

DOMINO

Development of cortical multisensory integration mechanisms at micro- and macroscales during normal and pathophysiological conditions

HBP Partnering Projects Meeting: Status quo & outlook

5-7 September 2022 | Nijmegen, The Netherlands

Human Brain Project

Panteion University

2

Multisensory integration in autism spectrum disorders

Impaired ability to properly integrate multiple sensory modalities has been hypothesized to underlie many of the symptoms in autism spectrum disorders (ASD).

However, how multisensory integration develops and how it is expressed in ASD is poorly understood.

Multisensory integration in autism spectrum disorders

Foss-Feig et al., 2010

EBRAINS

The temporal window for multisensory integration (MI) is extended in ASD.

Understanding how MI develops, and its disruptions in ASD is key to improve diagnosis and develop new treatments.

The DOMINO paradigm

Mouse experiments

- Multi-area microcircuitlevel characterization of MI development
- WT and ASD mice
- From birth to adulthood

Modeling experiments

- Spiking neural networks with biologically plausible plasticity
- A model of MI development

Human experiments

- EEG and psychophysics experiments
- TD and ASD subjects
- From childhood to adulthood

Project structure and interactions with HBP/EBRAINS

Our team

7

. . .

Đ.

WP1: Mouse experiments

UNIVERSITY OF AMSTERDAM

25

WP1: Mouse experiments

25

25

-250

Example V1

DOWINO

How do the temporal aspects of multisensory integration vary across development and in ASD?

Selection of Frmp-KO mouse as a model of ASD

The hypersynchronization of Fmr1-KO oscillations and spike timing might reflect functional deficits in local networks.

Arbab et al. 2018

Is mouse posterior parietal cortex (PPC) involved in perception?

UNIVERSITY

Cortical surface

Crochet et al., Trends Neurosci, 2019

Oude Lohuis et al., Nat. Commun., 2022 Oude Lohuis et al., J Neurosci, 2022

S1BF

Flattened cortical section

S1BF

 $\sqrt{1}$

AC

AC

1<u>mm</u>

Oude Lohuis et al., Nat. Commun., 2022 Oude Lohuis et al., J Neurosci, 2022

Neural correlates of everything in PPC

Neuronal activity in PPC reflects sensory information and predicts task performance

Oude Lohuis et al., J. Neurosci., 2022

××××

...but no causal role for anything

Oude Lohuis et al., J. Neurosci., 2022

OPto

OPto

#: BF < 1/3

- Data Recording during specific neurodevelopmental milestones
- Comparing with Dark rearing
- Recordings with combined genotypes
- LFP-Spike data analyses (TD mice Frmp-1 KO)

WP2: Development of MI in TD and ASD individuals

Consiglio Nazionale delle Ricerche

WP2: Development of MI in TD and ASD individuals

 Aim: Observe how MI processes arise in TD and ASD children and adolescents by combining psychophysics and EEG.

TIME

Domino

WP2: Development of MI in TD and ASD individuals

Development of a McGurk task for the Greek language \rightarrow A potential new test for ASD

Example tha va AV combinations

- Multiple choice responses
- Response options
 - tha, fa, va, da, ba, ga, nta, pa, ka, other
- N = 90 participants, aged between 13-79 years of age, 88 native Greek speakers
- Significant relationship between stimuli and responses

VthaVvaAva0 Fusion vs. Congruence

VpaVthaAtha0

Combination vs. Congruence

VvaVthaAva0 Congruence vs. Fusion

VthaVpaAtha0 Congruence vs. Combination

McGurk preliminary behavioral results

20

WP2: Current Activities

- Data collection for McGurk & SIFI experiments
- Linguistic aspects of the McGurk effect: aim to explore the influence of place and manner of articulation in the McGurk illusion
- Pairs of mismatching AV components with:
 - $\circ\;$ the same place and different manner of articulation
 - $\circ\;$ the same manner and different place of articulation
 - $\circ~$ different manner and different place of articulation

WP3: Computational model of MI development

---- 22

CerCo

WP3: Processing dynamics visual stimuli with **SNNs**

CerCc

2018:

WP3: Processing realistic auditory stimuli with SNNs

Frequency selective neurons

Next: *audio-visual integration, normal and abnormal development*

Progress and next steps

	2020		2021			2022				2023				
	III	IV	I	II	Ξ	IV	Η	Π	III	IV	I	II		IV
WP1: Animal experiments	Preparatory activities Data collection									Analysis				
WP2: Human Experiments	Preparatory activities				Data collection						Analysis			
WP3: Modeling	Visual model				Auditory model						Audiovisual model			

Future Developments using EBRAINS

- Data sharing and curation
- Implementation of Large Scale Models
- Data Integration (mouse human)

Thank you!

www.humanbrainproject.eu

www.ebrains.eu

