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Figure 1: Utilising a dynamic causal modelling framework to create a pipeline for studying 

effective connectivity using multimodal data  
Figure 1: Schematic illustration of the pipeline combining structural connectivity and intracranial EEG data. Structural 
connectivity information derived from MR-based imaging (top left corner) is combined with electrophysiological 
recordings of ongoing neuronal activity (top right corner) in the form of generative models of networked neuronal 
oscillators (bottom). These generative models reproduce features of electrophysiological activity whilst taking into 
account the constraints given by structural connectivity in the network.   
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Abstract: 

Neuroimaging techniques now allow the investigation of structural and functional 
networks in the human brain in both health and disease through the use of multiple 
imaging and recording modalities. Linking structure and function in these complex 
networks is non-trivial. Developing generative models of neuronal interactions with 
features that map onto the empirically available data is one possible framework 
that allows for the principled integration of multiple data types for hypothesis 
testing.  

Here, we build on recent progress in implementation of such a framework – dynamic 
causal modelling – to deliver a pipeline that allows a non-trivial mapping between 
structural and functional connectivity. This pipeline takes macroscopic structural 
and functional data (e.g. DTI-based structural connectomes, intracranial EEG data) 
and derives generative neuronal mass models of coupled brain regions. Through a 
variational Bayesian approach, this pipeline infers coupling parameter estimates 
conditioned both on functional recordings of individual brain regions and prior 
information on their structural connectivity, as well as providing free energy-based 
estimates for the model evidence of a given model inversion. This pipeline therefore 
allows for (1) estimating effective between-region connectivity that accounts for 
structural and functional connectivity measures, and (2) testing different 
hypotheses of how structural and functional connectivity are quantitatively related 
to be directly compared using Bayesian models selection. 
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The pipeline is implemented using Python and standalone Matlab runtimes, making 
it scalable on cloud computing infrastructure without licensing restrictions. It is 
computationally efficient, utilising recent advances in Bayeisan model reduction for 
inferring parameters and model evidence across large families of related models.  
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1. Preamble 
Current neuroimaging techniques now allow unprecedented insights into the anatomy and function 
of distributed brain networks in health and disease, yet often result in distinct representations of 
brain-networks with non-trivial mappings between them. Allowing for hypotheses regarding 
individual brain’s network features to be tested across structural and functional connectomic data 
is an essential next step to realise the translational potential of human brain imaging and 
personalised brain modelling.  

One key use case for such individualised brain models can be found in epilepsy surgery. In order to 
identify epileptogenic areas, patients are extensively investigated through non-invasive 
neuroimaging, as well as intracranial EEG recordings, with complex, patient-specific datasets that 
require extensive analysis to allow clinical decision making. There have been several developments 
that allow for quantitative identification of abnormally connected brain regions in the epileptic brain 
from several available data modalities. Furthermore, generative models of regional activity are 
increasingly being used to test different hypotheses regarding epileptogenic networks ‘in silico’ prior 
to epilepsy surgery with the aim to support future surgical decision making. Many of these – such as 
The Virtual Epileptic Patient – are being pioneered in the Human Brain Project.  

However, key issues regarding the optimal mapping between structural and functional measures of 
human brain networks remain unsolved. Dynamic causal modelling (DCM) offers a framework that 
allows a computationally efficient estimation of parameters of relatively complex networks of neural 
mass models fitted to empirical recordings of neuronal function. Here, we build on the DCM 
framework to deliver a pipeline that allows for integration of structural connectivity priors into 
neural mass network models fitted to intracranial EEG data as used in the context of presurgical 
evaluation for epilepsy surgery.  

This pipeline fits sparsely connected, spatially distributed networked neural masses to cross-spectral 
density summaries of ongoing intracranial EEG oscillations, conditioned on priors on the structural 
connections between regions. This allows for the generation of patient-specific models of regional 
effective neuronal coupling, as well as group-level inference on the optimal quantitative mapping 
of structural connectomic data onto priors of effective connectivity parameters.   

The DCM framework we build on is related to well-developed theories on information processing in 
the brain and neuronal systems (P4006, P3998, P4007, P4008) and applicable across a wide range of 
data types and scientific questions (P4009). The pipeline presented here is therefore applicable to 
multiple brain states, including ictal, preictal and interictal, and can easily be extended to 
incorporate novel multimodal data components. It therefore complements existing approaches and 
allows for expansion into novel applications in the near future. 

2. Introduction 
Dynamic causal modelling (DCM) is a generic Bayesian framework that allows inference on effective 
connectivity from neuroimaging data ranging from fMRI and fNIRS to MEG, EEG, and local field 
potentials. The Bayesian formulation of this inference scheme formally integrates likelihood 
estimates of observed data under certain prior information on the model parameters. This results in 
full probabilistic estimates of regional effective connectivity measures as well as a free energy-
based approximation for the overall model evidence. As such, DCM is well suited to interrogate how 
specific prior information affects the inference on effective connectivity, and thus whether e.g. 
additional prior information provides an increase in the overall model evidence. Such increases in 
model evidence may be because additional prior constraints may restrict spurious parameter values 
from being inferred or result from an escape from local minima during the parameter inversion. 
Identifying improvement of model evidence under specific prior constraints therefore provides some 
evidence that the assumptions encoded in the model priors offer a more parsimonious explanation 
for the empirical data explained with the model.  

Effective connectivity as a concept refers to quantitative descriptions of the causal influence that 
two regions exert over one another. Conceptually, structural brain networks are the scaffolding on 
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which causal influences between brain areas unfold; and functional networks are statistical features 
that can be identified as result of the causal interactions of those brain regions over time. The 
approach of using DCM to estimate effective connectivity under variable prior constraints has 
previously been used to identify a non-linear mapping between structural and functional connectivity 
in diffusion MRI and fMRI data in healthy subjects during cognitive tasks. Identifying the underlying 
causal networks has particular relevance in brain disorders where abnormal connections (or 
dysconnectivity) are believed to be a relevant driver of the disorder, such as in epilepsy.  

The dynamics of networks are defined both by the dynamic behaviour of individual notes, and their 
– at times time-varying connectivity. Approaches pioneered by the HBP Consortium already, such as 
the Virtual Epileptic Patient, seek to identify individual brain regions within a patient’s brain that 
are driving epileptic activity, and derive their effect on the network through patient-specific 
modelling of structural connectivity and inferring the spatial spread of epileptic activity. Dynamic 
causal modelling provides a framework that allows inference of both node behaviour and between-
node effective connectivity, whilst allowing for computationally efficient implementation of 
constraints through additional datatype. Furthermore, the framework already allows for the 
estimation of layered hierarchical models, which can for example identify time varying components 
in the connectivity as a network transitions between different states (e.g. interictal, preictal and 
ictal activity). Utilising the dynamic causal modelling framework to infer the time-varying 
connectivity changes that may underlie epileptic brain dynamics therefore offers a complementary 
approach to identifying abnormal connection patterns from human brain data. This makes DCM a 
particularly apt tool for integration into the EBRAINS framework for studying the patterns of 
connectivity which may give rise to differing states of dysconnection in epilepsy. 

This document covers the broad technical specifications of the pipeline in Section 3, which is covered 
in more detail and provided in the Technical Note hosted on EBRAINS 
(https://wiki.ebrains.eu/bin/view/Collabs/structurally-informed-dcm/). Section 4 shows how to 
access the pipeline, test data set and how to interpret the pilot study methods and results presented 
in the technical note and EBRAINS documentation.  Section 5 addresses future and current avenues 
of development for integration of other data modalities into the pipeline.  

3. Technical Specifications 
Figure 2 shows an overview of our structurally informed DCM pipeline for electrophysiological 
epilepsy data. The pipeline includes both structural and SEEG data extraction steps in which channels 
are selected based on an iterative Spectral Principal Component Analysis (SPCA) method. In this 
procedure, channels are selected by selecting the spectral modes that best align to the spectral axes 
of maximum variability. This is followed by a data extraction step for model training using brief 
trials to fit Dynamic Causal Models (DCMs) to empirical channel cross spectral densities using a 
subject-specific parcellation and structural data produced from Diffusion Tensor Imaging (DTI). 
Models trained assuming a variety of structure-function relationships parameterised by a specific set 
of hyperparameters are then compared using a Bayesian free energy criterion. This allows 
identification of a structure-function mapping for the core epileptogenic network at the level of 
individual patients.  

These methods have been developed building on the core framework established in MATLAB, and 
provided with an executable version accessible through a Python interface for further integration 
into EBRAINS. This use case is outlined in Figure 3 and specified further in the siDCM EBRAINS collab, 
where both the standalone matlab app and the relevant matlab scripts are provided (https://data-
proxy.ebrains.eu/structurally-informed-dcm?prefix=02_Code%2Fpackages%2F) with the use of 
Matlab runtime environment outlined in the ‘readme.txt’. The Python package together with the 
standalone matlab app can be run independently of MATLAB licenses on workstations and cloud 
computing architecture, as the Python code exposes relevant parameters including individual 
structural connectivity networks (if desired), SEEG trial data and SEEG metadata (such as the 
sampling frequency and frequency band of interest) to be specified by the user as demonstrated in 
the example Jupyter notebook on EBRAINS (https://data-proxy.ebrains.eu/structurally-informed-
dcm?prefix=#). This allows users to determine the structural network and network features that are 

https://wiki.ebrains.eu/bin/view/Collabs/structurally-informed-dcm/
https://data-proxy.ebrains.eu/structurally-informed-dcm?prefix=02_Code%2Fpackages%2F%20
https://data-proxy.ebrains.eu/structurally-informed-dcm?prefix=02_Code%2Fpackages%2F%20
https://data-proxy.ebrains.eu/structurally-informed-dcm?prefix=
https://data-proxy.ebrains.eu/structurally-informed-dcm?prefix=
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most relevant to their investigation through a generic pipeline for structural network construction, 
and interface with relevant pipelines (e.g. TVB) on EBRAINS.  

Figure 2: Theoretical overview over structurally informed DCM analysis.  
SEEG data and individual structural MRI are used as input for the modelling. Dimensionality is reduced using spectral 
PCA. Reduced networks of interest are then fitted using a Dynamic Causal Modelling approach allowing model 
comparison between competing models. (adapted from Wilsenach et al. 2023 https://doi.org/10.17605/OSF.IO/K4P8S) 

Figure 3: Implementation of structurally informed DCM. 
SEEG and structural connectivity data are used to specify a dynamic causal model, which is subsequently inverted 
within the Matlab Runtime Environment, yielding parameter estimates as well as measures for model evidence. 
Structural priors are passed through a parameterised structure-function mapping function. Individual steps are 
specified using the ‘task’ variable in the configuration ‘cfg’ structure.  

https://doi.org/10.17605/OSF.IO/K4P8S
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For the specific use case presented, the data recommended for this pipeline include T1 and diffusion 
weighted images weighted registered to a post-implantation CT scan with SEEG provided as a matrix 
including a subset of channels of interest. Structural connectome estimation is performed in MRtrix3 
using a high-resolution subject-specific atlas based on the Lausanne atlas (Hagman et al. 2018 
https://doi.org/10.1371/journal.pbio.0060159) or other relevant cortical atlas registered to subject 
space. Channels can be selected, using the aforementioned Spectral PCA approach which is available 
as a stand-alone method, or determined by a hypothesis or research question of interest.  

Dynamic causal modelling is then used to estimate the between-region and within-region parameters 
of a network of neural masses, where each region of interest is modelled as a 4-population network 
capturing key features of cortical organisation, i.e. the canonical microcircuit (CMC). These models 
are defined as part of the DCM package within the SPM12 software 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and as such are implemented in MATLAB. 
These models include detailed intrinsic models of excitatory and inhibitory neuronal cell 
populations, with additional extrinsic forward and backward connections between each region of 
interest. All these parameters specifying both the intrinsic and extrinsic features of model are 
estimated during the model inversion step, which will fit model output to the cross-spectral densities 
measured empirically using icEEG within each region of interest. Model inversion (or training) follows 
a Bayesian free energy minimisation approach that assumes a set of reasonable prior values. 

These model estimates are based on the neurophysiological recordings, but can be further constraint 
through prior knowledge – e.g. from normative population data, from multimodal measurements 
within individual patients, or derived from distinct, competing hypotheses. DCM allows 
computationally efficient integration of different priors and quantifies an approximation of the 
model evidence under different prior assumptions. These prior assumptions are specified 
quantitatively as prior estimates on the model parameters and may therefore encode relative 
strength of different connections; the absence or presence of certain connections; or the modulation 
of certain connectivity strengths by conditional effects. This allows direct model comparison 
regarding the specific hypotheses encoded through such priors. In the use case demonstrated, priors 
on the effective connections between regions – i.e. the extrinsic connections – are informed by 
structural connectivity measures, and the optimal mapping between structural connectivity values 
and effective connectivity parameters is estimated through Bayesian model comparison (for further 
details see the related preprint Wilsenach et al. 2023 https://doi.org/10.17605/OSF.IO/K4P8S).  

A workbook demonstrating the effects of model hyperparameters and application of the pipeline in 
an example dataset of interictal data is included. This workbook shows how a DCM model of SEEG 
activity informed by structural data can be trained in Python 3.8 and the output used to determine 
important features of the network including estimates of effective connectivity and spectral 
coherence between channels.  

4. Data and Prototype Availability 
The python implementation of the structurally-informed-DCM (si-DCM) pipeline for SEEG activity is 
available at the project’s dedicated Collab page: 

https://wiki.ebrains.eu/bin/view/Collabs/structurally-informed-dcm 

The outline of the notebook and set up instructions can be seen in the README: 
https://object.cscs.ch/v1/AUTH_7e4157014a3d4c1f8ffe270b57008fd4/structurally-informed-
dcm/README.md  

The notebook in this collab, siEEG.ipynb, demonstrates the application of this pipeline to a subject 
dataset (provided here as reduced test data set of non-identifiable reduced and preprocessed data 
matrices containing short segments of EEG data from small subset of SEEG contacts, and 
corresponding between region connectivity from the corresponding brain regions estimated in 
MRtrix3 https://www.mrtrix.org/) The reduced dataset provided here illustrates the pipeline. All 
metadata regarding SEEG channel locations or events have been removed. The data set is available 
as a single ‘testdata.mat’ file with relevant packages, including those for reading and executing 
MATLAB code and data files imported by the notebook. The notebook also demonstrates how various 

https://doi.org/10.1371/journal.pbio.0060159
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://doi.org/10.17605/OSF.IO/K4P8S
https://object.cscs.ch/v1/AUTH_7e4157014a3d4c1f8ffe270b57008fd4/structurally-informed-dcm/README.md
https://object.cscs.ch/v1/AUTH_7e4157014a3d4c1f8ffe270b57008fd4/structurally-informed-dcm/README.md
https://www.mrtrix.org/
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hyperparameters for the structural priors affect prior estimates of feedback and feedforward 
connectivity. The notebook shows how the prior estimates of extrinsic and intrinsic model 
parameters give rise to estimates of interchannel coherence. Lastly, the model inversion is 
performed and posterior coherence and directed effective connectivity estimates are shown, which 
are contrasted with the underlying, undirected structural connectivity network. The notebook and 
underlying code can also be easily adapted to start with naive priors (fixed, non-structural) by simply 
leaving the connectivity network argument empty. 

Theoretical justification for this pipeline framework and investigation of a small multisubject pilot 
data set is given in the Technical Note. The pilot study provides a preliminary exploration of 
structurally informed DCM and contrasts it with models informed by standard (fixed, non-structural) 
priors. It also references an approach for generating structural connectivity networks from dMRI data 
using MRtrix3. In addition, details of the suggested channel selection procedure used in the pilot 
study based on Spectral Principal Component Analysis (SPCA) are given. This is an optional extension 
of the core pipeline for selecting subnetworks from whole-brain data based on data features alone. 
Alternatively, hypothesis-driven channel selection could be employed. Code for performing this 
SPCA-based channel selection procedure is available at 

https://github.com/jameswilsenach/SEEG_Channel_Selection 

5. Future Directions 
In future work, we intend to extend the functionality of the si-DCM pipeline with greater integration 
into EBRAINS and improved model efficacy. The steps are as follows: 

• Extend interface between python wrapper and SPM functions: Expose additional SPM functions 
used for DCM specifications parameter choices made in python. This can be implemented by 
adding additional matlab scripts that can be called with parameter sets specified in the ‘cfg’ 
variable in python. This will expose siDCM to more user-driven modelling specifications (such as 
defining priors for all intrinsic and extrinsic parameters). 

• Provide a means for users to investigate the effects of interventions on the model such as 
stimulation or task performance. Alternatively, resection may be simulated by removal of one or 
more nodes. 

• Broader exploration of the effectiveness of siDCM for clinical hypothesis testing by applying an 
expanded set of patients form the extensive historic paediatric epilepsy surgery cohort at Great 
Ormond Street Hospital (London, United Kingdom; total of 100 patients, with future inclusion in 
the EBRAINS knowledge graph planned). 

• Produce improved model priors by incorporating intrinsic priors based on spatially specific 
receptor density information or subject-specific data aggregated across multiple SEEG channels. 

• Investigate the effects of more complex, information diffusion-based structure-function 
relationships on model performance. 
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