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Welcome to the 6th HBP Student Conference on 
Interdisciplinary Brain Research

We are excited to present the proceedings of the 6th Human Brain Project 
Student Conference on Interdisciplinary Brain Research, an open forum 
for exchange of knowledge within and across the various research 
fields addressed by the Human Brain Project (HBP). The conference 
was organized by young researchers for young researchers, as a virtual 
meeting for the second time now, from the 22nd to the 25th of February 
2022. Reflecting the multidisciplinarity of the HBP, the abstracts from 
young researchers of this year’s edition cover a wide range of topics: 
from brain organisation, theoretical and clinical neuroscience to brain 
simulation and brain-inspired architectures. 
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Preface

We are excited to present the proceedings of the 6th Human Brain Project 
Student Conference on Interdisciplinary Brain Research, an open forum 
for exchange of knowledge within and across the various research fields 
addressed by the Human Brain Project (HBP). Going virtual for the second 
time, from the 22nd to the 25th of February 2022, the 6th edition proved 
once more that also as a virtual meeting, the HBP Student Conference 
offers invaluable opportunities for extensive scientific discussions among 
fellow early career researchers and faculty. Through a variety of lectures, 
workshops, discussion sessions and social events, participants could learn 
about recent developments and tools in brain research, as well as interact 
with world-leading researchers and experts on career development, 
neuroethics and philosophy of the brain. At the heart of the conference 
were the invaluable contributions of all young researchers in the form 
of talks and posters, whose corresponding abstracts are presented in 
this book. The accepted abstracts cover a wide range of topics (brain 
atlases and clinical neuroscience, brain simulation and brain-inspired 
architectures, brain organisation and theoretical neuroscience, systems 
and cognitive neuroscience), introducing new and relevant problems, 
concepts and ideas, with the potential to inspire collaboration across 
research disciplines.

We would like to thank all authors for submitting their work to the 6th 
HBP Student Conference and all participants for making the conference 
a unique event for the future of brain research. We hope this selected set 
of abstracts can be of inspiration for new discussions, interactions and 
research opportunities for the whole scientific community.

Alice Geminiani, Tabea Kirchner & Paschal Ochang

Programme Committee Chairs of the 6th HBP Student Conference
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I Brain atlases & clinical neuroscience

Reconstructing the Broca’s area of the human 
brain using a customized dual-view light sheet for 
optimized imaging time and improved resolution

Mohamed Baghdad1,3†, Niamh Brady1,3*†, Irene Costantini1,2†, 
Giacomo Mazzamuto1,2†, Marina Scardigli1,3†, Filippo Castelli1,3, 
Ludovico Silvestri1,2,3, Francesco Saverio Pavone1,2,3

1European Laboratory for Non-linear Spectroscopy (LENS), University of Florence Via Nello Carrara, 

Sesto Fiorentino (FI), Italy
2National Institute of Optics, National Research Council, Fiorentino (FI), Italy
3Department of Physics and Astronomy, University of Florence Via G. Sansone, Sesto Fiorentino (FI), Italy

*brady@lens.unifi.it

INTRODUCTION/MOTIVATION

Understanding the human brain’s structural and functional organization is a 
key aspect in neuroscience. The necessity to create a detailed map of the ana-
tomical disposition of neurons is shared among the field and would facilitate 
further widespread research. Previous pipelines presented shortcomings in 
the form of visual artefacts, long acquisitions times and poor resolution. Here, 
we present a new pipeline aiming to reduce these limitations by providing 
high-resolution 3D reconstruction of mapped neurons of the human brain, 
specifically the Broca’s area. The pipeline obtains this volumetric information 
by utilising advanced Light Sheet Fluorescence Microscopy (LSFM), optimized 
SHORT clearing protocol [1] and a data management system. 49 slices from 
the human brain were cleared and labelled using four difference markers 
targeting nuclei, NeuN, Calretinin and Somatostatin which were then imaged 
at subcellular resolution, using a customized Light Sheet Microscope. This 
technique provides the grounds to acquire large-scale data volumes at opti-
mized speeds to enable the analysis of a robust 3D reconstruction of tissue 
blocks up to the entire organ. In this study, we have constructed a whole 
human Broca’s area of 4*4*2cm.

†these authors contributed equally to the work



12 6th HBP Student Conference on Interdisciplinary Brain Research

 
6th HBP Student Conference on Interdisciplinary Brain Research

METHODS

SHORT protocol: The aging tissue found in adult human organs are particu-
larly difficult to render transparent due to the autoflorescence contributions. 
The optimized SHORT protocol is used to face this challenge, a procedure 
based on standard histological treatments and a refined clearing technique. 
Four neuronal markers were implemented in order to localize cells, high-
light targets neurons and discriminate between the excitatory and inhibitory 
sub-populations of the Broca’s area (Brodmann 44/45). The tissue ultrastruc-
ture of the SWITCH protocol [2], a tissue processing method enabling tissue 
preservation and repeated labelling, combined with the clearing capability of 
TDE and conventional buffers were used in each of the sequentially stained 
49 slices of 450μm thickness. With the aim of optimizing contrast during 
imaging, hydrogen peroxide was applied as well as alkaline antigen retrieval, 
followed by an optimized version of the SWITCH transformation protocol and 
refractive index matching with 2-2’thiodiethanol (TDE) to render the sample 
as transparent as possible. This enhances the depth of light penetration in 
addition to reducing aberrations. 

Custom dual-view inverted confocal light sheet fluorescence microscope 
(di2CLSFM): A custom built light sheet microscope, equipped with two 
sCMOS cameras provide two symmetric illumination and detection pathways. 
As shown in Figure 1, the use of an acoustic tuneable filter and appropriate 
band-pass filters establish a set-up that is capable of simultaneously acquiring 
two channels (two laser wavelengths), halving necessary acquisition time. 
Each slice was acquired using 4 channels in totally (405nm, 488nm, 561nm, 
638nm) as a volumetric rate of 0.5cm3/hour (47 frames per second). Two 
orthogonal views are leveraged, and subsequently fused computationally, to 
obtains almost isotropic subcellular resolution along the three optical axes.
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Three-dimensional reconstruction of a human hippocampus and of Broca’s 
area: A data management system was implemented to process the large data 
(≈14TB/slice), combined with a machine learning technique, Convolution 
Neural Network (CNN) that precisely counts the neurons in 3D.

RESULTS AND DISCUSSION

Our study utilises a combination of techniques to map the neuronal architec-
ture of the human brains. By means of specialized tissue preparation protocol, 
advanced light sheet fluorescence microscopy and big data analysis, we 
were able to analyse and to reconstruct the Broca’s area of the human brain. 
This pipeline would not only be a useful tool in neuroscience but also for 
providing a tool to 3D reconstruct other tissue blocks up to the total organ 
for human and non-human species. This pipeline is currently being utilized 
to study other parts of the human brain. 

All datasets acquired have been added on the DANDI platform, a platform 
used for publishing, sharing and processing neurophysiology data [3].

FIGURE 1: di2CLSFM optical schematic and photo of the set up. The front is a protective box, 

covering the chamber in which the slice is placed for imaging.
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Keywords: Light sheet fluorescence microscopy, human brain imaging, tissue clearing, 
Broca’s area, neuron mapping
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FIGURE 2: 48 slices of Broca’s area imaged at a resolution of 0.56*0.56*0.3μm3. The data is 

resliced and stitched together to obtain the final fused volume. The complete dataset has 

been uploaded on DANDI.

Source: https://gui.dandiarchive.org/#/dandiset/000026
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Sex-dependent cortical excitatory/inhibitory 
imbalance is associated with behaviour alterations 
in a mouse model of autism spectrum disorder

Helena M. Ferreira1, Ana Catarina Sousa2, Hugo Ferreira3,4, 
Sofia Santos1, José Sereno3,4, João Martins3,4, 
Miguel Castelo-Branco1,3,4*, Joana Gonçalves3,4*
1Faculty of Medicine, University of Coimbra, Coimbra, Portugal
2Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
3Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 

Coimbra, Portugal
4Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal 

*jgoncalves@icnas.uc.pt, mcbranco@fmed.uc.pt

INTRODUCTION/MOTIVATION

Autism spectrum disorder (ASD) is a neurodevelopmental condition charac-
terized by deficits in social interaction, impaired communication, and repet-
itive behaviours. ASD has a male bias, with a 3:1 ratio of diagnosed males 
and females. In this sense, it is essential to study sexual dimorphisms of ASD 
manifestations, and understand the pathways underlying them.

METHODS

In this work, we performed in vivo proton magnetic resonance spectroscopy 
in juvenile male and female Tsc2+/- mice, a well-characterized ASD animal 
model carrying a mutation on the Tsc2 gene, which causes tuberous sclerosis 
complex. Moreover, to find a link between metabolic profile and ASD core 
symptoms, we analysed behaviour and ultrasonic vocalizations during social 
and repetitive tasks. Behaviour was manually classified by a blind operator to 
sex and genotype, following a comprehensive mouse behaviour ethogram; 
Ultrasonic vocalizations were analysed regarding duration, frequency, ampli-
tude and waveform. 
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RESULTS AND DISCUSSION

We found significant increase of glutamate (Glu) levels and decrease of gam-
ma-aminobutyric acid (GABA) levels in the prefrontal cortex of transgenic 
females, in comparison to WT females (Glu: p= 0.0313; GABA: p= 0.0380). 
Accordingly, GABA/Glu ratio of Tsc2+/- females was decreased (p= 0.0152). 
No significant alterations were found in males. This data reveals the exist-
ence of an excitatory/inhibitory imbalance specific to the prefrontal cortex of 
transgenic females. We also observed that Tsc2+/- females have an increased 
sociability (p=0.0274), increased repetitive behaviour (p=0.0244) and a less 
complex vocal repertoire during social task. Overall, here we uncovered 
an association between sex-dependent altered cortical metabolic signature 
and abnormal behaviour and communication in autism spectrum disorder.

Keywords: Autism spectrum disorder, Hippocampus, Prefrontal cortex, Social behaviour, 
Repetitive/restrictive behaviour

FIGURE 1: Graphical abstract of the presented work. in vivo proton magnetic resonance 

spectroscopy of the prefrontal cortex and hippocampus revealed reduced cortical GABA/

glutamate ratio in transgenic females. Social play test and marble burying test showed an 

increased number of social interactions and increased repetitive/stereotyped behavior in 

transgenic females. Additionally, these animals also displayed deficient communication skills, with 

a reduced USV rate and less vocal complexity. There may be a link between the altered cortical 

metabolic levels and the behaviors and communication profile observed in the transgenic females. 



6th HBP Student Conference on Interdisciplinary Brain Research 17

 
6th HBP Student Conference on Interdisciplinary Brain Research

Study on the effects of various risk factors on the 
onset of Parkinson’s disease using machine and 
deep learning

Dimitrios Georgiou1,2, Christina Emmanouil1,3, Georgios Vlachos1,4, 
Leonidas Stefanis1,5, Ioannis Michalopoulos1*
1Biomedical Research Foundation, Academy of Athens, Athens, Greece 
2School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece 
3Department of Biology, National and Kapodistrian University of Athens, Athens, Greece 
4School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 

Athens, Greece 
51st Department of Neurology, Aeginition University Hospital, National and Kapodistrian University of 

Athens, Medical School, Athens, Greece 

*imichalop@bioacademy.gr

INTRODUCTION/MOTIVATION

Parkinson’s Disease (PD) is a progressive, neurodegenerative disorder. It 
affects 1% of the people over the age of 60, rising to 4% over the age of 80 
[1]. The cause of the disease has not yet been clarified, with the exception of 
a few genes which are known to account for a small percentage of the total 
cases [2]. Both genetic and environmental factors are being examined as risk 
factors. Symptoms appear after a large number of dopaminergic neurons has 
died [3]. To improve the prognosis of the disease, we introduced a thorough 
Machine Learning (ML) approach to analyse PD data.

METHODS

1085 and 586 questionnaires from PD patients and healthy controls respec-
tively were completed by qualified neurologists in Greek hospitals. The ques-
tionnaires contained demographic, lifestyle, pharmacological, environmental 
and clinical data which were stored in the Hellenic Biobank for Parkinson’s 
Disease [4, 5] (http://biobank-informatics.bioacademy.gr), using MOLGENIS 
8.6.3 [6]. The dataset contained 51 features for both patients and controls 
and 75 only for patients. Since this study focuses on the prognosis of the 
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disease, we wanted to include both patients and controls, so only those 51 
features were used. After reformatting the data, we designed an ML approach 
to identify the factors that are associated with PD. Using Python programming 
language, we designed a system which compares various preprocessing and 
transforming steps, as well as ML classifiers:

 ∞ Imputers: Mean, Median, Most frequent, Knn, Iterative

 ∞ Scalers: Quantile, Max abs, Standard, Robust, Power, Min-max, Normalizer

 ∞ Encoders: One hot, Sum, Label, Leave one out, WOE, Target, M estimate, 
Helmert, James-Stein, Cat boost, GLMM

 ∞ Binners: K bins discretizer

 ∞ Undersamplers: Tomek, Condensed, Random, Edited nearest, Near miss

 ∞ Feature selectors: Select percentile

 ∞ Classifiers: Nu SVC, SVC, XGBoost, Gradient boosting, Random forest, 
Ridge, Logistic regression, Linear SVC, Calibrated, Adaboost, Multi-layer 
perceptron, Linear discriminant analysis, Stochastic gradient descent, 
K-nearest neighbors, Decision tree, Extra tree

For each classifier, we ran numerous experiments to identify the best com-
bination of preprocessors and transformers. For the resulting algorithms, 
we tuned the most important hyperparameters using the halving gridsearch 
algorithm, to identify the best configurations. These were later given as input 
to ensemble algorithms (hard voting and soft voting), to optimise the best 
models. Here, we ran numerous experiments to identify the best combina-
tion of optimized classifiers for the ensemble approach, and again numer-
ous experiments to optimize the weights of the best voting soft ensemble 
classifier. To prevent data leakage and overfitting, the data were split into a 
training and a test dataset. All experiments were performed on the training set, 
using 10-fold cross validation. The test set was used only once, at the end of 
each experiment, for evaluation. Furthermore, we compared our results with 
those of automated ML platforms (Auto-WEKA [7], JADBio [8], RapidMiner 
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[9]) using the same dataset. Finally, we introduced a deep learning (DeepL) 
approach for analysing the data, by converting features into embeddings, a 
concept used in Natural Language Processing (NLP). This approach is inno-
vative and overcomes the problem of lack of large amount of data for neural 
networks and lack of interpretability, since using vectors to represent each 
entity removes the sparse matrices’ problem of inefficient computation and 
shows the relationship between each entity [10]. These embeddings were 
given as input in a Convolutional Neural Network (CNN), the architecture 
and the parameters of which are still being optimised, while feature maps 
are being constructed to better interpret features’ relationships.

RESULTS AND DISCUSSION

Based on our ML approach, the ensemble classifiers have so far achieved a 
Matthews Correlation Coefficient (MCC) of 0.583 and an F1 score of 0.840. As 
this is an ongoing project, more experiments are scheduled to run, expecting 
to improve these 2 metrics, and to construct new informative visualisations as 
well. Based on our ML approach, the factors “Family History”, “Age”, “Gender”, 
“Smoking-Free Years”, “Coffee Status”, “Total Coffee Consumption”, “Daily 
Average Coffee”, “Smoking Years” and “Religion” played, in that order, a key 
role in the progression of the disease. These results confirm the literature 
findings that PD family history, age and male gender constitute the biggest risk 
factors for PD, whereas smoking and coffee consumption play a protective 
role. Regarding the comparison between ML platforms, all three platforms 
require no coding skills. JADBio stood out as the user-friendliest and most 
automated platform. We also used it before writing our own scripts, as a 
preliminary data analysis tool, in order to see if our data have the potential 
to be classified correctly. RapidMiner was a little more complicated, but 
achieved good results. Auto-WEKA requires the preprocessing to be done 
by the user, and overfitting was also detected. However, our custom-made 
Python code is more versatile and we were able to implement several extra 
steps, analysing in depth different transformers and models. The results are 
summarised in table 1.
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Table 1: Results comparison

Metrics

Scores

Machine 
Learning 
Approach 

Deep 
Learning 
Approach

JADBio RapidMiner Auto-WEKA→ 
configuration 
tested in sim-
ple WEKA

MCC 0.583 0.57 0.412 0.414 (not 
provided)

0.729 → 0.512

F1 0.840 0.840 0.678 0.812 0.820 → 0.779

ROC-
AUC

0.8 0.8 0.789 0.788 0.859 → 0.753

Accura-
cy

0.8 0.8 0.729 0.742 0.878 → 0.778

The automated platforms also suggest hypertension, brain damage, and cer-
tain childhood prefectures and residence prefectures as risk factors. Although 
PD has already been studied using ML, this project studies, for the first time, 
the disease in Greece. As Greece includes numerous islands, genetic isolation 
can be observed to some degree, due to limited relocation. Genetic isolation 
also occurred due to the coexistence of two different religious communities 
(Orthodox and Catholic Christians) in some islands: Marriages between mem-
bers of the two communities used to be rare. Thus, Greek populations should 
be studied to identify potential risk genes. One of the important advantages 
of our approach is that there is no size limit for the input data. We can also 
construct numerous visualisations to interpret the outcome of every step. 
In contrast with other approaches that often focus on accuracy, our main 
focus was to optimise MCC, since it takes into account the predictions for all 
classes equally. Finally, our extensive pipeline outperformed the 3 automated 
ML platforms, in terms of MCC, F1 ROC-AUC and accuracy scores.  Last but 
not least we introduced the innovative concept of entity embeddings used 
to build a CNN model which outperforms every approach in terms of MCC.

Keywords: Parkinson’s Disease, Clinical Data, Machine Learning, Classification, Python, WEKA, 
JADBio, RapidMiner
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INTRODUCTION/MOTIVATION

Interoception is defined as sensing, integration, and regulation of internal 
states of an organism by the brain. Interoceptive processing plays a signif-
icant role in the functioning of a human organism, including homeostasis 
and allostasis, the perception of self and other, the processing of reality, 
learning, and decision-making. Interoceptive processing may be enhanced 
or disrupted in psychiatric disorders and in anxious or stressful situations. 
Heartbeat-evoked responses (HERs) are evoked potentials or evoked fields 
(in the magnetoencephalographic (MEG) setting) that occur in response to 
a heartbeat event (Baranauskas et al., 2017). Trait anxiety is viewed as a fairly 
stable characteristic in connection to personality. Experiencing state anxiety 
more frequently and perceiving the world as being generally unsafe and 
threatening are the major features of trait anxiety (Wiedemann, 2001). The 
amplitude of heartbeat-evoked responses time-locked to the processing of 
external stimuli has been shown to disrupt exteroceptive processing (Park 
et al., 2014). In our recent work we showed that state anxiety disrupts learn-
ing and decision making in a volatile environment, decreasing the amount 
to which individuals update their beliefs using feedback (Hein et al., 2021). 
Analysing the HER locked to the T-wave of the cardiac cycle, we aim to 
assess the degree to which the HER amplitude modulates trial-by-trial belief 
updating and learning, as a function of trait anxiety. Investigating how intero-
ception can modulate learning in high trait anxiety, we can discover important 
characteristics of anxiety as a personality trait as well as a clinical condition. 
This knowledge can improve our understanding of mental health conditions 
as many of them include anxiety as a symptom, which can later used in the 
development of better treatments for such conditions.



6th HBP Student Conference on Interdisciplinary Brain Research 23

 
6th HBP Student Conference on Interdisciplinary Brain Research

METHODS

For recording brain activity, we are using magnetoencephalography (MEG) 
– the 306-channel magnetoencephalographic machine ‘Neuromag Vector 
View’ (Elekta Oy, Finland), located in the Moscow MEG Centre (Moscow, 
Russia). Along with MEG, we record ECG and electrooculogram (EOG) using 
the bipolar channels integrated in the system. Magnetoencephalography is 
characterized with the good temporal resolution similar to electroenceph-
alography (EEG), which makes it a useful tool to investigate such things 
as neural evoked responses, and at the same time its spatial resolution is 
stronger than EEG, so it can be used for localizing the source of the signal 
with better precision. Our experimental task (Fig. 1) consists of three blocks: 
resting state, reward learning task block 1, and reward learning task block 
2 Binary choice decision-making task with contingencies that change over 
the course of learning. Participants need to complete two blocks, each of 
which consists of 160 trials, and their goal is to determine which one of the 
two visual icons (always either a blue or an orange circle) leads to a reward 
(5 points). We are using the STAI-T scale (Spielberger, 1983) to measure par-
ticipants’ trait anxiety levels.

FIGURE 1: Example of a trial in the experimental task (the task had previously been applied in 

Hein et al., 2021).
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RESULTS AND DISCUSSION

We acquired MEG, ECG, and behavioral data from 41 participant: 20 partici-
pants with high trait anxiety (STAI score: > 45) and 21 participants with low trait 
anxiety (STAI score: < 35). Analysis of the behavioral data revealed significant 
differences between the low trait anxiety and the high trait anxiety groups in 
model-free and model-based variables. On the one hand, the average win-
ning rate – the percentage of winning trials – for the low trait anxiety group 
equals to 0.65 (SEM 0.01), while the average winning rate for the high trait 
anxiety group is 0.63 (SEM 0.03). These values are significantly different using 
permutation tests, and the p-value is 0.0186. On the other hand, preliminary 
analysis of the data using the Bayesian computational model that was the 
best model explaining the data in a previous study of the group (Hein et al., 
2021) demonstrates that high trait relative to low trait anxiety leads to reduced 
learning through an attenuation of prediction errors updating beliefs. We 
have yet to complete our analysis of the HERs, however, by far, we have 
made an interesting

OBSERVATION

The HER amplitude is higher in both groups in lose trials than in win tri-
als.  Since we are analyzing the HER amplitude which is time-locked to the 
T-wave that is preceding the feedback, by the time we can observe the HER 
(around 150 ms after the T-wave), the feedback does not yet appear. So, the 
HER amplitude appears to be reacting to the outcome of the trial before 
the outcome is known to the participant. We also observed that most lose 

FIGURE 2: Percentage of win and lose trials depending on contingency.
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trials happened during the 50/50 contingency blocks (Fig. 2), so possible 
explanations include some kind of processing of ‘loss anticipation’ occurring 
in participants.
The plans for further analysis in our project include the following steps:

•	 The behavior of both groups in the learning task to be characterized using 
a hierarchical Bayesian model of decision-making to link trial-to-trial HER 
measures to dynamic learning.

•	 Our aim is to focus on the trial-by-trial modulations of the HER preced-
ing the outcome and see how the amplitude modulates with learning in 
the trial from the feedback information (combining analysis of the MEG 
HER and the trajectories of learning in a Bayesian computational model).
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INTRODUCTION/MOTIVATION

Premenstrual dysphoric disorder (PMDD) is a depressive disorder [1] charac-
terized by severe negative mood and physical symptoms that occur after ovu-
lation (luteal phase) and disappear with the onset of menstruation (i.e., during 
the follicular phase). There is evidence that imbalance of excitatory (E) and 
inhibitory (I) neurotransmission caused by abnormal sensitivity of GABAergic 
receptors to progesterone metabolite allopregnanolone plays an important 
role in PMDD [2]. We hypothesised that E/I imbalance in PMDD will be evident 
in the cortical regions rich in GABAegric neurons, such as the primary visual 
cortex (V1), i.e., even beyond brain areas involved in mood control. To test this 
hypothesis, we used electrophysiological and psychophysical measures of 
inhibition efficacy in the visual cortex – visual perceptual suppression (‘spatial 
suppression’; [3])  and visual gamma response suppression index (GRSI; [4]). 

METHODS

We recruited 20 women suffering from PMDD according to the C-PASS ques-
tionnaire ([5]) and 27 age-matched control women (Age: 18-40, 28.4±5.6), 
who had no/mild premenstrual symptoms according to a retrospective 
questionnaire. The criteria for inclusion were regular menstrual cycle and 
absence of hormonal (e.g. contraceptive pills) or antipsychotic treatment. 
The participants were investigated twice: during follicular (asymptomatic) and 
luteal (symptomatic) phases of the menstrual cycle; the phase of the visit was 
balanced between visits and participants. The presence of the particular phase 
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(luteal/follicular) was confirmed by biochemical analysis of progesterone and 
estradiol concentration. During both visits, the women underwent magneto-
encephalography (MEG) and psychophysical testing. MEG was recorded while 
the participants looked at large (18°) high-contrast circular gratings, either 
static or moving at one of three velocities: ‘slow’: 1.2°/s, ‘medium’: 3.6°/s, 
‘fast’: 6.0°/s. Stimuli of this type cause reliable increase in gamma (40-90 
Hz) power in the V1 – ‘gamma response’ (GR). The GR is generated through 
interaction of parvalbumin-containing inhibitory neurons and principle cells 
[6]. Frequency of the GR is known to increase linearly with increasing visual 
motion velocity, while its power demonstrates nonlinear changes: it normally 
increases up to 1.2-3.6°/s (‘suppression transition point’) and then decreases 
with further increase of motion velocity [4,7]. The GR attenuation at fast veloc-
ities can be explained by stronger inhibitory regulation (and lower E/I ratio) 
associated with strong excitatory drive [4]. To approximate the ‘suppression 
transition point’, we estimated GRSI as: 

(Power
STATIC

*0+Power
SLOW

*1 .2+Power
MEDIUM

*3.6+Power
FAST

*6.0)/
(Power

STATIC
+Power

SLOW
+Power

MEDIUM
+Power

FAST
). 

During a separate psychophysical experiment, participants detected the direc-
tion of motion of small (1°) and large (12°) high-contrast vertical gratings. The 
gratings  moved at a constant velocity, but the duration of their presentation 
gradually decreased. We estimated the minimal time required to discrimi-
nate the motion direction of  small (Threshold

SMALL
) and large (Threshold

LARGE
) 

grating. It has been shown previously that it usually takes people longer 
to discriminate motion direction of a large grating than of a small grating  
because of the suppression of neuronal responses caused by the activation 
of the inhibitory surround by large high-contrast stimuli (i.e., ‘surround sup-
pression’). Thus, the longer time required to discriminate the direction of the 
large grating indicates stronger inhibition in the visual cortex [8].

RESULTS AND DISCUSSION

All participants from the PMDD group reported severe premenstrual symp-
toms during at least two menstrual cycles. Similarly to the results of the 
previous study that included women with severe PMDD [9], our participants 
had reduced level of progesterone in the luteal phase (Mann-Whitney test, 
U=168.5, p=0.015) as well as an elevated estradiol/progesterone ratio in the 
luteal phase (Mann-Whitney test, U=168.5, p=0.005). 
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In both PMDD and control participants the GR frequency increased from folli-
cular to the luteal phase (F(1,42)=7.3, p=0.01). No group differences in the GR 
frequency or Group x Phase interaction was found. Unlike GR frequency, GR 
power did not depend on the phase of the cycle, but demonstrated significant 
Velocity x Group interaction (F(3,129)=3.2, p=0.025): women with PMDD 
were characterized by stronger GR during  the ‘medium’ and ‘fast’ motion 
conditions, but not the ‘static’ one, thus indicating a shift of the ‘suppression 
transition point’ to higher motion velocities. Indeed, the GRSI was significantly 
higher in women with PMDD than in control subjects (F(1,42)=5.1, p=0.029). 
Moreover, in the PMDD group the GRSI was significantly higher during luteal 
compared to follicular phase of the menstrual cycle (F(1,17)=5.3, p=0.035). 
Generally higher GRSI in  PMDD than in control group suggests impaired E/I 
balance regulation in PMDD patients. The increase of the GRSI in women with 
PMDD during luteal as compared to follicular phase of the cycle suggests that 
E/I balance in their visual cortex is especially strongly compromised during the 
symptomatic phase. Despite the observed alterations, the GRSI in women with 
PMDD did not correlate with the symptoms severity (GRSI

LUTEAL
: Spearman 

R=0.014, p=0.95). It is likely, that while impairment of E/I balance regulation 
in PMDD is widespread, the mood symptoms of PMDD are associated with 
E/I imbalance in specific, mood-related brain areas.

In the psychophysical experiment the reliable data were obtained from 
23 controls and 13 PMDD participants. While Threshold

SMALL
 did not differ 

between groups and phases, Threshold
LARGE

 in PMDD significantly decreased 
during the luteal as compared to follicular phase (F(1,11)=5.6, p=0.038), sug-
gesting reduction of neural inhibition during the symptomatic phase. For 
Threshold

LARGE
, there was also Group x Phase interaction (F(1,32)=5.2, p=0.03): 

during follicular (but not luteal) phase the Threshold
LARGE

 tended to be higher 
in the PMDD than in the control subjects (F(1,32)=3.7, p=0.063). Interestingly, 
the Threshold

LARGE 
measured during the luteal phase correlated positively 

with severity of their premenstrual symptoms (Spearman R=0.58; p=0.023). 
These findings suggest the presence of a compensatory, possibly ‘top-down’ 
regulatory mechanism in PMDD patients that enhances neural inhibition in 
V1, putatively through activation of somatostatin-containing inhibitory neu-
rons [10]. 

In conclusion, the results of both MEG and psychophysical studies indicate 
a decrease in neural inhibition in the visual cortex in women with PMDD 
during the luteal – symptomatic – phase of the menstrual cycle. Our results 
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also suggest that the regulation of E/I balance in the visual cortex in women 
with PMDD is atypical in both luteal and follicular phases. Although changes 
in E/I balance in the visual cortex are not directly related to the psychoaf-
fective symptoms of PMDD, they may shed light on the neural mechanisms 
of this disorder.

Keywords: premenstrual dysphoric disorder, excitation-inhibition balance, steroid hormones, 
gamma oscillations, spatial suppression
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INTRODUCTION/MOTIVATION

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder char-
acterized by deficits in social communication and presence of repetitive 
behaviors. Recent evidences suggested that microbiome may play a role in 
the etiology of ASD. However, the mechanisms of these effects are still poorly 
understood. Some evidences suggest that the gut can affect brain function 
through metabolite secretion, host immune response, altering the activity of 
the stress-associated hypothalamic–pituitary–adrenal axis and regulating the 
biosynthesis of active neuropeptides. Neuropeptide Y (NPY) is one of the most 
potent orexigenic neuropeptides found in the central and peripheral nervous 
systems with roles in multiple physiological processes including neuronal 
excitability, learning and memory and regulation of intestinal microbiota. But, 
it remains unclear whether behavioral disorders associated with dysbiosis of 
the intestinal microbiota, including ASD, are also under the control of the 
NPY system.  The proposed work will evaluate gut microbiome relative levels 
and brain NPY system expression in neurofibromatosis type 1 (NF1) mice, a 
well-charaterized ASD animal model.

METHODS

Here, juvenile female and male NF1 mice were used. Brains were removed 
and brain regions, namely hippocampus and amygdala, were dissected. 
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Additionally, we collected stool samples directly from the colon. All sam-
ples were stored in RNA later at -80ºC until further use.  mRNA from brain 
and colon samples were extracted using RNeasy Lipid Tissue and RNeasy 
PowerMicrobiome® Kit (Qiagen, Hilden Germany), respectively, according 
to the manufacturer’s instructions. Real Time PCR (RT-PCR) on microbial 
samples was performed using primers for the genera Lactobacillus. 16S were 
used as a bacterial endogenous control for qRT-PCR experiment. For gene 
expression analysis from brain samples, primers for npy, y1r, y2r, y5r were 
used. B2m and ywhaz were used as housekeeping genes to normalize NPY 
mRNA changes. Importantly, all experiments used littermates as controls. 
Statistical analysis was performed using the Mann-Whitney test in GraphPad 
Prism 6.0 (GraphPad software, Inc., San Diego, CA, USA).

RESULTS AND DISCUSSION

The present study reported dysregulation of  Lactobacillus population in the 
gut of NF1 mice, with a  decrease in L.Reuteri and an increase in L.Rumni. In 
addition, we also reported changes in NPY and NPY receptors expression in 
amygdala and hippocampus brain regions of NF1 animal in a sex-dependent 
way. Indeed, NF1 males showed an increase in NPY in hippocampus and a 
decrease in Y

2
R expression in amygdala comparing with their WT littermates. 

On the other hand, no changes were detected in transgenic females. This 
study identifed bacterial species that are sensitive to an autism-related muta-
tion as well sex-dependent changes in brain NPY, pointing to the importance 
of considering the gut–brain axis in treatment of this disorder.

Keywords: neuropeptide Y, gut-brain, microbiome, NF1 mouse model, autism spectrum 
disorder
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INTRODUCTION/MOTIVATION

Mental health today is a burden on a global level with various psychiatric 
disorders leading to a lower quality of life, a significant number of deaths 
and a higher pressure on healthcare systems. It is known that mental dis-
orders influenced around 1 billion people worldwide in 2019 (point prev-
alence: 970,070,243) [1]. As developing more effective treatments for the 
most common mental disorders is of high priority for international public 
health, substantial research is nowadays dedicated to this issue. This includes 
studies where emphasis is put on biological and mechanistic understanding 
of the brain. For example, the PsychENCODE [2] initiative provides various 
molecular and genetic data generated from brain tissue and already pre-
sents some insights into the molecular mechanisms of gene regulation for 
psychiatric disorders such as autism spectrum disorder, bipolar disorder, and 
schizophrenia. These data are often referred to as multi-omics and include 
but are not limited to gene or protein expression read-outs, mutations, DNA 
methylation. In order to achieve a higher level of interpretability, we aim to 
develop a method based on a graph neural network which leverages prior 
knowledge of gene-gene associations in the form of protein-protein interac-
tion network and multi-omics data generated from brain tissue. Methods for 
integration of different molecular data types such as graph neural networks 
for disease gene predictions have already been successfully applied in the 
context of cancer [3] and might be suitable to integrate heterogeneous data 
from the brain.
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METHODS

We apply graph attention network model [4] to integrate gene expression 
data with protein-protein interaction data to identify candidate genes related 
to schizophrenia. Protein-protein interactions were retrieved from STRING 
database [5] and are used as a graph structure for the graph attention net-
work model where each node corresponds to a gene. Gene expression data 
was extracted from PsychENCODE resource [6] in a form of a matrix where 
each entry represents the expression level of a particular gene in a given 
sample. This gene expression was pre-processed such that the final matrix 
contains samples that represent either control group or patients diagnosed 
with schizophrenia and genes that are protein-coding and have non-constant 
expression (the gene should have standard deviation of gene expression 
values across all samples higher than a certain threshold). The final gene 
expression matrix was used as a feature matrix for the model with each row 
was taken as a feature vector for respective node in the graph. After model 
training, we obtain prediction scores for each node/gene to identify candidate 
biomarker genes for schizophrenia. 

FIGURE1: Schematic overview of our method for disease state prediction using gene 

expression data and protein-protein interactions in a graph attention neural network model 

in an integrative manner.
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Along with gene prediction task, we assess the value of including both tis-
sue-agnostic and brain-specific protein-protein interaction as an additional 
data source and the advantages of graph neural networks as opposed to other 
deep learning architectures that have been used on this data so far. Brain-
specific protein-protein interaction data was retrieved from the following data-
bases: IID (Integrated Interactions Database), GIANT (Genome-wide Analysis 
of gene Networks in Tissues), and GTEx (Genotype-Tissue Expression). We 
run the model for each protein-protein interaction network individually and 
for each case we evaluate model performance. 

RESULTS AND DISCUSSION

We compared the performance of the model with other methods for disease 
gene prediction such as EMOGI [3] and DeepWalk [6] as well as classifiers 
which do not consider network topology such as random forest and support 
vector machine. Based on different metrics we calculated, the model on 
average outperforms other machine learning architectures that can be used 
on this data. However, according to all model performance metrics, we do 
not have an advantage from having brain-specific protein-protein interactions 
over tissue-agnostic protein-protein interactions when using these networks 
as a prior knowledge of gene-gene associations. 

The result of prediction task is a list of genes that are candidate biomarker 
genes for schizophrenia which we put into a context using gene set enrich-
ment analysis. Moreover, we achieve a higher level of interpretability by 
directly utilizing the attention weights which are additionally learned during 
model training. Those attention weights mean the importance of expression 
values of one gene for disease state prediction made for another node. They 
provide us with new insights on gene relations and allow us to visualize the 
new graphs that our model has learned. Therefore, by exploiting attentional 
weights, we benefit in terms of model explainability and overcome the prob-
lem of low reliability of protein-protein interaction networks. 

Further, we will extend the method to allow the inclusion of other molecular 
data types such as ChIP-Seq (chromatin immunoprecipitation sequencing), 
DNA methylation, and genotype data in an integrative manner. The approach 
should not only allow for integration of multiple data types into the model, 
but we will implement an interpretation framework for model explanation. 
Then, the framework will be used to identify and contextualize biomarker 
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genes for other psychiatric disorders such as bipolar disorder and autism 
spectrum disorder.
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INTRODUCTION/MOTIVATION

Tuberous Sclerosis Complex (TSC) is a rare genetic disorder characterized by 
severe epilepsy, cerebral hamartomas and intellectual disability [1]. Epilepsy 
is the most common neurological complication in TSC and up to 80–90% 
of individuals with TSC develop epilepsy at some point in their lifetime [2,3].  
Further studies are needed to understand and better characterize the mech-
anisms behind this comorbidity in TSC. Similarly to the human condition, 
Tsc2+/- mice display hyperactivation of the mammalian target of rapamycin 
(mTOR) pathway, which theoretically causes a propensity to exhibit increased 
epileptic activity [5,6]; however, there is little evidence in the literature sup-
porting this assumption. We aim to determine whether Tsc2+/- mice have 
altered susceptibility to seizures and explore how sex, age and time of day 
influence Tsc2-related seizure severity and locomotor activity.

METHODS

We assessed seizure susceptibility and progression in a Tsc2+/- mouse model 
using the chemical convulsant kainic acid (KA), a potent agonist of the AMPA/
kainate class of glutamate receptors [7]. Both male and female animals at 
late adolescent and adult age were evaluated during non-active and active 
periods (zeitgeber time (ZT) 6 and 18, respectively).
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The animals were recorded for 20 minutes under control conditions (saline, 
i.p.) and for 100 minutes after KA administration (20mg/kg, i.p.). Seizure 
severity was determined by integrating individual scores per mouse during 
a 4-minute timeframe 15 minutes after KA administration according to a 
modified Racine scale as previous described by E. Akyuz et. al [8]. Locomotor 
behaviour was monitored during the same timeframe using related metrics 
extracted from top-video recordings using ezTrack, an open-source video 
analysis pipeline for the investigation of animal behaviour [9]. The metrics 
under study included: distance travelled over time (cm), percentage of time 
in which the animals were not moving (%) and the percentage of animals 
exhibiting exploratory behaviour (%) - characterized by the movement of the 
animal to the centre of the field.

RESULTS AND DISCUSSION

Tsc2+/− mice displayed an increased susceptibility in both ages and at both 
time periods (Ordinary One-Way ANOVA test, p<0.0001). Moreover, trans-
genic and Wild Type (WT) mice were differently affected by age: Tsc2+/- 
mice exhibited a constant and severe susceptibility not dependent on age 
(Kruskal-Wallis test, p= 0.8); while WT mice exhibited an increased suscep-
tibility at earlier stages of development that significantly decreased on adult 
age (Kruskal-Wallis test, p<0.0001). Furthermore, susceptibility to seizures was 
sex-dependent, with females being more susceptible in both ages (Kruskal-
Wallis test, p<0.001) (Figure 1). Regardless of mice activity levels, analysis 
on the respective motion tracks revealed that WT mice showed increased 
exploratory behaviour (44.44% WT showed exploratory behaviour at ZT6 and 

FIGURE 1: Graphical overview of the most relevant results of this work: Tsc2+/− mice display 

increased seizure susceptibility that is sex- and age- dependent. Created using Biorender (https://

biorender.com/).
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ZT18) while Tsc2+/- mostly preferred to remain in the same location or move 
closer to the walls of the field (18.75% Tsc2+/- showed exploratory behaviour 
at ZT6 and 22.22% at ZT18) (Figure 2). All animals exhibited overall reduced 
movement during the night-time period (Kruskal-Wallis test, P<0.05). With 
this work we demonstrated for the first time that Tsc2+/- mice display an 
increased susceptibility following KA administration, supporting the use of 
this model in future TSC-related epilepsy research. Furthermore, we showed 
that KA-induced epilepsy is sex- and age- dependent and that mice activity 
is affected by daytime period.

FIGURE 2: Representative heatmaps and motion trace of Wild Type (WT) and transgenic Tsc2+/- 

mice: under control conditions and after KA-induced epilepsy (4-minutes time frame). 
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INTRODUCTION/MOTIVATION

The alternation of wakefulness and sleep supports the brain energetic and 
cognitive efficiency in a large variety of high-level functions: among them, 
the capability of fast incremental learning from a few noisy examples, as well 
as the ability to associate similar memories in autonomously-created catego-
ries,  to combine contextual hints with sensory perceptions and to maintain 
the metabolic cost of brain functions within a budget notwithstanding the 
progressive increment in knowledge and performance. Sleep is known to 
be essential for a performance, but the mechanisms underlying its role in 
supporting learning and energetic management are still to be clarified. This 
work leverages the recent experimentally driven hypotheses of apical isolation 
and apical drive [1][2] principles to induce in a model some of the favourable 
energetic and cognitive effects associated to NREM and REM sleep, rec-
onciling the experimental observation of [11][12]. Also, we follow the apical 
amplification [3] concept to combine context and perception during training 
during awake learning. This way, we added REM to the brain states accessible 
to the thalamo-cortical spiking model [4][5] that demonstrated the effects of 
incremental awake-NREM learning cycles. Specifically, we investigate both 
the effects of sleep on the internal synaptic structure of the network and 
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on its neural activity in a two-area model. We demonstrate complementary 
homeostatic and associative effects of slow-wave and dreaming-like phases 
of sleep on cortico-cortical synapses and we show the consequent beneficial 
energetic consumption effects while keeping the sleep-induced cognitive 
effects.

METHODS

In this work, we improved to REM simulation the data-driven thalamo-cortical 
spiking model [4][5] that was already able to carry out cognitive tasks (such 
as object recognition or decision-making), while expressing realistic brain 
dynamics in different states (AWAKE and NREM) through the modulation 
of adaptation, synaptic asymmetry and inhibitory conductance parameters. 
Specifically, we implemented a multi-area thalamo-cortical spiking model in 
NEST[6] made of adaptive exponential conductance based excitatory and 
inhibitory neurons: the thalamic layer projects into the cortical layer through 
symmetric top-down synaptic connections. The cortical layer, in turn, is 
organized into two areas recurrently and reciprocally connected, as depicted 
in Figure 1A. During the awake phase, a visual input [7] is encoded into the 
thalamic layer and projected to the cortical one: each area in the cortex has 
access to a different portion of the visual input with a region of overlapping. 
Plastic synapses are updated in the training and sleeping phase through a 
STDP (Spike-timing-dependent plasticity) synaptic rule. The training of the 
network is implemented with a combination of lateral contextual and per-
ceptual signals to correctly sculpt the synaptic weight encoding for the learnt 
examples, analogously as in [4], in accordance with an Apical Amplification 
situation [3]. The training protocol is unsupervised, meaning that no infor-
mation concerning the perception class is provided to the cortex.  During 
the classification phase, on the other hand,  the network is provided with a 
perceptual signal only. In the sleeping phase, the network is not exposed to 
any perceptual signal and is stimulated by a random lateral signal. During REM 
sleep the network adaptation is decreased with respect to the awake state [10] 
while all cortico-cortical connections are active and plastic, in particular those 
connecting the two areas, implementing an Apical Drive-like situation [1,2]. 
To emulate the NREM sleep, on the other hand, the adaptation is increased 
[10] and inter-area cortico-cortical connections are cut, in accordance with 
the Apical Isolation principle [1,2].
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RESULTS AND DISCUSSION

We show the beneficial effects of sleep on both classification performances 
and energy consumption; to show the beneficial effects of sleep on the 
network cognitive tasks, we tested the classification performances when 
classifying the MNIST [7] dataset after a balanced training over 3 examples 
belonging to 10 classes. First, we calibrated the NREM and REM stages dura-
tion, as shown in Figure 1D: the optimal combination is at 40s of NREM and 
10s of REM duration, corresponding to a reduction of 22% in the network 
power consumption and an improvement of 1% in classification accuracy (in 
agreement with experimental data [8,11]). The power spectra of the network 
activity in awake classification, NREM and REM stages (shown in Figure 1B) 
are comparable with what is expected by experimental biological recordings 
[9]. In Figure 1C and D, we respectively show the associative and homeostatic 
effect of sleep on cortical synapses. Indeed, as depicted in Figure 1C, corti-
cal groups  trained over different examples belonging to the same class (i.e. 
described by similar perceptual signals) are grouped together in each area 
during the NREM phase whereas groups of neurons belonging to different 
cortical areas are associated during the REM phase. This association is imple-
mented by cortico-thalamo-cortical activation loops mediated by inhibitory 
neurons causing different groups of cortical neurons to respond to similar 
perceptual stimuli with a contemporaneous up-state in the sleeping phase. 
Figure 1D, on the other hand, demonstrates the homeostatic effect of sleep 
on cortico-cortical synapses leading to a general reduction of synaptic weight 
distributions during the sleeping phase.  
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FIGURE 1: Awake-NREM-REM cycle effects. A) Network structure: two-area thalamo-cortical 

model with interconnected cortical populations in awake, nrem and rem phases (Apical 

Amplification [3], Apical Isolation and Apical Drive principles [1,2]) B) Network’s Power Spectral 

Density (PSD)  in awake (left), NREM (center), REM (right) stages. Results are comparable with 

what experimentally observed[9]. C) Associative effects of sleep on the cortico-cortical synaptic 

structure of a network trained over 3 examples per 3 categories. Awake (Left): each subgroup of 

cortical neurons is orthogonal to the others; NREM stages (center) intra-area connections 

between groups of neurons responding to similar perceptions are strengthened, while stronger 

synapses  are subjected to homeostatic depression (accordingly with the “shy hypothesis” [12] and 

selective reinforcement [11]); REM (right)  inter-area connections between groups trained over 

similar perceptual stimuli are strengthened. D) Homeostatic effects of sleep: box-plots describing 

the cortico-cortical synaptic weights distribution after the training (blue), NREM (green) and REM 

(red) phases. E) Effects and Calibration of NREM and REM cycles duration. (Left)  Network power 

consumption during a classification task and relative difference (Δ
post-pre

) compared to the 

pre-sleeping phase. (Right) Post-sleep classification accuracy, and relative improvement 

compared to pre-sleep, versus NREM and REM duration after a training over 3 examples per 

3 categories.
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INTRODUCTION

Simulation of the brain activity is a stimulating challenge that is addressed 
at different scales. Models of brain function are currently being developed, 
including both at micro and macroscale, to increase regional fidelity and to 
lead to more accurate whole-brain dynamics. Mean Field(MF) is a widespread 
formalism that provides a computational advantageous representation of the 
neuronal population dynamics, oversimplifying the physiological properties 
of an entire neuronal circuit through ad-hoc transfer functions(Boustani and 
Destexhe,2009; Zerlaut et al.,2016, 2018). The MF models developed so 
far are tailored to the cerebral cortex but may not be effective to capture 
other brain regional dynamics, e.g. the cerebellar cortex, due to their specific 
structural organization. Here, we aim to develop an advanced MF model of 
the cerebellar circuit considering its complex neuronal features, multi-layer 
organization, local connectivity deriving from the quasi-crystalline geome-
try(D’Angelo et al.,2016). Specifically, we present a MF model of the granular 
layer(GRL MF), the cerebellar input stage, retaining the salient properties of its 
neuronal populations, Golgi cells(GoC) and Granule cells(GrC). Our model 
will be used to provide theoretical insight on the cerebellar input stage and 
represents the promising first brick for the development of a whole-cerebellar 
advanced MF model.
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METHODS

The design of the GRL MF model started from an accurate and extensive 
knowledge of the GrC and GoC structural and functional properties within 
the cerebellar microcircuit.  Population-specific Transfer Functions(TF) allow 
translating spiking patterns into time-continuous global outputs. A semi- 
analytical TF fitting was inspired to that already validated for the implemen-
tation of MF models of isocortical circuits made of excitatory and inhibitory 
neurons (Carlu et al.,2020). We expanded this framework introducing top-
ological parameters that modelled the biological properties of GrCs and 
GoCs so enabling a physiological interpretation of the network output. The 
granular layer detailed reconstruction(placement and connectivity), gener-
ated by a scaffold model approach, was used to set realistic probability for 
each connection type(K). Quantal synaptic conductance and synaptic time 
decays(Q,τ) are set relying on detailed synaptic model (Casali et al.,2019; 
De Schepper et al.,2021) The reference functional target was the neuronal 
spiking activity that emerged in network simulations(in-vivo conditions) using 
E-GLIF single-point neurons optimized for each population (Geminiani et 
al., 2018, 2019). The population frequencies were extracted from simulation 
results using the Brain Scaffold Builder framework (De Schepper et al.,2021) 
interfacing with the NEST simulator.

TF equations were adapted to model the alpha synapses consistently with 
the E-GLIF models in the network.

The GoC TF was computed maintaining the excitatory contribution from 
mossy fibres and GrC separately, enabling it to investigate the specific con-
tribution of the two excitatory synapses to the granular layer dynamics. 
Furthermore, for each population we defined the eligible frequency ranges 
combinations of its presynaptic populations, to fit the TF on the plausible gran-
ular layer working frequencies. The GRL MF model equations were written 
with population inter-dependent transfer functions, and the model prediction 
was tested for different driving inputs coming from mossy fibres(ν

drive
). The 

MF time constant(T) was fixed to 20ms(Di Volo et al.,2019).

RESULTS AND DISCUSSION

The MF formalism proposed here for the first time is a bottom-up 
approach tailored on the biological properties of the granular layer of the 
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cerebellar cortex. We exploit all the advantages of the MF versatile formalism, 
which provides an established pipeline to reduce spiking networks activity to 
realistic average models of neuronal population dynamics. 

In the fitting procedures to define the GrC and GoC TFs, we included fine-
tuned parameters to maintain a strong physiological reference. The numerical 
templates(2D for GrC population and 3D for GoC population) and the output 
of the fitting(analytical TFs) are reported in Figure 1.

First order GRL MF model equations are reported in Figure 2–Panel A, with 
the granular layer network included in the context of the cerebellar cortex. 
GrC and GoC dynamics were simulated with the GRL MF based on the nested 
TFs. We reported the output for two different input patterns (Panel B and C), 
which correspond to in-vivo recordings of the Granular Layer response to 
different sensorial stimuli (Svensson et al.,1997).

FIGURE 1: TF Fitting Procedure: from the numerical template to the analytical expression. Panel 

A refers to the GrC population, with its 2 synaptic inputs; the upper part shows the numerical 

template used as input for the fitting of the TF analytical expression; fitting outcomes(lines) 

against numerical template(dots) are reported at the bottom. Panel B refers to the GoC 

population, with its 3 synaptic inputs; the upper part shows the numerical template(left) and 

connections(right). Numerical values used for the fitting are extracted from the actual 

interdependent working frequencies(n
drive

,n
I
, and n

e
) come out with BSB-NEST simulations(bottom 

left). On the right, the result of the fitting(lines) compared with the numerical template(dots) is 

reported for mossy input=40Hz.
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Currently, we are comparing the GRL MF output with the Local Field 
Potential(LFP) recorded with extracellular electrophysiological experi-
ments(HD-MEA) to validate the population activities generated by the GRL 
MF with biological recordings on the same spatial scale. Once the GRL MF 
validation is completed, we will move up to the Molecular Layer to extend 
our formalism to all the cerebellar neuronal populations. Then we will expand 
our formalism to the second order to include covariance terms. Finally, this 
cerebellar-specific MF will be integrated in a whole-brain framework, The 
Virtual Brain(TVB), to investigate the impact of complex cerebellar responses 
into whole-brain dynamics. Indeed, the cerebellar impact on whole-brain 
activity simulated with TVB has been preliminarily demonstrated (Sanz-Leon 
et al.,2013; Palesi et al.,2020) by including specific cerebellar nodes.  

FIGURE 2: GRL MF network design and model prediction. Panel A shows the cerebellar cortex 

network where K
c
 and Q

c
 are the mean convergence and the quantal synaptic conductance for 

the connection c, and ν
p
 is the output firing rate of the population p. Granular layer design and 

corresponding MF equations with nested TFs are reported in the purple box, with T=20ms. 

Panel B and C report the GrC and GoC activities predicted by the GRL MF model for a constant 

input at mossy fibres of 50Hz and an impulse train at mossy fibres(amplitude=50Hz, 

length=200ms). Simulations last 5s.
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INTRODUCTION / MOTIVATION

The study of the human brain is probably one of the greatest challenges in 
the field of neuroscience due to the inner complexity of the human nerv-
ous system. While ongoing developments in experimental neuroscience are 
increasing the availability of novel recordings and reconstructions, innovative 
modelling methods and flexible simulation environments are being developed 
to capture their complex behaviour. Moreover, studying smaller and sim-
pler organisms, such as the nematode Caenorhabditis Elegans (C. elegans), 
is useful in bringing insight into the dynamics of more complex neuronal 
structures. C. elegans is a nematode (roundworm) of about 1 mm in length 
with a small nervous system consisting of less than 1000 cells across all 
sexes and around 15000 connections [1, 2]. Due to its relative simplicity, the 
nervous system of C. elegans is almost completely described, generating 
detailed connectomes of geometrically distributed neurons and synapses. 
These detailed descriptions may lead to complicated models, implying 
more computationally demanding, potentially intractable simulations of the 
dynamic behaviour. This increased complexity is a side effect of the detailed 
modelling of the internal structure whereas often one is only interested in 
the peripheral input-output behaviour.

METHODS

We propose a methodology for generating completely data-driven black-box 
models of the neuronal behaviour of organisms using only peripheral infor-
mation of the system. We start from synthetic data, extracted from a high-fi-
delity model of C. elegans, which comprises the complete connectome  
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of the adult hermaphrodite, with 302 multi-compartmental neurons and 
6702 synapses. We simulate two behavioural scenarios in the NEURON 
simulator [3], the Forward Crawling Motion (FCM) and the Nictation (NIC), 
with scenario-specific neurons stimulated according to the behaviour being 
replicated. In the FCM scenario four specific neurons are stimulated and the 
output is observed in sixteen neurons known to show a strong response in 
this behaviour. The Nictation behaviour, when the worm stands on its tail and 
waves its head in three dimensions, is reproduced by stimulating six different 
neurons and evaluating the response of twelve motor neurons associated 
with head muscles. Each scenario simulated produces a dataset with the 
input currents used for stimulation and the voltage variations in time of the 
output neurons. By using different signals for the input currents, we are able 
to generate 40 diverse examples for each dataset. We further create com-
pletely equation-free data-driven models assuming no prior knowledge of the 
original system’s structure and equations, using sequential neural networks 
trained on this data. For each scenario, we use 20 examples to train the 
neural networks models, 10 for validation and 10 for testing.

The models are generated using Recurrent Neural Networks (RNNs), first 
proposed in their simplest form in the 1980s to model sequential data [4, 5, 
6]. Later, maintaining the same structure of the network, to better model long 
term dependencies, the Long Short-Term Memory (LSTM) unit was introduced 
[7, 8], with three gates used to remember past data and filter input and output 
information. In 2014 the Gated Recurrent Unit (GRU), consisting only of two 
gates with the same functions, was suggested to reduce the complexity of 
the LSTM unit [9]. These three different architectures are commonly used to 
model sequential data in tasks such as predicting energy demands, process 
monitoring or even machine translation.

RESULTS AND DISCUSSION

The three different flavours of Recurrent Neural Networks were trained on 
each of the two datasets, then tested and compared in terms of their prop-
erties and ability to model the C. elegans system response to diverse stimuli. 
The LSTM and GRU units proved able to accurately reproduce the system’s 
response in both scenarios, producing significantly superior results when 
compared to the simple RNN unit. In Figure 1 we show the Root Mean Square 
Error (RMSE) over the number of epochs for the FCM scenario, computed in 
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the interest of fairness for the RNN with 16 units in the recurrent layer (404 
parameters) and LSTM and GRU with 8 units in the recurrent layer (452 and 
348 parameters). Examples of the predicted output voltage of the LSTM and 
GRU units on previously unseen data even with a modest recurrent layer of 8 
neurons are shown in Figure 2. The examples shown are selected randomly 
from the test set, the prediction behaves quite similarly for the rest. Due to 
its simplicity, the GRU is preferable and was able to reproduce the original 
model’s responses with an acceptable RMSE even with a hidden size as 
small as 4 units. 

The LSTM and GRU units were further trained to produce a single model 
using both datasets, each unit generating a model able to predict the system’s 
response on both the FCM and the NIC behaviours with low RMSE. These 
models were tested for previously unseen data, proving able to produce 
promising results with a small recurrent layer of eight neurons (as already 
done for each of the behaviours individually). The results show that it is 

FIGURE 1: Average training and validation RMSE out of ten simulations, with recurrent layers of 

size 16 (RNN) and 8 (LSTM and GRU).
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feasible to develop Recurrent Neural Network models able to infer input-
output behaviours of real biological systems, even in the absence of a detailed 
level of connectivity.
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FIGURE 2: Real and predicted output voltages corresponding to 4 selected neurons (columns) and 

2 examples selected randomly from the test set (top two and bottom two lines), for each dataset. 

The red lines show the real time series and the black lines the voltage predicted with LSTM and 

GRU. Each column corresponds to one neuron: DB1, LUAL, PVR and VB1 for the FCM scenario and 

RMED, RMEL, RMGL and RMGR for the NIC behaviour.
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INTRODUCTION/MOTIVATION

There are two points of view on the large-scale spatial dynamics of spontane-
ous and evoked EEG and MEG activity. The intra-cortical hypothesis assumes 
the propagation of traveling waves [1] in the cortex on a meso-scale due to 
intra-cortical axons (velocity < 1.0 m/s, 0.2 m/s characteristic speed). This 
propagation results in rotating electric dipoles that are projected onto the 
scalp, giving rise to the large-scale wave dynamics. The other point of view 
(namely, cortico-cortical hypothesis) assumes the propagation of large-scale 
waves due to cortico-cortical axons (velocity > 1.0 m/s, 6 m/s characteristic 
speed) [2]. The latter wave speed is observed in EEG, MEG and ECoG, but 
is not confirmed by direct recording (using intracortical microelectrodes or 
Utah arrays). Previously, we tested the validity of the above two approaches 
and showed a significantly higher-level correlation of the MEG experimental 
data by the results obtained using the meso-scale model [3]. However, a close 
look at the meso-scale model showed that the initiation of traveling waves 
could be related to the structure of the connectome.

METHODS

For the MEG analysis, we used one healthy right-handed subject. The registra-
tion was carried out with a 306-channel MEG. The MEG recording had been 
carrying out for 9 minutes in the state of quiet wakefulness with closed eyes. A 
high-resolution structural MRI of the head was obtained using 3T tomograph. 
Based on the MRI data, a model of individual surfaces of the head and brain 
with the resolution of about 300 000 vertices was built. Each vertex was 
assigned to be an epicenter, for which the distributions of the current density 
in the form of radial traveling waves with propagation velocities of 0.2 m/s 
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(distances of 2 cm) and an average frequency of 11 Hz were calculated. We 
used radial traveling waves for simulation, since they are typically observed in 
recordings by microelectrodes and by optical methods in animals [1], and also 
by the Utah multielectrode arrays in humans [5]. The forward MEG problem 
was solved using the BEM separately for each hemisphere in the Brainstorm 
software environment. The model MEGs were compared with the experimental 
data by calculating two-dimensional correlation each time shifting the analysis 
window by 2 ms. The technique is described in detail in our previous works [4].

RESULTS

As an example, we demonstrate a reconstructed traveling wave of the alpha 
rhythm with an epicenter located in the central part of the retinotopic pro-
jection at r>0.7, p<0.001 the border of fields V1 and V2 (highlighted in purple 
and green, respectively) at rest with the eyes closed (Fig. 1A, B). Analysis of the 
9-minute of MEG segment made it possible to identify a multitude of epicenters 
of such waves in the calcarine and parieto-occipital sulci (in the primary and 
secondary fields of the visual cortex). The epicenters were located chaotically, 
but strictly in the fields V1 and V2 of the cortex at r> 0.8, p <0.005 (Fig. 1C).

FIGURE 1: Single traveling wave of alpha rhythm in the right hemisphere. The red color codes the 

local field potentials-LFP (A). An enlarged view of the occipital lobe, the radial wave is distorted 

by the complex surface of the hemisphere (B). Spatial distribution of the epicenters of traveling 

waves (red stars) prevailing in the left hemisphere during 9 min of the MEG recording (C).
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CONCLUSION

Our previous study comparing two traveling wave models showed an unex-
pected effect of jumps in the epicenters of the traveling wave [3]. These results 
are in good agreement with the data on the dynamics of traveling waves in 
the human brain [5]. Alpha waves are specific to the visual cortex, and we 
previously considered their epicenters to be relatively stable [6]. The new 
result shows that, like saccades, when viewing images, there are changes in 
the position of the traveling waves epicenters in the visual cortex. The scale 
of traveling waves propagation we confirmed is comparable to the spatial 
dimension of the resting state networks, and we can assume the role of trave-
ling waves in the local synchronization of such networks. Macroscale traveling 
waves are explained by the spatial dynamics of mesoscale cortical waves 
due to intracortical interactions. In turn, the role of connections between 
the visual cortex and the thalamus, which are part of the connectome, in 
the emergence of the alpha rhythm is well known [7]. In addition, these 
waves can be originated by cortico-cortical connections that are elements 
of the connectome. Thus, we assume that cortical traveling waves of the 
alpha rhythm are initiated by the connectome [8] and, of course, should be 
considered as one of the important elements of large-scale brain models.
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INTRODUCTION/MOTIVATION

In stroke, localized lesions lead to an acute loss of excitation to distant cortical 
regions and to significant disruptions in functional connectivity (FC), spreading 
beyond lesion vicinity, a phenomenon known as diaschisis [1]. During recovery, 
FC network properties are often recovered to nearly healthy levels through 
functional reorganization [2], [3]. However, it is not clear how the brain orches-
trates this process globally, given the localized nature of lesions. Further, the 
process of recovery is accompanied by widespread changes in excitability [4], 
[5] that closely resemble synaptic scaling [6]. Therefore, we propose that local 
excitatory-inhibitory (EI) homeostasis, occurring through synaptic scaling, may 
play an essential role in the recovery of global network properties of stroke 
patients. We aim to understand how to tie the local and global scales in stroke 
recovery, essential for improving the prediction of future deficits and informing 
targeted rehabilitation techniques that maximize the potential of recovery.

METHODS

To model large-scale cortical activity, we used a network of nodes constrained 
by human structural connectivity data, simulating the activity of individual 
regions with Wilson-Cowan coupled EI populations (Fig. 1A). Homeostatic 
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plasticity was implemented through a plasticity rule that adjusts the weight 
of local inhibitory connections according to presynaptic activity and the 
deviation of postsynaptic activity from a target, as in synaptic scaling (Fig. 
1B). Lesions were simulated by removing all the connections to and from a 
single node and model activity was extracted pre-lesion (T0), post-lesion (T1) 
and post-lesion after stabilization of inhibitory weights (T2) (Fig. 1C). Lesion 
effects were measured through changes in FC graph properties representing 

FIGURE 1: Modeling approach and simulation protocol. (A) Schematic of model for healthy 

brain. Cortical regions are represented by nodes in a network, where the weights and delays 

of connections are informed by human diffusion tensor imaging. Individual nodes consist of 

coupled excitatory and inhibitory neural masses, receiving excitatory input from other nodes 

in the network and an intrinsic input P. (B) Schematic of lesioned brain. After removal of one 

node in the network, simulating a lesion in the cortical gray matter, areas previously 

connected to it experience a loss in excitation. In response, homeostatic plasticity decreases 

the strength of local inhibition (dashed blue line from I to E) in order to bring the firing rate of 

E to a target value. (C) Diagram of simulation protocol. Networks are initialized and 

simulations are run until the local inhibitory weights, subject to plasticity, stabilize and 120s of 

activity were extracted to compute pre-lesion FC. After lesion application, plasticity is turned 

off and acute post-lesion FC is extracted, after which plasticity is turned back on, until the 

local inhibition is stabilized again and the network adapts to the lesion, when 120s of activity 

are extracted to represented recovered post-lesion FC.
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segregation (average clustering coefficient, CC) and integration (global effi-
ciency, GE), and FC distance (FCD). Changes in excitability were quantified 
by differences in local inhibitory-to-excitatory weights between T1/T2 and 
T0, representing changes in GABAergic transmission.

RESULTS AND DISCUSSION

As in previous literature [2], [3], results showed increased CC (0.162 ± 0.041, 
p < 0.001) and decreased GE (-0.068 ± 0.067, p < 0.001) at T1, indicating 
more segregation and less integration between cortical areas. Both met-
rics were globally recovered towards baseline levels at T2 (p < 0.001 for 
both) through the action of local EI homeostatic mechanisms (Fig. 2A,B). 
Furthermore, while FCD at T1 was strongly dependent on the strength of 
the lesion node (ρ = 0.85), correlations at T2 were weaker (ρ = 0.33), indi-
cating a lesser dependence of recovery on the properties of lesioned areas, 
being more reliant on the ability of the brain to restore balance, indicating 
an important role of EI homeostasis in stroke recovery. The connectivity 
within and between resting-state networks was also evaluated at T2, show-
ing a complex pattern of widespread reorganization (e.g. decreased internal 
connectivity in default mode network). Furthermore, changes in excitability 
in individual regions could be moderately predicted from structural connec-
tivity of said regions with lesioned nodes (ρ = 0.47) and, similarly to previous 
research [5], the magnitude of changes decreased with distance from the 
lesion in individual simulations (Fig. 2D). Looking at variations in excitability 
across simulations (Fig. 2C)., we observed significant widespread increases 
(56 regions out of 68), fitting results from rodent models [5] and human 
patients [4]. Surprisingly, a tendency to experience decreases in excitability 
in particular cortical areas, mainly the superior frontal gyrus, temporal pole 
and cuneus, could be responsible for the increased propensity of patients 
to develop late-onset symptoms (e.g. depression) [7], previously linked to 
decreased excitability in the same regions.
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FIGURE 2: Changes in connectivity and excitability post-lesion and after recovery. (A) 

Visualization of changes in FC, from baseline, averaged over lesions for T1 and T2. (B) Changes 

in graph properties of functional connectivity at T1 and T2. Betweenness centrality was 

significantly reduced at T1 (T1 vs T0, p<0.001), being recovered towards baseline levels at T2 (T1 

vs T2, p<0.001). A similar process occurred for clustering coefficients, although with an increase 

at T1 (T1 vs T0, p<0.001; T2 vs T1, p<0.001). Although the difference between T2 and baseline is 

still significant (T2 vs T0, p<0.001), there was a significant recovery when compared to T1 (T1 vs 

T2, p<0.001). (C) Variation in local excitability at T2, quantified by changes in the strength of 

local inhibition, averaged over lesions. Dark contours represent significant changes (p<0.05). (D) 

Examples of correlation between variation in excitability and distance for individual simulations 

of lesions in high and low degree nodes. Note that, for both lesions, the change in local 

inhibitory weights is positively correlated with distance, such that nodes closer to the lesion 

have greater decreases in inhibition, and thus greater increases in excitability. In all figures, ipsi 

and contra represent the ipsilesional and contralesional sides.
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INTRODUCTION/MOTIVATION

Robots working in manufacturing must be adaptive, due to the dynamic 
manufacturing processes. They need to be able to spontaneously adapt 
to their environment and avoid obstacles online, which requires a fast and 
flexible planning algorithm, to enable Human-robot collaboration. However, 
the complexity for such a calculation increases significantly for high degree-
of-freedom (DOF) robots. Inspired by the excellent sense of orientation of 
mammals, researchers [1], imitated the presumed virtual map made from 
so-called place cells in the hippocampus, using Spiking Neural Networks 
(SNNs). In [1] and [2] a neural Wavefront Algorithm (WFA), realizing path plan-
ning as a breadth-first search, is executed on a grid of place cells represented 
by an SNN. Due to learning via Spike Timing Dependent Plasticity (STDP), 
synapses on a path between target and start position are strengthened. The 
2D approach for mobile robots introduced in [1] got expanded to 3D by 
[2] which both have shown to be executable in reasonable time. However, 
robotic path planning must not only deal with a single point, as which the 
TCP can be understood as the focus of a task, but all joints regarding col-
lision avoidance and energy efficient paths must be considered primarily. 
The goal of this work is to design a collision-free path planner for industrial 
robot arms with 6 DOF. Due to the demanding time requirement of the 
required online planning, a SNN based path finding technique based on the 
mechanics of place cells is used. A planning that takes place exclusively in 
the configuration space of the robot is discarded to avoid the complexities 
of a high dimensional search space.
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METHODS

To represent the 6D configuration space (C-space) of an industrial robot with 
6 DOF two separate neural networks are created as visualized in Figure 1. The 
first represents the elbow of the robot and depicts a map in its 2D C-space, 
depending on the first two relevant robot joints. The second symbolizes the 
TCP’s task space in 3D.

Hebbian learning, a common paradigm of synaptic plasticity, embodies two 
factors, the income of pre-synaptic and the creation of post-synaptic spikes. 
However, Hebbian learning merely makes a synapse receptive, a third factor 
is needed to transform synaptic plasticity into learning in form of weight 
change [3] The so called three-factor rule influences synaptic plasticity with 
a neuromodulator.

FIGURE 1: The elbow’s SNN is a 2D C-space while the TCP moves in the 3D task space. 

The planner is divided into creating a LUT with all necessary information offline and 

secondly, applying the WFA with subsequent path finding online.
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Path planning in a high dimensional C-space holds computationally intensive 
elements. First of all, the calculation of the inverse kinematic (IK) to get an 
appropriate configuration for a large number of positions. But also finding 
all reachable points in the complementary voxel grid is too complex to be 
done online while the robot is moving. Therefore, the approach is separated 
into two parts. The first part takes place purely offline and consists of the 
majority of all necessary complex computations, which are then stored in 
a LUT. Thereby the position in the Cartesian and the C-space as well as the 
weighted connections of all neurons in both networks are calculated and 
stored. During the actual online planning, it is then only necessary to plan 
between these known points. The LUT, represents the neuromodulator of 
the three-factor rule for our learning process. The planner’s second stage, 
the WFA, is performed online after using the previously saved information to 
create the two SNNs that are simulated with Nengo [4].

During the online planning, firstly a WFA is initiated in SNN 1 (elbow). 
Subsequently, the synapses of the SNN2 (TCP) are adapted before a second 
WFA is applied within that network. The synaptic adaptations between the 
two consecutive neural WFA guarantee valid movement options later on. 
In Figure 2 it is visualized which network combinations generate unfeasible 
trajectories and are thus deleted. As the WFA alters the synaptic weights by 
STDP, for each node a synaptic vector can be calculated. These vectors are 
considered forces propelling an agent through the network.

FIGURE 2: At the left, the central black circle represents the TCP’s initial voxel. It can reach the 

elbow points A to D. As its neighbors (N1, N2) are only able to reach two of the four elbow voxel 

some connections are deleted. At the right, the green line shows the traversed points by the TCP in 

the 3D task space. 
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RESULTS AND DISCUSSION

The resulting robot motion is simulated using the MoveIt framework, with 
ROS2. For all experiments a simulated UR3 e-series robot shown in Figure 1 & 
2 is used. It was shown that two WFA in two SNN can be applied for motion 
planning of a 6 DOF robot. The performance results of a separated analysis of 
the on- and offline parts show that creating a LUT in a time-uncritical environ-
ment was very helpful. The time required to calculate the IK and create and 
link the two networks takes hours, depending on the size of both networks 
which contradicts the requirements to be fast and flexible. However, this 
effort is only required once per robot and workspace and can then be used 
to significantly reduce the time required for the online calculation of a path. 

Generally, the results, as visualized in Figure 2, show that collision-free paths 
cannot be guaranteed. The coverage of the 6D C-space in 3D is not sufficient, 
why some configurations do not exist in the networks. This results in planning 
tasks being traversed very extensively and also configurations with a large 6D 
distance for two points adjacent to each other in the Cartesian task space. To 
overcome this distance, linear interpolation is currently used. Nevertheless, 
there is great potential in splitting into two networks of manageable dimen-
sions. Also precomputing and storing potential network connections in a 
LUT, can circumvent the problematics of 6D planning in general. As one 
weakness is the implementation of the link between the two SNNs, future 
work focusses on improving the C-space’s mapping to the task space of the 
TCP. Finally, the SNN simulation will be applied on neuromorphic hardware.
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INTRODUCTION/MOTIVATION

Psychological theories and experiments on animal learning through condition-
ing and reward mechanisms have strongly influenced reinforcement learning 
(RL) for artificial agents [1].  By merging these psychological insights with neuro-
science and robotics, RL enables new perspectives on multiple scientific fields. 
To facilitate this kind of interdisciplinary research, we tackle a robotic reaching 
task with RL using a 6-degrees-of-freedom HoLLiE robot arm [2] simulated in 
the Neurorobotics Platform (NRP) (Fig. 1) [3]. The goal of the reaching task is to 
find a valid motion trajectory for a robot’s end effector to reach a predefined 
target position in 3D space by maximizing a reward function.  

Our main contributions are a self-contained simulation-based RL environ-
ment in the NRP for rapid prototyping and scalable RL experiments using 
docker, and a comprehensive study comparing different state-of-the-art RL 
algorithms, using different state representations, network architectures, learn-
ing mechanisms and reward types, under different levels of difficulty of the 
reaching task. Both the environment and code are available online .

METHODS

The simulation environment is shown in Fig. 1. The agent completes the 
reaching task in an episode by moving the end effector, from its initial pose 
within a predefined proximity of the target position using a single movement, 
based on the ground truth (GT) target position or the image data.  A camera 
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looks down at the table from above when learning from image data. The 
agent’s decisions are based on a state space vector which includes the end 
effector position, joint angles, and GT cylinder position or image information. 
Our experiments investigate sparse and dense reward functions and action 
space variations with three, four, or six active joints. The sparse reward func-
tion only rewards the task completion (overstepping a proximity threshold). 
The dense reward function encourages movements in the right direction. 
We compared two model-free, actor-critic architecture-based algorithms: 
Twin Delayed Deep Deterministic Policy Gradient (TD3) [4] and Soft Actor 
Critic (SAC) [5]. A video demonstration showing the setup and some of the 
experiment results is available . 

When learning from GT data, the agent’s task is to find an approximation for 
the inverse kinematics – which set of joint angles correspond to a given end 
effector location in the Cartesian space. We distinguished between models 
trained with TD3 and SAC, incorporation or exclusion of hindsight experi-
ence replay (HER) [7], dense or sparse reward functions, and the number of 

FIGURE 1:  (a) Initial pose (left) and final pose (right) in a reaching episode. The blue cylinder 

represents the target (initialized randomly). (b) shows the core components of the designed 

setup. The 3d-boxes represent the docker containers of the NRP (frontend and a backend) and 

of the RL algorithms. The communication channel between the RL and NRP containers is 

based on gRPC [6].
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actuated joints (Table 1). HER improves learning efficiency by reinterpreting 
unsuccessful experiences in achieving a particular goal into successful ones 
by adapting the goal to the result of the chosen action.

When learning from images, we can either extract the GT data, extract 
a latent space representation, or directly feed the images as input to the 
agents. The GT extraction benefits from reusing the previously trained models 
and reducing computational time since processing high-dimensional data is 
expensive. On the downside, such a pre-processing step is rigid and shows 
poor cross-domain generalization. To predict the position of the cylinder, we 
implemented a classical computer vision (CV) and a CNN-based approach. 
The former isolates the cylinder by subtracting an averaged image mask, 
applying a threshold, and transforming the extracted image coordinates to 
simulation coordinates. The latter uses a shallow model with two output 
logits that we pre-trained on CIFAR10 [8]. The latent space approach aims to 
derive a low-dimensional representation that encodes the most meaningful 
features of the image, including the cylinder position. However, the small 
variation in our data makes it difficult to train such a model, motivating the 
use of transfer learning in further work.

We trained all models using threshold scheduling as a curriculum learning 
approach. In this process, all models started with an initial threshold of 20 
cm. The threshold was then progressively reduced whenever the model 
reached a specified performance level.

RESULTS AND DISCUSSION

Table 1 contains the evaluation results of our different model configurations. 
When learning from GT, our best performing three-joint and four-joint TD3 
models use dense rewards and HER. The four-joint model is the most success-
ful TD3 model, with an average distance to the target of 2.4 cm. Interestingly, 
the six-joint agent cannot compete with the four-joint agent. This reflects 
how complexity increases exponentially with the state space dimensionality.

Regarding the SAC models, the most successful three- and four-joint con-
figuration used sparse rewards and no HER. In turn, the less constrained 
six-joint SAC model benefited from HER (Table 1). The fact that HER led to 
a drop in performance for the first two cases was unexpected and stood in 
direct contrast to the three- and four-joint TD3 models. It indicates that our 
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constrained action spaces already ensure a high enough sampling efficiency 
for SAC.  Despite relatively short training time compared to the TD3 models, 
the six-joint SAC model reached an average distance of 2.1 cm and thus 
represents our overall best model.

When learning from images, we used our best performing TD3 model with 
the manual and CNN extraction pipeline, respectively (Table 1 below dashed 
line). Both methods extracted the target position with an average error of ~2 
cm. Overall, the CNN extraction method showed slightly better performance 
with an average distance of 5.6 cm.

In future work, we want to approach the same task using RL and Spiking 
Neural Networks and compare their performance to the Artificial Neural 
Network models used here.
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INTRODUCTION/MOTIVATION

Reaching a target is one of the most important tasks in robotics — object 
interaction, manipulation and grasping tasks require moving the arm to spe-
cific targets [1]. However, there are many models of industrial robotic arms. 
They have different kinematics and hardware components. The robotic arms 
usually have different controllers depending on the manufacturer. In addition, 
each application developer will add different sensors for their setup.

This is problematic because there is no unified and understandable way 
of controlling multiple robots, which makes it difficult to port controllers 
between systems. In this work, we show how the same control strategy can 
be used with four different robot arms in the Neurorobotics Platform (NRP) 
[2][3]. This work extends the work presented in [4][5] of motor control for 
target reaching using motor primitives with spiking neural networks (SNN) [6]. 
The same SNN is used for all robots, but the motor primitives are trained with 
corresponding trajectories for each robot. This approach is model free and 
does not require the calculation of the inverse kinematics or the validation 
of the configurations.

METHODS

In [4][5] an SNN for target reaching was presented (see Fig. 1). To model the 
motion in 3D, the work in [4][5] uses three motor primitives for the arm – 
left-right, up-down and far-near. The motions of the three motor primitives 
are combined using an error signal from the desired target. This method 
resembles characteristics of visual-servoing [7], but instead of using visual 
feedback, we use the ground truth position of the target in simulation. In this 
work we extend the work from [4][5] to control four different robotic arms.  
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The first step is to integrate the SNN for one robot implemented using Nengo 
[8] in the NRP. Then we define an experiment with four robotic arms in 
simulation – Kuka IIWA14, Schunk LWA4P, Panda and UR5e (see Fig. 2a). We 
extend the brain simulation of the NRP to use multiple brains, one for each 
robot. Which allows the use of an instance of the SNN for target reaching 
for each robot. Each of the SNNs is trained with three example trajectories 
of each robot – one for each primitive. We add transfer functions between 
each robot and each brain. We also added a state machine that generates 
targets for all the robots. The targets are represented as spheres, where the 

FIGURE 2: Arm control for multiple robots using SNNs. (a) NRP experiment with four robotic 

arms -- Kuka IIWA14, Schunk LWA4P, Panda and UR5e. (b) Rectangular movement experiment. 

The target points are red dots labeled “TR # 1-3”.

FIGURE 1: Detail of the SNN with all layers and populations in the closed-loop scenario 

(adapted from [4]).
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center is the target, and the radius is the allowed error (see Fig. 2a). Each 
brain gets the corresponding feedback about its target. When the target 
changes the SNN of each robot generates control commands for each arm 
to reach the targets.

RESULTS AND DISCUSSION

As a benchmark task we defined an experiment where the state machine 
generates targets in the corners of a rectangle, so that the robots perform a 
trajectory across the edges of a hypothetical rectangle. Although, the SNNs 
for each robot have the same topology, the primitives are defined individu-
ally for each robot. This means that it is possible that different robots have 
different configurations for the same target as shown in Fig. 2a. The result-
ing trajectories are shown in Fig. 2b. The robots are different, with different 
sizes, and so the trajectories are not of the same size, and thus they are 
scaled accordingly. The similarity in the appearance of the motion can be 
observed. The target points for the rectangle are shown as red dots in Fig. 2b. 
The experiment shows that the SNN control strategy can be used to control 
different robots. Still, as it can be seen in the trajectories in Fig. 2b, there are 
control problems on the system as in [4][5]. This is happening because the 
raw spiking output of the network is being used for the control. This can 
be solved by using a low-level controller to smooth the control signal. This 
work presents an opportunity for porting a flexible control architecture with 
SNN to neuromorphic hardware such as SpiNNaker [9] or Loihi [10] and 
use it to control the real robots. The proposed experiment can be used as 
a benchmark for other control approaches with SNN and highlights the use 
of the NRP for this purpose.
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INTRODUCTION/MOTIVATION

Simulation frameworks in computational neuroscience support the inter-
disciplinary study of the relationships between structure and dynamics in 
the brain integrating knowledge from different disciplines and reproducing 
functional features at multiple scales. These virtual spaces where researchers 
can model the brain, generate hypotheses and perform multiple experi-
ments have become an essential tool to understand the brain in states of 
health and disease, as well as during development and aging [2]. Emerging 
computing infrastructures support the development and execution of such 
frameworks and allow for the simulation of detailed models. These models 
take into account a variety of features and variables related to the function 
of neurons, networks and brain regions. 

The Virtual Brain enables simulation of the whole brain with advanced 
mathematical models in combination with emprical data such as 
Electroencephalography, Magnetoencephalography and Magnetic Resonance 
Imaging [3].

Translating the mathematical and abstract descriptions of brain models into 
efficient code is a task which requires speciallized knowledge and experi-
ence. Whole brain simulations can also be tuned to fit the parameters of 
specific subjects [5] using experimental measurements from individual brain 
structures and dynamics [6]. This process is computationally intensive and 
requires scientists to explore vast combinations of parameters in their models. 

†these authors contributed equally to the work



80 6th HBP Student Conference on Interdisciplinary Brain Research

 
6th HBP Student Conference on Interdisciplinary Brain Research

In order to ease the translation from differential equations to executable 
code and make computational infrastructure accessible to scientists with 
different backgrounds, we have designed a modelling framework which com-
bines a domain specific language with an automatic code generator; called 
RateML. This allows us to detach modelling from software implementation, 
a technique which is becoming ever more common in computational neu-
roscience  [7]. 

NestML [17], i.e., is a modelling tool which targets the description of point neu-
ron models and synapses. NeuroML [18], which is used by Arbor [14], enables 
users to define single cells and network of these cells. Another modeling tool 
is NineML [15] which focuses on neworks of point neurons. RateML focuses 
on modeling the dynamic variable of mesoscopic brain activity, identical to 
the models used by the TVB simulator. A modeling tool for TVB and TVB on 
HPC does not exist in this fashion. 

METHODS

RateML builds on top of a domain specific language called ‘Low Entropy 
Model Specification’ (LEMS) [8], the language is not extended and can be 
used natively. With RateML users can formulate the differential equations 
which describe their models using an XML representation which is later used 
to produce Python and CUDA [9] code. With the CUDA code, end users can 
utilize the parallelization power of Graphic Processing Units (GPUs) in order 
to explore wide ranges of values for parameters specified in their models.  

RateML is part of the main TVB repository1. Documentation as well as blank 
model from which you can get started can be found in this repository. Next 
to this many existing TVB models have already been ported to RateML. 

To use RateML and for instance generate a Python model which can be 
simulated with the TVB simulator, the user can start by opening the blank 
model from the repository and complete the ComponentType derivatives. 
This ComponentType, shown in Figure 1, has elements with which the behav-
iour of the users model can be defined. It consists of the elements: Constant, 
Exposure, StateVariables and TimeDerivatives. Constants are use to define 
the unmutable intrinsic chracteristics of the model. The Exposure is used to 

1https://github.com/the-virtual-brain/tvb-root.git
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define the to be monitored variable of the simulation, the StateVariable and 
TimeDerivative make up the dynamic behaviour of the model.
 
When the user is finished, she can run at the command line: 

python XML2model.py --model kuramoto --language python

To generate a TVB model which will be familiarized by the her TVB installation 
directly. The user can immediately make a simulation with the generated 
model. She never has to see the resulting model file or has to worry about 
the performance of the underlying code; this has all been abstracted from 
the modeling effort. 

The example in Figure 1 is for the Python backend. For the CUDA backend, 
two extra ComponentTypes have to be defined, namely for the coupling 
and noise. In the repository the user will find many example and Jupyter 
notebooks on how to generate the CUDA models.

FIGURE 1: XML derivatives definition for Python Kuramoto model.
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RESULTS

We have implemented the RateML framework which is currently available 
as part of The Virtual Brain distribution. We have benchmarked simulations 
using three well known and widely used neuraml mass models from TVB: 
the Kuramoto [10], WongWang [11] and Epileptor [12].

The simulations used for the benchmarking were executed for 40,000 sim-
ulation steps, with a time step of 0.1 ms and using a deterministic Euler 
integration scheme. The number of parameters was increased in order to 
observe the changes in the execution time and memory usage by the differ-
ent models. Figure 2 shows the results of the benchmarking, indicating how 
RateML is able to produce code which exploits the whole capacity of a GPU 
to enable explorations of thousands of parameters in parallel. All simulations 
were executed in the Booster partition of the JUWELS supercomputer in 
the Julich Supercomputing Centre. Each node in the JUWELS booster has 
4 A100GPUs with 40 GB of memory.

FIGURE 2: Memory bandwidth consumption and model iterations per second for three TVB 

CUDAmodels when scaling the parameter space. Results indicate linear scaling when increasing 

the parameter space and that the application is memory bound.

FIGURE 3: CPU & GPU parameter sweep validation for 68 nodes, 40k simulation steps, varying 

the global_speed and global_coupling parameter (van der Vlag et al. 2021 (in preparation).
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To validate the RateML generated models, we used an existing experiment 
as a scaffold. The Montbrió [14] model was used in a study on the role which 
neuronal cascades play in the causation of whole-brain dynamics at rest [13]. 
RateML was used to input their models charactaristics and produce a CUDA 
model and driver to mimick their results. This CUDA model was then com-
pared against the TVB results for 5x10 of different parameter combinations. 
Figure 3 shows the results when comparing the CUDA and the TVB results. 
The error is smaller than 13.4e-5*t, in relation to the timestep, proving that 
the generated model is suited and accurate to use for such experiments.

DISCUSSION

In conclusion, RateML offers the neuroscience community with a new tool to 
automatically generate code from abstract model representations, enabling 
easy computing with Python as well as access to the full power of GPUs for 
parameter exploration. RateML allows the modeling of brain neural models 
and Neural Mass Models in a simple way, detaching the optimized implemen-
tations from the modeling and simulation infrastructure. RateML supports 
the investigation and generation of new models to study the links between 
structure and function in the brain enabling also a thorough investigation of 
the link between specific model parameters and the dynamics produced.

Keywords: brain network models, simulation, high performance computing, automatic code 
generation, domain specific language
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INTRODUCTION/MOTIVATION

Our brains are able to efficiently process and learn from the vast amount of 
information our senses provide about our environment. Understanding the 
computational principles underlying this unparalleled computational capacity 
is not only important for basic neuroscience research but also for advancing 
artificial intelligence. Neuromorphic engineering in particular tries to replicate 
the brain’s fundamental principles in new novel hardware to overcome the 
constraints, for example high energy consumption, present in classical von 
Neumann architectures. Conversely, error backpropagation [1], the basis of 
deep learning algorithms, can serve as inspiration to neuroscientific mod-
els about how complex tasks may be learned in the brain. However, naive 
implementations of backpropagation are at odds with neurobiology [2]. Thus, 
there is an effort in the field of computational neuroscience to devise mod-
els that leverage the strength of credit assignment via backpropagation in 
a biologically plausible way [3,4,5,6]. One approximation of backpropaga-
tion which incorporates constraints from biological systems, developed by 
Sacramento et al. [4], consists of a hierarchical architecture of microcircuits 
composed of multicompartment inter- and pyramidal neurons. In particular, 
unlike classical deep learning models, this model does not rely on separate 
forward and backward phases, avoids the weight transport problem by using 
random feedback weights, and the learning of synaptic weights relies on a 
local, plausible plasticity model [7]. In this study we aim to make the model 
by Sacramento et al. compatible with a range of neuromorphic hardware 
platforms [8,9,10] by moving from a rate-based to a spike-based implemen-
tation. We demonstrate in software simulations that our modified spiking 
version of the model preserves the functional principles allowing the original 
rate based model to learn. 
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METHODS

The original model consists of multiple layers of microcircuits composed of 
multi-compartment pyramidal cells and interneurons which communicate 
via rates (Figure 1A). Inputs to the lowest-layer pyramidal neurons propagate 
through the network to the output layer. An error signal, proportional to 
the difference between the network output and a desired target, is contin-
uously injected into the apical compartments of the neurons in the output 
layer. If the output matches the target, the feedback signal from the output 
layer is cancelled by input from the hidden layer interneurons in the apical 
compartment of the hidden layer pyramidal neurons. If an error arises in the 
output layer this will create a mismatch between the top-down feedback 
and lateral input. This mismatch, representing the error, is reflected in the 
voltage of the hidden layer apical compartment which modulates the somatic 
voltage. Synaptic plasticity is driven by the Urbancik Senn learning rule [7], 
which reduces the error by minimizing the discrepancy between the basal 
and somatic voltage. 

FIGURE 1: (A) The dendritic microcircuit described in Sacramento et al., 2018, consisting of an 

interneuron (green), upper- and lower-layer pyramidal neurons (grey) and their respective apical 

(red) and basal (blue) dendrites. Synaptic connections are drawn as lines between neurons with a 

square or circular marker at the end indicating static or plastic synapses respectively. Dashed 

arrows indicate signals used for synaptic updates. (B) The adapted microcircuit. Note that the 

apical dendrite has been separated from the soma and now serves as an error neuron connected 

via a synapse to the pyramidal neuron. 
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We modified the original model to make it suitable for emulation on multi-
ple different neuromorphic substrates. One common ground for most plat-
forms is their ability to emulate Leaky Integrate-and-Fire (LIF) neurons [11]. 
We replace the apical compartments in the original model with LIF point 
neurons and combine the somatic and basal compartments into a single 
LIF neuron (Figure 1B). The error in the apical compartment, which was 
previously represented as a voltage, is now encoded using spikes. To enable 
the encoding of negative error values, neurons fire with baseline activities 
and errors are represented as deviations from this baseline. In the original 
model, activity was communicated in the form of instantaneous firing rates, a 
non-linear function of the somatic voltage. Now communication between all 
neurons is spike-based. As in the original model the plasticity of the synapses 
is driven by applying the Urbancik Senn learning rule [7] on the neuronal firing 
rates, computed from the spike counts over the duration of each sample 
presentation. For the software simulations of the model we chose the PyNN 
library [12] with NEST [13] as a simulation backend. While the model could 
have been implemented using other libraries such as Brian [14] or PyNEST 
[15] or GeNN [16], PyNN was chosen as it can also operate as a frontend for 
the neuromorphic platforms BrainScaleS 2 [8] and SpiNNaker [9]. 

RESULTS AND DISCUSSION

To test whether the basic principles of the original model were unchanged by 
the previously explained modifications, we performed software simulations of 
a simple nonlinear regression task using a single microcircuit (Figure 1B). The 
network of LIF neurons was able to learn simple input-output pairs (Figure 
2A-D). Furthermore, the errors, represented by the activity of the “apical” error 
neurons in both the hidden and output layer, drive learning and decay to their 
respective baselines when the output approaches the target (Figure 2E). Even 
though our model relies on fundamentally different single-neuron dynamics 
and employs spike-based communication, we preserved the fundamental 
principles underlying learning in the original model. 

Further work will focus on implementing the modified model on current spik-
ing neuromorphic platforms such as the digital SpiNNaker system [9] and the 
mixed-signal BrainScales 2 system [8]. By having both learning and inference 
fully embedded in the same neuromorphic substrate we hope to make full 
use of the speed and energy efficiency of these brain-inspired architectures.
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FIGURE 2: The adapted spiking microcircuit learning a simple regression task. (A) Comparison of 

the output activity of the top-layer pyramidal neuron (blue) and the target output throughout 

training. (B-D) Zoom into the initial (B), middle (C) and late (D) phase of the training. (E) The 

activity of the error neurons in the output and hidden layer converge towards their respective 

baseline.
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INTRODUCTION/MOTIVATION

Surrogate spike train data is used to generate the null hypothesis in the context 
of the significance analysis of spike train correlations and spatio-temporal 
spike patterns. In our work, we compare five different surrogate techniques 
against the classical technique called  Uniform Dithering (UD [1]). In particular, 
we discuss the use of the surrogates to generate the null-hypothesis distribu-
tion in the statistical test of the SPADE method (Spike PAttern Detection and 
Evaluation [2,3]), which detects spatio-temporal spike patterns in parallel spike 
trains. In SPADE, both spike trains and surrogate realizations are discretized 
into 0-1 sequences (binarization) before the pattern detection. We discover 
that binarized surrogates have a lower spike count than the original data, due 
to the change in the surrogate’s inter-spike interval (ISI) distribution caused 
by the UD algorithm. The spike count mismatch between the original data 
and the surrogates is predominant in the case of high firing rates, spiking 
regularity, and presence of a dead time (minimal temporal distance between 
spikes typically induced by spike sorting). We prove that spike count reduc-
tion leads to false positive (FP) detection, motivating us to explore alternative 
surrogate techniques to UD.

METHODS

Surrogate Techniques (Figure 1)
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 ∞ Uniform Dithering (UD)[1] displaces each spike individually according to 
a uniform distribution.

 ∞ To account for the dead-time present in experimental data, Uniform 
Dithering with Dead-Time (UDD) limits the displacement of each spike 
such that the dead-times are conserved.

 ∞ (Joint)-ISI dithering [4] displaces each spike individually preserving the 
(joint-) ISI distribution.

 ∞ Window Shuffling shuffles binarized spike trains inside of short windows. 

 ∞ Trial Shifting consists in shifting entire segments of a spike train accord-
ing to a uniform distribution, independently trial by trial, and neuron by 
neuron [1, 5].

FIGURE 1: Surrogate Techniques. (A) Uniform Dithering (UD) displaces each spike according to a 

uniform distribution centered on the spike. (B) Uniform Dithering with dead-time (UDD) is based 

on uniform dithering, but spikes are constrained not to be closer to each other than a dead-time 

(C) Joint Inter-Spike Interval Dithering (JISI-D) displaces each spike according to the J-ISI 

distribution of the neuron. (D) Inter-Spike Interval Dithering (ISI-D) displaces each spike according 

to the ISI distribution of the neuron. (E) Trial Shifting (TR-SHIFT) shifts each trial according to a 

uniform distribution. (F) Window Shuffling (WIN-SHUFF) shuffles binned spike trains within 

windows.
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SPADE

SPADE detects spike patterns at a millisecond resolution, allowing for tempo-
ral delays between the spikes. The spike trains are first discretized and patterns 
are then mined and counted. To assess the significance of these patterns, 
the same procedure is performed on multiple realizations of surrogate spike 
trains, resulting in a p-value spectrum [3]. Significant patterns have p-values 
lower than the (corrected) significance threshold.

Artificial data generation

In order to evaluate the effect of the different surrogates on SPADE, we create 
artificial spike trains modeled according to the statistics of experimental data 
from the pre-/motor cortex of macaque monkeys [6], including non-station-
ary firing rate profiles. The dead time and regularity of the data are modeled 
by simulating Poisson processes with dead-time (PPD) and Gamma spike 
trains, respectively. In particular, using a Gamma process the coefficient of 
variation can be adjusted explicitly, thus allowing for the generation of regular 
and bursty processes.

RESULTS AND DISCUSSION

We observe that UD surrogates modify the ISI distribution of PPD and Gamma 
spike trains (approximately) into an exponential distribution. As a conse-
quence, spike counts are reduced after binarization. By applying SPADE on 
the artificially generated data, we observe a high number of false positives 
when employing UD (see Figure 2). Thus, we conclude that UD is not a suit-
able surrogate technique for spike train data that either contains a dead-time 
or is regular. The alternative surrogate methods, instead, yield a consistently 
low number of false-positive patterns; between 8 and 15 FPs in 48 analyzed 
datasets (except for UDD on Gamma spike trains). In conclusion, since trial 
shifting is the simplest method among the best-performing ones, we rec-
ommend it as the method of choice.
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INTRODUCTION/MOTIVATION

Hearing loss is a heterogeneous disease that affects about 5% of the world 
population [1]. Given the central nervous system’s plasticity during the mat-
uration period and congenital deaf individuals’ visual dependence to inter-
act with the environment, reorganization within intact sensory modalities is 
expected, especially in vision [2,3]. Compensatory changes resulting from 
deafness have been reported, particularly the improvement of peripheral 
visual attention capability [4,5,6]. In terms of behaviour, greater speed and 
accuracy in detecting peripheral stimuli (visual target) is described, and, in 
terms of electroencephalography (EEG), a more pronounced desynchroniza-
tion of the alpha and beta band is associated with attention [7,8,9,10,13,15]. In 
this sense, we aimed to verify whether there are significant changes in visual 
attention capability between individuals with congenital or early deafness and 
individuals with normal hearing.

METHODS

This study was experimental, cross-sectional and descriptive. The participants 
were divided into the experimental group (congenital or early deafness), 
constituted by 4 participants, and control group (no auditory deficit), 
constituted by 7 participants. Each participant completed a selective attention 
task resorting to the immersive virtual reality equipment HTC vive, with 
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simultaneous recording of electroencephalographic activity in the parietal 
and occipital areas using the Biopac System MP36. The selective attention task 
consisted of a set of objects arranged in a circle. The target object appears 
in one of the positions of the circle and, inside or outside the circle, appears 
a second object, the distraction (Figure 1). The levels increase in difficulty 
when the target and the distraction are incongruent (different objects) and 
when the fill-in objets are congruent with the target/distraction (same color). 
The goal of the attention task is to identify which target is present (iogurt or 
coca-cola). Participants were instructed to ignore the distraction and identify 
the target as quickly and accurately as possible.

The procedure consisted of a rest period, in which an EEG recording was 
performed with the participant sitting comfortably, and a study period that 
corresponded to the EEG recording during the performance of the attention 
task. The EEG component was analyzed using the AcqKnowledge 5.0 soft-
ware, in which we used the EEG Frequency Analyzes algorithm to obtain the 
power of the alpha band frequency. In the behavioral component, reaction 
time and response (correct or incorrect) were analyzed. Statistical analysis 

FIGURE 1:  Attention Task Levels (image taken from the software of the attention task at the 

different levels).
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was performed using the Statistical Package for Social Sciences (SPSS) 27 
and Microsoft Excel 16.52 software.

RESULTS

A decrease in the alpha frequency power between before and during the 
attention task was observed in the electroencephalographic component. 
This decrease happened in both groups in the parietal region (experimental 
p = 0,125; control p = 0,286) and in the occipital region (experimental p 
= 0,080; control and p = 0,362). When comparing this decrease between 
both groups there was a statistically significant difference in the occipital 
region (p = 0,038), more prominent in deaf individuals. Despite not being 
statistically significant, the remaining electroencephalographic results also 
suggest a more considerable decrease in the alpha frequency power in the 
experimental group. In the behavioural component, the same was verified; 
although there was no statistically significant difference between the experi-
mental and control groups, the results point to greater visual attention in the 
experimental group. When comparing the reaction time with the peripheral 
distraction between both groups we obtained a faster response in the exper-
imental group (p = 0,088), the same was verified with the central distraction 
(p = 0,798). 

DISCUSSION

This study was conducted during the COVID-19 pandemic. As a result, one 
of the most significant limitations we were met with was recruiting volun-
teers, particularly for the experimental group. Thus, the fact that most of the 
results found are not statistically significant is most likely due to the sample 
size, mainly in the experimental group. The electroencephalographic result 
obtained in the occipital region indicates a higher desynchronization in deaf 
individuals, which points to a higher visual attention [14,16]. The remaining 
results, in spite of not being statistically significant, suggest a higher visual 
attention capacity in deaf individuals as well [11,12]. Therefore, it is essential 
to carry out new investigations to overcome the limitations in this study, 
especially the sample size. It should be noted that the investigations focus-
ing on the deaf community are a tool for their inclusion in society as they 
provide relevant information for the development of new teaching methods 
and vocational approaches valuing their capabilities, despite their limitations.
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INTRODUCTION/MOTIVATION

Working memory (WM) is the core cognitive phenomenon, which affects 
everyday life (Baddeley, 2010). It was shown that WM relies on several brain 
regions, however, the core areas were proposed to be frontal and parietal 
(Owen et al., 2005; Chein et al., 2011), which both constitute the frontopari-
etal network (FPN). The activity of FPN determines working memory capacity 
(WMC), which serves as a predictor of future academic success (Unsworth, 
Heitz, Schrock & Engle, 2005) and is usually a target for scientists attempting 
to increase capacity. One of the most promising tool to enhance WMC is 
transcranial direct current stimulation (tDCS). A large number of studies were 
conducted with this neurotechnique, however, their effect on WMC remains 
contradictory (Hill, Fitzgerald & Hoy, 2016). Moreover, no studies investigate 
the effect of simultaneous stimulation of both components of the fronto-
parietal network. Because of the inconsistency of tDCS results and lack of 
data about the effect of simultaneous stimulation of both frontal and parietal 
areas during working memory functioning, we conducted a study, where we 
compared the performance of working memory task for the groups with no 
stimulation, stimulation of one FPC component and both.

METHODS

We used tDCS to influence the performance during the operation span task. 
Forty-five participants were equally split into three stimulation groups: with 
simultaneous anodal stimulation of P3 and F3 brain areas (double stimulation 
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group) according to the 10/20 EEG system (Lagerlund et al., 1993), with 
anodal stimulation of only F3 area (single group) and with sham stimulation. 
We calculated with power analysis that 45 participants will be enough for the 
between-group design. The stimulation lasted fifteen minutes. After it, partic-
ipants performed an operation span – complex working memory task, where 
respondents have to memorize a set of letters while simultaneously verifying 
mathematical equations (Turner & Engle, 1989). This task was shown to reveal 
good validity and reliability rates (Klein & Fiss, 1999) and allows precise meas-
urement of domain-general WMC.  We analyzed the effect of stimulation type 
on memory performance measured traditionally with mathematical accuracy 
inside it (Conway et al, 2005), to memory and mathematics separately, and to 
response time (time of calculation and time of recall). We considered separate 
results of memory and math in order to reveal a potential attentional bias to 
one of the tasks due to stimulation. Memory performance was calculated as 
partial credit scoring (PCS – the average ratio of correctly recalled items) and 
partial credit load scoring (PCLS – the average number of correctly recalled 
items). We applied one-way (between-group factor – stimulation type) and 
two-way (between-group factors – stimulation type and span size) ANOVA 
to reveal any possible effects. We hypothesized that stimulation of only one 
component of FPN will increase WMC in comparison to sham stimulation. 
The stimulation of the second component will increase WMC significantly 
higher in comparison to both single and sham groups, which will indicate 
that the two components of FPN are functioning as separate units.

RESULTS 

There was no difference in mathematical accuracy (Fig. 1) and time of calcu-
lation among the three groups (Fig. 2). Memory performance was impaired 
in the single stimulation group compared to both sham and double groups 
only if we consider no mathematics inside memory measurements (Fig. 1) 
for both one-way ANOVA (p-value_PCS = 0.0041, p-value_PCLS = 0.0137) 
and two-way ANOVA (p-value_PCS = 5.64e-07, p-value_PCLS = 2.8e-05). A 
significant effect of tDCS was observed for memory performance without 
math in span sizes “four” and “six”. The time of recall showed a trend for a 
decrease in the single stimulation group in comparison to others (Fig. 2) 
according to one-way ANOVA (p-value_t_recall = 0.0738) and was significant 
for spans “five” and “six” in two-way ANOVA (p-value_t_recall = 0.000986). 
The difference between other measurements remains not significant.
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DISCUSSION 

The results go beyond our initial hypothesis that stimulation will improve 
WMC. In the experiment, memory results without math were impaired only 
after a single stimulation, but not double. We assume that such effect was 
observed due to desynchronization of the components of the FPN, which 
was restored in case we apply the same stimulation protocol to the second 
component (P3). Thus, the results indicate that the frontoparietal network 
functions as not a single cognitive unit, but as two separate and highly inter-
connected neuronal units. By modulating the synchrony of the components 
of the FPN by tDCS, we were able to modulate working memory capacity 
during the operation span task. This explanation goes in line with several 
investigations, where the synchronization between brain areas, which are 
responsible for particular cognitive function, was important for task success 
(Hill, Rogasch, Fitzgerald & Hoy, 2018; Luria, 1966). We suggest that frontopa-
rietal desynchronization manifests itself on a cognitive level by an attentional 
shift towards easier tasks (math) or impaired inhibition of irrelevant thoughts, 
which impair memory performance. Both explanations allow understanding 
the presence of tDCS effect to memory, but not mathematics. 
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FIGURE 1: Results of one-way and two-way ANOVA for memory measurements and 
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INTRODUCTION/MOTIVATION

Over the last century, neuroscience has struggled to understand how syn-
aptic organization contributes to the functional organization of the brain. 
Traditionally, most of the studies regarding the synaptology of human brain 
have been performed using conventional electron microscopy and stereo-
logical methods on single, two-dimensional tissue sections. However, these 
methods carry several major issues, since the identification and classification  
of synapses often represent a difficult task, which led to an erroneous char-
acterization of the synaptic organization (1) Furthermore, previous electron 
microscope studies have reported differences in the synaptic organization 
in different cortical regions and layers  (2–8). In the present study, we have 
focused on the synaptology of layer V of the human entorhinal cortex (EC), 
a crucial region located in the medial temporal lobe, essential for memory 
functions and spatial navigation (9). To this end, we have used Focused Ion 
Bean / Scanning Electron Microscopy (FIB/SEM). This methodology provides a 
large number of serial sections of the neuropil at an ultraestructural resolution, 
allowing 3D reconstruction of synapses, in which the synaptic organization  
could be accurately performed (10). 

METHODS

Human brain tissue was obtained from autopsies from 2 males and 1 
female subjects (supplied by Unidad Asociada Neuromax, Laboratorio de 
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Neuroanatomía Humana, Facultad de Medicina, Universidad de Castilla-La 
Mancha, Albacete, Spain), and processed for electron microscopy as detailed 
elsewhere (3,5). The 3D study of the samples was carried out using a dual-
beam microscope (Crossbeam® 540 electron microscope, Carl Zeiss NTS 
GmbH, Oberkochen, Germany), which combines a high-resolution field- 
emission SEM column with a focused gallium ion beam (FIB). This allows the 
removal of thin layers of material from the sample surface on a nanometer 
scale. After removal, the exposed surface of the sample is imaged by the SEM. 
The sequential automated use of FIB milling and SEM imaging allowed us to 
obtain long series of photographs of a 3D sample on selected regions (10). A 
total of  9 stacks of FIB/SEM images of the EC layer V neuropil were obtained 
and analyzed using EspINA software (Figure 1) (11). Synapses were fully 3D 
reconstructed and classified as asymmetric (AS or type I) or symmetric (SS or 
type II), based on the thickness of the post-synaptic density (12,13). In addition, 

FIGURE 1: Screenshots of the EspINA software user interface. (A) In the main window, sections 

are viewed through the xy plane. Orthogonal planes (yz and xz) are also shown in the adjacent 

windows (right). (B) Three orthogonal planes and the 3D reconstruction of asymmetric (in green) 

and symmetric (in red) segmented synapses. (C-D) 3D-segmented synapses (C), and their 

computed SAS (D, in yellow). Scale bar (B-D): 6µm.
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geometrical features (size and shape) of the synapses were determined using 
EspINA software, which extracts the Synaptic Apposition Surface (SAS) and 
provides its morphological measurements (Figure 1) (14). Finally, postsynaptic 
elements of the synapses were also studied with EspINA software. 

RESULTS AND DISCUSSION

The present study constitutes a detailed description of the synaptology of 
human EC layer V. Data are based on the study of a large number of syn-
apses (1334), fully reconstructed in 3D at the ultraestructural level. In those 
synapses, we analyzed the following parameters:

-Synaptic Density and Proportion of Excitatory and Inhibitory Synapses: 
Synaptic density values were obtained by dividing the total number of syn-
apses identified and included within a stereological counting frame (CF) by 
the total volume of the CF. The average synaptic density of the EC layer V 
was 0.39 synapses/µm3 and he proportion of AS:SS was 95:5.

-Synaptic Size: The study of the synaptic size was performed analyzing the 
area of the SAS of each synapse reconstructed. In layer V, the average of the 
SAS for the AS was 122 071 nm2, and 73 713 nm2 in the case of SS. Thus, the 
SAS of AS were significantly larger than SS (Mann Whitney, <0.0001).

-Synaptic Shape: Synapses were classified into four categories: macular, 
perforated, horseshoe-shaped or fragmented (detailed in (7). 80.2% of the 
synapses presented a macular morphology, followed by 16.4% perforated, 
2% horseshoe-shaped and 1.4% fragmented (Figure 2). Since the vast majority 
of synapses presented a macular shape, we determined the proportions of 
AS and SS for that particular morphology, revealing that, of the total macular 
synapses, 96% were AS and 4% were SS. 

-Postsynaptic Elements: Postsynaptic targets were identified and classified 
as spines and dendritic shafts. When the postsynaptic element was a spine, 
we distinguished the location of the synapse on the neck or on the head 
of this spine. When the postsynaptic element was identified as a dendritic 
shaft, it was classified as spiny or non-spiny, according to the presence or 
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not of spines (3). Most synapses were established on dendritic shafts (56.3%, 
27.1% on spiny shafts and 29.2% on non-spiny shafts), followed by a 42.3% 
established on spine heads and a 1.4% on spine necks (Figure 2). 

Further analyses are currently ongoing, which will both complete the 
synaptic study of layer V and include new layers, in order to provide a 
detailed description of the synaptology of the human EC. In any case, these 
results highlight the importance of the methodological approach presented 
here, which guarantees a precise characterization of the synaptic structure, 
avoiding most of the problems associated with traditional methods (1,10). The 
characterization of synaptic structure is crucial for a better understanding of 
synaptic function. For instance, differences in the excitatory/inhibitory balance 
are influenced by changes in the proportions of AS and SS synapses (15).  
Likewise, synaptic size and shape correlate with synaptic strength and 

FIGURE 2: Analysis of synaptic shape and postsynaptic elements in Human EC layer V. (A) 

Proportion of the different synaptic shapes. Most of the synapses (80%) show a macular 

morphology. (B) Schematic representation of the distribution of all synapses on different 

postsynaptic targets: on dendritic shafts (including both spiny and non-spiny shafts), dendritic 

spine heads and dendritic spine necks.
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plasticity (16,17). Therefore, the use of this experimental approach is essential 
to fully understand the microcircuits that shape human brain and its functional 
organization, both in health and disease.

Keywords: Enthorinal Cortex, electron microscopy, FIB-SEM, neuropil, synaptology
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INTRODUCTION/MOTIVATION

Artificial Recurrent Neural Networks (RNNs) are increasingly used in neuro-
science research to explain neurobiological phenomena while considering 
the architectural and computational constraints of biological networks. Such 
an approach aims to train an RNN using machine learning tools and then 
compare it to the network dynamics observed in the brain [1]. Credit assign-
ment in RNNs is classically performed using backpropagation-through-time 
(BPTT), the temporal analog of the standard backpropagation-of-error algo-
rithm [2]. However, it remains unclear if BPTT learns solutions to dynamic 
problems similar to those employed by the brain, particularly because deep 
learning algorithms are often considered black boxes [3]. In this work, we 
aim to address this fundamental algorithmic question for learning dynamic 
time series by exploring the spectral structure of RNNs trained via BPTT on 
temporal tasks. Specifically, we take single-variable time-series processing 
tasks and compare the solutions found by BPTT against solutions based on 
feedback loops. Since feedback loops are widely used in control theory [4], 
are known to be efficient in time-series processing [5], and are also very 
prominent in neuroscience [8-11], particularly cortical circuits [12], they are 
ideal candidates for this comparison.

METHODS

Teacher forcing is a technique that is frequently used in dynamical supervised 
learning tasks where the model (student) receives the ground truth output 
d(t) (teacher) as input in the subsequent computation of the behaviour of the 
network [13]. In a biological context, this learning paradigm corresponds to 
an agent that tries to imitate the responses of another agent by observing its 
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inputs and outputs. In our context, this framework allows us to design tasks 
that we understand perfectly, and since the teacher and student are both 
neural networks with the same activation function, we also know that the 
student is, in principle, capable of imitating the teacher flawlessly. We employ 
such a teacher-student model where a teacher network is generated and 
given Gaussian noise as input, and the student network is trained via the BPTT 
algorithm to apply the same function as the teacher. In our case, we consider 
linear systems that process input time-series through feedback loops.

In linear and linearizable networks, a system with feedback loops is fully char-
acterized by its poles, which can be realized as the eigenvalues of the weight 
matrix of a linear neural network (see Fig. 1). As multiple weight matrices can 
implement the same dynamics by having identical eigenvalues, we compare 
teacher and student networks not by their network structure but by their 
eigenvalues representing their primary modes of activity. We find that BPTT 
rarely finds the same eigenvalues for the student network as the teacher, 
implying that the networks are fundamentally different despite implementing 
a similar function. Interestingly, only when network resources are increased, 
i.e., the number of neurons is much larger than the number of poles, can 
BPTT find the right solution. Additionally, the eigenvalues found by BPTT tend 
to be real even if the teacher has complex eigenvalues.

FIGURE 1: Simple example of the relationship between poles and eigenvalues: A feedback 

loop system with a delay of two and feedback weight w1 w2 w3 with its corresponding 

transfer function H(z) (left) can be implemented as a cycle of length 3 with weights w1 w2 w3 

characterized by its eigenvalues λ (right) and the poles of the transfer function are given by the 

eigenvalues of the adjacency matrix (center). The plot in the complex plane thus represents 

the poles (or eigenvalues) of this system.
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RESULTS AND DISCUSSION

Our first results illustrate that BPTT finds solutions that can obtain good per-
formances in different temporal tasks, but it does so via network structures 
that do not always align with the feedback loop architecture (Fig. 2). This is 
especially true for tasks where the order of the underlying filter is high (see  
Fig. 2c), implying that BPTT might not be ideally suited to model tempo-
rally very complex systems as often observed in the real world. Thus, our 
results add to the evidence [14] that the brain does not use backpropaga-
tion-through-time for time-series learning. Moreover, since the identified ana-
lytical solutions are known to be efficient both in theory and in practice, and 
we also know that biology uses feedback loops for control [6-9], we should 
be careful when using BPTT to understand recurrent biological networks.

Lastly, our results also generalize the limitations of BPTT to other domains. 
For instance, to enable good learning performance, the size of an RNN 
needs to increase very fast with the order of the system to be imitated. This 
makes it generally difficult for small embedded applications and neural sys-
tems based on small RNNs. Furthermore, since the design of stable systems 
requires understanding the poles and eigenvalues of constituent systems [4], 
our work might help design RNNs for fields with critical failures to ensure the 
stability of performance guarantees. In future work, we plan to extend RNN 
training to more complex tasks, like forecasting chaotic time-series, and then 

FIGURE 2: (a) and (b) show two examples of RNNs trained with BPTT (red dots) and compared 

with the original teacher (blue crosses). In (a), the network has eigenvalues matching the teacher 

poles, thus can implement the exact function. In (b), the eigenvalues do not align; thus, the 

network differs. Finally, in (c), we show the number of successful trials where BPTT finds the 

analytical solution structure (from 25 trials where the number of poles equals the number of 

neurons).



114 6th HBP Student Conference on Interdisciplinary Brain Research

 
6th HBP Student Conference on Interdisciplinary Brain Research

use our results to improve artificial RNNs by adding the required feedback 
structure, a known method to improve RNN performance [15] without BPTT.

Keywords: Recurrent Neural Networks, Backpropagation-through-time, Time Series 
Prediction, Feedback Loops, Cybernetics
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INTRODUCTION/MOTIVATION

Between-subject brain variability in shape and function is a major challenge 
to the definition of accurate brain models [1, 2]. It also obscures the com-
parison between species. Recently, precision mapping has started to provide 
data to ground the definition of accurate brain models [3]. Yet technology 
has been missing to identify correspondences between brains. Leveraging 
Optimal Transport (OT) methods [5, 6], we derive an algorithm, denoted as 
Fused Unbalanced Gromov Wasserstein (FUGW), to compute whole-brain 
mappings between subjects with minimal anatomical priors, and provide a 
fast GPU-based Python implementation. We apply it to the Individual Brain 
Charting (IBC) dataset - a collection of more than 200 maps of functional 
activations (contrasts) acquired in each of the 12 human subjects [4]. We also 
provide a web-based tool to explore IBC as well as derived mappings. This 
is ongoing work and we intend to later on (a) run these methods on other 
MRI datasets, including resting state and naturalistic stimuli and (b) to assess 
the existence of cortical reorganisations between species, pushing forward 
recent efforts made in cross-species comparisons [8, 9, 10].

METHODS

In short, a contrast map for a given subject represents the activity of each 
part of the cortex after the subject has been exposed to a specific stimulus 
(for instance seeing an image of a familiar human face, hearing a complex 
sentence, or hearing mathematical assertions). As illustrated in Figure 1, anat-
omies from one human subject to another vary greatly, as well as the acti-
vation maps elicited by similar stimulus. Alignment aims at alleviating these 
differences. Like other methods, FUGW focuses on building mappings for 
surface-sampled contrasts, which we obtain by projecting volume-based fMRI 
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data using Freesurfer [11]. We compare several methods to build mappings 
between cortical surfaces. We identify three main categories of methods:

1.  topologically-loose methods such as point-wise nearest neighbours, 
which map source and target cortical areas based on functional infor-
mation only (contrast map) without taking anatomical information into 
account

2.  well known diffeomorphic methods such as Procrustes [12], Multimodal 
Surface Matching (MSM) [7] or spherical daemon [13], which align source 
and target subjects based on function information while enforcing 
derived mapping to be continuous between surfaces

3.  FUGW, which we advocate is a combination of the two previous cate-
gories, as it doesn’t enforce diffeomorphicity between source and target 
surfaces but only fosters it

In order to compare them, we systematically evaluate the relevance of derived 
mappings by (a) quantitatively assessing how well they transfer unseen con-
trasts and (b) qualitatively looking at the cortical reorganisation they induce 
between subjects through a dedicated web-based interactive visualisation 
tool. Our process is the same for all methods: one derives a mapping function 
for every pair of source and target subject of IBC using a set of training con-
trasts (see Figure 2.A). This function can then be used to map test contrasts 

FIGURE 1: Brain-cockpit, a web-based visualisation tool to explore the training dataset as well 

as derived mappings Contrast maps elicited by listening to complex sentences are shown for 

2 subjects of the IBC dataset. Parts in red (blue) are activated (deactivated) compared to the 

rest of the brain. Contrast maps are measured in z-score.



6th HBP Student Conference on Interdisciplinary Brain Research 117

 
6th HBP Student Conference on Interdisciplinary Brain Research

from the source anatomy to the target anatomy. Computing correlation 
between these mapped contrasts and the actual target contrast allows us to 
derive a metric to compare these methods (see Figure 2.B). Manually exploring 
derived mappings also helps assessing their anatomical relevance: one can 
map atlases from source to target (see Figure 2.C), measure distance on the 
cortex between mapped points in some specific case (see Figure 2.D), or 
explore them in our viewer.

RESULTS AND DISCUSSION

Topologically-loose methods correctly align primary areas of the cortex 
between subjects, but fail to correctly map areas involved in more complex 
tasks. Classical OT methods (simple Wasserstein distance) with no anatomical  

FIGURE 2: Aligning individuals using large functional datasets with OT (A) UFGW derives an 

invertible function f mapping a source mesh to a target mesh (respectively of size Vs and Vt) 

which tries to maximize the correspondence between activation patterns ai observed in each 

voxel while preserving the topology of both meshes. (B) Applying f to unseen contrasts and 

comparing the result with actual contrasts allows to assess the relevance of f. (C) f can be used 

to transport atlases between subjects, which qualitatively shows that the global topology of the 

cortex is preserved between human subjects. (D) When source and target meshes are the 

same (here, fsaverage5 [11]), computing geodesic distance between source and mapped 

voxels shows which parts of the cortex show higher anatomical variability.
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priors yield similar results. These can be greatly improved by adding little 
topological constraints on the derived mappings (which is what FUGW does). 
Contrast maps transferred from source subjects to target subjects using 
these functions show high correlation with contrast maps acquired for these 
target subjects. On top of being computationally very efficient and easy to 
deploy, FUGW outperforms other alternatives. It makes it possible to capture 
subtle changes between individuals, such as the size and shape of functional 
areas or their position relative to other areas. Our visualisation tool facilitates 
exploring these changes. Moreover, as our method is not based on anatom-
ical landmarks, it is particularly suited for cross-species comparisons (e.g. 
human vs. macaques).

Keywords: fmri, subject alignment, optimal transport, inter-subject variability, surface-based 
analysis
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INTRODUCTION/MOTIVATION

The past decade has seen a tremendous development of connectomics 
approaches [1], but most of them cannot bridge the gap between the micro-
scale level of single-cell resolution and the meso-scale level of whole-brain 
bulk axonal projections. Electron microscopy [2] and direct synaptic labeling 
[3] cannot scale up to the whole brain level, while anatomical tract-tracing [4] 
and diffusion tensor imaging [5] cover the whole brain but lack single-cell res-
olution. One way to bridge the gap could be given by automated tissue-to-vol-
ume reconstructions of single-neurons based on fluorescence micro-optical 
sectioning tomography (fMOST) [6] or light-sheet fluorescence microscopy 
[7]. However, fully automated techniques are inadequate to precisely identify 
the brain areas, cortical layers and subcortical nuclei of the axonal tree ter-
minals, when compared to manually traced neuronal reconstructions. The 
reason is that automated techniques do not allow experimenters to place a 
reconstructed neuron in a reference atlas, curate the position of each soma, 
dendrites or axonal terminals, and compare the final outcome with the original 
experimental tissue. Moreover, tens of thousands of neuronal reconstructions 
are needed to reach a whole-brain coverage similar to [4]. As a consequence, 
we have developed a tool for searching similar neurons across databases, 
based on their axonal morphology and registration coordinates, and cor-
recting the cortical layer distribution patterns. As a use-case, we compare 
neurons from high-throughput databases with a small repository of manually 
traced and precisely placed neurons from a recently developed pipeline. 
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This pipeline labels single-neurons according to [10], followed by manual 
reconstruction using Neurolucida [11] and registration to the volumetric space 
of the Allen Common Coordinate Framework v. 3.0 [12]. Finally, the neuron 
is shifted towards or away from the cortical surface to bring the manually 
annotated layer borders as close as possible to those of the atlas.

METHODS

We compared two sources of reconstructed neurons from the large online 
repositories of MouseLight [8]. and Braintell [9] (labeled as high throughput 
neurons), with a smaller one produced by an in-house pipeline that is currently 
under development (labeled as ‘reference’ neurons). We first load each refer-
ence neuron as a 4D point cloud, with the first three dimensions representing 
the spatial coordinates and the fourth one representing the distance from the 
soma. We then use an API to download all high throughput neurons whose 
soma distance from the reference neuron is lower than a given threshold. 
We then apply the Coherent Point Drift (CPD) method [13] to compare all 
neuronal pairs through a two-step registration process. Initially, CPD finds 
the missing correspondences between the two neurons by minimizing the 
negative log-likelihood that the reference neuron’s point cloud was sampled 
from the distribution of the high throughput one, as modelled by a Gaussian 
Mixture Model. Subsequently, CPD applies a rigid transformation of the high 
throughput point-cloud to the reference one (Fig. 1). We thus select the high 

FIGURE 1: Two examples of rigid registration using the Coherent Point Drift (CPD) algorithm [13], 

specifically of high throughput Neurons 7 (a) and 45 (b) to reference Neuron 1. After 60 rounds of 

iteration, the minimum negative log-likelihood that Neuron 1 has been sampled from the 

distribution of Neuron 7 or of Neuron 45 is –7079 or –8067, respectively. Blue color: axonal 

branches of Neurons 7 (a) and 45 (b). Red color: axonal branches of Neuron 1 (both panels).  All 

three axonal reconstructions have been retrieved from the Mouselight repository [8]. 
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throughput neuron with the minimum negative log-likelihood as the neuronal 
match. Lastly, we load the SBA composer [14] tool to visually compare all 
selected pairs in 3D.

RESULTS AND DISCUSSION

Our approach represents a significant extension to existing tools, since the 
extent of the full axonal tree, instead of only regions of interest, is taken 
into account. Moreover, it is applicable to neurons reconstructed in smaller 
laboratories and allows for integration with other similarly registered data-
sets. The pipeline is expected to be updated before the end of the year with 
one-to-one matches of reconstructed neurons between our repository and 
the Mouselight and Braintell ones. In addition, we intend to compare the 
matches in terms of coverage in brain areas, cortical layers and subcortical 
nuclei. With the integration of neuronal reconstructions from multiple data-
sets, we will proceed to a number of future steps. We intend to translate the 
reconstructed axonal morphologies into a statistical model for the underlying 
axonal projections similarly to [15], characterize the overlap between axonal 
arbors and replicate the axonal trees to densely fill the volumetric space. Lastly, 
the tools, pipeline and models will become part of EBRAINS infrastructure. 
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IV Systems & cognitive neuroscience

Reality monitoring in native and foreign language
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INTRODUCTION/MOTIVATION

Reality monitoring (RM) is a type of source monitoring for which individu-
als have to distinguish between internally and externally generated memo-
ries [1]. Discrimination between external and internal sources of memory is 
suggested to rely on specific perceptual and cognitive characteristics that 
are intrinsic to these sources and serve as cues for memory monitoring [1]
[3]. For instance, greater cognitive operations are typically linked to self- or 
internally-generated information, whereas greater sensory and contextual 
content is related to externally-generated information [1][3]. These differ-
ent cues usually result in higher proportions of correct attributions to the 
self-generated information than for the externally-generated one [1][4][5]. In 
previous research we found that in bilinguals source monitoring processes 
might differ depending on the language in which information was presented 
[2]. Therefore, we designed a new cross-linguistic experiment to further test 
this, expecting that participants would remember better the words said or 
read aloud by themselves compared to the words pronounced by another 
person. As for incorrect attributions, there is a particular effect observed in 
the studies – externalization bias which suggests that participants more often 
misattribute the foil not presented items to the external source than to the 
internal one [3][4][5][6].

To date, RM was not specifically tested in a cross-linguistic experiment 
using self- or other-generated paradigm. Yet, results of studies implement-
ing Deese–Roediger–McDermott paradigm suggest that in bilinguals false 
recognition is typically higher in the more proficient or dominant language 
[7]. Therefore, overall, we expected more incorrect answers to be found for 
the Russian language. 
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METHODS

Fifty-six Russian-native participants (38 females, mean age = 25.3 SD = 5.77) 
who scored minimum of 16 points (M = 20.8, SD =3.1) on English proficiency 
test (https://www.cambridgeenglish.org) completed the online experiment 
(“Gorilla”[8]). We used a 2 (language: Russian, English) x 2 (modality: heard, 
said) within subject design. Our stimuli comprised 40 high frequency com-
mon nouns in Russian and English cross-translated resulting in 40 pairs of 
words as well as 20 pairs of foil not presented words. The language and 
modality of the presentation were fully counterbalanced. Participants either 
read aoud or listened to words presented on the screen either in Russian, or 
English. Then, they performed a recognition test, followed by reality moni-
toring (modality) and source monitoring (language) tasks. 

RESULTS 

Regarding general recognition, the 2x2 ANOVA with proportion of correct 
responses  showed the main effect of the modality reflected in higher pro-
portions for said modality (M = .82, SD = .23) over heard modality (M = .75, 
SD = .23), p = .02, as well the main effect of the language as the proportion 
of correct answers for English words (M = .87, SD = .23) was higher than 
for Russian words (M = .69, SD = .16), p <.001. The interaction between the 
language and modality, however, was borderline not significant, p = .055. 
Regarding analysis on reality monitoring, the said modality (M = .52, SD = 
.19) demonstrated the lowest rate of correct attributions among the three 
conditions, p <.001. Further analysis for incorrect modality attributions (see 
Figure 1) showed that in both, said and not presented conditions, misattribu-
tions to the heard modality (said-to-heard: M = .32, SD = .16; np-to-heard: 
M = .16, SD = .13) were significantly higher than to respective alternatives, 
p < .001. Finally, analysis on source monitoring (see Figure 2) showed that 
correct attributions to the English (M = .82, SD = .15) and not presented (M = 
.82, SD = .15) sources were higher than for the Russian source (M = .60, SD = 
.22), p < .001. Regarding incorrect source attributions, analysis for the Russian 
and not presented sources showed that incorrect attributions to the English 
source (Russian-to-English: M = .10, SD = .12; np-to-English: M = .07, SD = 
.58) were lower than for the not presented and Russian (Russian-to-np: M = 
.15, SD = .09 ; np-to-Russian: M = .10, SD = .10), respectively, p < 0.5. At the 
same time, for the English source analysis showed no significant difference 
in misattributions to the Russian or not presented sources, p = .723. 
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FIGURE 1: Proportion of answers for each correct and incorrect modalities. Error bars 

indicate standard deviation.

FIGURE 2: Proportion of answers for each correct and incorrect sources. Error bars indicate 

standard deviation.
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DISCUSSION

Firstly, the expected interaction between the language and the modality of the 
words was not found. Secondly, while previous studies on RM report overall 
better accuracy for self-generated information, our explicit test showed that 
correct attributions to the said modality were the lowest. One explanation to 
such results can be the presence of the externalization bias as reflected by 
higher proportion of misattributions of not only not presented items to the 
external source, but of the internally generated items as well. Overall, this sug-
gests that words said by the participants possessed enough cues or “weight” 
to be recognized as presented on the recognition test, however, not enough 
to indicate whether the word was self- or other generated. Finally, results on 
source monitoring suggest that processing information in English required 
more cognitive effort and therefore contained more characteristics related 
to internal cognitive processes that usually allow for successful monitoring.

To our knowledge, this is the first bilingual RM paradigm that manipulated not 
only the language of presented information, but the modality of its presenta-
tion. Although no direct interaction between the modality and the language 
was detected, there might still be differences in information processing and 
memory functioning when information is presented in the second language 
versus is the first language. To conclude, these results, specifically results 
on source monitoring, support the idea that monitoring information in the 
second language can differ from monitoring information in the first language. 
Nevertheless, further examination of these differences as well as the mech-
anisms of different types of monitoring processes is required.
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INTRODUCTION/MOTIVATION

Multiple evidences prove how brain oscillations at different frequencies under-
lie several processes of key relevance for human behavior, such as, long-dis-
tance brain coordination, cognitive and perceptual processes, or plasticity 
and brain maintenance through life [3][4][6][10]. Nowadays, numerous studies 
power estimates of the different bands of the frequency spectrum as potential 
biomarkers for different pathologies. However, little is known about the typical 
diachronic development of these markers during development and aging in 
life, which should be an important pre-requisite for its use under pathological 
conditions.  Classically, power changes throughout life have been described 
using simplistic models based on linear fittings;due to restricted sample sizes 
or limitations in methodological approach. This classical conceptualization 
assumes, therefore, a monotonic and constant change that may not adjust 
to the developmental complexity. Moreover, previous literature is not con-
sistent regarding these changes´ direction; reporting both increases and 
decreases for specific frequency bands depending on the study [1][2][7][8][12]
[13]. A complementary topic when studying ongoing oscillatory brain activity 
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is the study of natural frequencies distribution through the cortex. Different 
brain regions show a natural tendency to synchronize its neuronal activity 
at different frequencies, the so-called “natural frequencies”. However, there 
are also few studies regarding topographic distribution of natural frequencies 
and its evolution during development and aging. The motivation of this study 
was to properly describe how brain activity changes due to the healthy mat-
urational process. For that reason, our main objective was to characterize in 
detail, the profile of electrophysiological evolution in healthy development 
and particularly, unveil whether brain activity changes during aging could be 
related with cognitive performance to assess whether these changes can be 
interpreted as a scaffolding compensatory mechanism or rather as a sign of 
brain tissue and activity deterioration during normal aging.

METHODS

For this study, brain activity of 792 healthy participants (13-80y/o) have been 
characterized using Magnetoencephalography.

Firstly, signal was filtered (using temporal-Signal-Space-Separation), then arte-
facts were removed, and Independent-Component-Analysis was applied (to 
discard Electrooculogram and Electrocardiogram components). After signal 
was pre-processed, the activity of each subject in each of the 1202 cortical 
sources was reconstructed and their relative power was calculated using 
Beamformer Linearly-Constrained-Minimum-Variance. 

Regression models-power and age: Power in each frequency band and age 
adjustment was evaluated considering three possible fitting models (linear, 
quadratic, and cubic) by using multiple regression analysis, and Likelihood-
ratio-test to evaluate the best model (corrected p-values by FDR, q= 0.05).

Natural frequencies: The natural sources that generate each brain rhythm, 
as well as its modification through the life continuum were studied by con-
ducting Pearson’s correlations between relative source contribution (z-value; 
standardized value of each source´s power value compared to the other 
sources in each band) and age (. Rho values obtained representhow sources 
change its relative contribution throughout maturation.
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Cognition: Performance in different cognitive test domains were studied; to 
reduce dimensionality Principal Component Analysis (PCA) was conducted; 
so finally, we had five main cognitive domains: Declarative Memory, Working 
Memory; Processing Speed; Visuospatial Memory and Verbal Fluency. To 
analyse the potential relation between cognitive domain scores and power 
in each band, partial correlations were applied between performance in each 
cognitive domain and power in each source and band (corrected by age due 
to its relevant role in cognitive performance and power trajectory), estimating 
the potential correlation (rho-values) between each band power and cognitive 
performance in each domain. 

RESULTS AND DISCUSSION

Results showed a specific topographic distribution of the generators for each 
band, which was modified through life. Likewise, power change patterns were 
observed in each band through life following different statistical adjustments 
depending on the frequency band and cortical region analysed (Fig1) .

FIGURE 1
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Although there were regions in which a linear model could give a better expla-
nation of the changes across the life continuum, mainly, complex adjustments 
gave a significantly better explanation of the diachronic changes. In addition, 
natural generators, despite being relatively stable, modify their topography 
on the cortical surface through life (Fig2).

The main conclusions of this research were: Firstly, there was a relation 
between age and the different cerebral rhythms, and this relation is not strictly 
linear. Also, that evolution depends on the topographical region as well as the 
band. It was also interesting the fact that the more pronounced changes in 
electrophysiology for all classical bands were found during the first decades 
of life (13-30y/o) matching with youth maturation [14] and in the last ones [11]  
(60-80 y/o), the typical age range associated with the aging process. 
Interestingly, most fitting models showed a steady plateau during middle 
age, in which rhythms tended to be more stable. Secondly, regarding natural 
frequencies distribution, there were topographical changes for each band 
(Fig2). For slow waves (< 8Hz) their main generators increase their importance 
with age; alpha’s main generator, located in the occipital lobe, decreased its 
relevance in the life continuum increasing towards more anterior-temporal 
regions, and for gamma, its main generator also decreased its importance 
during life [5][9]. Regarding the relationship between power-cognitive per-
formance during aging, we found a negative relation between beta power 
in occipital areas, and gamma in sensorimotor areas and working memory 
performance. For processing speed performance, there was a positive rela-
tionship between slow waves power, in somatosensory and sensorimotor 
areas, and a positive relation in beta in occipital lobe. Similar tendency was 
observed for visual memory, also showing a negative relation between slow 

FIGURE 2
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waves (delta in somatosensorial, and theta in occipital areas) and a positive 
relation for beta in occipital areas regarding the performance in this specific 
domain.  No statistically significant correlations were found for the other 
cognitive domains. Remarkably, when closely interpreting the relationship 
observed between power in the aging portion of our sample and cognition, 
we observed that a more intense slow wave activity (i.e. delta and theta) and 
a less pronounced fast wave activity (beta and gamma) were associated to 
overall cognitive performance. This supports the notion that the changes we 
described in the resting-state power spectrum during normal aging represent 
a sign of brain activity deterioration rather than a compensatory attempt as 
they are accompanied by cognitive decline in all cognitive domains. 

Keywords: Healthy aging, Magnetoencephalography, Electrophysiology, Cognition, Spectral 
Analysis
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INTRODUCTION/MOTIVATION

So far, neurocognitive studies with trans individuals (i.e. people whose gender 
identity differs from their sex assigned at birth) have primarily focused on the 
question of whether their cognitive functions were more akin to their gen-
der identity or their sex assigned at birth (see [1] for an overview). While this 
research did have its merits, it is barely of any relevance to trans individuals 
themselves [1]. The current project aims to leave this older path and instead 
puts trans individuals and trans issues in the focus of attention. Emotional 
and social processing is often considered a dividing factor between (cis) 
men and (cis) women, hence multiple studies used tasks relating to these 
processes to assess the masculinization/femininization of trans individual’s 
brains [2][3]. Contrary to their intended outset, these studies found no differ-
ences between their cis gender groups, however they did detect a difference 
between their trans groups compared to both cis gender groups prior to the 
start of gender-affirming hormone therapy (GAHT). A difference that was no 
longer detectable after a few months of GAHT [2][3]. Interestingly, hormone 
levels alone were not enough to explain these changes [2][4]. These results 
make it evident that emotional processing changes over the transitioning 
process, but why or how this occurs has not yet been researched. This project 
consequently aims to start filling this gap by assessing emotional prosody 
processing (EPP) in trans women at multiple time points in their first year 
of transitioning, as well as by assessing long-term changes in EPP in trans 
women who have been using GAHT for over 2 years and correlating these 
findings with outcomes on a variety of psychological factors.

METHODS

The project consists of two experiments: 
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1.  A longitudinal study consisting of trans women at the beginning of the 
transitioning process. They participate in the experiment at three different 
time points: T1 (before the start of GAHT and voice therapy), T2 (after 6 
months of GAHT, which coincides with the end of voice therapy) and T3 
(after 12 months of GAHT). The aim of this study is to evaluate changes 
in EPP over the course of the first year of transitioning.

2.  A cross-sectional study, consisting of trans women after at least 24 
months of GAHT and a control group of cis gender women and men, 
who lack a transitioning experience. This study aims to evaluate potential 
long-term influences of GAHT on emotional processing. The decision to 
include cis men in the control group has been made because cis women 
are more likely than cis men to take hormones for non-transitioning pur-
poses, e.g. as contraceptive measures, which might influence findings.

Both studies use the same experimental setting. EPP is measured using two 
non-invasive instruments simultaneously: electroencephalography (EEG), 
which assesses the temporal component and functional near-infrared spec-
troscopy (fNIRS) which assesses the spatial component of EPP in the cortex. 
The experimental stimuli consist of a total of 180 pseudo sentences spoken in 
three different emotional valences (positive, neutral, negative) by two speakers 
(female and male sounding voice). For a more holistic approach, additional 
factors are assessed via questionnaires: physical and mental well-being, qual-
ity of life, body image, sense of belonging and autism spectrum traits.

RESULTS AND DISCUSSION

The project is still in an early stage, however, preliminary data from the control 
group has already been collected and a detailed statistical analysis will be 
available at the time of the conference. To our knowledge, this study will be 
the first to assess changes in EPP during the transitioning process. Based on 
studies on neural correlates of reductions in emotional processing capacity 
in various other groups, such as people with major depression (e.g. [5][6][7]
[8][9]), autism spectrum condition (for a meta-analysis see: [10]), parkinson’s 
disease (e.g. [12][13][14]) or schizophrenia (for meta-analyses see: [15] and 
[16]), we propose the following hypothesis: We expect to see changes in the 
P200 and LPP (late positive potential) components of the EEG [17] and in the 
activation in areas relating to the STS/G (Superior temporal sulcus / gyrus) and 



136 6th HBP Student Conference on Interdisciplinary Brain Research

 
6th HBP Student Conference on Interdisciplinary Brain Research

the IFG (inferior frontal gyrus) in the fNIRS [17][18]. These changes will point 
toward an increased capacity for emotional prosody processing. Furthermore, 
we expect more favourable outcomes on the questionnaires to correlate 
to more efficient EPP. In detail, for study 1, we expect the amplitude of the 
P200 in relation to emotional stimuli to decrease over the course of one 
year, indicating a more efficient emotional salience detection. Similarly, we 
expect the LPP to increase and to differentiate better between the different 
emotional valences with a maximum for positive valence over the course 
of one year. We also expect increased activation in the areas of the STS/G 
and the IFG. To our knowledge, so far no studies have attempted to capture 
long-term effects of transitioning on emotional processing, so potential out-
comes for study 2 are harder to define. However, we expect similar results 
when comparing trans women to cis gender individuals, indicating a lasting 
effect of the transitioning process on EPP.
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INTRODUCTION/MOTIVATION

Prospective metamemory is a subfield of metacognition, which refers to an 
individual’s ability to predict and regulate one’s own memory during encoding 
[1,2]. A real-life example of prospective metamemory can look like students 
assessing if the material they are learning at the moment is easy to remem-
ber when the test comes. Prospective metamemory can be studied from 
the perspective of how we make judgements regarding the source of the 
information (metamemory source monitoring) and judgements regarding the 
information itself (metamemory item monitoring). It is not clear yet whether 
source and item metamemory monitoring share similar mechanisms or not. 
On the one hand, early studies agree on the item- and source-monitoring 
similarity: whether item-source pairs were varied by emotional intensity or 
modality (source seen or imagined), participants’ judgement about sources 
was positively correlated with their judgement about items [3-5]. On the 
other hand, a new study of Schaper et al. [6] showed that recognition rates 
were higher for incongruent pairs source-wise, and for congruent pairs item-
wise. However, unlike early studies, Schaper et al. [6] used a between-subject 
design, which could potentially distort data analysis – due to lack of control 
of individual sensitivity toward metamemory judgements. Therefore, the main 
aim of this study was to disentangle whether source and item metamem-
ory monitoring rely on the same monitoring mechanisms. To do so, we 
used 2 tasks: Judgement of Learning (JOL) to assess confidence in future 
remembering of an item and Judgement of Source (JOS) - a twin task of 
JOL for source metamemory monitoring [3,7]. To control for subjectivity, we 
used congruence between source-item as a varying factor, and to control 
for individual sensitivity, we chose a within subject design. We set three 
hypotheses: JOL and JOS will have a high similarity; congruent source-item 
pairs will have higher confidence ratings than incongruent pairs; and lastly, 
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recognition accuracy, despite differences in confidence ratings, will be similar 
for congruent and incongruent source-item pairs.

METHODS

First, we conducted an online normative study to select the stimuli for the 
main experiment. Final lists had 36 Source A-only-related items, 36 Source 
B-only-related items and 34 filler items related to both sources. For the main 
experiment, forty participants completed an encoding, a distractor task, and 
a memory test phases. The encoding phase contained two blocks: block-
JOS (in which participants assessed their confidence about memorizing the 
source) and block-JOL (in which participants assessed their confidence about 
memorizing the item) (see Figure 1). Each block contained 36 items: 18 items 
were presented with a congruent source and 18 items with an incongruent 
source. Participants made either JOL or JOS (depending on the block) and 
rated their confidence of future remembering from 0 to 100%. Between JOL 
and JOS stages, participants had a short distractor task to unload short-term 
memory. During memory test, all items from the encoding phase including a 
similar amount of filler items were presented. Participants’ task was to indicate 
whether a presented item was before and rate their confidence from 0 to 
100%. If participants said the item was presented before, they were asked to 
name the source with which that item was shown and rate their confidence 
from 50 to 100%. The experiment was conducted online and build via Gorilla 
software [8].

FIGURE 1: Procedure of the main experiment.
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RESULTS

The analysis of confidence during encoding showed an interaction effect of 
Congruence and Object (Item vs Source) (p = .009). Student t-tests showed 
differences in Congruent Source vs Incongruent Source (p = <.001), Congruent 
Source to Congruent Item (p < .001), Congruent Item to Incongruent Item 
(p = <.001), Incongruent Item to Congruent Source (p = <.001), but not in 
Incongruent Source to Incongruent Item (p = .59). Next, we tested confidence 
and accuracy during memory test (Figure 2). For confidence, we found a sig-
nificant main effect of Congruence (p = .018) and Object (p < .001). Analysis 
also showed a tendency towards significant interaction between Object and 
Task (p = .022). These main effects were qualified by their interaction: we 
found significant differences in every condition comparison except Item in 
JOS task vs Item in JOL task (p = .72). For accuracy rates, we found a signif-
icant main effect of Congruency (p = .038) and Object (p < .001). Analysis 
also showed a tendency towards significant interaction between Object and 
Task (p = .058). The post-hoc tests confirmed significant differences in every 
condition comparison except Item in JOS task vs Item in JOL task. 

FIGURE 2: (a) Interaction effects between congruence and object in accuracy during 

recall (b) interaction effects between congruence and object in accuracy during recall.
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DISCUSSION

In this study we examined whether source and item metamemory monitoring 
are similar to one another and whether they are influenced by congruence. 
We found that JOL and JOS did not differ across measures of accuracy 
and pre- and post- learning confidence, that is, our participants had similar 
accuracy and confidence levels when focused on either source or item. The 
results are in line with previous studies that found strong positive correlation 
between JOL and JOS [3-5]. They also contradict previous results of Schaper 
et al. [6] study, which showed a stronger influence of congruence on JOS. In 
our analysis, congruence was shown to significantly influence both source 
and item, that is, the results of our participants were formed mostly by con-
gruence factor. Taking together both results in JOL vs JOS comparison and 
congruence influence, we can suggest that mechanisms of source and item 
metamemory monitoring are similar. Moreover, we can conclude that item-
source congruence positively influences both confidence and accuracy and 
is more important than choosing to focus on source or item. In future, the 
neural underpinnings of prospective metamemory monitoring (both source 
and item) can be explored. 
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INTRODUCTION/MOTIVATION

Alcohol dependency (AD) is characterised by disrupted reward processing, 
underpinned by dysfunctional cortico-striatal reward pathways.1  Functional 
magnetic resonance imaging (fMRI) studies with AD subjects have generally 
shown reward processing brain regions are hypoactive (i.e., blunted) during 
reward anticipation 2–4. and hyperactive during reward outcome.1,5. However, 
little is known about the biology reward processing in populations at-risk of AD, 
which could facilitate more targeted prevention and intervention strategies. 

METHODS

Here, we used an electroencephalography (EEG) version of the monetary 
incentive delay task6 (Fig. 1b) to examine if young adults with hazardous alco-
hol use have disrupted reward anticipation (e.g., hyper/hypoactive relative to 
controls). This task involved responding to a target stimulus following reward 
incentive cues to win, or avoid losing, the cued outcome while brain activity 
was recorded under 64-channel EEG. Participants were recruited via univer-
sity campuses and the Alcohol Use Disorders Identification Test (AUDIT) (i.e., 
alcohol harm screening tool developed by the World Health Organisation) 
was used to split participants into high audit (HA) (i.e., hazardous at-risk drink-
ers) (n = 22, mean AUDIT score: 13.82) and low audit (LA) (i.e., low risk for 
AD) (n = 22, mean AUDIT score: 5.77) groups. Trial averaged event related 
potential (ERP) and single trial machine learning (ML) discriminant analyses 
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was applied to the EEG data7 (Fig. 1d). ML discriminator performance was 
quantified by calculating the area under a receiver operating characteristic 
(ROC) curve (termed Az value) using a leave-one-out trial (LOO) cross val-
idation approach. Az significance was assessed using the LOO procedure 
after randomizing the labels associated with each trial. Group averaged Az 
values were compared using one-dimensional Statistical Parametric Mapping 
(SPM1d), a method which corrects for multiple comparisons using random 
field theory to account for covariance between timepoints.8

FIGURE 1: experimental design, rt analysis and single-trial discriminant component maps. (a) 

Flowchart representation of stimulus type, illustrating the difference between valence and 

salience. (b) Schematic representation of the experimental paradigm. On each trial, one of three 

cue symbols was presented for 0.25 s indicating if participants could win or lose 20cents, or if the 

trial would have no impact on earnings (i.e., neutral). Following a jittered delay of 2 – 2.5 s a 

square target was presented. A staircase algorithm adapted the target duration attempting to fix 

accuracy at ~66% within each trial type. Following a delay of 1.25 s feedback was shown for 1 s. 

(c) Reaction time results for both groups are presented together and are visualised using box and 

whisker plots, including the median, two hinges and two whiskers. (d) Example of a discriminant 

component map resulting from our single-trial linear discrimination analysis. The panels represent 

the discriminator amplitudes for the valence component for monetary loss (top) and loss cue 

(bottom) trials, using the training window (fixed length of δ = 60 ms, increasing in 10-ms 

increments) shown by the vertical bars labelled training window.
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RESULTS AND DISCUSSION

For the LA group, we observed a wide temporal window of significant valence 
discrimination (i.e., gain vs loss trials, Fig. 1a) during reward anticipation, with 
Az values exceeding the threshold p<0.05 between 333 and 512 ms after 
cue onset (Fig. 2c). In contrast, the HA group was insensitive to valence at 
all time points between cue and target onset (Fig 2d). Az values were signifi-
cantly larger in the LA group compared to the HA group from 480 – 550 ms 
(SPM1d pcluster = 0.017) (Fig. 2e-f). Notably, the LA group but not the HA 
group, demonstrated a significant negative relationship between single-trial 
variability in valence component and reaction times for gain and loss trials 

FIGURE 2: cue-locked valence erps and discrimination results. (a) Average ERP components for 

the LA group, computed at Pz. For the valence comparisons, red, blue and green traces represent 

Loss, Neutral and Gain trials respectively. Note that ERPs are plotted with the negative y-axis 

pointing up. (b) Average ERP components for the HA group, computed at Pz. For the valence 

comparisons, red, blue and green traces represent Loss, Neutral and Gain trials respectively. (c) 

Single-trial discriminator performance (Az) between Gain and Losses as a function of cue-locked 

time for the LA group. Results are averaged over all participants (mean line in blue +- se across 

participants, represented by the shaded blue area). The dotted red line represents the Az leading to 

a significance level of p=0.05. (d) Single-trial discriminator performance (Az) between Gain and 

Losses as a function of cue-locked time for the HA group. (e) Comparison of mean HA-Az and 

LA-Az across the window of interest (400-550 ms). (f) Results of SPM1d analysis, illustrating the 

magnitude of LA-Az to HA-Az differences (i.e., SPM{t}) across time window of interest (400-550). 

Grey shaded region indicates where there is a significant difference between HA-Az and LA-Az 

values i.e., where the critical threshold (2.336) has been crossed by the SPM{t}.
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(estimated regression coefficients were significantly different than zero t(21) 
= -2.14, p = 0.044). There were no significant between-group differences in 
reaction time (Fig. 1c), ERP cue-P3 values (Fig. 2a-b) or salience discrimination 
(i.e., incentive vs neutral trials, Fig. 1a).

Young adults with at-risk drinking exhibited disrupted hypoactive valence pro-
cessing, compared to those with low-risk drinking. Absence of EEG valence 
sensitivity in the at-risk group may reflect pre-existing blunted motivational 
mechanisms for non-drug rewards. Our single trial ML approach preserved 
variance among trials, thus improving signal to noise ratio compared with 
conventional ERP analyses. The single trial method allowed us to investi-
gate the changing cognitive states of individual participants across the task 
and the relationship between their brain and behaviour. These benefits have 
clinical relevance as they could support patient diagnosis and stratification, 
where subtle individual differences in neural processing may be informative 
of predisposing vulnerability to addiction and potential treatment response.

Keywords: addiction, reward, machine learning, electroencephalography
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INTRODUCTION/MOTIVATION

Perceptual learning (PL) refers to lasting improved perception skills after par-
ticipating in targeted single or repeated training sessions. It has been shown 
that repetition of a certain cognitive task that involves PL can improve implicit 
memory and attention processes (Maniglia & Seitz, 2018). The application 
of PL can be categorized as fast when leading to improvements after a few 
sessions only (Leclercq, et al., 2014; Poggio et al., 1992) or slow when involv-
ing several training sessions (Seitz et al., 2005). Several EEG-ERPs studies on 
visual PL were able to shed light on the neural mechanisms underlying visual 
perception, for both fast and slow learning conditions (Mishra, et al., 2015; 
Song et al., 2008). However, no studies on fast PL distinguished between 
different visual stimulus categories (objects, animals, etc.). For instance, the 
study of Shahin et al. (2005) reported an enhancement of the P2 ERP com-
ponent in response to musical sounds as a function of training and likewise 
in response to complex auditory patterns comprising sequences of individual 
frequencies (Atienza et al., 2002). Furthermore, Ji et al. (1998) showed a larger 
posterior N1 component for images of animals compared to images of veg-
etables and fruit. In particular, the N1 amplitude reflects visual discrimination 
processes, and its latency was affected by processing effort by showing a 
lower amplitude and larger latency for stimuli that are more difficult to dis-
criminate. Although learning effects on ERPs components have been already 
studied, especially N1 and P2, the cognitive processes behind learning gains 
are still unclear. Previous ERP studies suggested that these changes might 
depend on several factors, such as improvements in processing of perceptual 
features (Hamamé, et al., 2011), access to perceptual representations (Sagi, 
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2011), and inhibition of irrelevant stimuli (Sheehan et al., 2005). One issue 
with these studies is the lack of information about how fast PL depends 
on stimulus category and what are the changes in ERP components when 
different stimuli are used.

METHODS

To address this, we recruited 16 participants and were administered a single 
session of a visual working memory task, called N-Back, that included three 
different stimulus categories. Our goal was to investigate the relationship 
between stimulus category (objects, animals, and fruit), and the P1, N1, P2, 
N2, P3 and N4 ERP components, and to better understand to what extent 
stimulus category impacts on learning-associated cognitive processes.

RESULTS AND DISCUSSION

Our results revealed that stimulus category affects both behavioural (Figure 1) 
and neurophysiological responses, and that fast PL is paralleled by changes in 
amplitude and latency of several ERP components: P1, N1, P2, N2, P3 and N4 

FIGURE 1: Comparison of response accuracies of the three stimulus categories (animals vs. fruit vs. 

objects), for different N-Back levels. Significance level *p<0.05, **<0.01.
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(Figure 2). In addition to the well-established N1 and P2 amplitude changes, 
our observations provide evidence of the impact of stimulus category on fast 
PL in terms of amplitudes and latencies of other ERP components. In line 
with the study of Proverbio et al. (2008), we did not observe any significant 
correlation between ERP components and behavioural responses. In conclu-
sion, our outcomes highlight that both behavioural and neurophysiological 
responses, in particular ERP components, reflect the impact of fast PL even 
when performing a single N-Back training session. Differing from existing 
literature, we considered several visual stimulus categories (objects, animals, 
etc.) and showed significant latency variations in different ERP components. 
Finally, the variety in used training lengths and stimulus repetitions (e.g., Song 
et al., 2008; Mishra, et al., 2015) led to changes in different ERP components, 
which we hypothesize to reflect fast or slow PL effects.

Keywords: Perceptual learning (PL), Event-Related Potential (ERP), Fast learning, N-Back task, 
stimulus category

FIGURE 2: Range and mean ERPs of trials plotted per hemisphere and stimulus category 

(animals vs. fruits vs. objects) across N-Back levels. Trials were rejected prior to including them in 

the plots when their amplitudes were higher than 30 µV. The labeled ERP components are those 

that were significant for p<0.05 or <0.01.
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INTRODUCTION/MOTIVATION

Aging-induced memory impairment results in loss of muscarinic receptors 
(mAChRs) (1). This causes massive oxidative damage by generating uncon-
trolled oxidative biomarkers (MDA, GSH and SOD) in the brain, commonly 
found in Alzheimer‘s disease (AD) (2). Studies have shown that mAChRs play a 
vital role in different learning, like spatial learning, contextual fear conditioning, 
and trace eyeblink conditioning, and serial feature positive discrimination tasks 
(3). Other studies showed that among the five subtypes of mAChRs, the M1 
receptors are closely associated with learning (4). Several behavioral studies 
showed that the m1mAChR plays a vital role in attention and is a promising 
target for memory functions (4). Another study showed that m1mAChR con-
trolled oxidative stress in the brain (5). Therefore, the m1mAChRs could be a 
promising target to improve memory in aging-induced AD (6). VU0357017 is a 
highly selective and potent m1 allosteric agonist having a substantial effect on 
hippocampal-dependent learning in rodents (7). Several studies showed that 
VU0357017 exhibits antioxidant properties by stimulating  b-Arrestin pathway 
(7,8). However, no studies have investigated the beneficiary role of VU0357017 
in aging-induced memory impairment and their associated biomarkers. Our 
study aims to find an effective treatment approach for AD using selective 
m1mAChR agonist VU0357017 by (i) establishing its cholinergic activity in 
mice via two commonly used behavioral tasks and (ii) identifying its regulatory 
activity in AD-associated oxidative stress biomarkers via a bioassay technique.

METHODS

A. Passive Avoidance (PA): On the first day, mice were free to roam in the 
testing chamber, considered habituation. Then they were subjected to a 
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mild foot shock (US) every day for seven days. Days 8-11 were devoted to 
the examination (testing period) (9). We computed the latency needed to 
pass through the gate that separates the two compartments (Diagram 1) (10).

B. Contextual Fear Conditioning (CFC): CFC includes keeping the animal 
in a novel environment, delivering an unconditioned stimulus (US: from the 
shocking device) associated with a conditioned stimulus (tone: CS), and then 
getting rid of it (day 1: conditioning session). When the animal was kept in 

FIGURE 1: Effects of VU0357017 on (A) PA and (B), (C) CFC. Data were analyzed by one-way 

ANOVA followed by post-hoc tukey test and expressed as mean ± standard error of the mean. ns 

= not significant and p<0.05 is considered as significant (10).

FIGURE 2: Effects of VU0357017 on oxidative stress biomarkers (A) MDA (B) GSH and (C) SOD. Data 

were analyzed by one-way ANOVA followed by post-hoc tukey test and expressed as mean ± 

standard error of the mean. ns = not significant, and p<0.05 is considered as significant.
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the same environment again, it showed a freezing response if it could recall 
(day 2a & 31a: context) (11). The responses were analyzed by changing the 
shape of the chamber (day 2b & 31b: cued session) (Diagram 2). 

C. Bioassay: Oxidative biomarkers (MDA, GSH, and SOD) were measured 
from the hippocampus. 

D. Animals: We divided forty mice into the following five groups: Group 1: 
Saline 1ml (n=8) (Intrapertonial; i.p) Group 2: D-gal (n=8): D-gal 100 mg/kg 
(12) (i.p) Group 3: VU0357017 (VU) (positive control; n=8): VU 0.15mg/kg (i.p) 
(13) (i.p) Group 4: VU0357017 (VU) + D-gal (n=8): VU 0.15 mg/kg (13) (i.p) and 
D-gal 100 mg/kg (12) (i.p) Group 5: Astaxanthin (Ast) (Standard Antioxidant) + 
D-gal (n=8): Ast 20 mg/kg (14) (oral) and D-gal 100 mg/kg (12) (i.p); After ten 
weeks of treatment, fi rstly, all groups were exposed to the passive avoidance 
(PA) task. After seven days of completion of PA the same group of mice has 
experienced the Contextual Fear Conditioning followed by collecting brain 
tissues to assay oxidative stress biomarkers.

RESULTS

Effects of VU0357017 on PA and CFC: After 24 and 48 hours of training, the 
RT value was decreased to 116.43 ± 2.62 s and 105.87 ± 3.58 s, respectively in 
mice that received D-gal injection. Contrarily, the RT was prominently elevated 
to 255.62 ± 14.11 s after 24 hours and 246.81 ± 14.38 s in case of 48 hours of 
training after administration of VU0357017 in D-gal mice. In the conditioning 
session, day 2A and 31A, the FR value was decreased to 42.5 ± 3.60 % and 35 
± 2.45 %, respectively after administration of D-gal.  Intriguingly, FR increased 
to 67.60 ± 2.62 % (day 2A) and 62.18 ± 6.57 (day 31A) after treatment with 
VU0357017. In context and cued test, similar results were observed.

Effects of VU0357017 on oxidative stress biomarkers: The level of oxi-
dative stress biomarkers was changed in D-gal mice. The MDA level was 
remarkably increased (115.9 ± 7.49 nmol/ml) whereas GSH and SOD level 
was significantly decreased (2.54 ± 0.23 µmol/mg and 10.85 ± 0.94 U/30s; 
respectively; P <0.0001). However, the GSH and SOD levels were increased 
(11.62 ± 0.53 µmol/mg and 30.89 ± 0.89 U/30s; respectively) whereas MDA 
was significantly decreased (31.34 ± 6.11) nmol/ml after administration of 
VU0357017 (P<0.0001).  
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DISCUSSION

In this study, the D-gal mice exhibited a low level of learning, whereas an 
improvement of learning was detected in mice treated with VU0357017. 
These results suggested that VU0357017 can potentially affect learning and 
memory-impaired by D-gal (Fig.1). The biochemical study revealed significant 
changes in oxidative biomarkers in D-gal treated mice, whereas the expres-
sions of biomarkers were regulated after using VU0357017 (Fig.2), suggesting 
VU0357107 has the potential antioxidant properties.  Other studies showed 
that M1mAChRs have antioxidant activity (15). Therefore, it could be stated 
that VU0357017 improves memory by increasing the amount of m1mAChRs 
via modulating the oxidative biomarkers in the brain. The probable underly-
ing antioxidant mechanism is due to the stimulation of b-arrestin pathway 
(7,8) by inhibiting NADPH oxidase 4 (7), a key generator of ROS in the brain 
(16). A study on human cell line have shown an outstanding selectivity of 
VU0357017 towards the m1mAChR and is regarded as a novel approach 
for AD (7). However, there is a lack of evidence to find the advantages and 
propitious effects of VU0357017 on AD. Therefore, the results obtained from 
animal studies might be transformed in human cases in the treatment of AD.
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INTRODUCTION/MOTIVATION

Intentionality is a basic component of understanding the minds and behaviors 
of others. In this regard, the temporal lobe (anterior temporal lobe, superior 
temporal sulcus, middle and superior temporal gyrus) and the precuneus and 
temporo-parietal junction constitute a “mentalizing” network 1,2 that encodes 
intentionality. Within this network, the Superior Temporal Sulcus (STS) and 
regions surrounding it have been related to being especially involved in pro-
cessing communicative intention for interactions by means of gaze (direct 
vs. averted) in social perception 3-7. Approach intentionality has been linked 
with greater activation of posterior right Superior Temporal Sulcus (rSTS) than 
avoidance 8. STS could be an area required for processing intentionality for 
social interactions. Regarding transcranial direct current stimulation (tDCS) 
effects on the STS and relationship-actions processing, Marrero et al. 9 found 
a greater improvement in discriminability of approach sentences in a memori-
zation task after applying anodal tDCS on the rSTS, compared to either sham 
or cathodal stimulation. However, the question whether the advantage of 
approach contents could start before memorization (as during sentence read-
ing) remains open. The goal of this study has been to see whether improve-
ment in information encoding could start during the reading process. Based 
on Marrero et al. 9, we hypothesized anodal tDCS would produce a greater 
improvement for approach sentences. Moreover, we explored whether an 
effect of tDCS on reading speed could be moderated by behavioral activation 
system (BAS, approach trait) and behavioral inhibition system (BIS, avoid-
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ance trait) 10. Low approach 11,12 has been found as benefitting from anodal 
stimulation, but high avoidance trait has been shown to disturb attentional 
allocation 13 in previous research. Hence, we would expect participant with 
high BAS and high BIS traits to be less capable of taking advantage of extra 
processing resources probably provided by anodal tDCS for the reading task. 
Therefore, we predicted a poorer reading improvement in approach as well 
as in avoidance sentences in high compared to low-BAS and BIS participants.

METHODS

62 healthy right-handed students (54 females M= 19,95, SD = 2,33) voluntarily 
participated in the experiment. All participants provided informed consent. 
Inclusion criteria included: being right-handed according to the Edinburgh 
Handedness Inventory 14. Exclusion criteria were suffering from epilepsy (or 
having close relatives affected), migraine, brain damage, cardiac, neurological 
or psychiatric disease. 31 participants were assigned to the anodal condition 
and 31 to the sham condition. The behavioral inhibition system (BIS) and 
behavioral activation system (BAS) scales were measured by the scales of 
Carver & White 15. The difference between anodal and sham groups relied 
on stimulation duration: anodal-tDCS participants received stimulation for 20 
minutes at 2 mA plus 15 s for fade in and 15 s for fade out, as the sham group 
did for only 15 s plus 15 s for fade in and 15 s for fade out as well.  Participants 
were given one list before receiving tDCS (pre-test) and the other list after 
tDCS (post-test). Participants were randomly assigned to one of the four sets 
of sentences resulting from the counterbalance. Sentences were randomly 
presented to the participants in each of the counterbalanced sets. At the start 
of the experiment, participants were given seven sentences to practice. Then, 
they were given 60 sentences, 20 for each direction (Approach, Avoidance, 
Neutral). Sentences presentation was segmented (see Table 1). Each seg-
ment was displayed till the participant pressed the corresponding button. 
After 750 ms a new sentence appeared. Sixteen sentences were followed 
by a yes-no question on the content just read. Feedback on correctness and 
time required for it was given. These questions were aimed at keeping the 
attention of participants on reading comprehension. 
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Table 1: Examples of sentences with questions

Sentence Direction Question Example Correct 
Answer

Pedro/aceptó a Rosa/
en Whatshapp
(Pedro/accepted Rosa/
in Whatsapp)

Approach ¿Dice que Pedro 
aceptó a Rosa en 
Whatshapp?
(Is it stated that 
Pedro accepted 
Rosa in Whatshapp?)

Yes

Pedro/bloqueó a 
Rosa/en Whatshapp 
(Pedro/blocked Rosa/
in Whatshapp

Avoidance
¿Dice que Pedro 
aceptó a Rosa en 
Whatshapp? (Is it 
stated that Pedro 
accepted Rosa in 
Whatshapp?)

No

Verónica/dedujo el 
precio/del abrigo 
(Verónica/deduced the 
price/of the coat)

Neutral
¿Dice que Verónica 
dedujo el precio 
del abrigo? (Is it 
stated that Verónica 
deduced the price 
of the coat?)

Yes

RESULTS AND DISCUSSION

Two 3 X 2 mixed Two-Way ANOVAs were performed with Direction (Approach, 
Avoidance, Neutral) as a within-subjects and Stimulation (anodal, sham) as 
a between-subjects factor. The dependent variable (d) was the difference 
between time required to read both the second and third segments before 
and after the Stimulation condition (anodal or sham). Latency to answer 
questions after neutral sentences was considered as covariate. Anodal tDCS 
was able to enhance reading speed for all the three types of sentences (F (1, 
58) = 4.174, p < .05, ηp2 = .068). No interaction effect between Stimulation 
and Direction was found.
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Significant effect of anodal tDCS was found in low-BIS (avoidance/anxiety, 
F (1,19) = 8.502, p < .01, ηp2 = .321) participants and in low-BAS (approach/
impulsivity, Stimulation, F (1, 19) = 6.53, p = .02, ηp2= .205). Anodal tDCS 
enhance reading speed more for approach than avoidance sentences in 
low-BIS participants, F (2,19) = 3.181, p = .067, ηp2 = .272, (Figure 1).

In conclusion, anodal tDCS had no effect on reading approach content as 
we predicted but an overall effect on reading speed. However, affective 
traits have emerged as a modulator for tDCS effects. As we hypothesized, 
high levels in BIS/BAS traits predicted a poorer benefit from anodal tDCS. 
In contrast, low level BIS/BAS traits see, to be benefited from tDCS. More 
gender-balanced and older groups are needed. This may be interpreted as 
interference of personality traits as in previous research 17,18. Since the reading 
task was somewhat passive, a recognition task after reading is suggested to 
find tDCS improvement in information encoding.
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INTRODUCTION/MOTIVATION

Modern artificial agents demonstrate well-established performance in terms 
of accuracy, speed, and reliability in operating on single task instances after 
the exposure of a long stationary learning. However, they might exhibit 
worse performance in non-deterministic environments, i.e., human real-case 
applications characterized by sources of uncertainty and variability such as 
unpredictable cues and constraints [1], [2]. Meta-learning, also known as 
“learning-to-learn”, applied to reinforcement learning may empower the 
design of flexible control algorithms, where an outer learning system progres-
sively adjusts the operation of an inner learning system [3]–[5]. This approach 
could lead to practical learning optimization benefits, such as the reducing 
of the explicit hand-tuning of the hyperparameters of the learning schema 
and the generalization error [6], [7].

METHODS

Our work inherits the meta-learning principles in the neuromodulation theory 
proposed by Doya [8]–[10] and the neural architecture developed by Khamassi 
and colleagues [11], [12]  for agent-environment interaction. The neuromod-
ulation theory propounds a direct equivalence between the dynamics of the 
four major neurotransmitters (e.g., acetylcholine, serotonin, dopamine, and 
noradrenaline) and the computational role of the hyperparameters which 
shape the meta-learning processes. 

In this brain-inspired meta-learning framework for inhibition cognitive con-
trol we included meta-learner representations of the distributed learning 



6th HBP Student Conference on Interdisciplinary Brain Research 163

 
6th HBP Student Conference on Interdisciplinary Brain Research

systems in the human brain ,e.g., cortical areas such as the prefrontal cortex 
(e.g., Posterior Parietal Cortex (PPC), Anterior Cingulate Cortex (ACC), Ventral 
Tegmental Area (VTA), Lateral Prefrontal Cortex (LPFC), Premotor Cortex 
(PMC)) and subcortical regions such as basal ganglia circuitry (e.g., Striatum, 
Substantia Nigra reticulata (SNr), Thalamus, Substantia Nigra compacta (SNc)) 
(Figure 1). Each layer is composed of three firing rate neurons (the output of 
the differential equation of each neuron is mapped from 0 to 1 with a sig-
moid activation function) that topographically codify different space regions 
[13]; we used two neurons to encode two different opposite directions, e.g., 
left and right, and one neuron to encode the action inhibition [14]–[16]. The 
connection between neurons is only inter-layers (i.e., no intra-layer recur-
rent connections) mediated by one-to-one excitatory or inhibitory synapses 
[17] The visual perception and the external reward modules regulate how 

FIGURE 1: The model architecture inspired by [11], [12] and the meta-learning mechanism 

based on principles of Doya’s neuromodulation theory [8]–[10] are illustrated. The volume of 

the cubes displays the intensity of the neuron’s activity, topographically associated with the 

two directions (Left (blue), Right (orange)) and action inhibition (Inhibition (Green)). 

Excitatory (black arrow) and inhibitory (black circle arrow) neural synapses, reinforcement 

learning, meta-learning mechanisms (e.g., action values  , dopamine , serotonin , 

noradrenaline , etc.) (black dashed arrows), and input/output connections (red line) are 

displayed. Stimuli are fed in the model by simulating a square wave ( (amplitude) = 1 [a.u.], 

(duration) = 100 [samples],  (inter-stimuli interval) = 200 [samples]) for neurons codifying 

Left or Right movement. 
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the agent interacts with the environment and the output module delivers 
the corresponded motor commands of the selected action. We formalized 
brain-inspired meta-learning hyperparameters optimization rules, mimicking 
explicitly the dynamics and mutual interaction of the major neurotransmitters 
in the brain. Briefly, (i) dopamine receptors D

1
 modulate the noradrenergic 

system (i.e. exploration/exploitation rate) with an inverse linear function that 
relates dopamine to the entropy of the probability distribution of the actions 
[18], (ii) dopamine receptors D

2
 tune the striatum neuron’s excitability [19], and 

(iii) serotonin regulates the overall dopamine release and the reward temporal 
scale [20], [21]. The artificial agent was tested in two different well-described in 
literature conflictual tasks that involve different types of action inhibition [22], 
[23]: action restraint in NoGo Paradigm and action cancellation in Stop-Signal 
Paradigm. In the former, we evaluated the ability to withdraw a not-yet-initi-
ated action from responding by the appearance of a hold signal before the 
movement execution. In the latter, we investigated the ability to cancel an 
initiated response triggering an unpredictable hold signal after a range of 
delays from the action onset. 

RESULTS AND DISCUSSION

The artificial agent, after the training session, learned how to adjust suc-
cessfully its hyperparameters (e.g., driving the system towards exploitation 
regimes) in response to the appearance of the hold signal in both paradigms, 
and hence, showing a proper encoding of the action inhibition command 
(Figure 2). In particular, both right inhibition and global accuracy increased 
significantly during the test phase in NoGo Paradigm (accuracy, training: 
53.10 ± 15.43% vs test: 86.74 ± 3.68%, t-test, p-value < 0.001; right inhibition, 
training: 0% vs test: 73.48 ± 7.86%, t-test, p-value < 0.001) and in Stop-Signal 
Paradigm (accuracy, training: 51.32 ± 14.78% vs test: 75.78 ± 5.38%, t-test, 
p-value <0.001; right inhibition: training: 0% vs test: 51.06 ± 12.22%, t-test, 
p-value <0.001). Finally, considering the Stop-Signal Paradigm, high serotonin-
ergic concentration acting on the dopamine release led to behavioral effects 
as such it shifted of the agent’s behavior towards non-impulsive regimes, 
e.g., shorter reaction time and higher right inhibition as well as a reduction 
in the Stop Signal Reaction time, i.e., the latency of the cancellation process.
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In previous works Khamassi and colleagues [11], [12] implemented a 
brain-inspired meta-learning hyperparameter optimization framework 
for reinforcement learning by linking the exploration/exploitation meta-
parameter with the activity of two types of neurons [24], [25] (i.e., correct 
and error neurons) that react to positive and negative temporal difference 
error , respectively. The model was tested both in silico and in a humanoid 

FIGURE 2: Performance of the simulated agent in NoGo and Stop-Signal Paradigms. Results are 

averaged across 40 simulations of 1000 stimuli during the training and test phases in NoGo 

Paradigm (a-c) and Stop-Signal Paradigm (d-i). Reaction time (RT) (a), Right Inhibition (b) and 

Accuracy (c) are displayed for both training and test phases in NoGo Paradigm. The color of the 

bar indicates the type of trials used to compute the metrics: Go trials (gray), NoGo trials (white) 

and all trials (black). Stop Signal Reaction time (SSRT) (d), Right Inhibition (e) and Accuracy (f) are 

displayed for both training and test phases in Stop-Signal Paradigm. The color of the bar 

indicates the type of trials used to compute the metrics: Go trials (gray), Stop-Signal trials (white) 

and all trials (black). SSRT is not defined during the training phase as the right inhibition is 0%. In 

(a-f) results are expressed as Mean ± SD and asterisks indicate the statistical significance (<0.05*, 

<0.01** and <0.001***). Parameters ((g) Right Inhibition, (h) Accuracy and (i) SSRT) are plotted 

against the serotonin concentration [ ] { }0.1, 0.3, 0.5, 0.7, 0.9∈γ  and they are obtained averaging 

across all the stimuli presentation in each simulation during the hold trials (both NoGo and 

Stop-Signal trials) in training (dashed black line) and test (black line) phases (except for SSRT for 

which in training is not defined). In (g-i) results are expressed as Mean ± SEM.
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robot (i-Cub) in two problem solving tasks where environmental uncertainties 
are included either changing the cue or by cheating.

In the framework of the Cyber Rodent project [26], Doya e Uchibe used 
genetic algorithms to investigate the underlying mechanisms of self-
reproduction, self-preservation as well as foraging in artificial agents [26]–[28] 
This evolutionary approach was adopted to co-evolve the meta-parameters 
(e.g., exploitation/exploration rate, learning rate and temporal discounting 
factor) in synergy with shaping reward, accelerating significantly the learning 
curve in foraging [29] and mating [30]. Lowe & Ziemke [31] used genetic 
algorithms to investigate meta-learned exploration and planning in a multi-
episode two-armed bandit navigation problem under different representations 
(e.g., absence/presence) of external rewards and punishments.

We demonstrated that brain-inspired meta-learning rules may pave the way of 
the design of cognitive control architectures for artificial agents that achieve 
more flexible and accurate behavior when conflictual inhibitory signals are 
present in the non-deterministic environment.
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INTRODUCTION/MOTIVATION

EBRAINS [1] comprises more than 130 European research organizations, each 
with a large number of scientists, programmers, and technical coordinators. 
Developing, operating, and using an immense infrastructure such as EBRAINS 
is a complex task that bears the risk of an individual scientist getting lost in 
details. The Scientific Liaison Unit (SLU) was founded to provide a helping 
hand in navigating the complexity of EBRAINS services [2] and science [3]. 
This work details the structured methodology the SLU uses to guide its activ-
ities. The method creates a shared understanding of the research plans of 
the scientists and the associated technical requirements for the engineers. 
Secondly, it facilitates the identification of major scientific needs, which serve 
as a precious source for defining the future direction of tool and service 
development in EBRAINS.

METHODS

Here we present the process we followed to develop a technique that 
describes scientific research as standardized requirements that conduces 
to a workflow compatible with EBRAINS infrastructure.

Also, here is clarified how this process of gathering requirements, can be 
applied to different types of research, and how it can help in similar cases to 
transform the actual state of research into compatible description workflows 
able to be integrated as a part of EBRAINS and how we designed tools to 
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optimize this process. To exemplify we present showcases models and how 
the evolution of the used tools in their research.

As a key tool, we introduce a descriptive template [4,5] that guides the scientist 
through a couple of steps: from a scientific description of her/his science 
case at the beginning, followed by a progressively technical presentation of it. 
The technical representation also includes a diagram with symbols organized 
according to specific rules that allow us to identify commonalities between 
different scientific cases and infer major scientific needs. 

RESULTS AND DISCUSSION

Based on an example of the hyper-parameter optimization framework ([6], 
L2L in Fig.1) we demonstrate how the structure of the document leads the 
reader from a scientific description into technical requirement analysis. In this 
particular case, the technical requirement analysis focuses on different types 
of data transfer needed for this workflow e.g. data needs to be transferred from 
the super-compute site (ICEI site) in which the hyper-parameter optimization 

FIGURE1: Diagram description of the hyperparameter optimizaion framework. Lines indicate 

data transfer between storages (cylinder) and processing sites (rectangles). Solid lines indicate 

data transfer taking  place in the actual use case. Dashed lines show alternative routes. ARD: 

Archival data storage, ACD: Active  data storage. RM: raw data model, OM: optimized model, 

PM: Post processing results, L2L: learning to learn framework. 
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takes place, to another site (e.g. your computer) in which the analysis of 
the result is carried out. Based on such a requirement analysis, potential 
project challenges, as well as opportunities for extensions and interaction, 
are identified early on. 

This work gives an overview of the different areas of responsibility that the 
SLU has. In particular, it explains our strategies for identifying and prioritizing 
the needs of the scientific community and their formulation into technical 
requirements based on scientific cases in a systematic and standardized way.
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