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Final Showcases  
(D2.4 – SGA3) 

 

The correlation between FC and SC varies with states of consciousness during simulated slow waves and this can be 
captured by whole-brain models as shown below. 

 
Figure 2: A computational model of primary visual cortex reflects detailed neural dynamics 

Left: slice of the human primary visual cortex, showing the different cortical layers in different colours. Right: time-
dependent activity of all cortical layers and cell types for a small section of the visual cortex, as simulated by our 
computational model. Each dot indicates a spike from a pyramidal (red), PV (blue), SST (green) and VIP (yellow) cell 
in the computational model. Halfway through the simulation, an external current is injected into the network leading 
to the emergence of oscillatory activity. 

Figure 1: Structural connectivity (SC, left) and functional connectivity (FC, right) matrices. 
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Abstract: 

 

This new demo of Showcase 3 depicts first a model of anaesthesia, where the action 
of anaesthetics has been explicitly considered in the model.  We have integrated 
the action of anaesthetics such as propofol, isoflurane, sevoflurane or barbiturates 
on the GABA-A receptor, or the action of anaesthetics such as ketamine or xenon on 
the NMDA receptor in the mean-field models.  This was implemented in TVB to yield 
models where the action on synaptic receptors can be evaluated at the large-scale 
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(whole brain). The model obtained was checked using PCI measurements or FC-SC 
correlation measures, against data on human and monkey.  Beyond the interest of 
studying states of consciousness, this model constitutes a very useful tool to 
evaluate the emerging consequences at large scales resulting from changes at the 
molecular level (synaptic receptors).  The new demo of Showcase 4 describes the 
computational models of perception and predictive coding across scales. As such it 
also shows how the computational bridging of neural dynamics models and models 
of perception and cognition can be accomplished. We first demonstrate a detailed 
and realistic cortical column network, including pyramidal cells and four types of 
interneurons in each cortical layer, in which we introduce synaptic plasticity, giving 
rise to biologically observed patterns of rhythmic oscillations. Using these 
principles, we next show how a cortical column model performs predictive coding, 
based on interneuron-pyramidal cell circuits (a hybrid of dynamic and cognitive 
modelling). Next, we proceed to show how predictive coding can be used to compute 
view-invariant object representations and object segmentation based on self- versus 
external object motion. Altogether, these multi-scale models reveal a unique 
approach to combine neurobiological realism with perceptual-cognitive task 
performance. 

Keywords: Computational models, states of consciousness, anaesthesia, whole-brain, 
predictive coding, object recognition, perception. 

Target Users/Readers: 
Computational neuroscience community, computer scientists, consortium members, 
public, neuroinformaticians, neuroscientific community, neuroscientists, platform 
users, policymakers, researchers, scientific community, students. 
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1. Showcase 3: Brain Complexity and 
Consciousness, Demo 3 

1.1 Introduction 
In the last years, modelling work in HBP has focused on reproducing different brain states, gradually 
moving from circuits to the whole brain. In SGA1, we started from the level of spiking neurons, and 
in particular networks of excitatory and inhibitory neurons, and determined the conditions by which 
such Adaptive Exponential (AdEx) networks can generate different states, such as asynchronous-
irregular (AI) or slow-wave oscillatory (Up-Down) states (Zerlaut et al., 2018; di Volo et al., 2019). 
Such spiking network models were compared to experimental data at cellular resolution, such as 
typically unit recordings with microelectrodes. 

In SGA2, we moved to the population level by constructing mean-field models of AdEx networks.  
The AdEx mean-field model could successfully reproduce the population-level transitions between 
AI and Up/Down states found in spiking networks (di Volo et al., 2019). Because they are much faster 
to simulate, mean-field models could be scaled up to larger brain areas at the millimetre scale 
(“mesoscale”), typically modelling one brain area.  This is done by constructing networks of mean-
field models, that can be constrained from imaging data (for example, from voltage-sensitive dye 
imaging of monkey visual cortex – see Zerlaut et al., 2018).   

To scale up to larger scales, in SGA3 we have integrated the AdEx mean-field models into The Virtual 
Brain (TVB) simulator, to yield the so-called TVB-AdEx model (Goldman et al., 2022). This model 
simulates large networks of mean-field models, connected according to the connectome. The TVB-
AdEx model is a multi-scale approach where information about the biophysical properties of neural 
networks is directly used to build and compute the dynamics at large scales.  The information gained 
at the mesoscale is also used to build the TVB-AdEx model.  This model was shown to reproduce the 
spontaneous activity during two states, the asynchronous dynamics of wakefulness and the 
synchronized slow-wave dynamics of sleep. Most importantly, the model could reproduce 
experimental observations of a diminished responsiveness and information spread in slow-wave sleep 
compared to wakefulness (Goldman et al., 2022), as observed experimentally (Massimini et al. 2005).    
Finally, in the Showcase 3 Demo 3.21, we have shown that this approach can be used to model not 
only the human brain, but also mouse and monkey brains.  In particular, the precise imaging that 
can be done in mice is a very efficient way to constrain the mouse TVB-AdEx model (Tort-Colet et 
al., in preparation). 

In Demo 3.3, we take a step back to the cellular/synaptic level, by modelling anaesthetics using 
known mechanisms of their action on synaptic receptors and use the TVB-AdEx model to evaluate its 
emerging consequences at the large-scale level in the brain. These consequences include 
spontaneous activity, responsiveness, and how the dynamics relate to the connectome. 

1.2 Technical Specification 

1.2.1 TVB-AdEx model of general anaesthesia 

1.2.1.1 Anaesthesia acts on synaptic receptors 

In the previous demos of Showcase 3, general anaesthesia was modelled by changing the parameter 
of spike-frequency adaptation to higher levels than the one used to model slow-wave sleep (SWS). 

 

1 https://www.humanbrainproject.eu/en/follow-hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/  

https://www.humanbrainproject.eu/en/follow-hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/
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In demo 3.3, we are following a different approach that considers the effect of the common general 
anaesthetics on synaptic receptors. 

At the molecular level, general anaesthetics alter neuronal behaviour through their interactions with 
ion channels on the postsynaptic membrane that result in a change of the neuronal excitability. 
Generally, these drugs exert their action either by decreasing excitatory or enhancing inhibitory 
signals. This results from their effect on two main postsynaptic receptors (Hemmings et al., 2005): 
a first family of anaesthetics act as agonists of the GABAA receptor, a chloride ion channel receptor 
of γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the central neural system 
(CNS).  This is the case for propofol, isoflurane, sevoflurane, or barbiturates.  A second family of 
anaesthetics act as antagonist of NMDA receptors, a non-selective cationic channel, the ligand of 
which is glutamate, the main excitatory neurotransmitter in the CNS. This is the case for anaesthetics 
such as ketamine or xenon, which primarily act as NMDA-blockers. Thus, the effect of these 
interactions leads to either decreased excitatory or enhanced inhibitory synaptic transmission, 
resulting in a global decrease of excitability. 

To account for these synaptic phenomena and develop a biologically relevant model for anaesthesia, 
we considered the effect of two parameters in the AdEx model, the excitatory (τe) and inhibitory 
(τi) synaptic decay. We are modelling the effect of the NMDA-blockers by decreasing the value of 
the excitatory synaptic decay (τe), resulting in a faster decay of the excitatory synaptic currents, 
which translates to a shorter excitatory action. In a similar manner, the effect of GABAA agonists will 
be modelled by increasing the value of τi.  

 
Figure 3: Biophysical simulation of the effect of anaesthetics on glutamate receptors. 

A.  Fits to individual postsynaptic currents (PSCs; AMPA on top, NMDA bottom).  B. Simulation of mixed AMPA-NMDA 
PSCs, and their respective fit with a single exponential decay.  The fitted value had a decay time constant of 3, 4 and 
5 ms, respectively, from top to bottom. 

Figure 3 shows a biophysical simulation to illustrate how the antagonism of NMDA receptors leads to 
a shortening of the kinetics of the conductance of AMPA/NMDA excitatory synaptic input. When the 
NMDA receptors are partially or completely blocked, as seen under the influence of ketamine, the 
time constant indeed decreases as compared to the scenario when the NMDA receptors remain 
largely intact (at approximately 10% functionality), where the time constant extends to 
approximately 5 milliseconds.  Notably, the impact on amplitude is rather minimal, primarily 
because the dominant contribution to the maximal current amplitude comes from the AMPA current. 
As a result, we can disregard the influence of ketamine on the quantal conductance of the excitatory 
synaptic input in the model. 

Similar findings have been reported for the GABAA agonism (reviewed in Hemmings et al., 2005): the 
action of agonists such as barbiturates or propofol has been shown in patch-clamp experiments to 
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slow-down the decay of the GABAA current, with no measurable effect on amplitude.  Thus, in this 
case as well, the action of anaesthetics on GABAA receptors can be modelled by a change of the 
decay time of the synaptic current in the model. 

1.2.1.2 Spontaneous activity 

We used the TVB-AdEx model published recently (Goldman et al., 2022) to simulate these actions of 
anaesthetics on synaptic receptors.   

Figure 4 shows the dynamics of the TVB-AdEx model following these changes of synaptic receptors.  
One can see that in the case of NMDA antagonists (Fig. 3A), the shortening of tau_e can lead to a 
transition from asynchronous (wake-like) activity to synchronized slow-wave (anaesthesia-like) 
activity in the whole brain model.  The same transition can be observed when prolonging the time 
constant of inhibition, mimicking the effect of GABA agonists (Fig. 3B).  Thus, the TVB-AdEx model 
can produce the emergence of slow-wave activity, solely by changing the value of the tau_e and 
tau_i parameters:    

 

A.  Transition from asynchronous (left) to slow-wave (right) activities by antagonizing NMDA receptors.  B.  Similar 
transition obtained by agonists of GABA-A receptors. 

1.2.1.3 Evoked activity and responsiveness 

A more severe test of the model is to attempt to reproduce the experimental measurements of 
responsiveness to external stimuli.  The main experimental observation was that the responsiveness, 
as measured by the Perturbational Complexity Index (PCI), markedly dropped during anaesthesia 
with loss of consciousness (Casali et al., 2013). This was found for both GABAA and NMDA related 
anaesthetics, with no significant differences between the PCI values of the different unconscious 
states (Massimini et al., 2005; Casali et al., 2013). In Figure 5 we show that in the case of unconscious 
states, that are modeled either by increasing the value of spiking frequency adaptation (be) in the 
case of simulated SWS, or by changing the synaptic decays for anaesthesia-like conditions, the 

Figure 4: Simulation of the effect of anaesthetics on synaptic receptors in the TVB-AdEx 
model. 
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propagation of the brain response to perturbation is less complex when compared to the 
asynchronous wake-like state, expressed with lower PCI values.  

On the scatterplot on top, we show the PCI values for 60 different realisations of simulations for each of the states of 
consciousness, when applying a stimulus of different intensities. To assess the statistical significance of the difference 
between the conditions, post-hoc Conover tests were performed, adjusted using the Holm-Bonferroni method to 
control for multiple comparisons (where ***: p<0.001). Interestingly no significant differences were found between 
the different unconscious states, in accordance with the empirical data. 

1.2.2 Correlation between functional and structural 
connectivity in human, monkey, and models 

We used the TVB-AdEx model published recently (Goldman et al., 2022) and extended to simulate 
the effect of propofol anaesthesia (see Section 1.2.1) to investigate the functional connectivity of 
the model, compared to human and monkey data.   

The human data consisted of an ensemble of 48 scans from 16 subjects who were recorded by fMRI, 
and for which the connectome was available (Naci et al. 2018). The data is openly available in 
OpenNeuro (Kandeepan et al., 2020). From these data, we computed the functional connectivity 
(FC) using Pearson correlation methods applied to the fMRI data. The FC was compared to the 
structural connectivity (SC) given by the connectome. The correlation between the FC map and the 
SC map was computed for each subject and the results are shown in Fig. 6 (left), showing a significant 
increase of the FC-SC correlation during anaesthesia.  

Figure 5: PCI values for the cases of wakefulness, anaesthesia (NMDA-blockers and GABAA 
receptors) and NREM sleep. 
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The same paradigm was simulated using the TVB-AdEx model for propofol anaesthesia (measured as 
in Figure 1).  Functional connectivity (FC) was calculated using Pearson’s cross-correlation. As in the 
data, the model exhibited a higher FC-SC correlation during slow-waves (Fig. 6, right).   

 

 

 

 

 

 

 

 

 

Left: experimental data, 48 human subjects divided in the three 16-subject-groups: awake, anaesthesia and recovery.  
r2: Pearson correlation factor. ***p < 0.001, ****p < 0.0001. ANOVA test followed by Student tests.  Right: simulations 
using the TVB-AdEx model.  32 simulations performed with different noises and divided in the two 16-subject-groups: 
τi = 5 ms and τi = 7 ms. *p < 0.05. Student test. 

 
Left: 16 macaques recorded in fMRI in awake (AW) and anesthetized (ANE) conditions, showed an increase of the SC-

FC correlation during anesthesia.  Right: same paradigm simulated with the TVB-AdEx macaque model, where propofol 
anesthesia was simulated by a slow-down of GABAA receptors. 

The same analysis was performed for macaques.  Here, we used a dataset kindly provided by Bechir 
Jarraya from NeuroSpin (Tasserie et al., 2022).  The data consisted of 16 macaques recorded in fMRI 
and for which the connectome was measured using tractography.  The monkeys were recorded while 
awake and after anaesthesia with propofol.  As for the human subjects, the correlation FC-SC was 
higher during anaesthesia (Fig. 6, left). The TVB-AdEx model was used to replicate these 
experimental conditions, using the macaque connectome (see Showcase 3 demo 3.2 2 ).  The 
simulated asynchronous activity and slow-wave activity mimicking propofol also produced the same 
effect: the correlation FC-SC was higher in slow-wave states (Fig. 6, right). 

 
2  https://www.humanbrainproject.eu/en/follow-hbp/news/2022/06/20/how-ebrains-used-
investigate-disorders-consciousness/    

Figure 6: Violin plots showing the correlation between the structural connectivity and the 
functional connectivity. 

Figure 7: Correlation between functional connectivity and structural connectivity in 
awake and anesthetized macaques, as well as in the TVB-AdEx model. 

https://www.humanbrainproject.eu/en/follow-hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/
https://www.humanbrainproject.eu/en/follow-hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/


   
 

D2.4 (D15) SGA3 M42 SUBMITTED 230911.docx PU = Public 11-Sep-2023 Page 10 / 18 
 

Thus, in the real and simulated brains, and for both human and monkey, the asynchronous dynamics 
associated to conscious wakefulness generates patterns of activity which significantly depart from 
the patterns that would be predicted by connectivity. In other words, the activity patterns generated 
in conscious states are richer than during anaesthesia, where the activity is well predicted by the 
physical connectivity.  Although slow waves are more synchronized across the brain, and display 
higher values of FC, their spatial organization remains close to the connectome, so in these 
unconscious states, the patterns of activity are more predictable from the knowledge of the 
connectome. 

1.3 How to access the showcase 
Model of anaesthesia: https://wiki.ebrains.eu/bin/view/Collabs/showcase-3-tvb-brain-states-
modelling/Drive?srid=4KtuLIKu#Anesthesia. 

1.4 Conclusions and future directions 
This work has succeeded to model the two main types of anaesthetic actions, leading to the 
emergence of slow-wave activity typical of anaesthesia, and reproducing key properties of 
anesthetized states. Thus, we think the TVB-AdEx model constitutes a powerful tool for evaluating 
the emergent properties of brain activity, or changes of brain activity, due to changes at the level 
of synaptic receptors or membrane conductance.  The same approach could be used to study brain 
pathologies, and how alterations at the molecular level can lead to changes at the brain scale.  
Similarly, the effect of drugs (other than anaesthetics) could be studied using the TVB-AdEx model.   

There is presently no other way to estimate the global emergent consequences of molecular actions, 
and we hope the TVB-AdEx constitutes a useful tool to investigate these multi-scale interactions. 
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2. Showcase 4: Perception and Recognition of 
Objects and Scenes, Demo 4.3  

2.1 Introduction 
For the third and final demonstrator of Showcase 4, Demo 4.3, our goal was to finalize several 
computational descriptions of predictive coding models of perception, which cover both 
neurobiological and cognitive aspects. More specifically, Showcase 4 has progressed towards three 
computational models which incorporate different levels of biological realism: 1) a neurobiological 
model, which simulates a realistic spiking cortical column using available connectivity data from the 
literature and the Knowledge Graph; 2) a neurobiological-cognitive hybrid model, which depending 
of the version is constructed with a biologically realistic neuron model (i.e. spiking neuron) or a 
differentiated cellular circuitry (i.e. PV-SST-VIP circuits) and a local learning rule (i.e. Hebbian 
learning) to perform object reconstruction; and 3) a cognitive model, which is built with rate-based 
neurons to focus on extending the cognitive ability of the hybrid model by introducing movement 
invariance and visuomotor corrections. The knowledge gained from the three models will improve 
our understanding of perception and sensory predictions, offer valuable insights in neural 
mechanisms of brain disorders such as autism or schizophrenia, and inspire neuromorphic, artificial 
intelligence and robotic applications. 

The models explained below make use of and contribute to the EBRAINS Research Infrastructure (RI) 
in several ways. The neurobiological model uses anatomical data from the Knowledge Graph and 
other external datasets, such as the Allen Institute for Brain Science, to estimate the connection 
strengths and probabilities derived from mouse visual cortex. It also uses a Simulation service tool, 
ViSimpl, to visualise the spatial and temporal features of spiking cortical columns. The hybrid model 
also uses Community service of the EBRAINS Research Infrastructure (RI). Given our successful 
application for FENIX computing and storage resources, the hybrid and cognitive models have been 
trained to generate internal representations of visual input on a supercomputer (CSCS Piz Daint). In 
collaboration with the Scientific Liaison Unit (SLU), we have also implemented the hybrid model on 
the EBRAINS RI and add it to the list of Simulation service models (CWL). With intuitive GUIs, novice 
users are now able to run example simulations with a pre-trained version of the hybrid model. 
Advanced users or researchers in relevant fields can conduct sustainable simulations using the 
embedded model and compare their results with other models listed in the Simulation service. 

The insight provided by these models will be useful for other uses beyond computational modelling 
of perception. Given the generative nature of both cognitive and hybrid models, they have the 
potential for a wide range of downstream applications that can benefit from efficient learning of 
sensory inputs (e.g., AI, prostheses, robotics, etc.). The local learning of connection weights and the 
asynchronous, event-driven activities of the spiking hybrid model can also contribute to the 
development of energy-efficient neuromorphic computing. 

2.2 Technical Specification 
The following section is divided into three subsections, each of which corresponds to one of the 
three computational models we developed and provides technical details. At this stage, the three 
models have converged towards a common conceptual framework, which is reflected in the fact that 
models now share fundamental properties –such as the presence of multiple cell types across the 
neurobiological and hybrid models, the representational capacities in the hybrid and cognitive 
models, and the Hebbian-like learning rules in all models.  

2.2.1 Neurobiological model of a cortical column 

Our first attempt to understand predictive coding in a neurobiological setting starts with 
understanding the functioning of the biological constituents of cortical columns, given that they 
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seem to form the fundamental blocks of prediction error circuits and therefore predictive coding 
(Attinger et al., 2017, Hertag et al. 2020). To this aim, we built a computational model of a cortical 
column in the visual cortex.  

The model incorporates pyramidal cell circuits plus three different interneuron types (PV, SST and 
VIP cells) and the dynamic properties of AMPA, GABA and NMDA receptors. Data about the cellular 
properties of each cell type (including capacitance values, firing thresholds, etc), as well as the cell-
specific and laminar-specific mean synaptic strength and connection probabilities, have been 
constrained by existing anatomical and electrophysiological data. The first version of the model was 
entirely built in NEST, a powerful simulator for spiking neural network models, to allow for a quick 
prototyping of the core dynamics of the model. Part of the simulations to understand the dynamics 
of the cortical column were also performed using this tool. Then using ViSimpl we were able to 
develop a 3D visualisation of the column showing the level of activity of the different neuron types. 
The resulting model matched in vivo cell type-specific firing rates for spontaneous and stimulus-
evoked conditions in mice (Figure 8), although rhythmic activity was absent.  

Interestingly, upon introduction of long-term spike-timing dependent plasticity and after driving the 
model with external sensory input, the columnar model developed broad-band (15-50 Hz) oscillatory 
dynamics, with frequency and power defined by the sensory input as observed in previous 
experimental studies. Although neural rhythms are ubiquitous in cortical recordings, this constitutes 
an important finding because it is unclear whether they emerge due to the basic structure of cortical 
microcircuits or depend on function. In the cortical model, synaptic plasticity was a prerequisite for 
the emergence of oscillations, which suggests a link between experience-dependent structures and 
rhythmic activity. Rhythms relied on all cell types, and oscillatory activity was linked to the 
plasticity-triggered fine structural motifs. Therefore, our results suggest that (i) rather than simply 
emerging from the structure of naïve columnar circuits in rodent V1, the emergence of neural 
rhythms in visual cortical columns might require of fine structural changes elicited by learning-
related mechanisms, and (ii) the interactions between different cell types are important to 
understand the functioning of visual cortex. 

 
Figure 8: V1 cortical column model 

(A) Scheme of the V1 cortical column model, displaying the laminar structure, cell types, circuitry, and synaptic 
receptor types. The averaged connectivity strength per layer and cell type is shown in the matrix on the right (source: 
Allen Institute). (B) Raster plot showing the spontaneous activity of the model for different layers and cell types. (C) 
Comparison between model predictions and experimental data. Bars display mean values plus/minus SEM. 
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2.2.2 Hybrid neurobiological-cognitive models 

Our next step was to incorporate some of the relevant biological elements of the model above into 
a simplified model of predictive coding. In the context used here, a hybrid model is a mathematical 
description which contains and successfully merges ingredients from both realistic, neurobiological 
models and more abstract but cognitively powerful models. The hybrid model presented here has 
two variants: one focused on implementing spiking computations, and the other one involving 
multiple cell types.  

While predictive coding is an influential theory in the field of neuroscience, its biological plausibility 
is yet to be proven. In our first version of a hybrid model, denoted as Spiking neural network for 
predictive coding (SNN-PC), we showed that predictive coding can be implemented on a neural 
network model with biologically plausible mechanisms of synaptic transmission and plasticity using 
spiking neurons (Figure 9; P3898). To accommodate the binary, pulsatile behaviour of spiking 
neurons, we separated the error neuron in classic predictive coding models (Rao & Ballard, 1999) 
into positive and negative units and developed a NMDA-receptor-mediated learning rule that 
approximate Hebbian learning. Moreover, the slow recurrent process of predictive coding was 
complemented by the fast feedforward gist signalling pathway, which models the feedforward 
sweep, to account for a comprehensive picture of visual processing. 

 

 
Figure 9: Spiking neural network for predictive coding (SNN-PC) 

SNN-PC modeling the first stages of the visual cortical processing hierarchy. The three areas roughly correspond to 
V1, V2, and V4, respectively (or LGN, V1, and V2). Each non-input area (l > 0) consists of a representation unit (purple 
circle; R^l) and two units (blue and red squares; pE^l and nE^l) that encode positive and negative prediction error, 
respectively. The representation unit in Area 0 acts as an input unit (R^0). Each pixel (the dotted box in the image 
of digit 4) is encoded by a single spiking neuron. Note that each unit consists of multiple spiking neurons. The 
feedforward gist pathway (I→G→R^l) approximates the feedforward sweep of neuronal activity across the visual 
processing hierarchy. The solid lines between units indicate that they are fully connected, whereas the dotted lines 
indicate one-to-one connections. A triangle represents an excitatory synapse, whereas a thick vertical short ending 
represents an inhibitory synapse. 

To further investigate the compatibility of the predictive coding theory with the brain, we developed 
another model (CoCo-PC; Figure 10) that introduce a rich diversity of neuron types and consistent 
column structures across the cortical hierarchy. We first conducted an exhaustive search through 
combinations of synaptic connections into (i.e., bottom-up and top-down inputs) and within (i.e., 
between neuron types) a microcircuit that consists of four major neuron types (pyramidal, PV, SST, 
and VIP) to identify microcircuit structures capable of prediction error computation (Attinger et al, 
2017; Hertag et al. 2020). Then, we connected the identified microcircuits to facilitate predictive 
coding of visual inputs, while reflecting the anatomical projections and laminar organizations in the 
cortex. Our model not only proposes a possible neural implementation of predictive coding in the 
cortex but also makes experimentally testable predictions on the role of each neuron type in 
predictive coding during perceptual inference and learning. 
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Figure 10: Cortical column model of predictive coding (CoCo-PC). 

Cortical column model of predictive coding (CoCo-PC). A. Expanding single neuron models into microcircuit models. 
Representation neuron (R) is replaced by a microcircuit with two pyramidal cells and one PV cell. Prediction error 
neurons (pE and nE) are replaced by microcircuits with a pyramidal cell and three interneurons (PV, SST, and VIP). 
The superscript (l) represents an area in the cortical hierarchy. B. Predictive coding with biologically plausible cell 
type diversity, laminar organizations, and anatomical projections. Each row represents a cortical column (e.g., layer 
2/3, 4, and 5). Each column represents an area in the visual cortex (e.g., V1 and V2). K. Lee et al., in prep. 

2.2.3 Cognitive model for object recognition 

Finally, we developed and implemented a set of cognitive models aimed at characterizing the 
complex computations underlying high-level perceptual properties of the visual ventral stream. The 
ventral pathway needs to fulfil at least two key functions: perceived objects must be mapped to 
high-level representations invariantly of the precise viewing conditions, and a generative model must 
be learned that allows, for instance, to fill in occluded information guided by visual experience. We 
showed how a multi-layered predictive coding network, based on the same principles of the hybrid 
model above (but with reduced biological properties) can learn to recognize objects from the bottom 
up and to generate specific view-invariant-representations via a top-down pathway through a single 
learning rule: the local minimization of prediction errors (Brucklacher et al. 2022). Trained on 
sequences of continuously transformed objects, neurons in the highest network area became tuned 
to object identity invariant of precise position, comparable to inferotemporal neurons in macaques 
(Figure 11). Drawing on this, the dynamic properties of invariant object representations reproduced 
experimentally observed hierarchies of timescales from low to high levels of the ventral processing 
stream. The predicted faster decorrelation of error-neuron activity compared to representation 
neurons is of relevance for the experimental search for neural correlates of prediction errors. Lastly, 
the generative capacity of the network was confirmed by reconstructing specific object images, 
robust to partial occlusion of the inputs. By learning invariance within a generative model, despite 
little change in architecture and learning rule compared to static input- reconstructing Hebbian 
predictive coding networks, simply by shifting the training paradigm to dynamic inputs, the approach 
generalizes the predictive coding framework to dynamic inputs in a more biologically plausible way 
than self-supervised networks with non-local error-backpropagation. 
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Figure 11: Neurons in the highest network area became tuned to object identification 

(A) Scheme of the model (top) and processing of scaling input across areas and time (bottom). (B) Input sets with 
translational, scaling, and rotational properties. (C) Representational dissimilarity matrices for all cases in B –the low 
dissimilarity values in the diagonal terms show that representations for the same category are most related to stimuli 
in the same category. This indicates a good categorization performance, and top-down inputs will then provide 
category-specific information to facilitate the recognition of bottom-up signals. From: Brucklacher et al. (in press) 
(+biorxiv, PLUS-number). 

A second important question in understanding sensory processing is how the brain differentiates self- 
from externally generated visual signals. In natural behaviour, this becomes important when 
recognizing a moving predator during locomotion: on the retina, the image of both background (such 
as trees in a forest) and predator move. To determine which is which, it is assumed that the brain 
learns to suppress irrelevant information. In this case these are the self-generated components of 
the optic flow. Based on evidence of sensorimotor mismatch in rodents (Zmarz et al. 2016, Attinger 
et al. 2017) we constructed a generative model of optic flow processing shown in Figure 12. The 
model naturally extends our previous work on predictive coding of moving inputs (Brucklacher et al. 
2022) that is available in the EBRAINS Knowledge Graph by considering locomotion. The core 
component of the extended model is a microcircuit from motor to early visual areas shown to the 
right of Figure 12. Here, error neurons in primary visual cortex (V1) compare predictions about self-
generated optic flow to the true sensory input. Deviations from expectations are used to drive 
learning with a Hebbian learning rule. Responses in this population reproduce observed mismatch 
responses from (2) as well as experience-dependence thereof. Remaining prediction errors are then 
fed forward to a purely visual area processing extended patches of optic flow. Due to the 
correspondence of these characteristics to middle temporal cortex, the model area is termed MT. 
After training on objects moving independently in front of a background, we find that predictions 
from this area segment out external causes, i.e., solve the problem of determining the external 
object of interest (‘predator’). Furthermore, class identity can be read out with decent accuracy 
from population activity in line with observed mild shape tuning of primate area MT in structure-
from-motion experiments (Andersen et al. 1996). To conclude, the model offers a unification of 
several hallmarks of visual processing (segmentation, classification) and observed neural responses 
(sensorimotor mismatch) under the predictive coding framework. 
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Figure 12: Generative model of optic flow processing 

Left: hierarchical, multi-area generative model of optic flow and mapping onto brain areas. Right: the neural circuitry 
of the model. Squares denote error neurons while circles denote representation neurons. Brucklacher et al. (in prep.). 

2.3 How to access the showcase 

2.3.1 Showcase 4 Demo video 

The Showcase 4 Output is a video entitled: The dynamic cortex in perception and learning 
(https://www.youtube.com/watch?v=yr1bho_iTv4), which has been published at the HBP YouTube 
Channel, that introduces the motivation and background of our research and summarises the three 
models (2.2.1, 2.2.2 and 2.2.3) at a level that can be understood by both lay audiences and scientific 
communities. 

2.3.2 Access to code for the models 

The previous, relevant work on predictive coding neural networks (Dora et al., 2021) and robotics 
implementations (Knowles et al., 2021) of our work have been published and can be accessed via 
the following link: https://search.kg.ebrains.eu/instances/10d36794-7177-4521-9e45-
3943d96c776c.  

The deep neural network model for predictive coding with Hebbian learning (Dora et al., 2021) has 
been published and can be accessed via the following link (soon to be incorporated to EBRAINS): 
https://github.com/shirindora/DGHPC  

The code for the neurobiological cortical column model has been submitted to EBRAINS and is under 
curation.  

The code for the hybrid model has been uploaded to EBRAINS and is under curation. The pretrained 
CWL implementation can be accessed here: https://gitlab.ebrains.eu/technical-
coordination/project-internal/standardised-workflows/sc4_cwl 

The code for the cognitive model is available here: 
https://search.kg.ebrains.eu/instances/0b219bf1-dead-4a06-811a-fdce66f2ec7d. 

2.4 Conclusions and future directions 
The work presented in this section displays a major advance in the development of computational 
models (and their underlying theoretical frameworks) which aim for both biologically detailed 

https://www.youtube.com/watch?v=yr1bho_iTv4
https://search.kg.ebrains.eu/instances/10d36794-7177-4521-9e45-3943d96c776c
https://search.kg.ebrains.eu/instances/10d36794-7177-4521-9e45-3943d96c776c
https://github.com/shirindora/DGHPC
https://gitlab.ebrains.eu/technical-coordination/project-internal/standardised-workflows/sc4_cwl
https://gitlab.ebrains.eu/technical-coordination/project-internal/standardised-workflows/sc4_cwl
https://search.kg.ebrains.eu/instances/0b219bf1-dead-4a06-811a-fdce66f2ec7d
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descriptions and cognitive/computational capabilities. With common elements transversing across 
multiple modelling levels, such as spiking dynamics, cell-type variability, neuroanatomical structure, 
stable neural representations, invariant object recognition and sensorimotor integration, these 
models point towards to a new generation of computational descriptions focused on an attractive 
convergence between dynamics and function. Future directions include the reinforcement of 
connections between these models (for example, implementing predictive coding principles in a 
network of biologically detailed cortical column models), but also a progression towards models 
which include information about brain states, as they are likely to influence perception and the 
effectiveness of predictive coding paradigms. The hybrid model presented in 2.2.2 – while already 
presenting a combination of neural dynamics with generative modelling of sensory representations - 
is a natural candidate for further convergence, given its central position in terms of biological 
plausibility and computational capabilities. 
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