a a a( ) 0.9 / (1 )2= = − +  (3)

where η scales the temporal inhibition. Activation on the output layer is computed as

= ⋅O softmax W S b(  + )2

2
 (4)

where W2 are the weights to the output layer with the respective bias vector b2. The error 
on the output layer e = I − O is then used for learning of the weights by back-propa-
gation using gradient descent on the sum square error.

Results: Figure 3 shows the emergent weights of the 16 hidden layer neurons after 
70,000 training steps. Receptive fields of the cells are spatially organised in approxi-
mately triangular grids, showing grid cell responses. The scales of these grids increase 
from left to right, i.e., from grid cells with faster temporal inhibition to cells with slower 
temporal inhibition.
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FIGURE 3: Model results. Each square shows the input weights of one of the 16 hidden layer 
neurons, i.e., one row of W1. Non-zero weights (dark) connect to isolated regions in input space 
forming triangular arranged grid patterns, which vary in size, from small scales of “fast” grid cells (left) 
to larger scales of “slow” cells (right).

Discussion: We implemented an auto-encoder that encodes a localised place cell input 
efficiently with fewer grid cells. Varying temporal local inhibition led to varying grid 
spacing, while spatial short-range inhibition enforced the coding to be performed 
by cells of different scales. The results simulate the emergent triangular grid pattern 
activity at different scales where the cells’ receptive field weight profile (Figure 3) is 
similar to biological findings of grid cell activations (Figure 1, left).

Our simple model does not integrate path signals from odometry to influence the 
behaviour of the activity bumps, as most other models of grid cells do. Nevertheless, 
the emergent hexagonal grid patterns are stable over time, explaining emerging and 
convergent connectivity between place cells and grid cells, which existing models do 
not yet explain. Naturally, odometric information needs to be represented within the 
hippocampus/dMEC to achieve accurate path integration. Introducing odometry could 
lead to a class of more detailed and plausible grid cell models.
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Introduction and Motivation: We present two type of CRAIIM hybrid atlas (CRAIM 
is the acronym of Centre of Research of Image Analysis and Medical Informatics at 
University of Insubria in Varese, Italy). Both types of atlases have in common an 
extensive integration of white and grey matter structures that allows representing 161 
brain territories, but one with 1mm resolution and the second one with 2 mm of res-
olution. There are many brain templates used for image processing, that cover precise 
brain regions (FMRIB Software Library, Analysis Group, Medical Science Division, 
University of Oxford (UK), 2016): Tailarach (the more detailed with 1105 ROI), Juelich 
(121 ROI), Harvard-Oxford cortical (96 ROI), Harvard-Oxford subcortical (21 ROI), 
Montreal National Institute template (9 ROI), and other more anatomically specific 
such as Cerebellar-FLIRT/NIRT (28 ROI) and Subthalamic-Nucleus-Atlas (2 ROI). 
Therefore, the presence in the neuroinformatical context of different atlases, with 
diverse resolution and specialization, motivated the CRAIIM group to design a hybrid 
model using a number of regions oriented to the automated procedures as well as to 
visual inspection. Also, as presented at INCF conference 2016 (Vergani et al., 2016), 
the CRAIIM hybrid atlas with 1mm resolution comes from a join operation between 
Juelich histological atlas and Harvard-Oxford cortical and subcortical atlases. The 
motivation of using them selectively emerged by a) the lack of some fundamental clin-
ical regions in the Juelich original model, b) the high level of compatibility in terms of 
numerosity and volumetry of regions between H-O and Juelich, and c) the peculiarity 
of these two atlases of being in the same MNI 152 space, allowing the researcher to 
completely compare them.

Methods: There are two topics that must to be taken into account: Integration Procedure 
(IP) and Voxel-Label Probability (VLP).

IP: To make the integration correctly, we have to choose how to cope with atlases over-
laps between brain regions belonged to Juelich and Harvard-Oxford atlases. We chose 
Juelich template as our reference with the purpose of completing it by regions originally 
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present only into the Harvard-Oxford atlas (cortical and subcortical portions), from 
which we selected 40 ROI, such as frontal and temporal cortexes, subcallosal portions, 
and cingulated gyrus and thalamus halves. The main criteria to manage partial inter-
section between brain structures was to save all the portions just belonged to Juelich, 
and then to integrate them with the selected Harvard-Oxford regions, excluding their 
part overlapped, in other words, we framed the Juelich template with 40 regions of 
Harvard-Oxford without their portions that generated the overlaps.

VLP: Another step was to decide which probabilistic version of the atlases to consider. 
We use atlases contained into FMRIB Software Library (FSL) (Jenkinson et al., 2012) 
that offers probabilistic templates that, for each of their voxel, assign a probability to fit 
a certain brain region. This allows giving to research the ability to use atlases that have 
all regions with probability major or =0%, otherwise with probability major or equal 
to 25% or, finally, major or =50%. Intuitively, the less is the degree of probability, the 
more is the volume of the atlas. We consider Juelich and Harvard-Oxford atlases with 
a probability threshold major or equal to 0%, i.e., their version with all of the possible 
labelled voxels to be shaped for their integration. We tested the CRAIIM hybrid atlases 
with the computerized pipeline of fMRI analysis that estimates synthetic measures, 
i.e., Activated Weighted Indexes and Vectors (Pedoia et al., 2011, 2012, 2013), for 
each of the brain regions covered by the hybrid template [cfr. (Vergani et al., 2016) 
for results and comments]. Also, we evaluated it with FMRIB Software Library tools 
for neuroimaging analysis.

Results: Figure 1 shows the difference before and after the integration of Juelich brain 
with the 40 regions hailing from Harvard-Oxford cortical and subcortical atlases. In 
the three images in the top row, there is the superimposition between the Montreal 
National Institute (MNI) detailed anatomical atlas, as example of possible patient 
brain, and the Juelich atlas. A large amount of portions is not covered with, such as 
frontal lobes, many temporal territories, thalamus halves, and so on. In the bottom 
row, there is the same MNI template, but with the superimposition of the CRAIIM 
hybrid atlas, that covers exactly the same volumes enclosed by Juelich one, but having 
extra-extended brain regions, that are the 40 added from Harvard-Oxford atlases. 
Tables 1 and 2 explain quantitative relations among the two type of versions of CRAIIM 
hybrid atlases. Table 1 illustrates how many voxels are in each template and how many 
of them belong to Juelich or Harvard-Oxford models. It is indicated the number of 
regions that come from them, that are 162 and not 161 because we counted also the 
empty space, i.e., the black area in the images that has not brain labels. The volume of 
atlases with their empty space is always the same: with 1mm length for each voxel and 
with 7,221,032 voxels, there is a volume of 7,221,032 mm3; equivalently, for 2mm voxel 
length, but with 902,629 voxels, the volume is always 7,221,032 mm3 (∼ 7 L). Table 2, 
instead, presents the numbers of voxels of two atlases organizing the 161 brain regions 
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with 9 anatomo-functional meta-labels, i.e., Acoustic, Associative, Behaviour, Fascicles, 
Language, Limbic System, Motor, Somato-Sensitive and Visual. Figures 2 and 3  
show the voxel distribution through CRAIIM hybrid atlases with 1mm and 2mm of 
resolution. The quantities are clustered by the 9 anatomo-functional zones and sub-
grouped for their original models. There is no difference in proportion between the 
two figures, and this reflects the equivalence in terms of representability of CRAIIM 
hybrid atlas in both resolutions. What it is changed in Figures 2 and 3 is for sure the 
numbers of voxels that depend by voxel length. Figure 4 is a bar plot that makes in 
relation the voxel enumeration of the only 40 regions added to Juelich that coming 
from Harvard-Oxford. We selected them because the treatment of overlapping causes a 
reduction of the original volume of these regions added. The graph shows the difference 
in voxel number of 40 structures before and after the integration operation. Figure 5 
highlights the better completeness of the 1mm version compared to the 2mm of the 
CRAIIM hybrid atlas, due to the minor gap in terms of voxel percentage in reference 
to the original Harvard-Oxford template. Figure 5 proved that the Juelich regions in 
CRAIIM hybrid atlases are the same of those in Juelich model.

FIGURE 1: In the upper part of the figure, there are the sections of MNI anatomical template with the 
overimposition of Juelich brain. In the lower part the one with CRAIIM hybrid atlas. It is evident the 
lacking in Juelich brain that has been completed by CRAIIM hybrid atlas (image with 2 mm of 
resolution for all the models).
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TABLE 1: Numerosity of CRAIIM voxel distinguished for resolution type and organ-
ized by anatomo-functional meta-labels (n.b. NA means empty space, i.e., black volume 
without brain regions).

Anatomo-Functional meta-labels CRAIIM_
VOXEL_1mm

CRAIIM_
VOXEL_2mm

# Regions

ACUSTIC 42304 5667 16
ASSOCIATIVE 396253 51711 39
BEHAVIOUR 182316 23571 2
FASCICLES 25009 3579 6
LANGUAGE 166982 23216 16
LYMBIC_SYSTEM 265700 33518 42
MOTOR 203616 27727 8
NA 5616265 689415 1
SOMATO-SENSITIVE 89824 11954 16
VISUAL 232763 32271 16
Grand Total 7221032 902629 162

TABLE 2: Numerosity of CRAIIM voxel grouped for resolution type and organized by 
original atlases (n.b. NA means empty space, i.e., black volume without brain regions).

Original Atlases CRAIIM_
VOXEL_1mm

CRAIIM_
VOXEL_2mm

# Regions

HO_cort 497974 61797 38
HO_sub 10609 965 2
JUELICH 1096184 150452 121
NA 5616265 689415 1
Total 7221032 902629 162
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FIGURE 2: Voxel distribution clustered by 9 anatomo-functional meta-labels of 161 brain regions of 
CRAIIM Hybrid Atlas with 1mm of voxel resolution organized by their original atlas (Juelich in grey and 
Harvard-Oxford cortical and subcortical in orange and blue, respectively).

FIGURE 3: Voxel distribution clustered by 9 anatomo-functional meta-labels of 161 brain regions of 
CRAIIM Hybrid Atlas with 2 mm of voxel resolution organized by their original atlas (Juelich in grey and 
Harvard-Oxford cortical and subcortical in orange and blue, respectively).
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FIGURE 4: Bar plot with the 40 added regions to Juelich atlases coming from Harvard-Oxford 
atlases. The different bars show the original voxel value of each brain regions and the value that they 
have had after the overlap treatment. The main result refers that the CRAIIM hybrid atlas with 1 mm of 
resolution shares more with the original atlas then the CRAIIM hybrid atlas with 2 mm of resolution  
(cfr. the convexities among Polynomial trend lines: Orange-Blue duo (1 mm) VS Yellow-Grey duo (2 mm)).

FIGURE 5: CRAIIM hybrid atlas with 2 mm of resolution (Red bars) always have minor shared voxel 
percentage with their own original structures (Juelich and Harvard-Oxford atlases), for the 40 added 
regions (122–161), then the CRAIIM hybrid atlas with 1 mm of resolution (bars in Green).
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Discussion: We have presented two versions of the CRAIIM Hybrid Atlases of human 
brain for neuroimaging purposes. They differ for resolution, but not for representative-
ness of the 161 brain regions (kept 121 from Juelich and the 40 from Harvard-Oxford 
cortical and subcortical atlases). They are in perfectly proportions of the same brain 
structures (161 ROI; cfr. Figures 2 and 3), but the 40 added regions from Harvard-
Oxford differ in the two version of our atlas for percentage shared with their original 
shapes. The CRAIIM hybrid atlas with 1mm resolution has more portions in common 
with the 40 Harvard-Oxford parts, then the one with 2 mm of resolution (Figures 4 
and 5). This percentage variable by resolution depends properly by the length of the 
voxel. The presence of more voxels with the 1mm version of CRAIIM hybrid atlas 
has allowed to better shape the added structures, framing them more stylishly, with 
respect to the version with 2 mm. The “thumb rule” used states that is better to have 
voxel-labeled then voxel-unlabeled (i.e., black voxel). The constraint with this rule is 
evident when we added brain regions that are in low percentage of voxel shared with 
their original version, after the integration procedure. The advantage is indeed the 
possibility of displaying them instead the empty space. Next step could be to trace 
the percentage cut-off that law if or if not include regions under-represented after 
integration procedure. A part of these difference linked with the resolution, we have 
shown that CRAIIM hybrid atlases, both 1 and 2 mm version, cover extensively the 
Montreal National Institute anatomical template, as a model of patient brain, with 
respect to the Juelich atlas, safeguarding many territories otherwise lacking (Figure 1). 
In potential, CRAIIM hybrid atlases are very suitable to use in functional neuroimaging 
for severe scope, e.g., ROI masking, ROI selection, labels comparison, registration 
processing (Lindquist, 2008). The CRAIIM Hybrid Atlases could be used to promote 
dimensionality reduction of SPM volumes with the computation of synthetic indexes 
(Pedoia et al., 2011, 2012, 2013).

Actually, the Neuroinformatics Platform of Human Brain Project is able to display 
anatomical atlases of mammals such as Mus Musculus, Rattus Norvegicus and Homo 
Sapiens (e.g., BigBrain, MNI Colin27, MNI ICBM, InfantAtlas) (H. B. Project, 2016). 
In the future, the development of neuroinformatical tools to generate hybrid atlas, with 
a good rational between human usability and covered neuro-topography, and with a 
wise algorithm to handle overlaps, could be the right way to design purpose-based atlas 
with specific anatomical representativeness and normative features able to standardize 
and process heterogeneous functional and structural brain images.
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Introduction/motivation: Human brains, their behaviors and capacities alter by aging. 
This is considered as the main risk factor for developing neurodegenerative diseases 
including Alzheimer disease (AD), mild cognitive impairment (MCI) and other types 
of dementia. AD is a neurodegenerative disease that can impair memory and learning 
processes (Dickson, 1997). The main molecular mechanisms involved in AD include 
the deposition of amyloid β (Aβ) and neurofibrillary tangles (NFTs), which are often 
reported in temporal lobe, and then frontal and parietal cortices. On the other hand, 
atrophy and neuronal death occur in the mentioned areas (Braak et al., 2006).

MCI tends to be considered as a bridge between healthy elderly and AD patients, thus 
pattern changes in MCI might be indicative of the emergence of AD (Petersen et al., 
2001). Functional evaluation of the brain tasks is made by imaging modalities, including 
functional magnetic resonance imaging (fMRI) and positron emission tomography 
(PET). These imaging modalities are expensive and are available solely in high tech-
nology facilities. Variations in their outputs are vast and need complex analyses to 
demystify the raw data. Therefore, online computer-based studies have proved useful 
in analyzing and interpreting the existing data (Sadigh-Eteghad et al., 2014; Rombouts 
et al., 2005). In this study, activation likelihood estimation (ALE) is used to evaluate 
the overlap between foci, based on their distributions at the respective coordinates 
(Eickhoff et al., 2009). The coordinate-based analyses of neuroimaging data (i.e., PET 
and fMRI images) were investigated to find a difference in memory-related neuro- 
imaging aspects between AD and MCI patients as well as normal elderly.

Methods: Search was conducted in BrainMap (www.brainmap.org) database using the 
keywords “Alzheimer disease”, “Mild cognitive impairment”, “cognition”, “memory” 
(including all types of memory), “fMRI” and “PET” for the case group and “normal”, 
“cognition”, “memory” (including all types of memory), “fMRI” and “PET” for the con-
trol group, with mean age of over 60 years for both groups. Then, the results of search 
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were evaluated and the studies with lower mean age than 60 and other cognitional or 
motor functions were excluded. Sleuth (version 2.4) and Ginger ALE (version 2.3.6) 
software were used for the ALE meta-analysis (Laird et al., 2005).

The ALE technique uses peak coordinates reported in functional neuroimaging studies 
as full-width-at-half-maximum Gaussian sphere model distribution. The ALE statistic 
describes the voxel-wise likelihood of activation, and is a measure of agglomeration among 
included coordinates in the reported area. Most studies have been conducted based on 
Talairach space, whereas, the threshold for p-value map is considered at the false discovery 
rate (FDR) of p < 0.05 and the clusters with a minimum size of 200 mm3. For visualization, 
threshold ALE maps were imported into multi-image analysis MANGO (Research Imaging 
Center, UTHSCSA) (http://ric.uthscsa.edu/mango); and overlaid onto a standardized ana-
tomical template in Talairach space (colin1.1.nii) (Laird et al., 2005). Finally, the anatomical 
labels were illustrated using Talairach Daemon (Lancaster et al., 2000).

Results: Twenty-eight articles that explored the activated areas during memory tasks 
in normal elderly subjects, and AD and MCI patients (i.e., 14 papers each) were found. 
Based on these findings, left parietal lobe (angular gyrus) and left frontal lobe (middle 
frontal gyrus) appeared to be the most activated areas in memory-related tasks in 
healthy elderlies. Further, left and right precuneus and left and right temporal lobes were 
activated more in AD and MCI patients. Subtracting the images of the AD and MCI 
patients from the normal elderly subjects showed that right temporal lobe (sub-gyral), 
left and right precuneus and supramarginal gyri (in right temporal and parietal lobes), 
as well as left superior occipital gyrus were activated in AD and MCI patients (Figure 1).

FIGURE 1: Subtraction analysis in normal elderly subjects in comparison to AD and MCI patients. 
Significant clusters thresholded with a FDR at p < 0.05.
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Conclusion: Right and left precuneus and supramarginal gyri were activated in AD and 
MCI patients, whereas normal elderly subjects did not show such activity in those areas 
during memory-related tasks. Therefore, these findings suggest that memory-related 
functions in AD and MCI patients could be shifted to the mentioned areas and instead 
of the normal former areas these new sites participate in memory tasks.

Keywords: Alzheimer disease, mild cognitive impairment, PET, fMRI, activation likelihood 
estimation
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NestMC is a new multicompartment neural network simulator currently under devel-
opment as a collaboration between the Neuroscience SimLab at the Forschungszentrum 
Jülich, Barcelona Supercomputing Center and the Swiss National Supercomputing 
Center under the aegis of the NEST Initiative. NestMC will enable new scales and 
classes of morphologically detailed network simulations on current and future super-
computing architectures.

A number of “many-core” architectures such as GPU and Intel Xeon Phi based systems 
are currently available, to optimally use these emerging architecture new approaches 
in software development and algorithm design are needed. NestMC is being written 
specifically with this in mind; it aims to be a flexible platform for neural network 
simulation, while keeping interoperability with models and workflows of NEST and 
NEURON.

The improvements in performance and flexibility in themselves will enable a variety 
of novel experiments, but the design is not finalised, and is driven by the requirements 
of the neuroscientific community. The prototype is open source (1) and we invite 
you to have a look. We are interested in your ideas for features which will make new 
science possible: we ask you to think outside of the box and build this next generation 
neurosimulator together with us.

What directions do you want us to go in?

* Simulate large morphological detailed networks for longer time scales: Study of slow 
developing phenomena.

* Reduce the time to solution: Perform more repeat experiments for increased statis-
tical power.
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* Create high performance interfaces with other software: Perform online statistical 
analysis and visualization of your running models, study the brain at multiple scales 
with specialized tools, or embed detailed networks in physically modelled animals.

* Optimize dynamic data structures for models with time-varying number of neurons, 
synapses and compartments: simulate neuronal development, healing after injury and 
age related neuronal degeneration.

Do you have other great ideas? Let us know!
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The processing of the visual information in humans ends in the cortex but already 
starts at the level of the retina. The first neural encoding of visual stimuli occurs at the 
level of the ganglion cells whose axons converge into the optic nerve. However, the 
firing rates of the ganglion cells carry information about the external stimulus after 
that this has already been processed by the complex neural circuits within the retina, 
made of photoreceptors, horizontal, amacrine and bipolar cells.

The aim of this work is to emulate the neural dynamics of human ganglion cells through 
a real time implementation of spiking neuron models. Visual data acquired by means 
of a webcam will be encoded in the spiking patterns of the simulated ganglion cells 
mimicking the way the same image would have been encoded in ganglions cells firing 
after reaching the retina. Our algorithm in particular aims at encoding colour features 
of the image with a neuromorphic approach, contributing to the quest for an innovative 
bioinspired artificial visual system.

Briefly, image processing and reconstruction work as follows. A grid of arbitrary size 
is applied on the real time acquired image, determining the resolution of the artificial 
sense. Each one of the regions of interest feeds a virtual neuron. The neurons are imple-
mented on a National Instrument myRIO embedded device, which is reconfigurable 
and reusable and can feature parallel programming and high execution frequencies. We 
modelled ganglions cell with an Izhikevich neuron model, implemented in LabVIEW. 
A proper choice of the model parameters was selected to replicate the adaptive prop-
erties of the retina in processing to contrast and colours. For each region of the image 
a 16-elements colour spectrum is computed. The gain factor of the input current to 
each neuron is based on the major colour of the spectrum. Exploiting the adaptive 
dynamics of the neurons, 9 colour features, that are 7 biologically relevant colours and 
black and white, are encoded into different firing rates. Real time decoding of these 
firing rates finally leads to a colour based reconstruction of the image.
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The obtained results show a real time recognition of 5 out of the 9 classes previously 
encoded (red, green and blue as cones  photoreceptors , black and white as rods hoto-
receptors ), under certain controlled luminosity constraints. The 20 kHz updating fre-
quency of the decoding of the image is biologically plausible. Moreover, the achievable 
spatial resolutions of the grid compete, or in some cases even exceed, the ones of the 
available artificial retinal implants. This work offers an alternative classification method 
for visual features recognition, which has the potential to achieve great results, using 
a simpler algorithm than the traditional one. The advantage of bioinspired methods 
is the reduction of computational com- plexity, resulting in an overall optimization, 
keeping high  efficiency. Taking advantage of the built-in Wi-Fi of the myRIO board, the 
developed system could be exploited in autonomously moving robots. Finally, this study 
may be useful  for closed loop hybrid bionic systems to restore missing vision-sensory 
function or to augment it and it could also be integrated in neurophisiological studies.
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Neurogenesis is a process of nerve tissue creation taking place during prenatal devel-
opment or during adulthood in two discrete areas of the brain: the subgranular zone 
(SGZ) of the hippocampal dentate gyrus, and the subventricular zone (SVZ), which 
projects through the rostral migratory stream to the olfactory bulb. In the hippocam-
pus, newborn cell survival has been shown to increase performance in trace eyeblink 
conditioning, while levels of proliferation positively affects reactions to novelty [for 
review, see Lledo et al. (2006)], with positive correlations regarding perceptual and 
memory functions also identified in the olfactory bulb.

We are investigating the problem of designing structurally evolving spiking neural 
networks running on the SpiNNaker (Furber et al., 2013) neuromorphic computation 
platform, as well as the computational advantages of enabling neural populations to self 
organize using stochastic processes. This platform is a massively parallel system relying 
on low-power ARM CPUs interconnected using a custom communication fabric in 
order to eciently simulate spiking neural networks in biological real time. The research 
revolves around enhancing the existing PyNN (Davison et al., 2008) neural simulator 
running on SpiNNaker to allow for structural plasticity in a biologically plausible way. 
More specifically, the processes to be investigated are neurogenesis and synaptogenesis 
as they occur post-development, in pre-existing circuits.

Initially, the process of synaptogenesis will be modeled in the context of topographic 
map formation (Bamford, 2010), laying the groundworks for encoding and using 
spatial information in spiking neural networks (SNN) simulated on this distributed 
neuromorphic system. Afterwards, newborn neurons will be allowed to be created at 
runtime, the rate of which will be controlled using a homeostasis mechanism.
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FIGURE 1: Screenshot of the Atari Breakout game.

These experiments have as a main desired outcome the exploration of additional learn-
ing mechanisms in artificial spiking neural networks, more specifically a mechanism 
to complement synaptic plasticity [STDP (Markram et al., 1997)]. The mechanism that 
we are exploring is expected to provide a longer-term type of learning, encoded by the 
topology of the network (from weeks to months), while STDP provides short-term 
learning (from minutes to hours). One application of structural plasticity on SpiNNaker 
will be in creating an agent that will learn to play video games (e.g. the Atari Breakout 
game picture in Figure 1) using a reinforcement learning algorithm implemented in 
spiking neurons. In the context of this task, this novel learning mechanism is expected 
to provide transferable skills between different games, i.e., to allow the agent to learn a 
new game more rapidly based on previous knowledge of a different, yet similar game. 
Additionally, we postulate that synaptic rewiring can, from a computational point of 
view, provide a form of random search of the state space of the game, thus helping in 
exploration.
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Increasing the size and complexity of spiking neural networks represents a growing 
challenge for numerical simulations. Even assuming that today’s largest simulations—
and the supercomputers they run on—could be scaled up straightforwardly to the size 
of a human cortex, running these simulations would be quite prohibitive due to both 
their power consumption and their slow-down with respect to biological time. State-
of-the-art analog neuromorphic systems promise high execution speeds combined with 
a low energy footprint—mostly independent of the emulated model’s size (Indiveri et 
al., 2011). The «physical model system» developed at Heidelberg University as part of 
the HBP Neuromorphic Computing Platform features a scalable computation substrate 
based on wafer-scale integrated neuromorphic cores. The basic building block of this 
platform is the High Input Count Analog Neural Network (HICANN) chip built in 
180 nm CMOS technology (Schemmel et al., 2008). Its successor, the HICANN-DLS 
(Digital Learning System), which employs a more advanced 65  nm technology, is 
currently under development.

Designing scalable circuits for such a platform is challenging, as it inevitably requires 
a tradeoff between technological feasibility and the faithful reproduction of biolog-
ical dynamics. As an example, we discuss the development of a circuit for modeling 
synaptic dynamics.

Starting from in vitro findings and their associated phenomenological model (Tsodyks 
and Markram, 1997), a simplified model of synaptic depression and facilitation suitable 
for implementation in an integrated circuit is presented (Schemmel et al., 2006). We 
introduce the basic building blocks of such a circuit and compare their dynamics to 
the reference model. Additionally, we walk through some of the design techniques and 
paradigms used in the development process. This includes software-assisted circuit 
optimizations as well as advanced pre-production verification methods. In particular, 
we explain how a simple evolutionary algorithm enabled us to optimize the perfor-
mance of a sub-circuit as well as its area requirements by finding suitable transistor 
sizes that would have otherwise been difficult to infer.
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In analog neuromorphic devices, the physics of neurons and synapses is replaced by the 
physics of semiconductors. Instead of numerically calculating (simulating) solutions 
to the differential equations that govern neuro-synaptic dynamics (Brette et al., 2007), 
analog neuromorphic circuits are built to obey these equations, thereby closely repli-
cating (emulating) the behavior of their biological archetypes (Mead, 1990). Modern 
neuromorphic devices (Indiveri et al., 2011) aim to provide a configurable substrate 
for the study of network dynamics with the long-term aim of making use of the com-
putational potential of spiking neural networks.

In order to achieve a good combination of configurability and precision under the 
constraints imposed by the available technology, we design our chips using a mix of 
analog and digital circuits (Schemmel et al., 2010). Our neuronal circuits, for example, 
model their membrane potential as an analog dynamical variable, but transmit spikes as 
digital events. The neuronal dynamics constitute a physical realization of the adaptive 
exponential integrate-and-fire model (Brette and Gerstner, 2005) that has been shown 
to capture relevant properties of biological neurons (Naud et al., 2008).

Our low-power accelerated implementation of the neuron model trades precision for 
energy efficiency and speed. In particular, the dynamics of the implemented circuits 
deviate from the ideal mathematical description. It is therefore essential to verify that 
the design still captures the most relevant behavioral characteristics of the model. This 
verification process additionally provides high-level test cases that are used to uncover 
errors in design or implementation and to test the usability of the design.

We present a verification methodology that allows evaluating the relevant properties of 
a neuron circuit already during the design phase. To this end we have developed a sim-
ulation setup that allows the detailed investigation of a complete neuron circuit. In the 
simulations individual components such as transistors are parameterized using detailed 
physical characteristics, including mismatch and process variations. The simulation 
setup is accompanied by a series of biologically-inspired single neuron benchmarks 
(Naud et al., 2008; Jolivet et al., 2008), which are designed to compare neuron models 
to each other and in particular to check them against biological data. Our most recent 
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circuit designs have been tested and enhanced using our method and are expected to 
show clear improvements over previous chip generations.
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Neuromorphic devices emulate various aspects of biological neural networks in micro-
electronic circuits, such as connectivity structure (Furber et al., 2012) or continuous 
time dynamics (Schemmel et al., 2010). Several generations of such single-chip devices 
have been developed in Heidelberg (Schemmel et al., 2010; Pfeil et al., 2013; Friedmann 
et al., 2013; Aamir et al., 2016). To facilitate scaling towards large networks, many 
of these devices can be integrated into a so-called wafer-scale platform such as the 
BrainScaleS system (Schemmel et al., 2010).

Shaping this device into an easily usable emulation platform is significantly different 
from interfacing a classical supercomputer architecture. Several software abstraction 
layers provide a high-level view of the hardware to the user, providing back-end-specific 
functions such as fixed-pattern noise reduction (neuron and synapse calibration) or 
resource allocation (mapping) (Petrovici et al., 2014).

To make efficient use of the accelerated dynamics inherent to our neuromorphic back-
end, particular attention needs to be paid to the communication infrastructure, both 
on-wafer (chip-to-chip) and off-wafer (wafer-to-user) (Brüderle et al., 2011). In order 
to minimize the ratio between configuration time and execution time, the communica-
tion interface needs to have a high throughput. At the same time, a low latency is also 
required for enabling closed-loop interactions with simulated or physical environments.

We present an overview of the BrainScaleS software framework with particular empha-
sis on the communication infrastructure. Our most recent benchmark results demon-
strate how this interface can achieve communication speeds of up to 2.8 GB/s, which 
is the equivalent of simultaneously reading out the spike trains from 72,000 neurons 
firing at an average of 1 Hz (bio time) on the wafer.
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In view of mounting evidence that brains solve various cognitive tasks by perform-
ing Bayesian inference (Körding and Wolpert, 2004; Berkes et al., 2011), theoretical 
models have been developed to explain how such computations can be implemented 
in networks of spiking neurons (Buesing et al., 2011; Pecevski et al., 2011; Petrovici et 
al., 2013; Probst et al., 2015). In the neural sampling framework (Buesing et al., 2011; 
Pecevski et al., 2011), the activity of spiking neurons is interpreted as sampling from 
an underlying probability distribution that is shaped by the network’s parameters. 
Operating under this premise, the models developed in (Pecevski et al., 2011; Petrovici 
et al., 2013; Probst et al., 2015) have shown how biological neural networks can make 
use of the high-conductance state to achieve equivalent computational capabilities. 
This allows, for example, the straightforward reproduction of well-known stochastic 
behavioral phenomena such as perceptual ambiguity with biologically plausible spiking 
neural networks (Petrovici et al., 2013). Here, we briefly review several applications 
of such spiking sampling networks, including a somewhat exotic discussion of their 
connection to statistical physics.

The computational abilities of these networks can be directly put to use in classical machine 
learning tasks such as handwritten digit recognition. In addition to achieving a similar 
performance when compared to traditional approaches such as Gibbs sampling, our 
spiking networks can profit from biologyinspired features such as short term plasticity 
to simultaneously provide good generative capabilities, which are otherwise difficult to 
achieve (Leng et al., 2015). Owing to the fact that our networks employ LIF neurons—a de 
facto standard model for neuromorphic devices—our networks can directly benefit from 
the advantages offered by these substrates. In particular, the emulation on an accelerated 
mixed-signal chip (Pfeil et al., 2012) has recently been demonstrated (Petrovici et al., 2015), 
which paves the way for larger-scale, accelerated applications for demanding computational 
tasks (Schemmel et al., 2008; Leng et al., 2015).

The approximate equivalence of the dynamics of LIF networks to the so-called Glauber 
dynamics in microscopic models of magnetic materials (Petrovici, 2016) raises the 
question whether macroscopic effects, such as the relationship between magnetization, 
external field and temperature, are also conserved. Preliminary experiments suggest 
consistent behavior in the perturbative limit (large temperatures, weak external excita-
tion), but deviant behavior around critical points.
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Introduction: Simulations of the whole human brain have been suggested as a way 
to better understand the relationship between structural and functional connectivity 
(Deco et al., 2014; Schmidt et al., 2015; Sanz-Leon et al., 2015). These simulations are 
complex and computationally challenging due to the amount of active elements to be 
simulated in a human brain. Depending on the scale, these active elements can be: 
molecules, channels, compartments, neurons, synapses, populations, microcircuits, 
brain regions, etc. On top of this, the structural experimental data we have at hand 
today is not precise or complete enough to allow a detailed simulation at neuron level. 
Some strategies to overcome these problems have been suggested in the past. On 
one side, optimized models which simulate regions instead of neurons can be used 
to enhance the performance of the simulations, but loose insight on the activity at 
neuron level (Wong and Wang, 2006; Deco et al., 2013). On the other side, large scale 
simulations at neuron level are still not feasible for the whole brain and for prolonged 
times (Kunkel et al., 2014). However they can provide more accurate information of 
the activity patterns among neurons. Due to the large number of free parameters in 
these simulations, an efficient way to explore the possible connectivity configurations 
is required. In this work we show different strategies to navigate through structural 
connectivity parameter spaces in order to support the study of the relationships between 
structure and function at different scales. We tackle the exploration both at neuron 
level and at population level.

Methods: We work with a multiscale setup which involves neuron level simulations 
running on NEST 2.10.0 (Bos et al., 2015) connected to a dynamic mean field model 
(DMFM) simulation of the whole brain. This multiscale approach allows the analysis 
of the impact of different connectivity parameters on simulated functional signals 
which can be compared to fMRI data. Our work involves two levels of exploration: 
first, we use an interactive visualization tool to asses and steer the automatic generation 
of connectivity at neuron level. We investigate the effect of iteratively propagating the 
resulting connectivity data for some fixed global parameters to a higher scale by using it 
as input for the mean field model simulations. Second, we describe the implementation 
of a series of adaptive approaches designed to guide the navigation through the global 
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connectivity parameter space for the mean field model simulations. We analyze the 
efficiency and performance of the optimization using different algorithms. For this, 
we perform large parameter sweeps and maximize a fitness metric.

Results: We show the results of using our interactive visualization tool to generate 
neuron level connectivity data and reduce the times to obtain suitable local connec-
tivity which can be propagated to the larger scale model. We also show a comparison 
between the adaptive algorithms and a brute force approach to optimize the selected 
fitness metrics.

Discussions: Efficient techniques to explore large parameter spaces such, e.g., the con-
nectivity in whole brain simulations are of great importance to make optimal usage of 
computational resources and enhance the understanding of the relationships between 
structure and function of the system. In this work we show interactive visualization 
and automatic tools to aid the navigation through these complex parameter spaces.
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Earlier theoretical studies on simplified neuronal models suggested that the joint fir-
ing activity of ensembles of cortical neurons may relay downstream rapidly varying 
components of their synaptic inputs, with no attenuation. Information transmission in 
networks of weakly-coupled model neurons may in fact overcome the limits imposed by 
the spike refractoriness and the slow integration of individual cells, effectively extending 
their input-output bandwidth when operating as ensembles of cells. This has been first 
confirmed experimentally only recently but in a very limited subset of cortical neuronal 
types both in rodents and in human cortical cells. However, to a big surprise, neurons 
were found to track and relay inputs varying in time much faster (beyond 200 cycles/s) 
than explained by their ensemble mean firing rates (∼10 spikes/s).

Such an unexpectedly broad bandwidth of neuronal dynamics has been theoretically 
linked to the onset rapidity of action potentials (AP) and to the features of their initia-
tion. However competing theories explain AP fast onset by resistive impedance match 
between the axon and the soma, or by back propagation of the AP along the axon back 
to the soma, or finally by cooperative operation of sodium voltage-gated ion channels. 
In these perspectives, the availability of the model data set released by the Blue Brain 
Project is of great relevance and it offers for the first time the possibility to investigate 
in silico the input-output neuronal bandwidth and link it to the underlying biophysical 
properties of the model.

In this poster contribution, I will report about our recent progress in the in silico 
exploration of input-output transfer properties of morphologically detailed multi 
compartmental models.
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Anatomically and biophysically detailed conductance-based neuronal models can be 
useful tools in understanding the behavior and function of neurons. Although there 
are more and more experimental data available that constrain the many parameters 
of multi-compartmental models, there are generally several remaining parameters 
whose values have not been experimentally determined. The values of these unknown 
parameters are often set using manual, ad hoc procedures with the aim of reproducing 
the behavior of the cell in one or a few specific paradigms. However, the performance of 
such a model outside the original context typically remains unexplored, and systematic 
comparisons of different models are difficult and thus rare, limiting the reusability of 
these models. Recently, several solutions have been developed for the systematic opti-
mization of neuronal parameters based on the quantitative evaluation of model perfor-
mance, but customizing these tools to individual needs can be a substantial challenge. 
To overcome these problems we are developing software tools for automatic model 
validation, and for the automated, intuitive fitting of unknown model parameters.

For automatic and quantitative model validation we are developing a python test suite, 
called Hippounit (available at: https://github.com/sasaray/neuronunit), which is based 
on NeuronUnit, a SciUnit repository for testing neuronal models (Gerkin and Omar, 
2014). Hippounit automatically performs simulations that mimic experimental proto-
cols on detailed hippocampal CA1 pyramidal cell models built in the NEURON simu-
lator. To test a model the user needs to create a python class for the model, including its 
intrinsic mechanisms, and receptor models can also be added for synaptic stimulation 
of the model cell. The tests of Hippounit use feature-based error functions to compare 
the output of the model to the results of experimental measurements on several different 
cells. Errors are typically measured as the difference from the mean of the experimental 
data, measured in the units of the experimental standard deviation (Druckmann et 
al. 2007). The final output of a test is an error score that is the sum of the errors of 
all the features tested by the given test, and a number of figures which illustrate the 
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model’s behavior and the extracted feature values. Beside Hippounit’s own functions, 
the Electrophys Feature Extraction Library (eFEL) of the Blue Brain Project is used for 
feature extraction. So far there are three different tests implemented in Hippounit. The 
Somatic Feature Test uses the somatic spiking features of eFEL for parameter fitting; 
target values for these features were extracted from recordings in rat CA1 pyramidal 
neurons in the laboratory of Alex Thomson. The Depolarization Block Test aims to 
determine whether the model enters depolarization block in response to prolonged, 
large-amplitude current injections to the soma, using experimental data from Bianchi 
et al. (2012). Finally, the Oblique Integration Test probes the integration properties of 
oblique dendrites according to the experimental results of Losonczy and Magee (2006). 
Using Hippounit, we have compared the behavior of several CA1 pyramidal cell models 
in these domains, and found that all of these models perform well in some domains 
(typically on features they were built to capture) but badly in others.

We also present the new release of the Optimizer software tool (available at: https://
github.com/KaliLab/optimizer) and the improvements made in it since its initial release 
[the version described in Friedrich et al. (2014)]. Optimizer is a general-purpose tool for 
fitting the parameters of neuronal models. Optimizer offers a graphical user interface 
(GUI) for non-expert users to do optimization in several commonly used scenarios. It 
implements several different optimization algorithms and a number of fitness functions 
which can also be combined. Optimizer has a modular structure that makes it easy to 
extend it by adding new optimization algorithms and/or fitness functions. Recently 
added optimization methods include random search, and the differential evolution 
and particle swarm algorithms from the inspyred package. The software can now 
handle a combination of voltage traces and corresponding explicit spike times; this is 
important for the correct optimization of integrate-and-fire models. Several bugs have 
been fixed; most importantly, when selecting parameters for optimization in the GUI, 
only actual parameters (and not state variables) of Neuron models are displayed. In 
addition, the software now can handle abstract data that are already extracted from 
traces. This capability has been used to fit the behavior of a CA1 pyramidal cell model 
to the somatic spiking features described above. The performance of several optimiza-
tion algorithms in Optimizer has been systematically compared on some benchmark 
problems, including the optimization of both conductance-based and integrate-and-
fire models. We concluded that the classic evolutionary algorithm and the particle 
swarm algorithm included in Optimizer were effective in solving all types of problems, 
while the simulated annealing and the random search algorithms performed poorly 
in most of the cases.

Automated tools for model fitting and validation should enable a more principled and 
systematic approach to model building and validation. Together with efforts on other 
important components such as standardized model representation, such tools should 



Frontiers in Neuroscience 91

 1st Human Brain Project Student Conference

make possible the reproducible construction, validation, and comparison of detailed 
neural models, and encourage collaborative research in computational neuroscience.
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Recent interest in the neuroscientific field of consciousness has created a surge in 
research trying to understand the inner workings of the mind and to objectively 
measure conscious states. However, little is known about the psychedelic state of con-
sciousness produced by psychoactive drugs. The advent of methods which can more 
accurately determine the state of consciousness in various healthy and unhealthy pop-
ulations, may allow for investigation into the psychedelic state.

Levels of consciousness have been differentiated by estimating the complexity of EEG 
signals after TMS stimulation with a metric called the perturbational complexity index 
(PCI) (Casali et al., 2013). The PCI values range from 0 to 1 and a high PCI score (closer 
to 1) will occur if the TMS perturbation causes EEG changes that spread widely to 
many unstimulated brain areas, and shows a complex pattern over time. This signifies 
a highly integrated and differentiated, complex network state which correlates with 
a high state of awareness. On the other hand, a low PCI score (closer to 0) will result 
from a reduction in either integration or differentiation or both, and correlates with 
an unconscious or reduced conscious state.

The PCI seems to give a clear indication of the consciousness level of different subject 
and patient groups. Previous research has focused on the lower ends of the scale, dif-
ferentiating coma, vegetative state, sleep and awake state from each other. However, 
there is little research on states which may produce a higher conscious experience. The 
highest measured PCI is for awake participants and lies between 0.44 and 0.67 (Casali 
et al., 2013). This leaves the upper range of the index unmeasured. The question then 
becomes: is it conceivable that there may exist states with higher conscious experience 
(compared to the normal awake state) giving a measurably higher PCI value? In other 
words, may the brain attain states of consciousness with a higher degree of integration 
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and differentiation than the normal, fully alert, awake state, such that the PCI score 
will exceed that of the normal awake state?

Compared to the awake state, anaesthetic doses of ketamine produce a similar, high 
PCI score of between 0.35 and 0.55 (Sarasso et al., 2015). Anaesthetic doses of ketamine 
produces unresponsiveness as well as vivid dreams and hallucinations (Collier, 1972). 
Subanaesthetic doses of ketamine maintains an awake state with the addition of psy-
chotomimetic effects (i.e., resembling psychosis), including disturbances in thinking 
and perception (Rowland, 2005). A higher PCI score might thus be attained if awake 
participants are given subanaesthetic doses of ketamine that give particularly vivid 
experiences. This is based on the assumption that the wake state combined with the 
perceptual change reflect a state of higher integration and differentiation in the brain’s 
networks.

Methods: We will use the combined non-invasive techniques of transcranial magnetic 
stimulation (TMS) and high-density electroencephalography (hdEEG) to stimulate 
the cortex and measure the response. Healthy participants will be given single TMS 
pulses before and during administration of low dose ketamine. This allows PCI to be 
measured in both the awake and psychedelic state. Furthermore, continuous hdEEG 
recording permits the measurement of brain connectivity during each state and in the 
transition between the states. Psychoactive effects of ketamine will also be assessed 
by psychological tests.

Aims: The main aim of the study is to investigate the effects of subanaesthetic doses 
of ketamine on consciousness using the PCI obtained by TMS and EEG. Additional 
aims are to further test the validity and usefulness of PCI as an objective method for 
assessing the state of consciousness, and to increase our knowledge of the methods for 
subsequent anaesthesia trials. Finally, spontaneous hdEEG recordings can be used to 
measure the changes in cortical functional and effective connectivity patterns induced 
by subanaesthetic ketamine, which can also be compared to the measured PCI.

Predictions: We wish to test the possibility that subanaesthetic doses of ketamine may 
give a higher PCI value than in the normal awake state. This may happen, if ketamine 
is able to increase neural entropy (differentiation), producing a psychedelic experience, 
while at the same time maintaining integration (Gallimore, 2015).

Support: Supported by the Norwegian Research Council (NRC), and the “Conscious 
Brain” project(coordinator J.F. Storm) within the Human Brain Project (HBP, SP3.4).
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The mammalian prefrontal cortex is associated with complex, high-order processes 
such as decision making, forward planning, goal directed behavior, executive function 
and emotional control (Miller and Cohen, 2001; Alvarez and Emory, 2006; Vertes, 
2006).

The organisation of connections is typically ordered throughout the cerebral cortex. 
Studies indicate that this is the case in Prefrontal Cortex (PFC). In a traditional model 
of hierarchical organisation, PFC is positioned at the top of a processing hierarchy 
(Alexander et al., 1986; Fuster, 2001; Botvinick, 2008). In a hierarchical model, con-
nections would travel from primary sensory cortex, followed by secondary sensory 
cortex and association areas, then reaching the top of the processing hierarchy, e.g., PFC. 
This is followed by return connections travelling to secondary motor cortex followed 
by primary motor cortex (e.g., S1 → S2 → Association areas → PFC → M2 → M1), 
it is understood that reciprocal connections exist between source and target regions 
at each level of the hierarchy. Based on this understanding of cortical connectivity, it 
is thought that all cortical networks must contain a significant level of reciprocity in 
order to function, making it a fundamental structural component.

We injected the neuroanatomical tracers Fluoro-Gold and Fluoro-Ruby into sub-re-
gions of PFC in the rat. Tracer injections were made into 3 coronal levels within the 
PFC (anterior, central and posterior), separated by 1mm. We found that both tracers 
produced prominent labelling in temporal and sensory-motor cortex. Fluoro-Gold 
produced retrograde labelling and Fluoro-Ruby produced largely anterograde labelling. 
Statistical analysis of the 3-dimensional location of these connections within temporal 
and sensory-motor cortex revealed consistent ordering (p < 0.001). At the anterior and 
central coronal levels, injections (i.e., equivalently located injections employing the 
same tracer) produced a similar pattern of ordering, this was particularly prominent 
within temporal cortex. However, at the posterior coronal level this pattern of ordering 
was reversed in temporal cortex and was also changed in sensory-motor cortex. This 
provides evidence for differential ordering of connections in the anterior-posterior axis 
of PFC, indicating a possible connectivity gradient in terms of functional complexity. 
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Such a functional connectivity gradient is supported by imaging studies (Taren et al., 
2011) and suggestions of a gradient of abstraction (Christoff et al., 2009) in humans.

These findings imply that, in terms of decision making for instance, that decisions 
become more complex towards anterior PFC, or that more complicated forward plan-
ning is localised to more anterior regions of PFC. When considered alongside observa-
tions of functional gradients, our observed connectivity gradient specifically suggests 
that more abstract processes, e.g., highly complex abstract decisions or plans, require 
connections to be non-reciprocal and involve more complex circuitry.
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Introduction: Developing a valid and reliable measure of varied conscious states is 
not only important from a basic research perspective, but also in a clinical setting. It 
is of crucial importance to differentiate comatose, vegetative state (VS), minimally 
conscious, and locked in states in terms of conscious experience. In addition, accidental 
awareness during general anesthesia (Sebel et al., 2004), can cause severe pain, anxiety, 
and potential post-traumatic stress disorder (Osterman et al., 2001, Prendergast and 
Cullen-Drill, 2012).

For the clinic there exist multiple measures for assessing and monitoring conscious 
states, such as the bispectral index, EEG entropy, auditory evoked potentials, and 
several others. However, most of these measures are unreliable in combination with 
certain anesthetic agents, subjective factors, or external circumstances such as electrical 
noise (Webb et al., 1993, Bowdle, 2006, Musizza and Ribaric, 2010). Clinical diagnosis 
of different disorders of consciousness is also limited in terms of accuracy, with up to 
41% misdiagnosis (Schnakers et al., 2009, Gawryluk et al., 2010).

Guilio Tononi has proposed a theory of consciousness based on a systems ability to 
integrate information (Integrated Information Theory of Consciousness; IIT, Oizumi 
et al., 2014). The theory offers straight forward predictions regarding the necessary 
structure and behavior of physical systems, for them to have conscious experience. 
However, calculation of the theory’s proposed measure (PHI) is limited both by imaging 
technology and theoretical computational limits for any reasonably complex systems, 
thus necessitating surrogate measures.

The Perturbational Complexity Index (PCI; Casali et al., 2013) is a proposed surro-
gate measure of IIT’s PHI. PCI is calculated from the information differentiation and 
integration of brain activity after perturbation by transcranial magnetic stimulation 
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(TMS), as measured by Electroencephalography (EEG). Earlier studies employing PCI 
have shown a clear and most importantly individually accurate ability to distinguish 
between assumed conscious states (awake, dream sleep, ketamine anesthesia), assumed 
unconscious states (deep sleep, coma, VS, anesthesia) and in between for assumed 
partially conscious states (Casali et al., 2013, Sarasso et al., 2014, Casarotto et al., 2016). 
However, while the PCI measure is minimally invasive, robust, and flexible, it is still 
in its infancy and need external validation and comparison to existing and even less 
invasive methods.

Aims: Our aim is to replicate and extend earlier results involving PCI and compare the 
measure’s specificity and sensitivity in classification of conscious and unconscious states 
with other proposed and deployed measures of consciousness. More specifically, we aim 
to classify the effects of anesthetic agents propofol, ketamine, tiopental, midazolam, 
on human consciousness by employing the PCI, the Directed Transfer Function, and 
other potential measures, in healthy volunteers.

Methods: We will employ high density EEG (64 channels, BrainProducts) and TMS 
(BrainProducts) using a figure 8 coil in combination with motion tracking for cortical 
stimulation localization. 30 healthy participants will be recruited following ethical 
and safety guidelines (for both TMS, anesthesia, and MRI). Measures include 2 min 
of eyes-open, and eyes-closed passive EEG recording; 10 min of TMS to right lateral 
superior prefrontal cortex with 300 trials of single-pulses set at 120% intensity of the 
intensity of 0.5 probability of resting Motor Evoked Potential (MEP) as measured by 
Electromyography (EMG); administration of anesthetics until behavioral unrespon-
siveness with concurrent passive EEG measurement; 10 min of TMS; and a gradual 
ascent from anesthesia to wakefulness with concurrent EEG.

The results will be preprocessed according to standards for the respective methods 
employed for analysis, but mainly consisting of notch-filter (to exclude line noise), 
bandpass filter (0.5–80 Hz), baseline centering, pre-whitening, interpolation of TMS 
artefact (if applicable), ICA based noise rejection, and trial/channel inspection and 
rejection.

Predictions: We predict to observe similar results compared to prior findings (Casali 
et al., 2013, Casarotto et al., 2016), and that the other measures correlate with the PCI 
measure. However, we also predict that the PCI has higher sensitivity and specificity 
compared to other measures employed. In addition, based on pilot data, we hypothesize 
that the PCI measure might vary in absolute terms between institutions and setups, 
and therefore we might not observe similar absolute values as earlier studies report, 
but a similar differentiation between states.
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Introduction: Cortical neurons form a highly interwoven network. Cell assemblies 
(Hebb, 1949), i.e., interacting groups of neurons, were suggested as the building blocks 
of information processing in the brain (Singer et al., 1997; Harris, 2005). It is observed 
that i) spike time coordination at millisecond precision shapes synaptic efficacy (Bi and 
Poo, 1998), ii) neurons emit a spike more reliably upon synchronous than asynchronous 
input (Abeles, 1982), and iii) synchronous input may result from pre-synaptic spikes 
emitted at different times but arriving simultaneously at the post-synaptic site. Modern 
electrophysiological techniques allow to record hundreds of neurons simultaneously 
and thereby increasing the chances to observe neurons involved in assemblies expressed 
by spatio-temporal spike patterns (STPs).

Method: We developed a statistical method to detect STPs in massively parallel spike 
data (MPST), i.e., on the order of 100 or more neurons. The method is able to deal 
with the combinatorial explosion of the number of patterns occurring in such high-di-
mensional data by employing a combination of frequent item set mining (Torre et al., 
2013) and a stability analysis algorithm (Kuznetsov, 2007), exploiting the fact that the 
mathematical foundation of frequent item set mining is equivalent to formal concept 
analysis (Ganter and Wille, 1999). Our proposed method can statistically assess the 
patterns and reduce considerably the multiple testing problem by use of Monte-Carlo 
approaches. As a result the method extracts STPs that occur significantly in excess as 
compared to STPs that occur by chance.

Results: We evaluate our method on ground truth MPST data generated by stochas-
tic simulations. The performance of the method (in terms of false positive and false 
negative detections) is affected by a variety of parameters, such as the number of STP 
occurrences, the number of neurons involved in each pattern, and the firing rates of 
the neurons. Various features of experimental data are considered in analysis, such as 
non-stationary firing rate in time or inhomogeneity across neurons, and inter-spike 
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interval regularity. We demonstrate the robustness of our method in respect to these 
parameters by simulating different scenarios which replicate such features.

Our results show that the method is suited for the analysis of STPs in massively parallel 
spike trains thereby offering the possibility to relate such patterns to behavior and show 
their computational relevance.

Acknowledgments: Supported by the Helmholtz Portfolio Theme Supercomputing and 
Modeling for the Human Brain (SMHB), the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 720270 (HBP SGA1), the DFG 
SPP Priority Program 1665 (GR 1753/4-1), and the DFG IRTG 1901.
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In cultured neuronal networks one can often detect spontaneous short-term (fractions 
of a second) repetitive synchronization of neuronal spiking activity called a network 
spike or a population burst (PB). In a recent paper (Orlandi et al., 2013) it has been 
shown experimentally that a typical PB has a few stable spatial sources—nucleation 
centers of traveling waves of synchronous spiking activity. The causes of the occurrence 
of nucleation centers have not yet identified.

Our simulations show that in spatially uniform neuronal cultures, where the proba-
bility of interneuronal connection formation decreases exponentially with increasing 
distance between the neurons (Miles et al., 1988), there exists a small number of spa-
tial nucleation centers of PBs, from where the synchronous spiking activity usually 
propagates in the network in the form of circular traveling waves [see Paraskevov 
and Zendrikov (2017) for details]. The number of nucleation centers, as well as their 
spatial location, is unique and unchanged for a given realization of neuronal network 
but is different for different networks. In contrast, if the probability of interneuronal 
connection formation is independent of the distance between neurons (provided that 
the average number of outgoing synaptic connections per neuron in the network is 
conserved), then the nucleation centers do not arise and the synchronization of spiking 
activity during a PB occurs spatially uniform throughout the network. Therefore one 
can conclude that spatial proximity of connections between neurons is important for the 
formation of nucleation centers. It is also shown that fluctuations of the spatial density 
of neurons at their random homogeneous distribution typical for the experiments in 
vitro do not determine the location of the nucleation centers.

Interestingly, if the average number m of outgoing connections per neuron is suffi-
ciently large, then a drifting spiral wave can arise during some PBs (see Figure, where 
50,000 neurons with m ≈ 460 are uniformly distributed over the unit square), given 
that most of the PBs still start with circular traveling waves propagating from the 
stationary nucleation centers.
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In general, these findings are in qualitative agreement with the already known. 
Similar effects (e.g., circular and spiral waves), regardless to the occurrence of PBs, 
were obtained in previous computational studies (Milton et al., 1992; Chu et al., 1994; 
Fohlmeister et al., 1995; Kistler et al., 1998) using different models of the neuronal 
network, and drifting spiral waves were observed experimentally in disinhibited neo-
cortical slices (Huang et al., 2004).

Upper graph: Averaged (over 2 ms) spiking activity of the network of 50,000 neurons 
(20% are inhibitory neurons), with approx. 460 outgoing connections per neuron and 
characteristic connection length 0.04 L. The neurons are uniformly distributed over 
the square area L × L of unit size (L = 1). Lower graph: LEFT: Network activity during 
the population burst (PB) marked by the arrow in the upper graph. RIGHT: Snapshots 
of the instantaneous spatial activity of neurons for the corresponding moments of the 
PB. Blue dots depict neurons and red dots highlight spiking neurons. A drifting spiral 
wave during the PB is clearly visible.
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Electroencephalography (EEG), i.e., recordings of electrical potentials at the scalp, 
and electrocorticography (ECoG), i.e., potentials recorded on the cortical surface, are 
two prominent techniques probing brain activity at the systems level. Despite their 
long history and widespread use, the proper interpretation of these brain signals in 
terms of the biophysical activity in underlying neurons (nerve cells) and neuronal 
networks is still lacking. Present-day analysis is predominantly statistical and limited 
to identification of phenomenological signal generators without a clear biophysical 
interpretation. New biophysics-based analysis methods are thus needed to take full 
advantage of these brain-imaging techniques (Einevoll et al., 2013).

Here we used biophysical modeling based on morphologically detailed multicom-
partmental neuron models to explore single-neuron contributions to ECoG and EEG 
signals and in particular the feasibility of using the so-called current-dipole approxi-
mation in predicting these signals (Hamalainen et al, 1993). Specifically, we used the 
open-source Python package LFPy (lfpy.github.io) which builds on Neuron (www.
neuron.yale.edu) and is based on well-established volume-conductor theory for numer-
ical calculations of extracellular potentials. The LFPy package was supplemented with 
new Python tools for calculating the current-dipole moment of a neuron for use of 
the current-dipole approximation to predict ECoG and EEG signals. Current-dipole 
approximations were explored in the inhomogeneous four-concentric-spheres head 
model (Srinivasan et al., 1998), and compared with results from using the Finite 
Element Method (Dhatt et al., 2012).

When comparing computed cortical-cell contributions to the EEG and ECoG signals 
from using the current-dipole approximation with results from the full model explicitly 
including all transmembrane currents, we find that the current-dipole approxima-
tion is applicable for modeling EEG signals. This allows for a drastic simplification of 
future biophysics-based computation of EEG signals from cortical cell populations. 
However, we find that the current-dipole approximation is not generally applicable 
for computing ECoG signals.
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Neurological abnormalities affecting walking occur early in several types of 
non-Alzheimer’s dementias, but their value in predicting the development of demen-
tia is uncertain.

Methods and material: We analyzed the relation between neurological walking status 
at base line and the development of dementia in a prospective study involving 122 
patients older than 75 years of age who lived in the city and did not have dementia 
at base line. Methods proportional-hazards regression analysis was used to calculate 
hazard ratios with adjustment for potential confounding demographic, medical, and 
cognitive variables.

Results: At enrollment, 35 subjects had neurological walking abnormalities of the 
following types: unsteady gait (in 31 patients), frontal walking (in 7 patients), hemipa-
retic walking (in 6 patients), neuropathic gait (in 6 patients), ataxic gait (in 5 patients), 
parkinsonic walking (in 4 patients), and spastic gait (in 1 patients). During follow-up 
(median duration, 6.6 years), there were 62 newly diagnosed cases of dementia, 32 of 
them cases of Alzheimer’s disease and 30 cases of non-Alzheimer’s dementia (25 of 
which involved vascular dementia and 5 of which involved other types of dementia). 
Subjects with neurologic gait abnormalities had a greater risk of development of demen-
tia (hazard ratio, 1.96 [95% confidence interval, 1.30 to 2.96]). These subjects had an 
increased risk of non-Alzheimer’s dementia (hazard ratio, 3.51 [95% confidence inter-
val, 1.98 to 6.24]), but not of Alzheimer’s dementia (hazard ratio, 1.07 [95% confidence 
interval, 0.57 to 2.02]). Of non-Alzheimer’s dementias, abnormal walking predicted 
the development of vascular dementia (hazard ratio, 3.46 [95% confidence interval, 
1.86 to 6.42]). Among the types of abnormal walking, unsteady gait predicted vascular 
dementia (hazard ratio, 2.61), as did frontal gait (hazard ratio, 4.32) and hemiparetic 
walking (hazard ratio, 13.13).

Conclusions: The presence of neurological walking abnormalities in elderly persons 
without dementia at base line is a significant sign of the risk of development of dementia, 
especially non-Alzheimer’s dementia.
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Majority of animal species have bilaterally symmetrical nervous system. Symmetric 
and asymmetric features among their morphological symmetric nervous system have 
been interesting issue for a long time. The simplest bilaterally symmetrical organism is 
nematode called Caenorhabditis elegans. Previously, symmetry of C. elegans has only 
been thoroughly studied in morphological and functional manner (Oliver et al., 2002). 
According to previous studies, C. elegans have highly symmetrical nervous system 
composed of 92 bilaterally symmetrical neuronal pairs and remaining 95 neurons 
which are mostly located on the axis of symmetry. Functionally there are only 2 neu-
ronal pairs that show asymmetrical gene expression among 92 pairs of symmetrical 
neurons. Since investigation on network is simple but powerful tool to understand 
the system, we examined the symmetry of C. elegans nervous network which has not 
been studied. Total of 279 neurons and 2990 links in C. elegans were used. First, we 
defined the symmetry of each individual link according to their associated neuronal 
symmetry. Then we could expand that definition to define the symmetry of motif. We 
used structural motif of size 3 in this study (Olaf and Kötter, 2004). We analyzed how 
these asymmetric links are distributed throughout C. elegans function, neuronal type 
(motor neuron, sensory neuron, or interneuron), or neurotransmitter. Then, we sug-
gested a novel approach to classify asymmetric neurons of C. elegans nervous system 
by examining asymmetric network topology for every node. We defined 5 explicit 
locally topological parameters for a neuron; (1) the degree is defined as the number 
of asymmetric links attached to the neuron, (2) the motif is defined as distribution 
of the numbers of asymmetric motifs for a neuron, (3) the degree ratio is defined as 
ratio of asymmetric links over totally attached links to the neuron including both of 
symmetric links and asymmetric links, (4) the motif ratio is distribution of the rates 
for asymmetric motifs over total motifs including both of symmetric and asymmetric 
motifs, and (5) the relative distance is defined by the difference of asymmetric motif 
fingerprint of bilaterally symmetrical neurons. Thresholds were defined using mean 
and standard deviation (SD) values of asymmetries to find statistically asymmetric 
components. Neurons with asymmetry value over the threshold were considered as 
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asymmetric neurons (asymmetric neurons > SD from the mean values). We checked 
our asymmetric neurons with ASE and AWC neurons that are only known to show 
bilaterally asymmetrical function induced by asymmetrical gene expression. As a result, 
our study suggested that (4) ratio of asymmetric motif and (5) relative distance measures 
successfully classified ASE and AWC as asymmetric neurons. Neurons classified as 
asymmetric by our measures other than ASE and AWC neurons were ALN and PLM 
neurons. These results could be interpreted that ALN neurons and PLM neurons might 
possess asymmetric features that have not been discovered. Possible functional asym-
metries were suggested by investigation on individual asymmetric links they possess. 
ALNL neuron is connected to SMBDR neuron which is known to set the amplitude 
of sinusoidal movement of C. elegans. ALNR neuron is connected to SMDDR neuron 
which is associated with steep amplitude of omega turn. This suggest that ALN neurons 
are associated to C. elegans movement in different ways. PLM neuron is different from 
ALN that only one side neuron has many asymmetric links. PLML neuron is involved 
with only one asymmetric link. However, PLMR is connected to many neurons such as 
PVR, AVJL, AS06, AVAL/R, AVDL/R, DVA, and PDEL/R. Most of these neurons are 
associated with backward locomotion function and mechanosensation. We can inspect 
that PLM neuron have ON/OFF function that only one neurons show functionality. 
Our finding could be easily applied to other symmetrical networks and shed lights to 
understanding symmetry in our brains.
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Introduction: The brain is a complex organ and even to this date, very little is known 
about how it works. Through the years, replicating the intelligence of the brain has 
puzzled many scientists, and most of this work can be broadly classified into two cate-
gories—Neurophysiological or Cognitive based. The latter approach tends to overlook 
the actual structure of the brain in order to focus on the behaviour itself. This is, e.g., 
exemplified by the Turing test (Alan, 1950), which implies that if a human interacts 
with an artificial machine and identifies it as a human, then this artificial machine is 
considered sufficiently humanlike.

Proponents of the neurophysiological approach argue that the intelligence of the brain 
lies in its structure, hence if this structure can be replicated, one should be able to rep-
licate human intelligence. In this context, one of the most complete neurophysiological 
models of the neuron is the Hodgkin-Huxley model (Hodgkin and Huxley, 1990), 
which has served as a reference for biological plausibility of subsequent neural models. 
However, a major issue with the Hodgkin-Huxley model lies in the complexity to use 
it for the implementation of a complete and useful network. On the other extreme, 
one can find simple models such as the Leaky Integrate and Fire (LIF) model (Orhan, 
2012), which is the most widely used neural model, but is commonly regarded to 
be oversimplified. While this model is biologically implausible, it is computationally 
viable and can therefore be implemented into relatively large networks to study their 
behaviour and dynamics.

Even further simplified networks are already used to feed the need for intelligent 
machines that are able to learn. Today, one of the most successful machine learning 
paradigms is the Artificial Neural Network (ANN). ANNs implement a self-improving 
function by giving a certain output, based on certain inputs, where each neuron is 
modelled as a transfer function. These systems have shown commendable performance 
and form the basis for certain popular services, such as the Google Brain Project that 
provides YouTube users with recommended videos based on their viewing history 
(Covington et al., 2016). However, the computational complexity of these tasks is not 
to be underestimated, as the Google Brain combines 16,000 computers to deliver the 
capabilities of a rat’s brain (Le et al., 2012). This raises the question as to why our current 
systems are so largely inefficient when it comes to delivering brain-like functionality. 
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Considering that the theoretical limit of silicon feature sizes is getting closer and that 
the collapse of Moore’s law is upon us, it seems more than necessary to get back to the 
drawing board and start considering alternative platforms that are more efficient and 
run without the huge sematic gap.

Method: Since the initial conceptualisation of the ANN framework, much more is now 
known about cognition and neurophysiology. While this knowledge covers various 
levels, the aim here is to look at the brain from a higher abstraction level and use that 
to identify the main function of the brain. This approach can also salvage knowledge 
from our understanding of the ANN model. Therefore, as an example, an abstract 
model of the auditory pathway, as shown in Figure 1, will be investigated in more detail.

FIGURE 1: Abstract level view of the auditory pathway.

The inner ear, more specifically the cochlea, transduces the received frequencies into 
vibrations of frequency selective hair cells; these produce electrical impulses that are 
then fed to the brain. The nature of this signal can be extrapolated from what is known 
about the functioning of the auditory pathway, however the actual representation of 
the information is purposefully overlooked here to maintain an abstract perspective. 
Within the brain, the processing that takes place is closely linked with the nature of 
the input signal, and so as a first step it is essential to understand and break down 
the processing that takes place in the brain. Being an associative memory system, the 
brain compares the incoming information with what is known, through similarity 
matching. Similarity matching is one of the most important tasks in the brain and the 
brain seems to excel at this task.

Implementing similarity matching can obviously be achieved through Euclidean dis-
tance calculation or various other mathematical/statistical approaches, however these 
seem rather brute force approaches and may not be the most efficient in their own right. 
Additionally, one may need to consider how information can be stored and processed 
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within the same location to allow suitable encoded sensory information to interact with 
the stored information. Obviously, storing every single possibility of a sensory item is 
implausible because of its impact on the required amount of memory, so one solution 
could be to use a hierarchical structure. This would mean that the brain breaks down 
its comparison into stages with different abstractions (Hawkins and Blakeslee, 2007) 
and so comparison at one level is performed before comparing at the next level which 
has a higher abstraction, and so on and so forth.

To make such an artificial system as efficient as possible, there is the need for sensory 
information to interact with all possibilities simultaneously at a particular hierarchical 
level, which then again brings along several challenges. At the same time, it is expected 
that this approach needs to allow learning in its broadest sense. Therefore, the mem-
ory and processing structure should be modifiable through a learning and feedback 
mechanism in a way similar to, but not limited by, a backpropagation algorithm.

Discussion: Today conventional computing platforms are inherently focused on arith-
metic and logic operations, which seem a long way from what happens within the 
human brain. While there seem to be a variety of different similarity matching based 
approaches around, having to perform them on a one by one comparison basis, either 
sequentially and/or with a certain amount of parallelism has performance implications. 
It therefore seems essential that effort is put into the development of platforms that 
model the brain from a functional perspective and provide for a more direct mapping 
to technology. That being said, until other platforms become a reality, conventional 
computing platforms will remain an indispensable tool to support the exploration for 
alternative artificially intelligent platforms.
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Introduction: In the current age of Artificial Intelligence (AI) there have been 
numerous inroads into the topic (Vinyals et al., 2016; Chan et al., 2016; Bahdanau 
et al., 2016), many of which have made unprecedented leaps in completing tasks 
that were once thought impossible; notably professional level game playing; such as: 
Watson (Ferrucci et al., 2010), Deep Blue (Campbell et al., 2002), or AlphaGO (Silver 
et al., 2016). However, despite these great leaps, nearly all these AI systems (Campbell 
et al., 2002; Silver et al., 2016) focus on the use of processor intensive algorithms to 
achieve their goals; while not necessarily an issue it requires all data to be mapped 
towards an arithmetic world. Since the world is not necessarily mathematical in all 
aspects and can only be represented in this manner as far as our current level of 
mathematics has been developed, which leads to the problem that any mathematical 
model will be limited by the development of mathematics in relation to representing 
the real world. The better one can make this representation, the more likely the system 
will operate with a good accuracy. However, as complexity increases to deal with 
the real world in a mathematical way, data and processing requirements increase 
likewise and so eventually one needs massively parallel machines consuming large 
amounts of power to provide for only a limited amount of intelligent functionality. 
Additionally, the data will be represented in a format that is optimal for that particu-
lar task, but does not necessarily allow for generalization towards other processes, 
and so the scope of the application is connected with the mathematical ruleset used 
for the AI to work from (Campbell et al., 2002; Silver et al., 2016); something that 
then implicitly limits the AI’s ability to move from one environment to another. 
Which poses the question, how can something be intelligent if it cannot transfer 
its knowledge from one application to another, as such transference capabilities are 
clearly seen in humans.

Methods: To address the questions posed previously, effort will be directed towards 
the development of new data management models, primarily, focusing on how to best 
store and capture data and its complex inter-relationships and make this useful towards 
an intelligent system. This will require the stored data to be relational, so that meaning 
can be inferred more than determined. The important part is rather than perform 
extensive calculations to determine the importance and relevance of the information, 
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much of this can be determined by the relationships between data, meaning that the 
context is of particular importance towards the meaning of the actual data. Some of 
this data complexity can obviously be grasped within an artificial neural network, but 
these suffer from the limitation that these networks then often become black boxes 
making it challenging to ensure the reliability of the system. On the other hand, using 
mathematical approaches for machine learning requires massively parallel machines, 
which are great for arithmetic functionality, but struggle to efficiently deliver the intel-
ligent functionality necessary for these type of networks.

Within the context of learning data and, storing and structuring it, it is important to 
understand the level of detail that is required. In a machine learning context this is often 
referred to as generalisation and can lead to over/under-fitting, while essentially the 
purpose is to find an invariant representation as mentioned in (Hawkins and Blakeslee, 
2004), which has investigated this topic from a neuroscientific perspective. The more 
important challenge in this context is to identify the minimum required amount of 
data to be able to recognise something, and consequently the amount of data that really 
needs to be stored for recognition, even though they may both depend on the amount 
of context information available.

Being able to use contextual information should provide the system with a far greater 
understanding of the data provided to it, while also becoming more able to determine 
the intention behind the message that is being “translated” from human language into 
computational terms. The most important forms of context are probably the “hidden” 
elements of communication that people take for granted, such as: non-verbal cues, 
locational cues, situational cues and possibly even tonal or pitch cues, to name a few. 
The aim is to study the importance of individual elements and then select the best 
matches for human understanding and computational ease, to ensure that this extra 
information will ensure a higher accuracy rate.

While it is obviously easier to try and structure everything in a deterministic/organ-
ised world, it seems unlikely that the data and its organisation in the brain may be 
anywhere close to organised, and is more likely based on approximations rather than 
exact outcomes. This then also reflects on the data being invariant rather than very 
specific, although further details may be required to go from an initial “estimate” to a 
more detailed “result.” Even though this context suddenly becomes very unsure and 
unknown, due to it not being exact in nature, it is likely to be in this uncertainty that 
may lie the answers to some of the challenges faced. It will therefore be essential to 
take a more holistic approach and include the field of AI as well as other fields such as 
psychology, philosophy and biology to obtain the required answers.

Expected Results: This research aims to develop an algorithm that is biologically 
inspired, and understands and uses approximate data to achieve transferability in 
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its applications. Considering that all human learning is an evolutionary process, it is 
expected that this algorithm will have to incorporate evolutionary aspects to “fine tune” 
any learned data. It is in this context that language processing seems most suitable as 
an application as it allows for the exploration of general elements as a building block, 
to master one aspect of natural language while invariance and evolution can be found 
in secondary aspects such as interpretations and so on.

Discussion: In order to overcome some of the challenges of current research, this 
work will focus on developing from a data centred model, rather than a processor 
based one, with the aim to achieve significant savings in data storage and processing 
requirements for AI systems. Savings of this nature will also help improve the efficiency 
of such systems, while using a less deterministic approach is expected to make AI’s 
transferability more effective; allowing them to be competent in several applications 
rather than just one.
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Introduction: Learning is a basic skill that helps every human on a day to day basis to 
improve their life. It is one of the key features to achieve knowledge and deliver intelli-
gence. Learning involves a combination of human thoughts, thinking-process and their 
behaviour and that on a regular basis. This change in behaviour is achieved through 
the feedback of information given by and/or received from the surroundings, and that 
with the aim to improve the accuracy of processes. For example, sensory organs get 
information from the environment, but the human brain cannot take in and process all 
the data in one go, so it converts data into patterns, and then arranges and stores it for 
later retrieval. This process is continuous as these patterns are continuously adjusted 
to fit recent events. In order to be able to mimic this learning to artificial systems it is 
key to find answers to questions like: “how do humans learn with patterns?” and “how 
can humans improve their learning experiences?”

Method: While it is generally believed that the human brain takes most of its input 
from our sensory organs, it does not necessarily rely on all of them to develop and 
learn. For example, Helen Killer has no sight and no hearing, yet she managed to learn 
a language and became one of the best writers in the world (Hawkins, 2005). This 
shows that humans do not need all senses to become intelligent, and so while the brain 
is currently considered as a dark box with no knowledge, there are still time flowing 
patterns on its inputs from the environment. While many researchers are aiming to 
better understand how the brain works at the lowest level and how it provides for its 
learning functionalities, it may be that more suitable answers need to be searched in 
how the brain converts information into patterns, as it seems to be those patterns that 
lie at the basis of most, if not all, of our learned information. For example, if someone 
asks you to explain the structure of your home, you will first think about where to 
start from, kitchen or cellar, and from there you will work your way methodologically 
through the remainder. So even though all information is there, you will prioritise and 
then explain to your friend following a particular most often logical, pattern. Similarly, 
the human face is learned as a collection of patterns of nose, mouth and eyes. Here, 
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the question becomes, how can machine learning algorithms learn to learn like the 
human brain, with regards to these patterns?

One method that aims at learning patters like the human brain is the SP theory (Wolff, 
2016), which is a method of learning, where information is compressed by identify-
ing common patterns. It operates according to the multiple alignment principle, and 
consequently aims to find similarities along multiple dimensions. To achieve these 
alignments, similarities are identified within each provided pattern during the learning 
phase and used to reduce storage requirements, which leads to an overall data com-
pression. Each unique pattern is saved, and so when a new pattern is presented, the 
SP theory will check whether there is any similarity by identifying patterns to ensure 
maximum compression. The SP theory represents information through symbols, which 
are effectively multi-dimensional patterns. Since this theory operates similarly to how 
a human brain learns, it is a useful starting point to improve how machines become 
more able to learn like a human. The question then becomes how this machine saves 
and retrieves information?

Generally, the human brain retrieves information from “memory”, which for the brain 
are a set of interconnected neurons. While neurons are quite slow in comparison to 
transistors in current computers also their functionality is quite different. For example, 
if you want to catch a ball, you need to estimate the trajectory of the ball to be able 
to catch it, which happens automatically in the brain through a derivative pattern 
that aligns with previously learned patterns influenced by certain parameters, such 
as estimated weight of the ball, force of throwing and environmental conditions such 
as wind etc. On the other hand, computers, would need to calculate each step of the 
trajectory to ensure that a robot catches the same ball (Tsang, 2017). An additional 
difference between computers and the brain lies in the fact that a computer uses sep-
arate memory in the form of memory cards and hard drives, and does not store data 
automatically, while the brain seems to be one large pattern focused memory that 
stores/adjusts continuously.

Expected Outcome: Currently, very few machine learning algorithms care about the 
information coming from the environment. It would therefore be interesting to identify 
suitable ways to use multilevel alignment for information to create patterns like those in 
the brain. These machines should then also be able to retrieve data automatically, and 
even predict the output results based on incomplete patterns being presented. While 
overall, the data would be stored efficiently due to the inherent compression, the sys-
tem would easily be able to learn and continuously improve its patterns. Our research 
will propose such a multi-level model, build a prototype simulation and evaluate its 
performance against baseline methods.
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Discussion: Input to the human brain travels through the cerebellum and striatum, 
before reaching the cortex. Within the cortex, it is generally believed that there would 
be one unique algorithm that processes the information which is received from sen-
sory organs. The cortex also stores information as patterns in a hierarchical structure. 
However, it appears that the brain does not know the difference between information 
received from sensory organs and virtual creations of the brain itself. Consequently, 
being able to create a multilevel hierarchy to store different patterns will help a machine 
to learn in a way like us humans, and should then also allow the machine to deliver 
similar functionality to that of the human brain.
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Objective: to explore the role of the basal ganglia of the hemispheres in the human 
organism, their physiology and pathology.

Materials and Methods: An analysis of the scientific literature.

Results and Discussion: The role of the basal ganglia in humans, despite the fact that 
in their origin, these formations are older, is still very high. In lower vertebrates, the 
basal ganglia is the main center of coordination of movements, but in humans, due to 
the complexity of its motor activity, these centers fall under the control of the cerebral 
cortex. The basal ganglia are a type of nuclear structures which are located in the white 
matter of the forebrain thicker closer to the base. In mammals, to the basal ganglia 
are strongly elongate and curved caudate nucleus and inherent in the white matter 
thicker lenticular nucleus. With two white plates it divided into three parts: the most 
major, which lies laterally shell and globus pallidus, consisting of internal and external 
departments. These anatomical structures form the so-called striopallidarnoy system, 
which also will be discussed in our work. In this study, a greater role is given to not 
only the anatomy as the physiology of both normal and pathological conditions. The 
basal ganglia play an important role in the regulation of movements and sensorimotor 
coordination. It is known that in case of damage striatum observed athetosis—slow 
worm-like movements of hands and fingers. Degeneration of the striatum cells and 
cause other disease—chorea, jerking expressed in facial muscles and limbs muscles, 
which are observed at rest and when performing voluntary movements. However, 
attempts to clarify the etiology of these disorders in the animal experiments described 
in the literature have not yielded results. Time-violation of the caudate nucleus in dogs 
and cats does not lead to the appearance of hyperkinesis characteristic of the above-
mentioned diseases. Local electrical stimulation of certain areas of the striatum causes 
in animals so-called circulatory motor reactions, characterized by turning the head 
and torso in the opposite irritation. Irritation of the other portions of the striatum, by 
contrast, leads to inhibition of motor responses induced different sensory stimuli. It 
follows from the foregoing that these brain structures are very important for our body 
and their role in medicine in any case should not be leveled.
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Modeling of Blood Flow in Branching Vessels of  
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The purpose of research—to trace changes in the Reynolds number and blood pressure, 
depending on the angle of the branch vessels of the brain. The method of mathematical 
modeling studied two-dimensional flow field velocity and pressure distribution in the 
field of bifurcation vascular base of the brain. Model calculations were carried out 
with the help of numerical simulation package COMSOL 4.0, which solves a system 
of nonlinear partial differential equations, finite element method in one, two and three 
dimensions. At the same time we took into account the fact that adult adulthood in 
branching vascular base of the brain (the internal carotid artery, basilar artery) have 
atherosclerotic plaques, that reduces the lumen of the vessel. The average speed of the 
blood flow at the entrance to the mother vessel in the internal carotid and basilar arter-
ies—0.46 m/s (aged 50–55 years). Maternal vessel, we constructed geometric model, 
divided into two subsidiary vessel so that the sectional area of the exhaust vessel was 
equal to the total cross-sectional area of the parent vessel. As a result, changes in the 
angle of bifurcation of the received model parameters identified in the geometric form 
of changes in the local flow velocity and, therefore, local Reynolds number and the 
pressure drop. The subsidiary vessels tend to flow turbulence. The greatest pressure 
is observed in the apical branching angle explained that the maximum blood flow 
influence on its wall. By increasing the thickness “atherosclerotic plaque” (build-up of 
stenosis) increases the maximum Reynolds number and reduces the pressure of apical 
angle of vessel bifurcation, and conversely, the smaller plaque, the smaller the maximum 
number Re and the greater the pressure of blood. The change of the Reynolds number 
and blood pressure is most pronounced when you reject a vessel with a smaller diameter 
to 45–55°.Conclusion. Thus, from a study set optimum angle subsidiary branch vessel 
(smaller diameter) of the parent (about 55°), in which blood flow occurs artery stenosis 
place with minimal energy loss. The region of the greatest flow of blood pressure—the 
apical region of the bifurcation angle.
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Social interaction is a fundamental part of our daily lives; however, exactly how our 
brains use social cues to read the intentions of others to determine whether to cooperate 
without being exploited remains unclear. In this study, we used EEG hyperscanning to 
investigate the effect of face-to-face contact on the brain mechanisms underlying the 
decision to cooperate or defect in an iterated version of the Prisoner’s Dilemma Game. 
Participants played the game either in face-to-face (FF) or face-blocked (FB) conditions. 
The FF interaction led players to cooperate more often, providing behavioral evidence 
for the use of these nonverbal cues in their social decision making. In addition, the EEG 
hyperscanning identified temporal dynamics and inter-brain synchronization across 
the cortex, providing evidence for involvement of these regions in the processing of 
FF cues to read each other’s intent to cooperate. Most notably, the power of the alpha 
frequency band (8–13 Hz) in the right temporoparietal region immediately after seeing 
a trial outcome significantly differed between FF and FB conditions and predicted 
whether an individual would adopt a ‘cooperation’ or ‘defection’ strategy. Moreover, 
inter-brain synchronies within this time and frequency range reflected the use of these 
strategies. Our study provides evidence for how the cortex uses nonverbal social cues 
to determine other’s intentions, and highlights the significance of power in the alpha 
band and inter-brain phase synchronizations in high-level socio-cognitive processing.
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Introduction: Copy Number Variants (CNVs) are major contributors to neurodevel-
opmental disorders-ND. CNVs represent structural variations of the chromosomes: 
deletion is a loss of genetic material (1 copy of the genomic region); duplication is a 
gain of genetic material (3 copies), while controls have usually 2 copies of each genomic 
region. Also, gene dosage is linked to the number of genetic copies.

Carriers of the deletion or duplication at the 16p11.2 locus (29.6–30.2 Mb-Hg 19) have 
a 10-fold increased risk of developing autism spectrum disorder (ASD) and ∼20% of 
carriers ascertained of a ND meet criteria for ASDs (Zufferey et al., 2012; D’angelo et al., 
2015). These 16p11.2 CNVs present an inverse gene dosage on head circumference-HC 
(macrocephaly for deletion and microcephaly for duplication) and on global brain 
metrics, as Total Intracranial Volume-TIV, Gray Matter-GM and White Matter-WM 
Volumes 3,4. Maillard et al. (Maillard et al., 2015) also found regional structural changes 
between deletion and duplication carriers in key areas of the reward system, language 
circuitry and social cognition, overlapping with brain regions involved in ASD. The 
small sample sizes of these studies did not allow to explore any other factors that may 
contribute to the neuroanatomic changes.

The aim of this study was to analyze a much larger sample size of 16p11.2 CNV car-
riers to: 1) Replicate, quantify and extend previously published findings. We pooled 
data from multiple cohorts and scanning sites. 2) Demonstrate that in the context of 
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a genetically homogeneous sample, the noise introduced by pooling multiple sites is 
limited in comparison to the increased power. 3) Characterize and distinguish the 
effect of the 16p11.2 CNVs from the effects of additional factors present in carriers 
who are ascertained for a neurodevelopmental disorder-ND.

Methods

Participants: Participants, above 6  year-old, were evaluated in two cohorts: the 
European—EU 16p11.2 consortium and the Simons VIP—SVIP study in the United 
States. All families were ascertained through a proband referred for genetic testing on 
the basis of ND. Enrollment in the SVIP cohort included referral by clinical genetic 
centers, web-based networks, active online registration of families, while families were 
directly recruited by the referring physician in the European cohort. For the familial 
loading analyses, the control group has been subdivided in 3 distinct groups. “Deletion 
familial controls” represent the controls that have one member in their family carrying 
the deletion mutation. “Duplication familial controls” represent the controls that have 
one member in their family carrying the duplication mutation. “Non-familial controls” 
are the extrafamilial controls, unrelated to the CNV carriers.

MRI data acquisition and processing: 361 participants were examined on 3T whole 
body scanner, on 7 different sites (2 sites in Europe and 5 sites in USA). T1-weighted 
anatomical images were acquired using a multi-echo magnetization prepared rapid 
gradient echo sequences (MEMPRAGE) on 264 participants and using single-echo 
MPRAGE sequences on 97 participants. All the ME-MPRAGE images have been aver-
aged following a Root-Mean Square method (RMS) to obtain one echo per participant.

Global morphometric analyses were performed with FreeSurfer version 4.5.0 soft-
ware package (http://surfer.nmr.mgh.harvard.edu), using the template of Qureshi et al.  
(Qureshi et al., 2014) Voxel-based morphometry (VBM) analyses were performed using 
the SPM12 software package (Statistical Parametric Mapping software, http://www.
fil.ion.ucl.ac.uk/spm/software/spm12) running under Matlab 7.13 (Mathworks Inc., 
Sherborn, MA). The algorithm followed the default settings for the segmentation, using 
a novel set of brain tissue priors showing increased accuracy for subcortical structures 
(Lorio et al., 2016). GM probability maps were spatially registered to a standardized 
Montreal Neurological Institute space using the diffeomorphic algorithm based on 
exponentiated Lie algebra—DARTEL6. They were scaled with the corresponding 
Jacobian determinants and spatially smoothed using an isotropic Gaussian kernel of 
8 mm full-width-at-halfmaximum.

Data analysis: Global metrics were corrected for linear and quadratic polynomial 
expansion of age, gender, site, Non Verbal Intelligent Quotient (NVIQ) as fixed factors.
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VBM analyses used all GM data, in the General Linear Model framework of SPM12. 
Deletion, controls and duplication carriers were considered as the genetic groups. The 
model included the same regressors as the analysis of global metrics as well as TIV. 
Statistical thresholds were applied at p < 0.05 after family-wise error (FWE) correction 
for multiple comparisons over the whole volume of the GM mask. We computed Cohen 
d on FWE-corrected t-score maps to show the effect size.

Results: We analyzed MRI data in 78 16p11.2 deletion carriers and 51 of their 1st degree 
relatives who do not carry the deletion (familial controls), 71 duplication carriers and 21 
duplication familial controls, as well as 140 controls unrelated to the CNV carriers. There 
were no significant differences in gender ratio across genetic groups and cohorts. Age dis-
tribution differed for deletions and controls being younger in the SVIP cohort compared 
to the EU cohort, and deletion carriers were overall significantly younger than the rest of 
the groups. Eleven deletion and 8 duplication carriers met criteria for ASD (13%).

Global brain metrics (Figure 1): Our results were in agreement with the well-estab-
lished negative correlation between head circumference and the number of genomic 
copies at the 16p11.2 locus both in SVIP (p < 0.0001) and European (p = 0.001) cohorts. 
Consistently, estimated TIV also correlated negatively with the number of 16p11.2 cop-
ies, although this significance of effect was weaker in the European cohort (p < 2e-16 
for SVIP and p = 0.04 for EU). Both GM and WM total volumes contributed to the 
observed effect on estimated TIV. Decomposition of volume in surface-based measures 
showed a comparable effect in cortical surface area in both cohorts, but no effect on 
cortical thickness.

FIGURE 1: Boxplots of estimated total intracranial (A), GM (B), WM (C) and CSF ventricular (D) 
volumes, cortical surface area (E) and mean cortical thickness (F) in each genetic group separately for 
EU and SVIP cohorts.
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Regional brain differences in the EU and USA cohorts (Figure 2): Voxel-based mor-
phometry showed a pattern of regional changes which strongly correlated to the 16p11.2 
gene dosage, replicating our initial findings (Maillard et al., 2015). Specifically, linear 
regression using the number of genomic copies (DEL=1 CTRL=2 > DUP=3) as an 
explanatory variable identified in both cohorts a negative relationship with the volume 
of bilateral anterior and posterior insula, transverse temporal gyri and calcarine cortex. 
Both cohorts presented a positive relationship between the number of genomic copies 
and the bilateral precentral gyri, left middle and superior temporal gyri and cerebellar 
lobule VIII. We didn’t find any interaction between genetic status and the 2 cohorts, 
the 7 sites, gender or age. Ascertainment methods in EU and SVIP cohorts led to the 
same local brain differences. Results were also stable across the 7 iterative analyses 
successively leaving out one of the scanning sites. Results were identical across ages: 
subdividing the genetic group in 2 categorical age groups (below and above 16 year-
old) showed the same profile of structural brain abnormalities.

FIGURE 2: Effects of gene dosage on local Gray Matter volume in the European and SVIP cohorts 
(A), as well as following a ‘leave-one-out’ approach by systematically removing one of the MRI  
sites (B).
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Distinguishing the effect of 16p11.2 CNVs from additional neurodevelopmental 
factors (Figure 3): We compared the regional differences between the carriers and 
their respective non-carrier familial controls. Deletion carriers exhibited an increased 
volume in bilateral insula, calcarine cortex and left superior temporal gyrus, compared 
to their familial controls. In its turn, these controls showed an increased volume in 
bilateral fusiform gyrus, parahippocampus, amygdala, putamen, compared to the 
non-familial controls. The same analysis yielded weaker or non significant effects for 
the duplication carriers compared to their familial controls and to the non-familial 
controls. Alterations observed in 16p11.2 CNV carriers ascertained for a neurode-
velopmental disorder should result from a cumulative effect of: (i) the 16p11.2 CNVs 
and (ii) additional factors.

FIGURE 3: Distinguishing the effect of 16p11.2 CNVs from additional neurodevelopmental factors on 
local Gray Matter volume, by subdividing the control group in familial and non-familial controls and 
comparing to the carrier groups.

Conclusion: The robustness and power of this combined dataset demonstrated that 
multi-site MRI studies are extremely relevant in autism and neurodevelopmental dis-
orders, when neurobiological heterogeneity can be reduced by focusing on individuals 
who share a common ASD risk factor. The increased power of the cohort has allowed us 
to answer new questions: 1) The regional brain alterations were present across children, 
adolescents and adults. 2) Carriers of a 16p11.2 CNV demonstrated neuroanatomical 
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alteration due to the CNV as well as additional factors visible in first-degree relatives, 
suggesting an additive neurodevelopmental and possibly genetic effect.
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Swiss National Science Foundation (SNSF).
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Introduction/motivation: High-resolution brain atlases are a tool to find out more 
about human brain organization and its functions. Step by step each region of the brain 
has been mapped within a long-term effort to achieve this aim, and maps have been 
made available to public (Amunts and Zilles, 2015). The ongoing research focuses on 
the bed nucleus of the stria terminalis. The bed nucleus gets inputs from amygdala and 
hippocampus and has efferent connections to the hypothalamic region or the brainstem 
(Heimer and van Hoesen, 2006). The bed nucleus is involved in cortico-subcortical 
circuits affecting emotional processes such as fear and anxiety response, stress or moti-
vation (Heimer and van Hoesen, 2006; Alvarez et al., 2011). The aim of this project is 
to delineate the bed nucleus of the stria terminalis in ten postmortem human brains, 
and to generate probability maps in stereotaxic space, which consider interindividual 
variability in size and localization of this brain region.

Methods: Ten postmortem brains, five male and five female, were fixed, paraffin- 
embedded and serially sectioned in coronal plane. Every 15th section (each 20 mm thick) 
was mounted and silver-stained for cell bodies (Merker, 1983). Histological processing 
was previously described in detail (Amunts et al., 1999). The sections were digitized 
for tracing the structures of the bed nucleus and the subsequent 3D-reconstruction. 
The delineation is based on cytoarchitectonic criteria, which enable to distinguish the 
bed nucleus of the stria terminalis from its neighbouring structures. Criteria include 
the shape, size or density of the neurons, as well as the density and distribution of glial 
cells. When the mapping is finished in all ten brains, the bed nucleus will be 3D recon-
structed, registered to the MNI (Montreal Neurological Institute) single-subject brain 
template and then superimposed. This leads to so-called probability maps, showing 
the frequency of the bed nucleus in each voxel of the MNI reference space with values 
ranging from 0 to 100% in a certain region (Amunts and Zilles, 2015).

Results: The bed nucleus of the stria terminalis (BST) is located in the basal forebrain, 
close to the striatum and the lateral ventricles (Figures 1A,B). The bed nucleus is divided 
into two major subnuclei, the medial (BSTM) and the lateral bed nucleus of the stria 
terminalis (deOlmos, 2004; Heimer and van Hoesen, 2006).
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FIGURE 1: (A) Lateral view of a postmortem brain, (B) Silver-stained coronal section at the level 
marked in a, shortly after the decussation of the anterior commissure, (C) Magnification of the region 
of interest enclosed in black in b. Four different subdivisions of the bed nucleus of the stria terminalis 
(BST) were delineated: Three regions of the lateral part, i.e., BSTLC (red)—latero-central part. BSTLD 
(yellow)—latero-dorsal part, BSTLP (blue)—latero-posterior part and the medial part—BSTM (green) of 
the BST are shown.

The results show that the lateral BST is further subdivided into three parts (Figure 
1C): The laterocentral part (BSTLC) consists of triangular and fusiform neurons and 
is surrounded by a cell-poor area. In coronal sections the BSTLC appears at the level 
of the decussating anterior commissure. It is in most sections enclosed by the later-
odorsal subdivision (BSTLD), which is characterized by frequently appearing islets, 
consisting of cell aggregates without any particular orientation of the neurons. Finally, 
the lateroposterior part (BSTLP) consists of smaller, lightly stained neurons as well as 
some bigger darkly stained neurons. This subdivision contains a substantial number 
of stria terminalis fibres, as it also extends dorsally towards the Nucleus caudatus. The 
BSTLP appears first shortly after the decussation of the anterior commissure in coronal 
sections and replaces the other subdivisions gradually. The BSTM mainly consists of 
small and densely packed neurons, but also contains larger more darkly stained neurons 
of various shapes, which leads to a heterogeneous appearance.
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Discussion: Our results show four different subdivisions of the bed nucleus of the 
stria terminalis (BST), which were delineated according to their cytoarchitecture. Two 
examples regarding the cytoarchitecture as well as a functional aspect shall be briefly 
discussed in this passage: The BST as a whole was divided into a lateral and medial 
subnucleus, following the suggestions of Heimer and van Hoesen (2006), Heimer 
et al. (1999), and deOlmos (2004). In the lateral BST, the encapsulated central BST 
is classified within the dorsolateral subdivision of the BST. Avoiding one additional 
hierarchical step the BSTLC was considered as a part of the lateral subnucleus in this 
research project, equal to the other subdivisions, BSTLD and BSTLP.

On a functional level authors state, that the encapsulated central part of the BST is bigger 
in male than in female brains and it is responsible for sexual differentiation (Chung 
et al., 2002). Whether this sexual dimorphism can be confirmed will be answered as 
soon as all ten brains are reconstructed.

By obtaining probability maps of the bed nucleus of the stria terminalis with its distinct 
subdivisions will be one step forward, to achieve the overall goal of building a precise 
atlas of the human brain.
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Introduction: Alzheimer’s disease (AD) is the main cause of dementia, accounting for 
60−80% of cases (Alzheimer’s Association, 2015). It is characterized by a progressive 
and persistent decline of superior cerebral functions, such as memory, language and 
direction. In the final stages of the disease, there is a lack of autonomy, and, in general, 
a lack of labor activity and social life (Prieto et al., 2011). During the course of the 
disease, three main histopathological alterations occur: cerebral atrophy, intracellular 
neurofibrillary tangles (which are made of misfolded and abnormally hyperphospho-
rylated tau protein) and amyloid plaques (which result from the abnormal extracellular 
accumulation of the amyloid-β peptide; Figure 1; Raskin et al., 2015). In addition to 
these three histopathological alterations, other changes have also been described: neu-
ral and synaptic loss; gliosis; vascular degeneration; cerebral amyloid angiopathy (Aβ 
peptide deposition in blood vessels); degeneration of the white matter; and aggregation 
of other proteins (e.g., Lewy bodies; Raskin et al., 2015).

FIGURE 1: (A) Neurofibrillary tangles in the advanced stage of the disease, drawn by Alois Alzheimer. 
(B) Drawing of an amyloid plaque (Alzheimer et al., 1991).
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Early loss of episodic memory in AD patients is closely associated with the progressive 
degeneration of the medial temporal lobe structures, with the transentorhinal cortex 
(TEC) being one of the first affected areas (Braak and Braak, 1991). From a cytoarchitec-
tonic perspective, the TEC is considered as a transitional zone between the entorhinal 
cortex (EC) and the temporal cortex (Braak and Braak, 1985). The TEC is formed by 
different layers, and its main cytoarchitectonic feature is that layers III and V merge 
and sweep obliquely to invade layer II of the EC (Braak and Braak, 1985; Taylor and 
Probst, 2008; Ding and Van Hoesen, 2010).

Methods: In this study, we performed an ultrastructural analysis of the neuropil from 
layer II of the TEC, using human brain tissue from 5 patients with AD and from 5 
subjects with no apparent neurological diseases (Figure 2). We used an instrument 
that combines a high-resolution field-emission SEM column with a focused gallium 
ion beam (FIB), which allows thin layers of material to be removed from the sample 
surface on a nanometer scale. As soon as one layer of material has been removed 
by the FIB, the exposed surface of the sample is imaged by the SEM. The sequential 
and automated use of FIB milling and SEM imaging allows us to obtain long series 
of photographs that represent a three-dimensional sample of the selected regions to 
be analyzed (Blazquez-Llorca et al., 2013). Customized analysis software was used 
for the reconstruction of synapses of the layer II neuropil, which allowed their num-
ber, morphology and spatial distribution to be calculated (EspINA software, v.2.1.9; 
Morales et al., 2011).

FIGURE 2: Photographs obtained by FIB/SEM microscopy illustrating the layer II neuropil of the 
transentorhinal cortex from a non-demented subject (A) and a subject with AD (B), showing the two 
types of synapses: asymmetrical (green arrows) and symmetrical (red arrow). Scale: 800 nm.
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Results: Our preliminary results, from one image stack per subject, show that the total 
number of synapses per volume in layer II of the TEC in AD patients was significantly 
lower than the total number in non-demented subjects. We have not found differences 
in the morphology of the synapses in AD patients compared with non-demented 
subjects. In addition, the spatial organization of synapses in the neuropil of layer II of 
the TEC is random, regardless of the subject group.
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To reconstruct the third dimension from flat retinal images, the brain exploits a range 
of monocular and binocular depth cues. However, the neural mechanisms under-
lying cue integration is still poorly understood. Traditionally, this process has been 
broadly conceived in modular terms, with the independent processing of individual 
cues followed by a combination stage in which the influence of each cue reflects the 
reliability with which it is encoded. Computational and recent imaging studies in 
humans suggested the existence of a fusion mechanism that combines the information 
of different depth cues (Ban et al., 2012; Murphy et al., 2013). In particular, the latter 
studies showed, rather unexpectedly based on previous monkey research, that area 
V3B/KO may house neurons coding for a fusion mechanism of different depth cues. 
To investigate cue integration in monkeys using exactly the same paradigm as in Ban 
et al. (2012), we performed an equivalent fMRI study. Specifically, we showed mon-
keys a set of stimuli representing near or far depth planes defined by motion parallax, 
binocular disparity and the combination of both in either a congruent (i.e., the two 
cues signal the same depth planes) or incongruent fashion (i.e., the two cues signal 
different depth planes). We used a linear support vector machine to classify between 
near and far patterns in retinotopically defined regions of interest (ROI) of visual 
cortex. To quantify differences in prediction accuracies across conditions and to assess 
fusion, we conducted three test for cue integration: integration index, congruent vs 
incongruent cues and transfer index [similar to Ban et al. (2012)]. We found that fMRI 
responses are more discriminable when the two cues signal depth concurrently, and 
that depth information provided by one cue might be diagnostic of depth indicated 
by the other. We revealed that monkey area MT shows fMRI signals consistent with a 
fusion mechanism of independent depth cues. In fact, these results may reconcile the 
human imaging data with previous monkey electrophysiological studies implicating 
area MT in depth perception based on motion and binocular disparity signals (Nadler 
et al., 2008; Nadler et al., 2013; DeAngelis et al., 1998). In general, our findings together 
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with those obtained in humans provide evidence for a fusion mechanism for depth 
perception in the dorsal stream of primates. The fusion of depth cues, however, appears 
to be computed in different areas in humans (V3B/KO) and monkeys (MT). Therefore 
it is tempting to speculate that human V3B/KO may have been part of the MT cluster 
in an ancestor of monkeys and humans which has drifted in a caudo-dorsal direction 
during human evolution.
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Background: There have been several near-threshold stimuli experiments that find 
EEG oscillations to be correlated to behavioral performance. In some of these studies 
the research was focused on pre-stimulus frequencies that find their correlates in cog-
nitive discrimination such as high-alpha activity (Hanslmayr et al., 2007; van Diejk et 
al., 2008; Weisz et al., 2014). Though pre-stimulus investigation is becoming a more 
and more emerging field, there is still a gap in the present literature: There has been 
only very little investigation on the damaged visual system.

Aim: With High-Alpha Power as an important correlate of visual perception and 
previous clues for its importance in the pre-stimulus brain state, we try to frame High-
Alpha oscillations not only in the context of visual discrimination in healthy controls 
but also in patients suffering from damage to their optic nerves. Thus previous studies 
show that a partially damaged visual field shows potential for recovery in training the 
underlying mechanisms are still broadly unknown. This study focuses on the difference 
of High-Alpha pre-stimulus brain states in vision of patients and healthy controls and 
how they might predict performance in a visual discrimination task. With this view 
on pre-stimulus brain state of patient’s brain suffering from malfunctioned input, we 
try to encourage further research in this field.

Question: Do patients suffering from vision loss due to optic nerve damage show 
different pre-stimulus High-Alpha power patterns than healthy controls?

Methods: We enrolled 34 subjects (19 suffering from monocular partial vision loss of 
different aetiologies, 15 controls) for this experiment. In patients we defined an area 
of no vision, an area of normal vision and a transition zone of intermediate vision. 
In healthy subjects we simulated this situation by defining areas of the same criterion 
in and around the physiological blind spot. We performed a monocular visual dis-
crimination task while recording EEG, presenting 180 stimuli in each of six spots of 
“intermediate” vision. Subjects were asked to respond by button press once they see 
a stimulus while fixating a central fixation cross. As an ex-post threshold experiment 
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we only performed further investigation on spots of a.6/.4 up to .4/.6 discrimina-
tion rate to distinguish a sensitive pre-stimulus brain state (graph 1). This led to an 
exclusion of 11 patients and 5 controls. In a blinded analysis, individual pre-stimulus  
High-Alpha peaks were defined by sight for all participants (mean window size of 
214.17 ms, SD = 113.68 ms and mean centre at −262,64 ms, SD = 94.09 ms). In a 
Wilcoxon-Test we compared the difference between High-Alpha amplitudes in trials 
in which participants detected the presented stimulus and those in which they did not 
for each group individually.

GRAPH 1: Six spots of stimuli presentation were chosen in the area of residual vision. Out of these six 
spots per subject only those were chosen for further analysis, in which subjects reached an accuracy 
of 40–60%. This led to 8 patients and 10 controls being included for further analysis.

Results: In trials in which patients were able to see the stimulus, High-Alpha pre-stimu-
lus amplitudes were at 1%-level significantly lower than in trials in which patients didn’t 
see the stimuli. In controls we could not find a significant difference (Graphs 2 and 3).
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GRAPH 2: Differences between pre-stimulus-High-Alpha in Hit- und Miss-Trials for controls (N = 10), 
Z(9) = 46; p = 0.0645
GRAPH 3: Differences between pre-stimulus-High-Alpha in Hit- und Miss-Trials for patients (N = 8), 
Z(7) = 36; p = 0.0078

Conclusion: The findings of our study support the importance of pre-stimulus brain 
state for visual stimulation. Based on the results, one reason for the brains great ability 
to recover from malfunctioned input might be an adjustment of pre-stimulus correlates 
such as attention. In this model, a brain suffering from continuous malfunctioned visual 
input would adjust its processing resources to the source, working like an amplifier. 
We strongly encourage further research in this field.

REFERENCES

Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., and Baeuml, K.-H. (2007). Pres-timulus 
oscillations predict visual perception performance between and within subjects. Neuroimage 37, 1465–1473. 
doi: 10.1016/j.neuroimage.2007.07.011 PMID:NOPMID

van Diejk, H., Schoffelen, J.-M., Oostenveld, R., and Jensen, O. (2008). Prestimulus oscillatoryactivity in the alpha 
band predicts visual discrimination ability. J. Neurosci. 28, 1816–1823. doi: 10.1523/JNEUROSCI.1853-07.2008 
PMID:18287498

Weisz, N., Wühle, A., Monittola, G., Demarchi, G., Frey, J., Popov, T., et al. (2014). Prestimulus oscillatory power 
and connectivity patterns predispose conscious somatosensory perception. Proc. Natl. Acad. Sci. U.S.A 111, 
E417–E425. doi: 10.1073/pnas.1317267111 PMID:24474792



Frontiers in Neuroscience 139

 1st Human Brain Project Student Conference

A Study Based on the Reconstruction of 
Multivesicular Bodies in the Rodent 
Somatosensory Cortex

Marta Turégano-López1, Andrea Santuy1, Javier Defelipe2,1,  
Angel Merchán-Pérez1,3

1Centro De Tecnología Biomédica (UPM), Madrid, Spain
2Instituto Cajal (CSIC), Madrid, Spain
3Departamento De Arquitectura Y Tecnología De Sistemas Informáticos (UPM), Madrid, Spain
marta.turegano@ctb.upm.es

Multivesicular bodies (MVBs) are organelles surrounded by a single membrane con-
taining intraluminal vesicles. They are intermediaries of the endosomal pathway and 
they participate in the sorting, recycling and degradation of proteins and other mol-
ecules (Von Bartheld and Altick, 2011). These organelles can fuse with the plasma 
membrane releasing exosomes into the extracellular space (Chivet et al., 2013). MVBs 
store and transport damaged cargo from mitochondria, helping them to maintain 
normal function (Sugiura et al., 2014). They are also known to accumulate the protein 
aggregates that are involved in Alzheimer’s disease and Parkinson disease (Schreij  
et al., 2016).

We have analyzed the density, volume and spatial distribution of MVBs, as well as 
their location within axons or dendrites. We used three-dimensional electron micros-
copy with combined focused ion beam milling and scanning electron microscopy  
(FIB/SEM) (Merchán-Pérez et al., 2009)—a method that allows us to obtain long series 
of consecutive sections in an automated way. These stacks of serial sections can later 
be reconstructed and examined in 3D. We obtained 29 such stacks from the neuropil 
of the six cortical layers of the rat somatosensory cortex. Using specifically developed 
software (Espina) (Morales et al., 2011), we segmented and three-dimensionally recon-
structed 2120 MVBs.

We found that MVBs located in dendrites outnumber those located in axons approxi-
mately 2:1, and dendritic MVBs are also twice as large as axonic MVBs. When studying 
the relation with mitochondria, we found that 18% of MVBs were docked to these 
organelles, and they were significantly larger than undocked ones. This relation between 
mitochondria and MVBs was more frequently found in dendrites than in axons. 
Another interesting finding was that about 7% of MVBs showed tubular extensions.
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This kind of MVB is considered to be involved in recycling, and our results indicate 
that they are larger than those without tubular extensions.

Although it has previously been described that MVBs are related to synapses (Kneussel 
and Hausrat, 2016), we found no relationship between the density of MVBs and the 
density of synapses in the different layers. We also studied the spatial distribution of 
MVBs, and we found that in 70% of our stacks, MVBs were randomly distributed in 
space, while they showed a tendency to cluster in the remaining 30%. The quantitative 
method that we have developed in the present study will help determine the possible 
alterations of the endosomal pathway in pathological conditions.

REFERENCES

Chivet, M., Javalet, C., Hemming, F., Pernet-Gallay, K., Laulagnier, K., Fraboulet, S., et al. (2013). Exosomes as 
a novel way of interneuronal communication. Biochem. Soc. Trans. 41, 241–244. doi: 10.1042/BST20120266 
PMID:23356290

Kneussel, M., and Hausrat, T. J. (2016). Postsynaptic neurotransmitter receptor reserve pools for synaptic poten-
tiation. Trends Neurosci. 39, 170–182. doi: 10.1016/j.tins.2016.01.002 PMID:26833258

Merchán-Pérez, A., Rodriguez, J.-R., Alonso-Nanclares, L., Schertel, A., and Defelipe, J. (2009). Counting synapses 
using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front. Neuroanat. 3:18. 
doi: 10.3389/neuro.05.018.2009 PMID:19949485

Morales, J., Alonso-Nanclares, L., Rodríguez, J.-R., Defelipe, J., Rodríguez, A., and Merchán-Pérez, A. (2011). 
Espina: a tool for the automated segmentation and counting of synapses in large stacks of electron microscopy 
images. Front. Neuroanat. 5:18. doi: 10.3389/fnana.2011.00018 PMID:21633491

Schreij, A. M. A., Fon, E. A., and McPherson, P. S. (2016). Endocytic membrane trafficking and neurodegenerative 
disease. Cell. Mol. Life Sci. 73, 1529–1545. doi: 10.1007/s00018-015-2105-x PMID:26721251

Sugiura, A., McLelland, G.-L., Fon, E. A., and McBride, H. M. (2014). A new pathway for mitochondrial quality 
control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156. doi: 10.15252/embj.201488104 PMID:25107473

Von Bartheld, C. S., and Altick, A. L. (2011). Multivesicular bodies in neurons: distribution, protein content, 
and trafficking functions. Prog. Neurobiol. 93, 313–340. doi: 10.1016/j.pneurobio.2011.01.003 PMID:21216273



Frontiers in Neuroscience 141

 1st Human Brain Project Student Conference

Comparing Synaptic Connectivity of Stress-
Resilient and Stress-Susceptible Rats in the 
Default Network after Applying Learned-
Helplessness Paradigm

Annika Utz, Svend Davanger
Institute of Basic Medical Sciences, University Of Oslo, Oslo, Norway.
julia.wrzo@gmail.com

Background/Idea: In the last decades many attempts have been made to find the 
physiological changes underlying psychological disorders. Among those disorders, 
depression is the most prevalent one, affecting between 4 and 15% of the population 
during their lifetime. Besides the psychological aspect physical health issues like diabe-
tes and coronary artery diseases coincide with depression leading to higher morbidity 
and mortality (Moussavi et al., 2007). Causes for developing depression are numerous. 
Susceptibility to this illness differs within the population. The reasons for this variation 
are still not sufficiently understood.

Studies showed that the prefrontal cortex, hippocampus and amygdala have altered 
activity in patients with major depressive disorder (MDD) (Palazidou, 2012). Several 
animal models were developed to investigate the occurred changes in more detail. One 
of those is the learned helplessness paradigm, in which an inescapable foot shock is 
applied until the animal does not try to escape anymore even when given the possibility. 
As a consequence those animals show a decreased interest in sucrose-consumption 
resembling anhedonia as well as REM-sleep changes which can be seen in humans with 
MDD. By using only a moderate foot shock the animals show more varied responses, 
some developing depression-like symptoms while others do not (Vollmayr and Gass, 
2013). Rats which underwent this procedure showed a decrease in synapse number 
within the hippocampus, while treatment with antidepressants restored the number of 
synapses in some hippocampal areas (Hajszan et al., 2009). Similar changes in synaptic 
connectivity could possibly also be observed in the default network regions of the 
brain. These structures decrease their activity during attention-demanding tasks and 
are more active during resting-state (Raichle, 2015). The default network activity has 
also been found in rats (Lu et al., 2012). Changes in connectivity have been found in 
meditation practitioners compared to control (Jang et al., 2011) and in schizophrenic 
patients (Pankow et al., 2015). Functional connectivity studies found that MDD resulted 
in a hyperconnectivity within the default network (Kaiser et al., 2015).
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The rats which are used for this project underwent a learned-helplessness paradigm 
with moderate foot shocks. To investigate molecular changes at synapses within the 
default network I will quantify the relative concentration of several proteins associated 
with the strength in synaptic connectivity within the cingulate cortex of rats, a key 
region of the default network. Those proteins include presynaptic and postsynaptic 
proteins.

Glutamatergic synapses show a dense post-synaptic structure called post-synaptic den-
sity (PSD). The PSD is located close to the membrane and serves among other functions 
as an anchoring structure for glutamate receptors. PSD95 is one of most abundant 
proteins in this protein complex and can be used as an indicator for the number of 
excitatory synapses (Chen et al., 2015). To determine the strength of a glutamatergic 
synapse the quantity of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid) receptor subunits is analyzed. The abundance of AMPARs is the major factor in 
determining the size of an excitatory post-synaptic potential. Strengthening of synapses 
goes along with higher densities of AMPARs in the post-synaptic membrane, while 
weakening results in a decrease of number. AMPA receptors are important for several 
forms of learning (Keifer and Zheng, 2010). There are different signaling pathways to 
change the strength of synaptic connections, one of those being NMDAR (N-methyl-
d-aspartic acid)-dependent potentiation/depression. NMDARs only open when the 
post-synaptic membrane is depolarized and glutamate simultaneously binds to the 
NMDAR. The channel is permeable to sodium and, importantly, calcium ions. A high 
rise in calcium ions leads over a signaling cascade to phosphorylation of AMPARs and 
an increase of AMPARs in the post-synaptic membrane (Nicoll and Roche, 2013). 
Early life events can result in changes of NMDAR-subunit composition. During a 
critical period a genetic switch ensures a change from primarily GluN2B subunits to 
primarily GluN2A subunits. Maternal deprivation was shown to impair this genetic 
switch (Timmermans et al., 2013). Implementation of GluN2A as opposed to GluN2B 
subunits results in a change of NMDAR-kinetics. This probably changes the calcium-in-
flux at the post-synaptic membrane and thus the threshold for long-term potentiation 
(Cull-Candy et al., 2001).

It is also interesting to see whether synaptic changes coincide with extracellular alter-
ations. The perineuronal net (PNN) is a type of extracellular matrix which is assumed 
to be involved in stabilizing neuronal connections in the brain (Morawski et al., 2012). 
The PNN consists in big parts of chondroitin sulphated proteoglycans (CSPG) like 
aggrecan, hyaluronic acid (HA) and tenascin-R. In the visual cortex of cats aggrecan 
expression starts to increase when experience-dependent synaptic plasticity begins to 
decline (Kind et al., 2013). It was also found that plasticity-resistant excitatory CA2 
pyramidal neurons in the hippocampus could undergo synaptic potentiation after 
impairing the PNN (Carstens et al., 2016). The cartilage link protein (Crtl1) stabilizes 
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connections between CSPG and HA in the PNN and might be necessary to form the 
PNN in the first place (Carulli et al., 2010). For this reason I will quantify the relative 
concentration of Crlt1 to check for extracellular differences. Additionally, presynaptic 
proteins, like vesicle proteins (e.g., synaptotagmin and synaptophysin) and presynaptic 
membrane proteins (e.g., SNAP25) as well as metabotropic glutamate receptor 1 and 
7 are quantified relatively.

Aims: The aim of this study is to compare changes in concentration of proteins linked to 
synaptic strength of depression-resilient and depression-susceptible rats after receiving 
learned-helplessness treatment. The concentrations of the above mentioned proteins 
will be quantified by western blot referenced to whole protein concentration. The crude 
synaptosomal fractions of the following areas are being analyzed: cingulate cortex, 
hippocampus, primary somatosensory cortex and primary motor cortex.

Hypothesis: I hypothesize a difference in protein concentrations within the cingu-
late cortex and the hippocampus in depression-susceptible rats compared to resilient 
ones. There should be no significant difference within the primary somatosensory 
and motor cortex.

Possible implications: Investigating synaptic protein concentrations within the default 
network will contribute to a better understanding of the role played by the default 
network in depression disorders. These regions of the brain should thus be targeted in 
future therapeutic interventions. It will also be interesting to see whether presynaptic 
terminals or postsynaptic membrane proteins differ in their protein composition when 
comparing stress-resilient to stress-susceptible rats. The comparison between estab-
lished plasticity markers like AMPAR subunits and GluN2A/GluN2B ratio as well as 
Crtl1 concentrations will hopefully elucidate their role in synaptic plasticity as well.
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Introduction: Neuropeptide Y (NPY) is highly enriched in limbic brain areas and well 
known for its anxiolytic and fear-suppressing properties. These effects are predomi-
nantly mediated by Y1 receptors. The role of the extensively expressed pre-synaptic 
Y2 receptors (Y2R) is, however, not clear yet. We aimed at investigating the role of 
hippocampal Y2R in fear learning as well as non-emotional learning.

Methods: Wildtype and Y2KO mice were subjected to different forms of hippocam-
pus-dependent Pavlovian fear conditioning and the Barnes maze test for non-emotional 
learning. Furthermore, we combined cell-type specific viral vector-mediated rescue of 
Y2 receptor expression in Y2KO mice with immunohistochemical methods and recep-
tor binding to differentiate the Y2-mediated effects in different hippocampal subfields 
and cell types. We further conducted neuronal tract tracing studies using transgenic 
mice, viral vectors and immunohistochemistry to identify different populations and 
synaptic partners of NPY-expressing neurons of the hippocampus.

Results: Y2KO mice did not differentiate between similar fear contexts in a pat-
tern separation paradigm. In addition, the temporal precision and stimulus specific 
expression of freezing behaviour in trace fear conditioning was lost, suggesting fear 
generalization. When Y2R were reintroduced specifically in the dorsal dentate gyrus 
of Y2KO mice, freezing behaviour was significantly reduced and temporal precision 
was largely restored. Interestingly, re-expression of Y2R in the dorsal hippocampus 
of Y2KO mice also reduced the consolidation of spatial memory in the Barnes maze. 
Immunohistochemical analysis showed co-expression of NPY with Parvalbumin 
(Pvalb) as well as Somatostatin (Sst), but not Calretinin in the mouse dentate gyrus. 
Furthermore, in addition to their local function as interneurons, both, SST as well as 
Pvalb-neurons of the dentate gyrus were sending projections to other brain areas, such 
as the medial septum and the cortical amygdala.

Discussion These data indicate that Y2R are crucial for differentiating similar fear 
contexts, while their absence may result in fear generalization, a hallmark of anxiety 
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disorders. On the other hand, Y2R may be crucial for memory consolidation. Thus, 
NPY neurons of the dentate gyrus may control memory formation in the hippocampus 
also by activation of pre-synaptic Y2 receptors. Further investigations will address the 
role of NPY-expressing projection neurons of the dentate gyrus in memory formation. 
Supported by FWF-P25851.
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The ease and rapidity with which we perceive and compute our environment keeps 
puzzling vision scientists to this day, and the ability of rodents to perceive and categorize 
objects, long neglected, has now resurfaced. A recent paper from our group showed that 
rats are able to dissociate visual presentation based on second-order variables such as 
textures. Once this initial learning is acquired, they can generalize this discrimination 
in various ways with surprising ease (De Keyser et al., 2015). The broad objective of 
our project is to unravel the neural correlates of visual perception and image segmen-
tation in the mouse primary visual cortex. In this preliminary work, the development 
of visual stimulations and training procedures to assess mid-level vision segregation in 
mice is described. Animals performed discrimination tasks in eight automated touch 
screen operant chambers. 8 mice were trained with figure-ground discrimination in 3 
incremental steps in order to dissociate second-order texture based features (Figure 1). 
Mice reached a threshold performance of 80% correct after 9.0 SD = 3.3 sessions on 
average for discrimination involving only luminance cues. Average discrimination 
performance for the new stimuli in step 2 during the first session that they were intro-
duced was 84.3% SD = 0.1, indicating that they were able to generalize based on the 
stimuli from step 1. In contrast, discrimination performance for the new stimuli in 
the first session of step 3 dropped to 64.3% SD = 1.1, before rising. On average, mice 
needed 5.8 SD  1.1 training sessions to get back to threshold performance of 80%.

The preliminary data shown therein indicate that mice are able to distinguish mid-level 
vision features through an incremental learning procedure.

FIGURE 1: Figure-ground discrimination setup.
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The Presence of Corpora Amylacea and Microglial 
Cells in Individuals with Unspecified 
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Introduction: Corpora amylacea (CA) is translucent spherical structure that is easily 
detectable on routine preparations. The cellular origin of CA is not yet clearly defined. 
The previous studies showed that CA is aging or cellular stress indicator, but the pres-
ence of CA in neuroinflammation remains unclear (Hoyaux et al., 2000; Rohn, 2015). 
Still, it has been suggested that CA are inclusions, which are observed in greatest 
numbers in astrocytic foot processes, particularly around blood vessels and beneath the 
pia mater (Mills, 2012). In the central nervous system, microglial cells are the resident 
phagocytes of the innate immune system. Microglial cells are traditionally referred as 
a key of the inflammatory process developing in nervous tissue response to various 
harmful agents (Korzhevskii and Kirik, 2016). In this activated state microglia produce 
various proinflammatory cytokines and immune mediators that create a neurotoxic 
milieu leading to the progression of diseases (Krause and Muller, 2010). The purpose of 
this study is to investigate the presence of CA as cellular stress indicators, thus correlat-
ing astrocytic and microglial response in individuals with unspecified encephalopathy.

Materials and Methods: Brain tissues autopsy samples were selected from 25 individu-
als with unspecified encephalopathy and 30 controls; age range was between 42–76 and 
49–74 years, respectively. Thereafter, the gray and the white brain matter obtained from 
temporal and frontal lobes were sectioned. The post-mortem interval allowed for this 
study was 24–96 h. The inclusion criteria were pathomorphological signs of an unspec-
ified encephalopathy on tissue examination. The individuals with inflammatory and 
non-inflammatory hepatic diseases were excluded from the study. CA quantification 
was carried out in 10 vision fields of routine histology slides. Immunohistochemical 
reactions using anti-CD68 monoclonal antibody were performed for decoration of the 
activated microglia/macrophages. Quantitative estimation of immunopositive cells in 
10 randomly selected vision fields of each specimen was performed. All tissue sections 
were analysed using a Leica microscope (×400).

The results are presented as medians with interquartile values [IQR (25%;75%)].  
Chi-Square test was used for comparison of several categorized variables. 
Immunoreactivity values between groups were analysed with Mann Whitney U test, 
in group—with Wilcoxon Signed Ranks test. Spearman’s rank correlation coefficient 
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was used to estimate a relation between CA and CD68 expression. The significance level 
(p) with value, which is less than 0.05 is assumed as statistically significant. Calculations 
were performed using SPSS 23.0 programme.

Results: Our investigation showed that a higher number of CA, located in the white 
matter of the frontal and temporal lobes are observed in the individuals with the 
unspecified encephalopathy when compared to the control group. Statistically higher 
(p < 0.001) numbers of CA were observed in the white matter of the frontal and tem-
poral lobes in the individuals with unspecified encephalopathy (1.00 (0.00.1.00) and 
0.00 (0.00; 0.00); 1.00 (0.00; 2.00) and 0.00 (0.00; 1.00), respectively), and controls (0.00 
(0.00; 1.00) and 0.00 (0.00; 0.00); 0.00 (0.00; 2.00) and 0.00 (0.00; 1.00), respectively), 
when compared to the gray matter. CA mostly displayed perivascular location both, 
within the gray and white matter, and were found in higher numbers in pial, subpial, 
and periventricular regions of the brain. The number of microglial cells was significantly 
higher (p < 0.001) in the white than in the gray matter in the frontal (12.00 (8.00; 15.00) 
and 4.00 (2.00; 7.00), respectively) as well as in the temporal lobe 9.00 (6.75; 12.00) 
and 3.00 (2.00; 5.00), respectively) in encephalopathy group. Similarity was found 
in controls presented as 8.00 (5.00; 12.00) and 4.00 (2.00; 6.00) in the frontal, and 
temporal lobe 9.00 (6.00; 12.00) and 3.00 (2.00; 6.00), respectively. Statistically higher 
(p < 0.001) numbers of microglial cells were detected in the white matter of individuals 
with unspecified encephalopathy when compared with controls—12.00 (8.00; 15.00) 
and 8.00 (5.00; 12.00), respectively, although there are no significant differences when 
comparing the numbers of microglia in temporal lobe between individuals of both 
encephalopathy and control groups. There are positive correlations found between 
number of microglia located in gray and white matter of frontal lobe in the individu-
als with unspecified encephalopathy and controls (r = 0.575, p < 0.001, and r = 0.481, 
p < 0.001, respectively). There were no correlations between CA and microglia in the 
frontal lobe in both encephalopathy and control cases. There are positive correlations 
found between number of microglia located in gray and white matter of temporal lobe 
in the individuals with unspecified encephalopathy and controls (r = 0.349, p < 0.001, 
and r = 0.171, p < 0.001, respectively). There were negative correlations (r = −0. 135, 
p < 0.001) found in the white matter between CA and microglia in the temporal lobe 
in control cases.

Conclusions: Our study showed higher number of CA and microglial cells located in 
the white matter of frontal and temporal lobes in case of unspecified encephalopathy 
when compared to controls. The higher numbers of CA were observed in temporal 
lobe within the white matter when compared with frontal lobe. Increasing evidence 
of CA may reflect chronic neurodegenerative damage, whereas elevation in a number 
of microglial cells may be associated with inflammatory processes affecting the frontal 
lobe of the brain.
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To expand our understanding of the underlying mechanisms governing information 
processing and especially learning in neural networks, the ability to employ large-
scale simulations is essential. Current trends in conventional processor technology 
indicate that general-purpose processors will face significant difficulties in achieving 
both the cost-efficiency and the performance required for human-brain-size neural 
network simulations. In particular, the simulation of slow processes such as learning 
and development appears particularly unfeasible. As a potential solution, the develop-
ment of specialized neuromorphic hardware has been proposed, containing circuitry 
that mimics neuronal and synaptic dynamics while operating with significantly lower 
power consumption and at much higher speeds than conventional simulation platforms 
(Schemmel et al., 2008).

Here, we focus on the design of such a neuromorphic neuron circuit: starting from 
specifications given in seminal literature from both experimental and computational 
neuroscience, we sketch how neuronal dynamics can be implemented in a micro-
electronic circuit. This neuron model is an integral part of the newest generation 
of HICANN-DLS (High Input Count Analog Neural Network-Dynamic Learning 
System) chips developed at the Heidelberg University as part of the HBP Neuromorphic 
Computing Platform (Aamir et al., 2016).

The chip aims at implementing a highly configurable physical representation of the 
adaptive exponential integrate-and-fire neuron model (Brette and Gerstner, 2005). The 
neuron on the HICANN-DLS mixes analog as well digital building blocks to efficiently 
represent the model’s dynamics—while optimally using the timescales and possibilities 
available in microelectronics. Since the technology used for implementing the chip 
has been updated from a 180 nm to a 65 nm process, design trade-offs have shifted, 
requiring a fundamental redesign of the neuron circuit. We discuss how technology 
scaling impacts the balance between digital and analog submodules for executing 
computations and storing results, and how this provides access to new levels of model 
precision and system performance.



1st Human Brain Project Student Conference 

152 Frontiers in Neuroscience

REFERENCES

Aamir, S.A., Mueller, P., Hartel, A.,  Schemmel, J. , Meier, K. (2016). “A highly unable 65-nm CMOS LIF neuron  
for a large scale neuromorphic system,” in Proceedings of IEEE European Solid-State Circuits Conference  
(ES- SCIRC), IEEE, Lausanne, Switzerland, 71–74.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of 
neuronal activity. J. Neurophysiol. 94, 3637–3642. doi: 10.1152/jn.00686.2005 PMID:16014787

Schemmel, J., Fieres, J., Meier, K. (2008). “Wafer-scale integration of analog neural networks,” in 2008 IEEE 
International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),  
Hong Kong, China, 431–438.  



Frontiers in Neuroscience 153

 1st Human Brain Project Student Conference

The Play Pen – Accelerated Embodiment for 
Accelerated Hardware

Korbinian Schreiber1, Johannes Schemmel, Karlheinz Meier
1University of Heidelberg, Heidelberg, Germany
k.schreiber@kip.uni-heidelberg.de

The complete spectrum of phenomena relevant for understanding brain function com-
prises not only physiological aspects of neuro-synaptic dynamics on a microscopic 
scale, but also the functional properties of the system as a whole. For embodied neural 
networks—which is the case for all biological brains - these can only be understood 
in the context of behaviour, which almost by definition requires an interaction with 
the external world. Learning is an essential component of behaviour development and 
can be viewed as continuously updating an internal model of the external world as a 
consequence of the ongoing agent- environment interaction (Rao and Ballard, 1999; 
Hawkins and George, 2006; Friston, 2010).

While experimental data does provide some information about the plasticity mecha-
nisms underlying learning in the brain, it does not fully constrain the learning rules 
and associated parameters required for ultimately producing the targeted behaviour. 
Simulations of learning networks will therefore need to per- form some form of learning 
rule optimization, which in turn is likely to require a large number of training scenarios.

One solution is offered by accelerated neuromorphic hardware (Schemmel et al., 2008). 
The HICANN-DLS (High Input Count Analog Neural Network—Dynamic Learning 
System)—a neuromorphic system developed for flexible high-speed learning tasks—
offers an accelerated emulation platform for spiking neural networks operating at a 
1,000-fold speed-up compared to biological real-time (Aamir et al., 2016). As the system 
also contains a digital processing unit that is tightly coupled to all relevant parts of the 
neural network and optimized for parallel computing tasks, it enables the application 
and adjustment of learning rules during runtime.

Combining this hardware with a virtual, i.e., simulated habitat for a neuromorphic 
agent would require a fast low-latency link to an equally accelerated environment 
simulation. Alternatively, instead of connecting the hardware to a simulation, it could 
also be directly connected to a set of real-world actuators and sensors.

Our approach for such a real-world environment is called the Play Pen, a physical 
experimentation platform specifically designed for high-speed neuromorphic systems. 
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With the Play Pen, a large number of possible control and learning problems can 
be realized in a very direct and user-interactive way. A Play Pen experiment runs 
continuously and produces output, not only in the form of recorded time series of 
internal dynamical variables, but also in terms of physical movement, which in turn 
affects the agent’s environment, thus closing the sensor-actuator loop. We discuss the 
fast mechanical components required to realize the Play Pen and also describe several 
interactive learning scenarios that we envision for our embodied neuromorphic agents.
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