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Multiscale Network Models 
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Figure 1: Construction and validation of a mean-field model of basal ganglia circuits. 

This model is derived from microcircuits and is compatible with implementation in The Virtual Brain to perform whole-
brain simulations, including basal ganglia (collaboration between Partners KI and CNRS). 

.



   
 

D1.4 (D10) SGA3 M36 SUBMIT 230405 PU = Public 5-Apr-2023 Page 2 / 18 
 

 

 
Document Title: Multiscale Network Models 

Document Filename: D1.4 (D10) SGA3 M36 SUBMIT 230405 

Deliverable Number: SGA3 D1.4 (D10) 

Deliverable Type: Demonstrator 

Dissemination Level: PU = Public 

Planned Delivery Date: SGA3 M36 / 31 Mar 2023 

Actual Delivery Date: SGA3 M37 / 5 Apr 2023 

Author(s): 
Alain DESTEXHE, CNRS (P10) 
Federico TESLER, CNRS (P10) 

Compiled by: Alain DESTEXHE, CNRS (P10) 

Contributor(s): 

Roberta LORENZI, UNIPV (P70), contributed to Sections 2.2.2 and 2.2.4 
Claudia CASELLATO, UNIPV (P70), contributed to Section 2.2.4 
Alice GEMINIANI, UNIPV (P70), contributed to Section 2.2.4 
Alexander KOZLOV, KTH (P39), contributed to Section 2.2.3 
Adam PONZI, CNR (P12), contributed to Section 2.2.2 
Jan FOUSEK, AMU (P78), contributed to Section 2.3 
Gorka ZAMORA-LOPEZ, UPF (P77), contributed to Section 2.4 
Idan SEGEV, HUJI (P60), contributed to Section 2.1.1 
Michele MIGLIORE, CNR (P12), contributed to Section 2.1.2 
Sten GRILLNER, KI (P37), contributed to Section 2.1.3 
Jeanette HELLGREN, KTH (P39), contributed to Section 2.4 
Egidio D’ANGELO, UNIPV (P70), contributed to Sections 2.1.4 and 2.2.4 
Gustavo DECO, UPF (P77), contributed to Section 2.4 
Viktor JIRSA, AMU (P78), contributed to Section 2.3 
Federico TESLER, CNRS (P10), contributed to Sections 2.2.2 and 2.2.3 
Alain DESTEXHE, CNRS (P10), contributed to Sections 1, 2.2.1 and 3 

WP QC Review: Giovanna RAMOS QUEDA, AMU (P78), Pilar F. ROMERO, UPM (P68) 

WP Leader / Deputy 
Leader Sign Off: Viktor Jirsa, AMU (P78) 

T7.4 QC Review: Martin TELEFONT, EBRAINS (P1) 

Description in GA: 

Demonstrators will be available in EBRAINS featuring a multiscale data-driven 
network model (microcircuit models for cortex, cerebellum, hippocampus, basal 
ganglia) using Neuron and NEST, and mean field models integrating the specifics of 
each brain region; model will be integrated in WP1 brain reference framework, and 
will be informed and validated against empirical data sets, including parameter 
maps for neuroreceptors, molecular regulators and their complexes with cellular 
partners. 

Abstract: 

This Deliverable covers models that will be available in EBRAINS, featuring a 
multiscale data-driven network model (microcircuit models for cortex, cerebellum, 
hippocampus and basal ganglia) using Neuron and NEST, and mean field models 
integrating the specifics of each brain region. The models will be integrated in the 
WP1 brain reference framework, and will be informed and validated against 
empirical data sets, including parameter maps for neuroreceptors, molecular 
regulators and their complexes with cellular partners. 

Keywords: Microcircuit models, mean-field models, whole-brain models 

Target Users/Readers: 
Computational neuroscience community, neuroimaging community, 
neuroinformaticians, neuroscientific community, neuroscientists, platform users, 
researchers, scientific community, students 

 

  

Project Number: 945539 Project Title: HBP SGA3 



   
 

D1.4 (D10) SGA3 M36 SUBMIT 230405 PU = Public 5-Apr-2023 Page 3 / 18 
 

 

Table of Contents 

1. Introduction ............................................................................................................ 4 
2. Description of the models in the Deliverable ................................................................... 4 

2.1 Microcircuit models .............................................................................................. 4 
2.1.1 Microcircuit models of cerebral cortex (HUJI) ...................................................... 4 
2.1.2 Microcircuit models of hippocampus (CNR) .......................................................... 5 
2.1.3 Microcircuit models of basal ganglia (KI) ............................................................. 6 
2.1.4 Microcircuit models of cerebellum (UNIPV) .......................................................... 8 

2.2 Mean-field models ............................................................................................... 9 
2.2.1 Mean-field models of cerebral cortex ................................................................ 9 
2.2.2 Mean-field models of hippocampus ................................................................. 10 
2.2.3 Mean-field models of basal ganglia ................................................................. 11 
2.2.4 Mean-field models of cerebellum ................................................................... 12 

2.3 Integration in the WP1 reference framework ............................................................. 15 
2.4 Integration with receptor maps ............................................................................. 15 

3. Looking Forward .................................................................................................... 16 
4. References ........................................................................................................... 17 

 

Table of Figures 

Figure 1: Construction and validation of a mean-field model of basal ganglia circuits. ......................... 1 
Figure 2: Human cerebral cortex model ................................................................................. 5 
Figure 3: Human hippocampus model .................................................................................... 6 
Figure 4: Conceptual model of the basal ganglia for action selection used for the NEST model ............... 7 
Figure 5: Mean-field model of the dorsal striatum based on simulation in NEST .................................. 7 
Figure 6: Cerebellar network reconstruction using the BSB .......................................................... 8 
Figure 7: Model simulations of a human Purkinje cell of the cerebellum compared to a mouse PC .............. 9 
Figure 8: Fitting of the transfer function to calculate the cortical mean-field model ......................... 10 
Figure 9: Validation of the mean-field model ......................................................................... 10 
Figure 10: Numerical transfer function (TF) obtained from single cells simulation ............................. 11 
Figure 11: Comparison between the mean-field model and the spiking-network simulations. ............... 11 
Figure 12: Transfer functions of basal ganglia neurons .............................................................. 12 
Figure 13: Comparison between spiking network simulations and the mean-field model (MF) ............... 12 
Figure 14: Population-specific Transfer Functions (TFs) ............................................................ 13 
Figure 15: Comparison of Spiking Neural Network and mean-field activity in cerebellar cortical populations

 .......................................................................................................................... 14 
Figure 16: Integration of the modelling workflows in the human atlas reference framework. ............... 15 

 

  



   
 

D1.4 (D10) SGA3 M36 SUBMIT 230405 PU = Public 5-Apr-2023 Page 4 / 18 
 

1. Introduction 
In this Deliverable, we describe the design of microcircuit models of different human brain regions: 
cerebral cortex, hippocampus, basal ganglia and cerebellum. These models describe activity at 
microscales (local circuit), up to mesoscale (typically millimetres). In some cases, these microcircuit 
models can comprise morphologically detailed models of single cells, typically simulated using the 
NEURON simulator. Alternatively, microcircuit models can be made of point neurons, either Hodgkin-
Huxley (HH) or different types of integrate-and-fire (IF) models. Such point neuron model networks 
are typically simulated with simulators such as BRIAN or NEST. 

To reach larger scales than microcircuit models, we developed models aimed at investigating 
populations of neurons (mesoscale to macroscale). Here, our approach was to design mean-field 
models, in which we started from the spiking model level and construct a mean field (bottom-up) to 
yield a population model. Typically, such mean-field models describe the activity of excitatory and 
inhibitory neuron populations with a compact set of equations. Such mean fields can then be 
connected into networks of mean fields, to describe the activity of neural tissue at scales from 
millimetres to centimetres. Ultimately, the mean fields can be integrated in specific simulation 
tools, such as The Virtual Brain (TVB), simulating the whole cortex or whole-brain. 

In this Deliverable, we describe this integration. This work is related to the multiscale integration 
goal of the HBP, as well as to SGA3 Showcase 3. 

2. Description of the models in the Deliverable 

2.1 Microcircuit models 

2.1.1 Microcircuit models of cerebral cortex (HUJI) 

The Segev group at the Hebrew University of Jerusalem, in collaboration with the C. deKoch team 
at the Free University in Amsterdam, constructed models of connected pairs of L2/3 cortical 
pyramidal cells. Synaptic transmission between these pyramidal neurons was based on 
neurosurgically-resected human middle temporal gyrus (MTG, Brodmann area 21). Local connectivity 
is comparable to mouse Layer 2/3 connections in the temporal association area, but synaptic 
connections in human are 3-fold stronger and more reliable (0% vs. 25% failure rates, respectively). 
We developed a theoretical approach to quantify properties of spinous synapses showing that 
synaptic conductance and voltage change in human dendritic spines are 3-4 fold larger compared to 
mouse, leading to significant NMDA receptor activation in human unitary connections. This model 
prediction was validated experimentally by showing that NMDA receptor activation increases the 
amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in 
mouse connections. See details in Hunt et al. 2022, P3873. 
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Figure 2: Human cerebral cortex model 

A, B: Pre-and post-synaptic Human L2/3 cortical pyramidal neurons. C: Location of putative synapses between the 
cells shown in A and B. D: Modelled human L2/L3 neuron with dendritic locations of 3 synaptic contacts (numbered 
circles) originating from a single presynaptic L2/L3 neuron. Apical and basal trees are marked in dark and light orange 
respectively, schematic electrode at soma is also shown. E: Somatic voltage response (black traces) for the neuron 
shown in a) to 2 steady hyperpolarizing current inputs (here, −62 and −108 pA) and the corresponding model fit 
(brown traces) with respective model values for Ra and Rm. F: “Peeling” of somatic voltage transient in response to a 
brief (2 ms) hyperpolarizing step current (not shown) in the neuron shown in a). τ0, extracted from this peeling, 
together with Rm as in b), are used to calculate Cm, whereas Peel value is computed from τ1and τ0 (see Methods). G: 
Electrotonic dendrograms of the neuron shown in a, with locations of the three synaptic contacts. H: Experimental 
somatic EPSP (black trace) in response to a presynaptic spike with model fit superimposed (light brown). Synapses 
were activated on modelled dendritic spines. AMPA- and NMDA- components of the modelled EPSP are also shown 
(dashed lines) with their respective maximal conductances value (at each synaptic contact). The NMDA-component is 
calculated by subtracting the AMPA component of the EPSP from the AMPA- plus NMDA-based EPSP. I, J, K: Computed 
EPSPs and respective AMPA- and NMDA-components at the spine head membrane located at the three synaptic sites 
shown in a). The upper (blue) and lower (red/brown) insets show, respectively, the spatial distribution of the neuron’s 
membrane area a) as a function of the physical distance, x, from the spine and the “equivalent cable” as seen from 
the spine perspective (spine is located at left end of these insets, soma location is marked by the black dot, see 
Methods). Observing the “equivalent cable” insets, the electrotonic decoupling of spine #1 and #3 from the 
impedance load due to the respective red cable (at the left of inset) results in relatively large EPSPs at these spines, 
whereas the large impedance load that is adjacent to spine #2 results in a relatively small EPSP at this spine. 

2.1.2 Microcircuit models of hippocampus (CNR) 

Partner CNR reported the availability of a preliminary full-scale NEST model of the human 
hippocampal CA1 region at cellular level (Figure 3), now is available on the EBRAINS KG. A 
preliminary full-scale NEST model of the human hippocampal CA1 region at cellular level is available 
on the EBRAINS KG at this link https://search.kg.ebrains.eu/instances/7fb22b04-5fe1-4f18-b0d0-
dc1386f90f83. 

https://search.kg.ebrains.eu/instances/7fb22b04-5fe1-4f18-b0d0-dc1386f90f83
https://search.kg.ebrains.eu/instances/7fb22b04-5fe1-4f18-b0d0-dc1386f90f83
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A paper on its implementation is in press (Gandolfi et al., 2023, in press). The model is based on 
data obtained from the analysis of histological human brain images, which are publicly available 
from the BigBrain Jülich repository1. A custom-made computational algorithm has been developed 
to extract the positions of neuronal somata from the images. A second custom-made algorithm has 
been developed to connect neurons following morpho-anatomical landmarks. The full matrix of 
neuronal positioning, together with the indices of connected neurons, is provided as a connection 
matrix, in order to be used for large-scale simulations with single point neurons implemented in 
NEST. 

 

Figure 3: Human hippocampus model 
A. 3D positioning of the excitatory (Pyramidal, pink) and inhibitory neurons. Interneurons are divided into 7 classes, 
according to positioning and morphological features. B. Reoriented 3D neuronal positioning shown in A to highlight 
interneurons distribution. C. 2mm transversal slice of 3D positioning obtained from sectioning CA1 between the two 
grey shaded planes shown in B, right. Note the NGF-like neurons (grey spots) in the lower part corresponding to 
Stratum Radiatum (SR), Stratum Lacunosum-Molecularis (SLM), and Ivy-like neurons (yellow spots) scattered within 
the Pyramidal layer (SP). 

2.1.3 Microcircuit models of basal ganglia (KI) 

The computational model of the basal ganglia we use here for the action selection is based on 
detailed multicompartmental simulations (Hjorth et al., 2020, P2489 and Frost Nylén et al., 2021, 
P2674) that have then been reduced to NEST. It follows the classical concept of the direct and 
indirect pathways throughout the basal ganglia (Figure 4), which compete for the activity of the 
output channel in substantia nigra pars reticulata (SNr) or globus pallidus interna (GPi). Tonic activity 
of the GABA-ergic output nucleus inhibits the downstream action-specific command centre and can 
be facilitated to prevent corresponding action or suppressed to release it through disinhibition. The 
dorsal striatum makes the major input stage of the basal ganglia and lays down the two main 

 

1 BigBrain: https://search.kg.ebrains.eu/instances/af8d3519-9561-4060-8da9-2de1bb966a81  

https://search.kg.ebrains.eu/instances/af8d3519-9561-4060-8da9-2de1bb966a81
https://search.kg.ebrains.eu/instances/af8d3519-9561-4060-8da9-2de1bb966a81


   
 

D1.4 (D10) SGA3 M36 SUBMIT 230405 PU = Public 5-Apr-2023 Page 7 / 18 
 

pathways which originate in the pools of striato-nigral projection neurons (dSPN) and striato-pallidal 
projection neurons (iSPN), both inhibited by fast-spiking interneurons (FS). Cortical command to the 
dSPN pool which inhibits activity in SNr and releases the action is interpreted as “Go” signal, while 
the command applied to iSPN pool which indirectly increases the output activity in SNr, acting via 
inhibitory globus pallidus externa (GPe) and excitatory subthalamic nucleus (STN), makes a “No-Go” 
signal. Action selection within this concept is understood as a result of the competition between the 
“Go” and “No-Go” signals, which originates in the striatum. 

 
Figure 4: Conceptual model of the basal ganglia for action selection used for the NEST model 

Excitatory and inhibitory projections are shown in red and blue, respectively. 

 
Figure 5: Mean-field model of the dorsal striatum based on simulation in NEST 

A: Striatal circuit. Inhibitory connections are marked with dots, excitatory inputs are shown with arrows. Population 
of fast-spiking interneurons (FS) provides feed-forward inhibition to the interconnected pools of the direct- and 
indirect-pathway striatal projection neurons (dSPN, iSPN). B: The solid lines represent the mean field, which is based 
on the NEST simulation represented as the jitter in the blue traces, colour-coded for FS, dSPN and iSPN as in the 
scheme in A. The cortical command is in red. Instantaneous firing rates in the spiking network model are shown with 
semi-transparent jittered lines. Overlaid solid lines correspond to the mean-field model. 
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Dynamics of the dorsal striatum are simulated using spiking neural networks (NEST), as well as the 
non-spiking mean-field mathematical approximation of the underlying activity. The mean field 
model is also represented in the next section (Figure 12 and Figure 13). The circuitry of the 
corresponding simulations is shown in Figure 5A. The cortical command (Ctx, in red) is simulated as 
a Poissonian excitatory synaptic input in the network simulations, or a continuous firing rate signal 
in the mean-field approximation (see Figure 5B, red line). Populations of FS, dSPN and iSPN cells are 
modelled using adaptive exponential integrate and fire neurons (AdEx) and the connectivity is set to 
the values obtained in biologically detailed large-scale simulations (Hjorth et al., 2020, P2489). 

2.1.4 Microcircuit models of cerebellum (UNIPV) 

Partner UNIPV reports the publication of the first full microcircuit model of the cerebellar cortex 
(De Schepper et al., 2022, P3729), along with the presentation of the modelling component workflow 
“Brain Scaffold Builder”2, which is now made available through EBRAINS. 

The model of the cerebellum was generated accounting for a large set of biological data and was 
first implemented in NEURON (Figure 6) and then translated in NEST. Multicompartmental neuron 
models, which have been reconstructed and validated beforehand (Masoli et al., 2015; Masoli et al., 
2017 P1191 and Masoli et al., 2022, P3875), were used to generate network connectivity and then 
used for detailed circuit simulations. These were validated against a wealth of experimental data to 
yield a new ground truth of the functional organisation of the cerebellar network. The network was 
subsequently transformed in NEST, using EGLIF point neuron models maintaining the salient non-
linear neuronal dynamics (Geminiani et al., 2019, P2007 and Geminiani et al., 2018, P1580). The 
network is now being morphed into the equivalent human version (Figure 7). 

 
Figure 6: Cerebellar network reconstruction using the BSB 

 

2 https://ebrains.eu/service/brain-scaffold-builder  

https://ebrains.eu/service/brain-scaffold-builder
https://ebrains.eu/service/brain-scaffold-builder
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Figure 7: Model simulations of a human Purkinje cell of the cerebellum compared to a mouse PC 
A: morphological reconstruction and dendritic membrane potential during simulation of repetitive neurotransmission. 
B: dendritic EPSPs with different parallel fibre inputs. C: Spike discharge changes in the soma during synaptic 
activation. 

2.2 Mean-field models 

2.2.1 Mean-field models of cerebral cortex 

Partner CNRS has worked on developing mean-field models of the cerebral cortex, starting with AdEx 
networks of RS and FS cells (Zerlaut et al., 2018, P1019), then including adaptation (di Volo et al., 
2019, P1864) mean-field models, developed for Hodgkin-Huxley models of RS and FS cells (Carlu et 
al. 2020, P2369) and, more recently, heterogeneous mean-field models of RS and FS cells (Di Volo 
and Destexhe, 2021, P2920). In each case, the mean-field model was validated against the spiking 
network, for both spontaneous activity and response to external input. The AdEx mean-field model 
with adaptation was remarkably precise in capturing the network response to stimuli and was chosen 
as the model to be implemented in EBRAINS (Goldman et al., 2022, P3023). It has been the basis of 
TVB models for mouse, macaque and human in HBP SGA3 Showcase 3. The behaviour of the cortical 
mean-field model is described below. Figure 8 shows the typical fitting of RS and FS cell types to the 
transfer function, which is at the heart of the mean-field formalism. Figure 9 shows the validation 
of the mean-field model by comparing a spiking network to the mean-field, in the case of a network 
responding to external inputs. 
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Figure 8: Fitting of the transfer function to calculate the cortical mean-field model 

A: RS cells (excitatory). B: FS cells (inhibitory). 

 
Figure 9: Validation of the mean-field model 

A: Raster of the spiking activity of RS (green) and FS (red) cells during the presentation of an external stimulus 
(Gaussian distributed excitatory synapses). B: Mean activity of each population in the network (noisy curves), 
compared with the mean-field prediction (continuous curves). 

This mean-field model has been implemented in TVB in EBRAINS (Goldman et al., 2022, P3032). It is 
now available in EBRAINS, for the mouse brain, the monkey brain and the human brain. See 
https://wiki.ebrains.eu/bin/view/Collabs/showcase-3-tvb-brain-states-modelling/Drive 

2.2.2 Mean-field models of hippocampus 

Partners CNR, UNIPV and CNRS collaborated to design a mean-field model of hippocampal circuits, 
starting with the CA1 region of hippocampus. The model comprised excitatory and inhibitory neurons 

https://wiki.ebrains.eu/bin/view/Collabs/showcase-3-tvb-brain-states-modelling/Drive
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described by the Extended Generalised IF model (EGLIF). The mean-field was constructed and 
validated by comparing the network model with the mean-field prediction. The model considered a 
network made by pyramidal cells and interneurons from CA1. In Figure 10, we show the numerical 
transfer function obtained for each type of neuron, together with the fit for the semi-analytical 
transfer function used in the mean-field formalism. This mean-field model was implemented in 
EBRAINS; see: https://wiki.ebrains.eu/bin/view/Collabs/mean-field-hippocampus/. 

 
Figure 10: Numerical transfer function (TF) obtained from single cells simulation 

Numerical transfer function (TF) obtained from single cells simulations of a representative pyramidal cell (left) and 
an interneuron (middle) in the CA1 region of the hippocampus. Right: Fitting of the semi-analytical TF for the 
interneuron. 

 
Figure 11: Comparison between the mean-field model and the spiking-network simulations. 

Top panel: raster plot of the network for an oscillatory input in the theta band (10Hz). Middle panel: mean firing rate 
obtained from the network for the Pyramidal and Interneuron cells together with the Mean field model calculations. 
Bottom panel: external input. 

2.2.3 Mean-field models of basal ganglia 

Partner KI and CNRS collaborated to design mean-field models of the basal ganglia. The model 
comprised three different types of striatal cells: fast-spiking interneurons (FS), plus direct and 
indirect pathway projection neurons (dSPN and iSPN). Each cell type was described by a 
corresponding Adaptive Exponential Integrate and Fire (AdEx) model. In the network, SPN cells are 
interconnected, while FS project to SPNs and receive input from other FS cells. This mean-field 

https://wiki.ebrains.eu/bin/view/Collabs/mean-field-hippocampus/
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model was implemented in EBRAINS, see https://wiki.ebrains.eu/bin/view/Collabs/mean-field-
basal-ganglia. In Figure 12, we show the fit of the transfer function for each type of cell in network. 

 
Figure 12: Transfer functions of basal ganglia neurons 

Fit of the transfer function for direct projection neurons (dSPN), indirect projection neurons (iSPN) and fast-spiking 
interneurons (FS) of the basal ganglia (BG). 

To validate the mean-field model, in Figure 13 we show the results of network simulations, together 
with the mean-field predictions. The figure shows the response of the network and the mean-field 
to an external input. 

 
Figure 13: Comparison between spiking network simulations and the mean-field model (MF) 

Top: raster plot of the three neuronal populations in the BG (FS in red, dSPN in magenta and iSPN in yellow) during 
the application of an external input. Middle: mean firing rate and the corresponding mean-field calculation for each 
population. Bottom: external input 

2.2.4 Mean-field models of cerebellum 

Partners UNIPV and CNRS collaborated recently to obtain a mean-field model of cerebellum, 
comprising the different cell types (Purkinje cells, Golgi cells, granule cells, etc). The model was 
validated against the spiking network (see Section 2.1.4) for responses to different types of stimuli, 
including oscillatory responses (Lorenzi et al., 2022, P3874). 

Figure 14 shows the numerical template of the transfer functions to underline the inter-population 
differences in working frequencies that are captured by population-specific TFs and, as a 
consequence, by the MF. Regarding the correspondence between SNN and MF (Figure 15), we show 
the MF prediction (line) over the SNN results (histogram). We also added a boxplot for Purkinje cells’ 

https://wiki.ebrains.eu/bin/view/Collabs/mean-field-basal-ganglia
https://wiki.ebrains.eu/bin/view/Collabs/mean-field-basal-ganglia
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activity that are the cerebellar MF output (in practice, the signal that would be input for other 
cerebellar modules and/or region-specific MFs) to show quantitatively that MF prediction is within 
SNN output. The protocols we used are realistic patterns simulating sensory stimulus and/or cortical-
like patterns. This mean-field model was implemented in EBRAINS; see 
https://wiki.ebrains.eu/bin/view/Collabs/mean-field-cerebellar/. 

 

Figure 14: Population-specific Transfer Functions (TFs) 
Population-specific Transfer Functions (TFs) reflect differences amongst the populations. A: The numerical templates 
are extracted from Spiking Neural Network. 2D numerical TF is showed for GrC, MLI and PC, with inputs from 2 
presynaptic populations. 3D numerical TF is reported for GoC, receiving input from 3 presynaptic sources: mossy 
fibres, GrC and GoC. B: Numerical TFs are used to fit the analytical TFs (νout). Excitatory inputs are reported on the 
x axis, inhibitory ones are colour-coded. 

https://wiki.ebrains.eu/bin/view/Collabs/mean-field-cerebellar/
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Figure 15: Comparison of Spiking Neural Network and mean-field activity in cerebellar cortical 

populations 
Additional information on Figure 15 above: Comparison of Spiking Neural Network (SNN) and mean-field (MF) activity 
in cerebellar cortical populations (GrC = Granule Cells, GoC = Golgi Cells, MLI = Molecular Layer Interneurons, PC = 
Purkinje Cells), in response to different cortical-like driving input patterns (𝜈𝜈drive). The trace of MF activity is overlaid 
on the spiking activity (Peristimulus Time Histogram, time bins of 15ms). In all cases (A, B, C and D), MF activity is 
within physiological ranges. Boxplots of PC-simulated activity with SNN and MF show that the MF is able to respond to 
the different stimulation patterns within the same frequency ranges of SNN. 
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2.3 Integration in the WP1 reference framework 
The multilevel EBRAINS Human Brain Atlas3 establishes a common reference space where data and 
models can be represented and spatially anchored. It builds on the Julich-Brain cytoarchitectonic 
maps, which provide a basis for microstructural reference parcellation. The Atlas facilitates access 
to spatially resolved data features, including receptor densities, cell distributions, multiple levels of 
connectivity, physiological recordings and functional imaging. 

This rich, spatially organised data can be used to inform and validate models integrated in the same 
reference space. For this to be practically realisable, the datasets are made interoperable with the 
modelling services (e.g. The Virtual Brain) through programmatic interfaces (siibra-python4) which 
provide convenient and structured access to the data of the multilevel Human Brain Atlas. 

For the mean field models, the integration in the brain reference framework is realised by means of 
an adapter developed in WP1 for The Virtual Brain. In particular, this adapter was employed to 
retrieve subject-specific structural connectivities and fMRI data from a cohort dataset to develop a 
novel causal inference framework in the context of healthy brain ageing (Lavanga et al., 2022, 
P3860; HBP SGA3 Showcase 1). Furthermore, the AdEx mean field model was integrated in TVB, and 
makes use of the receptor density maps from the EBRAINS Human Brain Atlas, as described in more 
detail in the next section. 

 
Figure 16: Integration of the modelling workflows in the human atlas reference framework. 

Additional information on Figure 16 above: The multilevel Human Brain Atlas (left) provides structural and functional 
datasets anchored in a common space through a programmatic interface with siibra-python (middle) to inform model 
building and validation workflows for assessing both variability across individual and brain regions (right). 

2.4 Integration with receptor maps 
Partner UPF collaborated with Partner CNRS in order to account for regional neuroreceptor densities 
in two mean-field models: the Montbrió-Pazó-Roxin (MPR) (Montbrió et al., 2015) and the Mean-field 
AdEx models (Carlu et al., 2020, P2369). In recent years, it has become evident that cortical regions 
differ in the relative numbers of receptor densities for a variety of neurotransmitters. This 

 

3 https://ebrains.eu/service/human-brain-atlas  
4 https://github.com/FZJ-INM1-BDA/siibra-python  

https://ebrains.eu/service/human-brain-atlas
https://ebrains.eu/service/human-brain-atlas
https://github.com/FZJ-INM1-BDA/siibra-python
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heterogeneity affects the local behaviour of individual cortical areas and reveals that brain regions 
will be differently affected by, for example, pharmacological intervention. 

The MPR is a model of one population of all-to-all coupled, quadratic integrate-and-fire neurons that 
consist of two equations, one representing the average membrane potential of the population and 
the other representing their mean firing rate. We extended the model in order to create a network 
of brain areas, by modelling each region as a pair of coupled excitatory and inhibitory populations. 
We included additional equations to couple across populations via synaptic gating variables and 
added feedback inhibitory control. Finally, modulation of GABAa neuroreceptors for each brain 
region was included as a fast synaptic variable. The model has been implemented in the TVB 
simulation engine. 

We have adapted the model to simulate a cortical network of mean-field AdEx populations (see 
Section 2.2.1); Goldman et al., 2022, P3023) developed in TVB for human connectivity (HBP SGA3 
Showcase 3) and included a capability for regional modulation of neuroreceptors, especially for 
GABAa and NMDA. Therefore, we included fast (for GABAa) and slow (for NMDA) synaptic currents 
for the original equations, with saturation constants proportional to the receptor density observed 
from empirical data. 

Both models are currently being employed in HBP SGA3 Showcase 1 to simulate the effects of 
Propofol and Ketamine anaesthetics which block GABAa and NMDA neuroreceptors, respectively. 
Empirical maps of these neuroreceptor densities (Hansen et al., 2022) were provided by HBP partners 
in Task T1.1 and were made available for testing and validation of the workflows, via the Siibra 
interface (https://siibra-python.readthedocs.io/en/latest/). 

Finally, to continue bridging from the receptor level to the cellular/microcircuit level, Partner KTH 
has improved autonomised pipelines for optimising models for AMPA/NMDA synapses with short-term 
plasticity (Carannante et al., 2022, P3872). These model components can then be integrated into 
microcircuit models. Furthermore, KTH has, together with several other HBP partners, demonstrated 
how molecular level modelling approaches can inform systems biology models, such as receptor-
induced signalling (Keulen et al., 2023, P3700). We have also highlighted and reviewed the use of 
FAIR modelling workflows for bridging between molecules, synapses and microcircuits (Eriksson et 
al., 2022, P3699). 

3. Looking Forward 
The models described in this Deliverable show the multi-scale, multi-region investigation done in 
WP1 Tasks T1.5 and T1.6. The microcircuit models are conceived first in this bottom-up approach, 
and mean-field techniques are employed to yield population models for each brain region. These 
mean-field models are then integrated in large-scale simulations using TVB, allowing us to reach the 
whole-brain level. This work thus spans multiple scales, from single cells to the whole brain. 

The essential perspective is to integrate all these models in TVB into a single whole-brain simulation 
with interacting brain regions. To do this, we must first investigate the “mesoscale” level 
(millimetres) and reconstruct large-scale models of entire brain regions. For example, modelling 
primary visual cortex (V1) can be done using a large number of mean-field nodes, connected together 
using the V1 connectivity data. This was done for simple activity patterns such as propagating waves 
(Zerlaut et al., 2018). We would like to follow the same approach to simulate the entire 
hippocampus, the entire cerebellum and the entire basal ganglia. Note that mean-field models of 
the thalamus are in preparation (not shown here) and will be essential to connect the different brain 
structures. 

The final step will be to assemble the brain region models into a whole-brain simulation, the 
precision of which will depend on the connectome data available. This is where EBRAINS can play a 
particularly useful role, by allowing us to use anatomical data (Human Brain Atlas), with the 
simulation capacities of TVB, possibly with the help of large-scale computing resources (HPC). All 
these components are present in EBRAINS, so we anticipate that this will enable the building of such 
multi-scale models. 

https://siibra-python.readthedocs.io/en/latest/
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