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Figure 1: Demonstrator in realistic environment 

Naïve worker presence in the environment (left), KAIROS robot with cognitive implementation of working memory 
model (bottom right). 
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Abstract: 

Deliverable D3.18 entails a solution to enable a smooth co-existence between robots 
and human workers in an industrial setting mediated by the implementation of 
cognitive model of working memory. We implemented two robot working memory 
configurations onto a mobile manipulator RB-KAIROS+ robot (Robotnik): A GRU-
based one and a bioinspired alternative called WorkMATe, which enabled the robot 
to adapt its navigation strategy depending on the presence of human workers. To 
evaluate the two working memory configurations against a non-adaptive behaviour, 
we tested a possible coworking scenario between two ostensible workers and the 
RBKAIROS+ robot navigating in two mocked industrial set-ups. The application of 
behavioural adaptation through a working memory component was highly beneficial 
as it led to reduced energy consumption and, more importantly, to fewer 
acceleration anomalies in robot navigation than the non-adaptive one. This suggests 
that a robot’s adaptive navigation through working memory can increase workers’ 
safety and improve the efficiency of the human-robot system as a whole in industrial 
applications. 
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1. Context 
The work conducted within Work Package 3 (WP3) is structured around PROMEN-AID integrative 
demonstrator, which motivates contributions from and active collaboration of most tasks (and 
corresponding areas of expertise) in the WP. These demonstrators address a range of functions 
involving the working memory, progressing towards cognitive skills, including planning and decision-
making that leverage on the use of working memory. They operate at different levels of description 
and biological plausibility, from standard and popular neural networks (e.g. GRU) to more complex 
and innovative neural networks (e.g. Workmate). These demonstrators implement a functional 
modular approach, helping prototype a supporting modular cognitive framework, in close 
collaboration with EBRAINS Service Categories (SCs).  

1.1 Outline of the Showcase Demonstrator: 
Sensorimotor adaptation based on cognitive-
inspired model of working memory 

Amongst various contexts, robots became an integral part of industrial working processes. Unlike 
ordinary industrial tools, however, robots are supposed to perform their given tasks autonomously 
in a shared environment with human workers. Therefore, developments in human-robot interaction 
(HRI) are increasingly driven by the idea of human-robot co-existence and collaboration. To enable 
smooth human-robot co-working, two perspectives need to be regarded. On the one hand, some 
technological requirements need to be met: Robots should be capable of localising themselves with 
respect to their surroundings. To ensure a comfortable and safe HRI, robots need to adapt to the 
dynamics of a shared environment, which are determined by humans’ activities, intentions, and 
needs. On the other hand, the humans’ perspective needs to be taken into consideration: Robots 
should meet potential users’ expectations and needs to evoke positive perceptions.  

Robot working memory architectures were found to be useful to achieve the technological 
requirements for an efficient and safe human-robot co-existence because they enable autonomous 
and environmental aware robot actions (see, e.g., Reich et al. (2020); Joo et al. (2019); Jung et al. 
(2019)). Similar to human working memory (see Baddeley (2000, 2010)), robot working memory 
architectures enable a robot to store, organise, and process data. Using robot working memory 
architectures, a robot is supposed to ’learn’ based on prior experiences, that is, to ’decide’ what 
information to use in order to improve future behaviour according to the dynamics of shared 
environments. One state-of-the-art working memory architecture that is commonly used in machine 
learning is GRU (Gated Recurrent Unit, Cho et al. (2014)). GRU is a sort of recurrent neural network 
architecture (RNN) that is often used to process data sequences, such as language input (see Cho et 
al. (2014)). Learning is enabled by iterative adjustments of internal parameters (see Cho et al. 
(2014)). However, current state-of-the-art architectures were limited in controlling and prioritising 
stored information as required to solve more complex tasks. Kruijne and colleagues thus proposed 
WorkMATe (Working Memory Architecture for Task Execution), a biologically inspired working 
memory architecture whose key components include a gated memory circuit driven by internal 
actions.  

More precisely, training occurs in a biologically inspired manner based on attentional feedback and 
reward prediction errors. That is, the system optimises its behaviour based on reward feedback 
similar to biological dopamine-based processes that enable animals and humans to learn and adapt 
their behaviour (see Glimcher (2011); Wang et al. (2018)). WorkMATe enables to store and process 
multiple inputs separately and to update and transfer trained adaptations to new contexts and 
stimuli. All this makes Workmate well suitable for complex memory tasks and allows for flexible and 
task-oriented memory control. Allowing for flexible and task-oriented robot behaviour, working 
memory architectures were found to make robot navigation smooth and efficient (see Li et al. 
(2022); Reich et al. (2020)). Investigating robot memory, however, mainly the technological 
perspective was taken into consideration. Implementation processes and technological benefits such 
as behavioural adaptations when sensing humans and objects (e.g., leaving space, slowing down, 
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and stopping) were assumed to make robot navigation safer and more predictable for humans (see 
Li et al. (2022)).  

However, so far, it was not questioned how humans in fact perceive a robot equipped with memory 
functions. In the first place, robots are meant to facilitate humans’ lives in various contexts. As 
such, the human perspective should be taken into the focus of present HRI research. Humans’ prior 
experience, attitudes, and perceptions have been shown to strongly affect people’s willingness to 
use robots and their evaluations of HRI (Bernotat and Eyssel (2017b); Bernotat et al. (2017); Bernotat 
and Eyssel (2018); Bernotat et al. (2021); Meyer zu Borgsen et al. (2017); Schiffhauer et al. (2016)). 
A vast body of research thus calls to involve potential users’ perceptions and preferences already in 
the research and development processes of new technologies to create positive user experiences 
(e.g., Ben Allouch et al. (2009); Bernotat and Eyssel (2017a); Diehl et al. (2017); Lacroix et al. 
(2023); Mahmood et al. (2000); Robinson et al. (2020); Schiffhauer et al. (2016)).  

Despite these calls for more user-centred approaches, the human perspective has not yet gained 
much attention in prior research and implementation processes of robot working memory. To close 
this research gap, we put the human perspective into focus during the implementation and training 
of two working memory configurations on an industrial RB-KAIROS+ robot (Robotnik (Valencia, 
Spain)): One working memory architecture was based on GRU (Cho et al. (2014)) and the other was 
based on WorkMATe, the biologically-inspired alternative. Following a human-centred approach, we 
considered potential users’ ideas and perceptions of a comfortable and efficient human-robot co-
existence right from the beginning of the implementation and training processes. More precisely, we 
conducted two online user studies. 
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2. Working Memory Demonstration in realistic 
scenario 

In the following sections, we summarise the developments conducted in PROMEN-AID. The project 
focuses on sensorimotor adaptation based on working memory and describes the different 
demonstrations of a cognitive framework with incremental TRL starting from a discussion of the 
different scientific and technical issues encountered. Further, in the following sections we describe 
how these issues were addressed, and we articulate the relation between the work presented and 
ongoing development of EBRAINS, in particular as pertains to the use of working memory in artificial 
robotic agents. 

2.1 Scientific and Technological Background 
Automatic machines and robots traditionally supported human activities, especially in the industry 
field. The recently increased diffusion of robots in our everyday life is bolstering the effort to create 
robots able to cooperate with humans rather than being mere tools. Indeed, the upcoming Industry 
5.0 revolution [1] describes robots as co-workers, not only in stationary work cells (e.g., a robotic 
arm handing over objects to a human worker), but also freely navigating around the workspace (e.g., 
a rover robot delivering objects from storage to an assembling area). The latter scenario poses great 
concerns on how to guarantee workers’ safety, requiring robots to be constantly human-aware. 
Robot human awareness for safety has been defined based on three pillars [2]:  

• Comfort: the robot’s behaviour should be safe (i.e., avoid harming others) and perceived as safe;  

• Naturalness (or Legibility): the robot’s behaviour and decisions should be easy to predict;  

• Socialness: the robot should respect the social rules of the context in which it is employed (e.g., 
the social norm of staying to the right when passing by others).  

Several solutions have been developed to equip navigating robots with human awareness. The 
traditional approach relies on the Proxemics theory from Hall [3], i.e., the definition of personal 
space that others (both agents and objects) should not invade to preserve one’s comfort. In those 
solutions, humans are usually treated as moving obstacles, and represented as a 2D-Gaussian high-
cost region in the cost map (i.e., the mapping between physical locations and the difficulty for the 
robot of traversing them) of the robot’s local planner. Several contributions applied the proxemics 
principle both in simulations [4]–[6], and in on-the-field studies [4], [5], [7]–[12]; however, this 
approach could not always be feasible. If the workspace is dynamic and/or crowded with workers 
continuously wandering around (e.g., in an intra-factory logistics scenario), it could be difficult to 
maintain an updated, reliable cost map. The result would be the well known “freezing robot 
problem” [13], or an erratic plan, competing with the naturalness principle of human awareness. 
We speculate that, rather than keeping track of every dynamic obstacle affecting the robot’s plan, 
it would be better to adapt its behaviour with simple rules that would allow a smooth, comfortable 
and natural interaction, along with a lower computational load. Moreover, human detection is 
usually performed with absolute systems, either based on vision [4], [7], [12], [14] or other sensors 
workers are asked to wear [8]. Such methods could either not be feasible because they imply the 
modification of the workspace or could be in contrast to other workers’ safety equipment. When 
achieving human awareness through robots’ egocentric perception (usually a combination of vision 
and other sensors, like LIDARs) [5], [9]–[11], [15], novel challenges arise like how long to retain the 
detected humans’ presence; or how to deal with noisy, scarce, or missing perception. Not 
considering such issues could result in a mostly reactive adaptation, with the robot taking care of 
humans only when they are detectable, without considering their point of view. In similar scenarios, 
humans usually rely on working memory, i.e., the amount of information that can be held - usually 
for approximately 15 seconds [16], [17] - in mind and used in the execution of cognitive tasks [18]. 
Humans take advantage of working memory when interacting with each other [19], especially in 
dynamic [20] and cognitive-demanding [21] collaborative tasks. In the autonomous navigation field, 
working memory has been used to keep track of static objects in sonar-based perception [22] or to 
retain the personal space of static humans [23]. In addition, Samsani et al. [24] studied a working-
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memory-based architecture for robot navigation in crowded, dynamic spaces; however, in 
simulations only. 

2.2 Specifications of the Demonstration 
As the industry is moving towards automation but mastering precious adaptation capabilities typical 
of human workers is still very difficult for artificial agents. On the other hand, home automation is 
also increasingly using robotic platforms to fulfill automation tasks. These activities need to enable 
safe human-machine interaction in robotics settings. Human-robot collaborative (HRC) spaces and 
in general collaborative robots (cobots) require specific expertise, knowledge and management skills 
from the workers in both manufacturing environments and casual scenarios [42]. The incorporation 
of technology (e.g. robots, machines, and digitalisation) may enhance task performance, 
productivity and consistency of results, but may also induce stress, mental fatigue or lack of 
engagement in the activities. Further, the workers are hardly accustomed to collaborations with a 
robotic partner and this makes the situation even more problematic. The successful interaction 
between humans and machines—particularly robots—will depend and builds on whether and how 
human acceptance and trust in robots is engaged with the users [43].  

The Proactive Memory iN AI for Development (PROMEN-AID) is part of the Human Brain Project (HBP) 
Specific Grant Agreement 3. The HBP SGA3 (PROMEN-AID) project tries to address this context by 
introducing cognitive-inspired functional architecture of short-term and long-term memory. The 
architecture enables safe human-machine interaction in robotics settings (cobots) thanks to 
innovative implementation of cognitive model of working memory. Furthermore, PROMENAID 
provides the opportunity to test and showcase robotic platform implementations with specific 
capabilities to perceive the environment and relating it with previous experiences. The 
understanding of the environment in relation to the memory of previous experience endows the 
robotic platform with the capability of contextualising the situation. This improves the interaction 
and coordination of robots with human partners in the environment and fosters a more versatile 
performance of artificial robotic agents by enhancing the adaptation of the agent in the context of 
other human partners (e.g., movement restrictions in the shop floor delimited routes or areas). The 
main advantage is that the robotic platform not only adapts to the interactive context where it 
operates but it improves the awareness of the operating context where naïve human individual move. 
The awareness or contextualisation interestingly leverages on persistent sensorial persistence and 
on previous robot first-hand experiences giving the robot the opportunity to continuously grow its 
knowledge about the social environment. The model used in PROMEND-AID includes such functions 
in the cognitive architecture that allows the robotic platform to adapt to the human partner, in 
regards to their common experience. The advantage is that the artificial intelligence provided with 
this cognitive inspired solution continuously improves its knowledge along with successive 
experiences and it is not limited to a static AI implementation, which is typical of numerous 
applications in industrial markets. 

Considering that, Industry 4.0 contributes to environmental and social sustainability in terms of the 
lower environmental impact of production, as well as reduction of physical demand on the workers 
not mentioning an increase in the flexibility of work organisation. The digitisation of the 
manufacturing process also with cognitive computational models of intelligence can have deep social 
implications as it alters inter- and intra-organisational relationships. Manufacturers should take 
responsibility for their digitisation process and steer it in a direction that simultaneously safeguards 
economic, social, and environmental sustainability [42].  

Specifically, PROMENAID delivers a cognitive-based dedicated tool useful for companies to maintain 
high manufacturing performance and improve the technology acceptance of robotic solutions in 
manufacturing shop floors.  

2.3 Relation to EBRAINS 
The work involved relies on the HBP’s Research Infrastructure and actively contributes to its co-
design. In particular, it directly builds upon the implementation of working memory Workmate 
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developed within the HBP project to support multisensory integration in robotics platform that 
efficiently sense and act in the environment. The specific framework developed to support three 
demonstrators with increasing level of technology readiness to facilitate integration for stakeholders 
and interested companies. It was designed in collaboration between the technical engineering and 
scientific coordination task (Task 3.4), with expertise on development of functional cognitive 
architectures. Further, the work conducted contributes to defining requirements in terms of 
required tools and services to exploitation of HBP technologies to other stakeholders and companies. 

This is in particular the case for aspects related to how working memory can improve the 
effectiveness of robotic agents that interact in realistic environment. The three demonstrators 
provide a meaningful number of distinct evidences of the benefit of such approach, helping establish 
interest in stakeholder on what is useful for the robotic platform to support autonomous intelligent 
behaviours. This work is enabling for the robotic platforms innovative and ready-to-use 
implementations of working memory. This allows for use of sensorial stabilisation that provides 
smoother motor behaviours for real-time interaction (also with human partners) in real-world visual 
processing. Relevance of this work extends beyond the traditional robotic automatic ground vehicle 
(AGV) solutions since the sensorimotor loop is generalised and also other action-perception loops in 
robots can be improved. It is of our interest in PROMEN-AID to provide attractive alternatives for 
stakeholders and companies to currently use our cognitive-based solution in any robotic platform. 

Other prospective applications include unmanned vehicles (drones), industrial robotic actuators but 
also driving automation. This development provides EBRAINS a unique capability contributing to its 
unique value proposition. Finally, the work conducted contributes to the development of closed-
loop demonstrators showcasing the type of research made possible by combining cognitive models 
of working memory with embodiment agents and robotic platforms, which corresponds to the 
specific value proposition of the EBRAINS framework. As such, the work performed will expand the 
portfolio of content available for the EBRAINS framework. We will investigate, in the near term, the 
opportunity of hosting and making discoverable such models to other stakeholders and companies. 

Specific links to EBRAINS: The central ambition of the work presented, as described in the GA, 
entails the “development of demonstrator(s) for brain-based technology targeting industrial needs. 
This(-ese) demonstrator(s) will contribute to developing technological maturity of algorithmic 
solutions investigated in the WP, applying them to help solve practical problems, the specifications 
of which are defined in collaboration with industrial partners or stakeholders.” This ambition was 
fulfilled, beyond the initial expectations set by the core HBP partners (see discussion in 2.4 on the 
relation of this work to HBP objectives). The additional ambition of making models available on 
EBRAINS was targeted in partnership with collaborators from the Infrastructure Work Packages. The 
simulation demonstrator developed has been made directly available (see Section 2.6). More 
specifically, the work performed is conducted in collaboration with embodiment (T3.4) and technical 
integration activities (T3.10) in the work Package (WP3), affording direct support to achievement of 
objectives of Service Category 4 (SC4) Closed loop AI and robotics workflows: design, test and 
implement robotic and AI solutions (form WP5). Specifically, all models developed (including 
functional cognitive models, integrated functional architectures, digital simulation models), used 
tools and workflows (e.g. digital simulation technology), where transparently shared with SC4 under 
coordination from T3.10. In particular, access afforded to tools and workflows were of direct 
relevance to developments in T5.8 (and, to a lesser extent, T5.9), whereas models made available 
were of support to T5.10. Note in addition that, inclusion of the presented activities in the work 
plan directly emerged from measures taken in pursuit of project Impact 4 (Expected Impact on 
Industry), in particular from one of several “dedicated Open Calls” intended to “support and boost 
user-driven RTD activities” (see discussion in the SGA). These measures were explicitly designed to 
reinforce relevance of the Research Infrastructure (RI) to industry, results of these measures, as 
described in the present document are of direct support to the design and development of EBRAINS. 
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2.4 Links of results obtained to specific objectives of 
the HBP 

The work presented productively connects academic research in cognitive neuroscience (on working 
memory, results from T3.7) with specific industrial applications in robotics, supporting development 
of EBRAINS by providing concrete examples of brain-based innovation in ICT, demonstrating the types 
of tools, models, and services useful in connecting academic investigations in neuroscience with 
industry-driven RTD, and providing examples of models and demonstrators of value in populating 
provided services (in particular, SC4). This work directly addresses Project Objective 1 (PO1):  
“Establish a sustainable European scientific research infrastructure, EBRAINS, leading to an 
increased use and adoption of… model building, simulation, … and virtual experiments for… brain-
inspired sciences” in that it demonstrates the manner in which SC4 may support model building, 
simulation, and virtual experiments for brain-inspired ICT research. This work is also in direct 
support of PO5 “Enhance real-world task performance through… cognitive architectures running on… 
the Neurorobotics Platform,” providing simulation models demonstrating the use of HBP-developed, 
brain-based, context awareness technology for smart unmanned systems. It similarly addresses Work 
Package Objective 3.1 (WPO3.1). 

Furthermore, the collaborations that have supported the presented work were of direct support to 
the emergence of project Outcome 1 (OC1), with in particular efforts expanded on the development 
of artificial cognition technology, in the form of context awareness for the artificial agent, which 
contributed to informing developments in EBRAINS of “research tools, allowing constantly updated 
knowledge on… brain-inspired AI to be quickly shared across Europe, leading to a considerable 
increase in… research on advanced AI produced by the communities.” More centrally, activities were 
included in the work plan to support emergence of OC5 and OC9. Specifically, developments helped 
inform developments in SC4 intended to support “roboticists… for the development of controllers,” 
so that “as a result, they will be able to deliver new… special purpose robots” (OC5). The context-
aware architecture developed was made possible by a number of “closed-loop functions based on 
insights into human cognition,” and tools developed in the process are effectively allowing industry 
(i.e. the industrial partner in PROMED-AID, Robotnik, P146-ROB), by project’s end, to “develop 
advanced prototypes for industrial robots,” including in particular models of “advanced autonomous 
systems.” 

The collaborations established are of significant relevance to expected project Impact 3 (IMP3: 
Impact on Technological Development), as they provide a working blueprint for the “emergence of 
a rich ecosystem of academic and industrial research, which will explore and, ultimately, 
commercialise completely novel applications.” The process followed in achieving the presented 
results also supports realization of Impact 4 (IMP4: Impact on Technology), providing a working 
example for EBRAINS to follow on tools and services to “support technical developments in areas of 
clear industrial relevance,” and in particular research and development work targeting technology 
supporting productive coexistence of human workers and mobile robotic systems, thus directly 
addressing “the development of collaborative robots on the factory floor.” As a result of the efforts 
in PROMEN-AID, “Small- and medium-sized innovative companies” (such as Robotnik) “that strive to 
develop new products based on the understanding of information processing in the human brain” 
(such as pertaining to context awareness) may in the future “find the EBRAINS service offering 
uniquely adapted to their R&D needs” as a result of the pioneering work conducted in this direction, 
during SGA3, in active collaboration across the PROMEN-AID partners, contributors in T3.4 and T3.10, 
and SC4 developers in WP5. 

2.5 Links to peer reviewed publications 
The work described in the present document has led to the following peer reviewed publications, 

Estefanía Estevez-Priego, Nikolaos Liappas, María Eugenia Beltrán Jausauras, Giuseppe Fico, Maria 
F. Cabrera-Umpiérrez and María T. Arredondo Waldmeyer. “Exploiting a human-robot interaction 
framework using adaptive and proactive memory systems.” in Proc. 2023 IEEE 19th International 
Conference on Body Sensor Networks (BSN), 2023. 
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L. Landolfi, D. Pasquali, A. Nardelli, J. Bernotat and F. Rea, "Working Memory-Based Architecture 
for Human-Aware Navigation in Industrial Settings," 2023 32nd IEEE International Conference on 
Robot and Human Interactive Communication (RO-MAN), Busan, Korea, Republic of, 2023, pp. 1878-
1885, DOI: 10.1109/RO-MAN57019.2023.10309344 

J. Bernotat, L. Landolfi, D. Pasquali, F. Rea, "Remember Me -User-Centered Implementation of 
Working Memory Architectures on an Industrial Robot" Frontiers in Robotics and AI, 10 (2023), DOI: 
10.3389/frobt.2023.1257690 

Nardelli, D. Pasquali, L. Landolfi, J. Bernotat, F. Rea, "Application of Working Memory Adapted 
Navigation for Human Robot Interaction in an Industrial Context." In Proc. of the 7th HBP Conference 
on Interdisciplinary Brain Research, Rey Juan Carlos University, Madrid, Spain, 2022. 

2.6 How to access the demonstrator 
The simulation demonstrator (including all relevant models) can be downloaded from GIT from the 
following location, https://gitlab.iit.it/cognitiveInteraction/PROMENAID.git 

A short video descriptive of the status of the different demonstrators can be found in the video 
section of the aforementioned GIT repository. In particular, for the experiment in IIT the reference 
video demonstrate the behaviour of the robot in three conditions with GRU network, with no-
memory, and with Workmate, respectively in the following files:   IIT_EXP_GRU_LEGO_cut.mp4, 
IIT_EXP_No_memory_LEGO.mp4, and IIT_EXP_WorkMate_LEGO_cut.mp4. For the experiment in 
ROB, the video files show the main results in ROB_EXP_Promen_AID_pilot.mp4. The other videos 
support the main video showing some details of the same experimental trial such as ROS signals 
(ROB_EXP_ROS_signals,mp4) the robot`s view (ROB_EXP_camera_frontal.mp4), the behaviour of the 
robot from external camera (ROB_EXP_externalCameraVideo.mp4) and from mobile camera 
(ROB_EXP_KairosInRob.mp4) 

3. Demonstrator Description 
In the following, we discuss the different demonstrators that we provided within the PROMEN-AID 
project. We distinguish between the preliminary demonstrators in laboratory (IIT), the demonstrator 
in relevant environment (UPM) and the demonstrator in realistic environment (ROB) specific 
contributions to the showcase demonstrator, which define specifications for the M42 showcase, and 
activities that extend beyond the scope of the demonstrator, including collaborations emerging from 
the work conducted.  

https://gitlab.iit.it/cognitiveInteraction/PROMENAID.git
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3.1 Showcase in Lab IIT 
The major aim of User Study 1 was to investigate participants’ judgements of the RB-KAIROS+ robot’s 
appearance, movements, and perceived memory functions when presented in its initial state, i.e., 
with no working memory configuration implemented. Following prior research (Bernotat and Eyssel 
(2017b); Bernotat et al. (2017); Bernotat and Eyssel (2018); Bernotat et al. (2021); Meyer zu Borgsen 
et al. (2017); Schiffhauer et al. (2016)), we controlled for the effects of participants’ attitudes 
toward robots, social desirability, situational motivation to participate in the study, experience with 
technology and robots, and demographics on participants’ evaluations of the robot. To potentially 
inspire further developments toward efficient and positively perceived robot navigation, the 
secondary aim of User Study 1 was to explore participants’ ideas of robot memory in general and 
what aspects of the robot’s movements participants found positive and what aspects they would 
change. User Study 2 served to evaluate the RB-KAIROS+ robot’s appearance, movements, and 
perceived memory functions after the implementation and training of GRU and WorkMATe compared 
to no working memory in a between-subjects study. Analogous to User Study 1, the effects of 
participants’ attitudes, experience levels, social desirability, motivation to take part in the study, 
and demographics were controlled for. Both, User Study 1 and User Study 2 were conducted online 
to reach large and heterogeneous samples in Germany and Italy (in User Study 1, furthermore an 
English-speaking sample was recruited by sharing the link in Great Britain and Australia. 

3.1.1 Research Aims 

Compare the behaviour of the KAIROS robot using two different implementations of working memory 
configuration versus the absence of working memory models: WorkMate (developed within the HBP), 
vs. GRU (more traditional implementation) vs. no memory. The comparison is studied online in User 
Study 1 and User Study 2 and in a laboratory environment. 

Besides a technological evaluation of the GRU and WorkMATe (vs. no working memory) 
implementations (see section on lab study at IIT), two online user studies were performed which 
investigated on participants’ evaluation of the robot in terms of  

• robot appearance  

• robot movements  

• perceived robot memory functions  

At the same time, the effects of participants’ positive and negative attitudes toward robots, social 
desirability, situational motivation to participate in the study, experience with technology and 
robots in general, with the RB-KAIROS robot, and demographics were controlled for. This allowed us 
to investigate psychological factors that affected participants’ perceptions of the robot. 

In addition, in the online User Study 1, we furthermore enquired participants’ ideas of robot memory 
and aspects they liked about the robot’s behavior and aspects they would change. This ought to 
facilitate future developments of a comfortable memory-based robot navigation. 

3.1.2 Procedure Online Study 1 and Online Study 2 

Online User Study 1 and User Study 2 were conducted via SurveyMonkey and SoSciSurvey platforms 
for online studies. The link to the studies was shared via social media platforms and Universities in 
Italy and Germany (User Study 1 was furthermore shared in Great Britain, and Australia). This served 
to get large and heterogeneous samples, which is advantageous to generalise the findings. 

In both online studies, participants were asked to watch a short video sequence of about 2 minutes. 
In the video, the RB-KAIROS robot was displayed with either WorkMATe vs. GRU vs. no memory 
implemented. To test the robot’s adaptation to the presence of humans, we simulated an industrial 
workspace which was divided in two areas: An area in which two ostensible workers were around 
transporting objects from one table to an opposite one while one worker crossed the room from East 
to West and the other from North to South to force as many crossings with the robot as possible. 
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After having watched the video sequence, participants were asked to complete a short questionnaire 
which assessed the measures: robot appearance, robot movements, perceived robot memory 
functions (dependent measures), participants’ positive and negative attitudes toward robots, social 
desirability, situational motivation to participate in the study, experience with technology and 
robots in general, experience with the RB-KAIROS robot, and demographics (covariates). 
Participation took about 15 minutes in total. 

User Study 1 provided insights about participants’ (professionals and laypeople) ideas of memory, 
which were closely associated with data processing and (autonomous) learning and adaptation. 
Participants had quite clear ideas of robot memory and formulated very precise suggestions on how 
a safe, efficient, and comfortable robot navigation could be realised. Their suggestions might thus 
be useful for further research and development of memory-based robot navigation. In User Study 2, 
the implementation of robot working memory GRU and WorkMATe resulted in more positive 
evaluations of robot’s perceived memory functions. That implies that memory-based adaptations of 
robot navigation were visible and were deemed positive. Both studies unveiled that participants’ 
attitudes toward robots and experience level with robots, rather than their demographic 
background, is decisive for positive perceptions of HRI. In both, User Study 1 and User Study 2, our 
measures on robot appearance, robot movements, and perceived memory functions were found to 
be very reliable which means that they are well suitable for further research on memory-based robot 
navigation in industrial settings. The outcome of User Study 1 and User Study 2 was submitted as a 
journal paper to Frontiers. 

To develop and evaluate our architecture, we used the same setup that was used in User Study 1 
and User Study 2 and which allowed us to imitate a possible industrial. The setup comprised two 
rooms: in the populated area (e.g. an assembly space) workers performed a simple pick-and-place 
task that required them to cross the room from one workstation to another; in the unpopulated area 
(e.g. a storage space) instead, no human workers were allowed. The two areas were divided by a 
corridor, so seeing one area from the other was impossible. We realised two workspace mock-ups: 
the Big Room with 14.4m2 of unpopulated and 19.8m2 of populated areas; and the Small Room with 
7.02m2 of unpopulated and 15.21m2 of populated areas. For this study, we implemented, trained, 
and compared two memories for the working-memory node mentioned above, namely GRU [35] and 
WorkMATe. The GRU (Gated Recurrent Unit) [35] is arguably the simplest state-of-the-art 
computational circuit commonly used in machine learning devised to learn rules from sequences. 
We realised the network in Python with the Tensorflow 2 Keras library; it comprises an Embedding 
Layer (6 units, vocabulary size of 7), a GRU Layer (6 units, stateful, with 0.004 l2 regularisations), a 
Dropout Layer (0.1 dropout rate) and a Dense Layer (3 units, one for each modality with softmax 
activation function). Reported hyper-parameters were obtained after 4-fold grid-search cross-
validation on the collected data (see section II-E1). The WorkMATe is a novel, more biologically 
plausible implementation of working memory developed by Kruijne et al. Like the GRU, WorkMATe 
relies on gating to select whether to store information. However, WorkMATe relies on biologically 
inspired attentional feedback; also, it is meant to be trained via reinforcement learning, including 
a biological reward prediction error. To develop robust models able to be applied in diverse working 
environments (i.e., different rooms, displacement of ARUCOs markers, workers’ behaviour, robot’s 
path), we applied the following procedure: (i) firstly, we performed a Data Collection in the Big 
Room; (ii) then, we used the collected data to train and validate the GRU and WorkMATe models; 
(iii) finally, we evaluated the trained models in a modified Big Room (by changing the robot’s path, 
ARUCOs displacement, and workers’ trajectories), and in a novel Small Room. 1) Data collection: 
Following six predefined waypoints, the robot navigated in a loop between the populated and 
unpopulated areas. We recorded six sessions of approximately 10 minutes - we opted for separate 
sessions to avoid tiring the human actors. The RB-KAIROS+ robot always moved with a fixed velocity 
of 0.35 m/s in all directions. However, for three sessions, it moved holonomically, while it moved 
differentially for the remaining three. Finally, the robot performed ten loops for each session, 
alternating clockwise and anticlockwise directions as data augmentation. Hence, our data set 
includes 60 loops: 15 clockwise differential, 15 clockwise holonomic, 15 anticlockwise differential, 
15 anticlockwise holonomic. Two actors performed a simple pick-and-place task in the populated 
area, crossing the room. Actors were instructed to move from one workstation to another following 
a metronome sound beeping every 5 seconds. We dumped and synchronised the RB-KAIROS+ RGB 
camera mages during the sessions in a ROS bag at 30 fps. Post-hoc, we fed the collected RGB images 
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to the ARUCOs and human detectors, obtaining 112800 data points composed by 2 features human 
detected (0=detected, 1=not detected) and aruco detected (0=no aruco, 1=unpopulated, 
2=populated). Based only on the last perception, we labelled each data point as TASK-ORIENTED, 
ATTENTIVE, or HUMAN-ORIENTED. To simulate the working memory, we kept the last assigned label 
in the non-deterministic case, in which no humans nor ARUCOs are detected (i.e., when the robot 
has to rely on memory). The resulting dataset is slightly unbalanced with 41% TASK-ORIENTED, 19% 
ATTENTIVE and 40% HRI-ORIENTED data points. 2) GRU training: To train and validate the GRU-based 
model, we segmented the dataset in time windows of size 500 (overlapped with stride 1). Humans’ 
and ARUCOs’ detections were generated at 30Hz (the same frame rate of the robot camera); hence 
500 data points corresponded to a time window of 16.6 seconds, retention consistent with humans’ 
working memory [36]. The resulting dataset comprises 120000 segments. Finally, we trained our 
model considering 80% as training and the remaining 20% as the test set. 3) WorkMATe training: The 
WorkMATe model was trained via Reinforcement Learning (RL) over small batches of data points as 
per the network design. We segmented our dataset in non-overlapped windows of size 100 (i.e., 3.3 
seconds). The resulting dataset comprises 1128 segments. In our RL task, for each perception data 
point (i.e., a human and ARUCO observation), the agent can undertake three possible actions (i.e., 
the behaviour modalities). Then, the agent was positively rewarded (r = +1 for ATTENTIVE, r = +0.6 
for TASK-ORIENTED and HUMAN-ORIENTED) if the selected modality matched our label; otherwise, 
it was negatively rewarded r = −1. The reward for the ATTENTIVE modality is higher than the others 
to counter the unbalancing of our dataset as in [37]. As before, we trained our model considering 
80% as training and the remaining 20% as the validation set.  

3.1.3 Design 

HRI with an RB-KAIROS robot with WorkMate (vs. GRU) vs. no memory between-subjects design.  

3.1.4 Spatial Memory Task with LEGO bricks 

We aimed to test participants’ memory performance during HRI with the RB-KAIROS robot. To force 
participants to cross the robot’s trajectory, participants must perform an active task like 
participants in Study 1 to Study 3. We thus created a spatial memory task by adapting the digit span 
memory test (Werheid et al., 2002). To increase human-robot interaction and to have greater 
similarity to an industrial working setting, two participants perform the memory task at the same 
time. Participants must recreate models of LEGO bricks from memory. Each participant has to 
recreate the same models. To do so, each participant has her or his own work cell (cell, because it 
should be protected from the eyes of the other participant in each case) and two brick stations. The 
work cells are placed opposite each other in the centre of the room. The two work cells are 
separated by a dark curtain. Participants’ brick stations are placed diagonally left and right from a 
participant’s work cell. This way, one participant performs the task in the left corner of the room 
and the other in the right corner. Therefore, each participant can do the task at his or her own pace 
without being distracted by the other participant. At the same time, however, the robot is moving 
around participants’ work cell and a non-crowded room similar to Study1 to Study 3. This allows us 
to investigate the effect of a robot on participants’ memory performance, while keeping effects of 
the “co-worker” low (see Figure 2for participants’ working stations).  
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Figure 2: The two participant working areas within the crowded room 

By pressing a button, the LEGO models are presented on a screen for a limited time (via Webapp). 
In the digit span test (see Werheid et al., 2002), each digit is presented for a second. As participants 
must memorise two features of the LEGO bricks, namely their colour and size, we opted to show 
each model two seconds per number of bricks. After having watched a model, participants must 
collect the bricks they need from two working stations. This way, participants are forced to cross 
the robot’s path. To balance participants’ walking direction (left vs. right), each brick station 
contains the same number of bricks (58 bricks each). However, one brick station contains “hot” 
colours (i.e., yellow, red) and one brick station contains “cold” colours (i.e., blue, green). In 
addition, each brick station contains six white bricks, which were considered neutral in terms of 
colour (see Table 1:). These were needed to balance the number of “hot”- and “cold”-coloured 
bricks in models with an odd number of bricks. After having recreated a model, participants must 
place the final model into a box on their work cell. In order not to be distracted by viewing a former 
model when having to recreate another, the box must be closed after a model has been placed into 
it. In addition, participants must press a button to indicate that they finalised and stored a model 
into the box. Then, they had to press a button again to get the next model presented on a screen. 
Participants are not competing. Therefore, it is important to ensure that a participant does not get 
distracted when the other participant finishes the task. The termination of a session should thus be 
done discreetly. 

Table 1: Details of the Brick Task 

Task details 

Brick Stations  

Each work cell is equipped with the same number of bricks that are arranged in the following order (see 
also Cold_colors_1, Cold_colors_2, Hot_colors_1, Hot_colors_2 images displaying each single brick station).  

Hot colors:  

2 x 2 bricks: 14 yellow, 14 red, 6 white  

2 x 4 bricks: 8 yellow, 6 red  

2 x 6 bricks: 6 yellow, 3 red  

= 58 bricks in total  

Cold colors:  

2 x 2 bricks: 12 dark blue, 12 light blue, 15 dark green, 6 white  

2 x 4 bricks: 8 dark blue, 5 dark green  

= 58 bricks in total  

Models: In total, participants must recreate twelve models. In adaptation of the digit task (see 
Werheid et al., 2002), the models’ complexity increases by increasing the number of bricks every 
second model. That is, the first two models contain three bricks, while the last two models contain 
eight bricks each. Each model contains the same number of “hot”- and “cold”-coloured bricks. For 
models with an odd number of bricks, a white brick is added. The bricks of a model differ in colour 
and size (i.e., 2x2, 2x4, and 2x6), while the orientation of the bricks is always the same. This way, 
the bricks are arranged in a vertical order. To avoid any biases due to the saliency of a colour or 
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experimenters’ preferences, the models were created by using a Python script which balanced the 
number of “hot”- and “cold”- numbers within models (see Teams folder for the final models).  

Task evaluation: To evaluate the memory task, we calculated the percentage of errors per 
participant. To do so, we calculated Levenshtein distance for each model feature that is, for colour 
and for size (see Levenshtein, 1966). More precisely, Levenshtein distance is calculated by counting 
the number of replacements, additions, and removals that are needed to turn the model that 
participants provided into the original correct model. Replacements, additions, and removals are 
counted per colour and per size of the bricks. Their sum is then divided by the number of bricks 
within a respective model, which results in an error ratio per colour and per size. Error ratios for 
colour and for size are finally averaged so that an overall error rate is calculated per participant.  

To illustrate, Figure 3 shows one of the models as it should be recreated (left) and a model that a 
participant provided (right) in our pilot testing of the task. 

 
Figure 3: Actual model (left) and participant’s recreation from memory (right) 

To calculate the participant’s error rate for this model, Levenshtein distance (Levenshtein, 1966) 
needs to be calculated for each of the two features (color and size of the bricks) first. Let’s start 
with the calculation of the error rate for color (see Figure 4). To do so, we check whether the color 
of bricks in participant’s model matches the color of bricks in the actual model starting from bottom 
to top. Therefore, for the first four bricks, the color in participant’s model matches the color of the 
actual model. The fifth brick in participant’s model, however, needs to be replaced because it is 
blue though it was supposed to be yellow to match the actual model. The sixth brick in participant’s 
model is light blue, though it should have been green. The seventh brick in participant’s model is 
yellow, though it should have been red, while the eighth brick is missing in participant’s model. That 
way, we have three bricks that need to be replaced and one brick that needs to be added to match 
the actual model in color.  

 
Figure 4: Formula for the calculation of the error rate for colour 

The error rate for size is calculated analogously (see Figure 5). To match the actual model in brick 
size, the sixth brick needs to be replaced by a 2x8 brick, while the seventh brick needs to be replaced 
by a 2x2 brick and the eighth brick needs to be added. Therefore, error rate for size is:  

 
Figure 5: Formula for the calculation of the error rate for size 

To get the total error score, we simply average the error rate for color and size. That is, for this 
model, the participant gets a total error rate of 0.44%. Alternatively, the total error rate could be 
calculated by summing replacements and additions (and if you have, removals) for color and size 
divided by twice the number of bricks. 
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Instructions for participants:  

“Your task is to memorise and rebuild a set of models. In total, you will be presented with 12 models 
of LEGO bricks that differ in color and shape. The complexity of the models will increase over time. 
Each model will be displayed only once for a limited time. So please first watch the model carefully. 
What matters is to rebuild the models correctly, no time constraints will be given for the 
reconstruction.” 

3.1.5 Results 

We computed five metrics for each loop of the collected evaluation data to verify our expectations. 
As a metric related to comfort, we measured the average distance from obstacles (from laser data); 
whilst for smoothness of navigation, we measured the frequency of acceleration anomalies as the 
percentage of data samples that lies 3σ away from their average value. In addition, we estimated 
the robot energy consumption, loops’ average duration and traveled distance as indexes of efficiency 
in industrial scenarios. See the caption of Figure 8 for more details on the computed features. 
Pursuing a more comfortable and efficient navigation, we expected the RBKAIROS+ robot to preserve 
a higher distance from obstacles, and to generate a smoother velocity profile and lower energy 
consumption when equipped with the memory modules with respect to the not adaptive counterpart. 
In addition, we expected the robot to travel a higher distance and take more time on completing 
each loop due to the lack of holonomicity and reduced speed in the populated areas. Regarding the 
Big and Small rooms, we were not interested in directly comparing them but rather in (i) proving 
that our working-memory-based system can adapt the robot’s behavior in slightly different (Big 
room) and novel (Small room) scenarios and (ii) to explore whether effects on the five metrics 
mentioned above would be present in both rooms. Some preliminary analyses on the small room 
evaluation have been previously presented in [38]. 

In this study, we developed and evaluated a working memory-based robot architecture for adaptive 
navigation, fostering comfort, naturalness, and efficiency during human-robot collaboration in 
dynamic industrial settings. Indeed, the optimal behavior (i.e., trajectory and speed) a robot would 
adopt could not be suitable when the area is shared with human workers. At the same time, always 
behaving cautiously would be counterproductive from a cost/benefit point of view. Hence, we 
speculated industrial robots should be enabled with context awareness - i.e., spatial and human 
awareness - adopting the policy best suited for each case. Furthermore, we advocated that such a 
module would benefit from working memory, enabling the robot to keep its awareness and optimal 
behavior, even if perception is prevented. After collecting data in a mocked-up industrial 
environment, we trained the WorkMATe - a biologically plausible model - and a GRU-based model - 
the state-of-the-art for working-memory networks. Finally, we evaluated such models in comparison 
with a non-adaptive robot architecture. Our results suggest that adopting a Working Memory module, 
either GRU- or WorkMATe-based, guiding the navigation strategies of a robot can improve HRI in a 
collaborative industrial setting. When pursuing a working-memory-based adaptive behavior, the 
robot kept a higher distance from obstacles, which workers might perceive and thus deem 
comfortable; it also produced a lower number of abrupt accelerations and breaking, making its 
trajectory smoother and less alarming. Moreover, energy consumption was also reduced. Finally, our 
system functioned and showed the same effects in two environments of different sizes and shapes, 
supporting its generalisability. Hence, we speculate our system would benefit from both a 
performance and a human-robot interaction point of view. Since navigation with working memory 
exposes those beneficial assets, we may expect that the workers sharing the room with the moving 
robot might interact more pleasantly with it, improving their working conditions and performance. 
We plan to undertake a follow-up user-study in a real industrial environment to test such claims. 

For this purpose, a few system limitations should be addressed. We relied on ARUCO markers to 
identify the two areas of our setup, requiring only RGB images to let our system work. ARUCO 
placement offers reliable landmarks when other relevant key points are absent; also meant to be 
detected even in low-light conditions. However, this would require to physically change the 
industrial setting, which is not always feasible or convenient. We speculate ARUCOs could be used 
to semi-supervise the training of a dedicated system based on other environment features or 
absolute spatial awareness and removed afterward. In addition, in this study, we focused on the 
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robot’s behavior without defining a specific industrial task for it (other than reaching a spatial goal) 
or requiring direct human-robot interaction between the robot and the workers. In the follow-up 
study, we plan to evaluate the effect of the robot’s adaptive navigation on workers’ performance 
when performing a memory-based realistic task (e.g., assembling); furthermore, we plan to involve 
a direct interaction and active robot task (e.g., making the robot delivering components and fetching 
assembled object to/from the workers). In addition, such a future study could be suited to test other 
interesting effects that emerged from this manuscript, like the different collision avoidance styles 
produced by our system. The study may point out whether human partners would prefer a robot that 
avoids collision with them by stopping or following alternative trajectories. We speculate that it is 
likely that, in the latter case, the trim of holonomicity can help the human partner forecast robot 
path planning more easily [40], especially when human-robot interaction is required. Another 
limitation regards the simplicity and discretisation of the behavioral modalities. Even if simple, the 
difference between modalities is already visible in our data hence, we speculate human workers 
would also perceive it, but this is subject to ongoing research (see Bernotat et al., pre-registered at 
AsPredicted, 125198). Furthermore, based on the same collected data, our system could be easily 
retrained to foster more complex and customised adaptive policies. Finally, it would be crucial to 
evaluate workers’ perception of our working-memory-based navigation via questionnaires and, if 
feasible, via implicit measures like gaze, electrodermal activity, heart rate, or direct contact. The 
combination of user perspective and technological aspects will be the core of the developmental 
process of future steps, answering the call for a holistic technological, user-centred, empirically 
driven approach to human-robot interaction [41] applied to navigation. 

3.2 Showcase in Relevant Environment UPM  
This experimental scenario simulated a relevant real-world environment. The designed protocol 
describes a non-interventional experimental setup aimed at measuring the perceived behaviour of a 
mobile robot by naive subjects (defined as individuals that have never interacted with robots before) 
while performing collaborative tasks. The aforementioned memory-inspired modules trigger a 
different robot’s behaviour as a function of how the motor command is directed by different types 
of memory. The different memory-based models aim to foster a mutual understanding between 
machines and humans and enhance the trust and acceptance. In lab tests performed at IIT (previous 
experiment), we have evaluated how the robot autonomously completes a predefined task in the 
presence of humans, but without directly implementing how to avoid human collaborators upon task 
onset and adapt to changes in humans’ conduct. In this showcase (UPM), we executed a similar 
study, leveraging a wider space with fewer experimental constraints and adding surveillance and 
sensors. 

Recruitment of naïve participants is often a challenge but essential to address safety and efficacy. 
Human safety and privacy considerations have been addressed and approved by the corresponding 
ethical committees at UPM. These efforts also expand the project’s impact in future applications, 
since they are typically a big concern in the companies who implement such solutions. Nevertheless, 
the envisioned outcomes and changes in the behaviour need to be further explored and validated in 
controlled real scenarios, to be fine-tuned and released into a real use case (ROB, described in the 
next chapter). 

3.2.1 Research Aims 

To compare the behaviour of the KAIROS robot using two different implementations: (1) The working 
memory configuration and (2) the absence of a working memory model. That is, to compare the 
WorkMate module developed within the HBP versus a no-memory architecture. The comparison is 
studied with naïve participants who interact with the robot in a real-world simulation environment. 

The main objectives of the experiment in relevant environment were: 

• Evaluate the behaviour, adaptation capabilities, and performance of the robot in the presence 
of naive human pairs while changing from an environment devoid of people and another in the 
presence of humans.  
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• Evaluate the behaviour, adaptation capabilities, and performance of the robot depending on its 
configuration: either cognitive-inspired using WorkMate or without a memory module. 

• Investigate the effects of robot working memory configuration (WorkMate vs. no memory) on 
participants’ evaluation of the robot in terms of robot appearance.  

• robot movements. 

• perceived robot memory functions. 

• and on participants’ behavior during HRI in terms of  

• memory performance (using the LEGO task)  

• cognitive load, arousal (using sensor data)  

At the same time, examine the effects of participants’ positive and negative attitudes toward robots, 
social desirability, evaluation of the experimental situation, perceived task load, experience with 
technology and robots, and demographics are controlled for analogous to User Study 1 and User 
Study 2. 

3.2.2 Research questions 

1) Does the WorkMate memory module enhance the robot’s performance when collaborating with 
humans in a shared environment? 

2) Does the WorkMate memory module vs no memory module affect the user experience during 
human-robot collaboration tasks? 

3) Does the subjects’ impression of the robot’s appearance and behaviour have an effect on how 
they performed the task? 

4) What psychological aspects (e.g., attitudes toward robots, experience level with robots and 
technology, perceptions of the experimental situation, cognitive load, and demographic 
background) affect participants’ a) memory performance, b) evaluations of the robot 

The initial hypothesis was assuming that the version with WorkMATe memory implementations would 
lead to: 

1) Smoother robot navigation 

2) More positive overall evaluations/opinions of the robot 

3) A better memory performance during the LEGO task 

4) Lesser arousal and cognitive load during the LEGO task 

Results of the experimental study are shown in section 3.2.6. 

3.2.3 Experimental Design and Overview of the procedure 

The study took place at LifeSpace (formally known as Smart House Living Lab by LifeSTech) at UPM. 
Participants had to solve a memory task using LEGO constructions to test their cognitive performance 
while the RB-KAIROS robot was moving around, equipped with either WorkMATe or with no memory 
module. During the LEGO task, participants were equipped with wearable sensors (I.e., a Fitbit 
wristband) while 360º surveillance cameras captured the scenery and potential factors that might 
affect HRI complementary. After finishing the LEGO task, participants were asked to complete a 
questionnaire (see descriptions below for further details). Every experiment was performed 
simultaneously by two participants, and it took an average time of 20 minutes to complete the LEGO 
task. The robot was stopped once the participants completed the last LEGO construction. 
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3.2.4 Infrastructure 

LifeSpace (formally known as Smart House Living Lab by LifeSTech), is an environment relevant both 
for companies and the healthcare sector as it consists of a controlled and interactive ecosystem that 
combines advanced technologies to simulate real-life scenarios, offering innovative and personalised 
solutions. This ecosystem also serves to generate new knowledge, acquire home-similar data from 
individuals, and promote the creation of new products and services. Smart living environments can 
contribute to the premarket validation of new products and have beneficial effects on self-perceived 
quality of life, perception of physical health status, and social engagement, advancing the active 
and healthy ageing and frailty domains (Tannou et al., 2022). Specifically, more than 50 sensors and 
actuators, iterative robots, the Internet of Things (IoT), and smart devices and other emerging 
technologies such as blockchain are distributed in the LifSpace. This ubiquitous device distribution 
is designed to allow monitoring and testing of ICT applications, which capture data both within the 
controlled environment and associated users who actively participate and live at home in the city 
itself. The LifeSpace is designed to capture measurements of gait and further quantification of a 
person’s frailty, early detection of worsening trends due to disease progression, and even lacks in 
pharmacological treatment, to better adjust interventions to every person’s needs. LifeSpace is thus 
an ideal scenario to test human-robot interaction settings and gain new insights into how these 
interactions affect human performance and improve human-robot relations under controlled 
conditions. 

The LifeSpace hosted the activities of the experiment in relevant environment, aiming to 
scientifically contribute not only to the creation of innovative technology services but also to the 
open experimentation methodologies in realistic environments, tailored to the needs of end users 
(the companies),but also health professionals, patients and general society. 

3.2.5 Spatial Memory Task with LEGO bricks description 

We aimed to test participants’ memory performance during HRI with the RB-KAIROS robot because 
memory performance was considered a good proxy of working performance in a realistic setting. At 
the same time, we aimed to force participants to cross the robot’s trajectory. Therefore, 
participants had to perform an active task similar to the ostensible workers that were displayed in 
Study 1 to Study 3. We thus created a spatial memory task by adapting the digit span memory test 
(Werheid et al., 2002). To increase human-robot interaction and to have greater similarity to an 
industrial working setting, two participants performed the memory task at the same time. 
Participants had to recreate models of LEGO bricks from memory. Each participant had to recreate 
the same models. To do so, each participant had her or his own work cell (cell, because it should be 
protected from the eyes of the other participant in each case) and two brick stations. The work cells 
were placed opposite each other in the centre of the room. The two work cells were separated by a 
dark curtain. Participants’ brick stations were placed diagonally left and right from a participant’s 
work cell. This way, one participant performed the task in the left corner of the room and the other 
in the right corner. Therefore, each participant could do the task at his or her own pace without 
being distracted by the other participant. At the same time, however, the robot was moving around 
participants’ work cell and a non-crowded room. This procedure was deliberately kept similar to 
User Study 1, User Study 2 and the Lab Study at IIT to make findings comparable across studies.  This 
setup furthermore allowed us to investigate the effect of a robot on participants’ memory 
performance, while keeping effects of the “co-worker” low (see Figure 1 for participants’ working 
stations).  

By pressing a button, the LEGO models were presented on a screen for a limited time. In the digit 
span test (see Werheid et al., 2002), each digit is presented for a second. As participants must 
memorise two features of the LEGO bricks, namely their color and size, we opted to show each 
model two seconds per number of bricks. After having watched a model, participants had to collect 
the bricks they needed from two working stations. This way, participants were forced to cross the 
robot’s path. To balance participants’ walking direction (left vs. right), each brick station contained 
the same number of bricks (58 bricks each). However, one brick station contained “hot” colors (i.e., 
yellow, red) and one brick station contained “cold” colors (i.e., blue, green). In addition, each brick 
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station contained six white bricks, which were considered neutral in terms of color. These were 
needed to balance the number of “hot”- and “cold”-colored bricks in models with an odd number of 
bricks. After having recreated a model, participants had to place the final model into a box on their 
work cell. In order not to be distracted by viewing a former model when having to recreate another, 
the box had to be closed after a model had been placed into it. In addition, participants had to press 
a button to indicate that they finalised and stored a model into the box. Then, they had to press a 
button again to get the next model presented on a screen. Participants were not competing. 
Therefore, it was important to ensure that a participant did not get distracted when the other 
participant finished the task. The termination of a session thus had to be done discreetly. 

The trial simulates a situation where a person is engaged in the task in one part of the working area 
and in parallel, the interaction with the robot is forced, which navigates between the workers’ and 
the non-crowded area (see Figure 6 and Figure 7). For example, the robot avoided collisions and its 
aimed to adapt its behavior in the presence of humans. In the case of the RB-KAIROS with the 
WorkMate, the memory module is installed and compared with other working memory models. The 
working memory should guarantee the movements will be smoother. The robot will sense and avoid 
the participants moving in the room, as it is equipped with a real-time Human Detection system 
based on YOLO (You Only Look Once). The OpenCV-based library ArUco is used for the robot to sense 
recognisable features of the environment. We will compare the impression of participants with the 
two models of working memory through validated questionnaires. Our hypothesis was that 
participants would feel more comfortable and have a better working experience in presence with 
the robot with the WorkMate working memory model robot. During the procedure, participants are 
provided with a wrist-wearable device to track their heart rate variability in two stages: First, 
without the presence of the robot, to calibrate for 5-10 minutes their relaxed frequency rate, while 
the coordinator finishes the experiment explanation. Second, during the human-robot interaction to 
detect reactivity or alterations related to the presence and movement of the KAIROS-RB. Any 
alterations will be cross-checked with the camera recordings to evaluate if they coincide with a 
particular event (i.e., participants crossing the robot trajectory) while mean heart rate frequencies 
will serve to assess the influence or stress that the presence of the robot may cause to participants. 
We expect to validate quantitatively that participants will feel more comfortable and have a better 
experience with the WorkMate module robot. 

 
Figure 6: Experimental setup at UPM displaying the two working areas 
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Figure 7: Experimental setup displaying the workers’ area at UPM 

3.2.6 Results of the UPM study 

44 participants (22 per No Memory vs WorkMATe condition) took part in the study. Most of them 
were professionals with a university degree or PhD. Although most participants knew robots from 
other studies, only a few participants indicated to have known the RB-KAIROS robot before from 
media or other studies. When the experimental situation was perceived as positive robot movements 
and robot memory were more positively evaluated. 

In addition, participants made fewer errors during the memory task regarding the memory of the 
brick’s color of the bricks, F(1,40) = 5.29, p = .027 and the total error score across color and shape 
of the bricks F(1,40) = 4.94, p = .032. 

Participants’ Task load was low which led to more positive evaluations of robot appearance (F(1,40) 
= 20.10, p < .001). All this, however, applied for No Memory and WorkMATe equally (ps > .05). That 
is, the experimental condition (WorkMATe vs. No Memory) did not affect participants’ task 
performance, nor their overall evaluations of the robot. Evaluations of robot appearance and robot 
movements were moderate (means around 4) confirming findings of User Study 1 and User Study 2. 
However, robot memory was fairly positive evaluated in both experimental conditions (WorkMATe: 
M = 5.30, no memory: M = 5.15). 

To sum up, none of the robot memory configurations (WorkMATe vs. no memory) were decisive for 
more positive evaluations of the robot and better task performance. A positively perceived HRI 
setting and perceived low task load were crucial for a comfortable and efficient HRI in the working 
context. In addition, as in User Study 1 and User Study 2, our measures on robot appearance, robot 
movements, and robot memory were found to be highly reliable which means they are well suitable 
for further HRI research. 
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Figure 8: Experimental setup in UMP: the KAIROS moves towards the area without humans 

3.3 Showcase Demonstration in a realistic environment 
ROB 

3.3.1 Research Aims 

To test the adaptive memory-based robot navigation in an industrial working environment, porting 
the HBP model contribution named WorkMATE on the RB-KAIROS. Here, the operation of the RB-
KAIROS robot was performed in the working area of an SME such as ROB during working hours with 
real users.  

3.3.2 Infrastructure 

 
Figure 9: Layout of the experiment in ROB working facilities 

The selected environment consists of an entire floor of the ROB company, to prove the adaptive 
capabilities of the robot with working memory. The robot is programmed to fulfil a particular task 
in an area shared with naïve workers performing their daily routines. The floor is subdivided into 
three areas potentially visible with the sensors incorporated in the robot. The red area (Figure 9) is 
not accessible by people and therefore no human will be detected by the robot’s sensors. This 
simulates a storage area where the robot can freely move. When the robot detects the features of 
a void-of-people room, it prioritises speed and shortest routes to finish the programmed tasks or 
activities. In the blue area, both workers and the KAIROS-RB robot cohabit. In this area, the safety 
and comfortability of humans interacting with the robot are prioritised, avoiding collisions and 
smoothing motor behaviours when required. The yellow area is an area where the workers are 
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located but where the robot is not admitted. The yellow area does not have perimetric walls, which 
imply that workers are perceived by the robot’s sensors. 

3.3.3 Procedure 

For this study, we employed a RB-KAIROS+ robot (see Figure 12) [28] (weight 115Kg, size 978 × 776 
× 690mm), a rover robot equipped with four holonomic wheels, enabling it to move in any direction 
(holonomic), a frontal RGB-D camera (resolution 640x480, 30 fps) and a pair of SICK S300 laser 
scanners spanning 360 degrees, placed at the top right and bottom left corners of the base at a 
height of 30cm from the ground. The robot is equipped with a Kinova Jaco2 assistive robotic arm 
(see Figure 12) that was never put into action during the experiment; we kept it to preserve the 
robot’s appearance over multiple studies with the same platform. While the workers performed their 
pick-and-place task, the RB-KAIROS+ navigated between the populated and the unpopulated areas 
following a predefined sequence of waypoints (see Figure 11). During the route, the robot was 
expected to adapt its behaviour depending on its (i) spatial awareness (i.e., by recognising the room 
it was in and hence the potential presence of humans) and (ii) human awareness. In particular, the 
robot should navigate following one of three modalities, TASK-ORIENTED (TO), ATTENTIVE (ATT), 
and HRI-ORIENTED (HO), affecting its speed and possibility to move holonomically. Fostering co-
workers’ comfort [2], the robot slowed down as soon as it sensed being in the populated area (see 
Figure 10 and Figure 11). In addition, to improve the naturalness and legibility of its movement, as 
soon as humans were sensed, the robot imitated their non-holonomic behaviour [29], switching to a 
differential planner. We opted for this solution to match the expected behaviour given the robot 
car-like shape. The combination of these adaptations was expected to generate less abrupt 
acceleration and breaking along with lower energy consumption and more comfortable and 
predictable trajectories, allowing the co-workers to evade the robot if needed Notably, if the robot 
is unaware of being in any of the two areas and unable to perceive any human, its behaviour is non-
deterministic. Here, working memory could be beneficial. A working-memory-enabled robot could 
remember its past perception, keeping the correct behaviour until spatial and/or human awareness 
was restored. 

 
Figure 10: Area available for the robot where the absence of human workers was guaranteed 
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Figure 11: Set-up for the experiment in ROB where the two experimental areas are visible 

 
Figure 12: RB-KAIROS robot in ROB performing arm motor action based on working memory 

3.3.4 Results 

The results of this showcase are promising, though we have a fairly small sample of robot experts. 
The analysis provided in the ROB showcase is mainly qualitative. In the real experimental setting, 
we found that participants in the no memory condition shared less positive evaluations of robot 
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movements (F(1,10) = 8.83, p = .014) and experience with robots (F(1,9) = 11.97, p = .007) than 
participants in the WorkMATe condition.  Participants’ lower levels of experience with robots did 
not affect participants’ evaluations of the robot (ps > .05).  The effects of experimental condition on 
participants’ evaluations of robot appearance and robot memory were not statistically 
significant (ps > .05).  Overall evaluations of the robot were fairly positive. Participants’ open 
response indications about their ideas of robot memory revealed that expert opinions about robot 
memory were not that different from the ideas of a heterogeneous sample in User Study 1. Robot 
memory was associated with data storage, capacity, and processing amongst the robot’s capability 
to “learn” in terms of autonomous adaptation to new settings and changing situations automatically.  

Complementary to overall positive evaluations of the robot, most participants described the robot 
movements as safe, precise, and dynamic. Some participants just remarked the robot could make 
less abrupt movements and that it could stop earlier when detecting humans, but these participants.  

To sum, robot movements were more positively evaluated when the robot was shown with no 
memory vs. WorkMATe while participants’ overall evaluations of the robot were fairly positive in 
both experimental conditions. Despite the small sample size, again, our measures were proved 
reliable which makes them well suitable for further HRI research in online settings, lab settings, and 
in real industrial settings (α = .79 – .93). Complementary to participants’ suggestions in User Study 
1, participants’ Participants’ suggestions for improvements of the robot movements might help to 
further develop the RB-KAIROS (and any other industrial) robot’s navigation. Overall, our research 
findings were fruitful regarding the technological developments of memory-based robot navigation 
as well as regarding the perspective of potential users that collaborate with an industrial robot at 
work. 

3.4 Emerging Collaborations 
In addition to the above, a number of productive collaborations have emerged from the work 
described. In particular, activities related to motor control constitute a natural extension of those 
on motor control models exploited in Task 3.4. A roadmap is being defined to provide Task 3.4 
contributors with models developed for the present demonstrator, supporting embodiment and 
motor control strategies.  

The opportunity of extending this collaboration will be investigated, with the long-term perspective 
of developing cognitive models able to use memory (not only working memory but also other 
typologies of memory) and reuse memory to create adaptive motor behaviours with applications to 
the industrial and healthcare robotics.  

Finally, discussions are emerging on the possibility of merging (relevant aspects of) these showcases 
in WP3 with other showcase; for instance, including the anthropomorphic manipulator considered in 
Showcase 5 (and corresponding dextrous manipulation capabilities) with the working memory 
component that has been presented and demonstrated in this Deliverable. 
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