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Figure 1: The Neurorobotics Platform enables embodied simulations with large networks of spiking neurons 

The joint efforts of the NRP, NEST and CSCS engineering teams have borne fruit. As described herein, a service 
prototype was developed to enable neuroscientists to link brain models, neuron activity and motor output, even when 
dealing with networks comprising millions of simulated neurons and billions of synapses.
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Abstract: 

This document provides a high-level overview of the evolution of the Neurorobotics 
Platform (NRP) in SGA3. The latest release (version 3.2) is described, which provides 
our users with necessary updates in parts of the software stack in terms of both 
usability and functionality. Barring some unexpected need for major security 
updates to some components of the software stack, version 3.2 will be the last 
release of the “legacy” NRP.  

Indeed, the efforts of the NRP software development team will from now on be 
entirely focused on delivering the NRP v4.0; the latter represents a fundamental 
evolution in terms of software architecture and capabilities. In particular, this 
future version will be fully modular in terms of the simulators that can be 
orchestrated and integrated into experiments. These efforts – described herein and 
those planned – provide the foundation necessary to deliver a future-proof NRP that 
is seamlessly integrated into EBRAINS. 

Finally, large-scale NEST simulations on the NRP are described that leverage the 
capabilities for distributed computations of the EBRAINS infrastructure (specifically, 
the Piz Daint supercomputer). This achievement will underpin in the coming months 
the instantiation of a service unique to EBRAINS, which will provide neuroscientists 
with the ability to perform closed-loop simulations of bodies controlled by brains 
modelled with millions of spiking neurons and billions of synapses. 
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1. Introduction 
The present document provides a high-level view of the evolution of the Neurorobotics Platform 
(NRP) since January 2021. It follows and complements the previously-released Deliverable D5.1 
(D48), which focused on the period going from April 2020 to December 2020. The latter document 
already introduced the notion that the NRP needed to evolve to remain relevant for the foreseeable 
future. In support of this vision, technical developments were undertaken – and are still ongoing – 
to change the architecture of the NRP and re-engineer some of its key components. This entails the 
production of a fundamentally new NRP, which leverages and extends the same concept that drove 
the development of the NRP since the beginning of the Human Brain Project, but does away with 
significant parts of the code base of the NRP v3.x (which we will refer to hereafter as the “legacy” 
NRP).  

While the preparation of the NRP v4.0 understandably commanded a significant portion of the 
resources dedicated to the software development of the NRP, current NRP users were not left to 
their own devices. Support activities continued uninterrupted to implement various experiments, 
demonstrators and showcases based on the legacy version of the NRP. Furthermore, improvements 
were introduced through release 3.2 of the NRP to remove some critical limitations identified by our 
users and thus improve their experience with the platform.  

The present Deliverable thus delves into both these aspects of our software development activities, 
with an emphasis on what they entail for the users of the NRP. Concretely, it focuses on the new 
features brought about by the last version of the “legacy” NRP (Section 2), the re-engineering of the 
software architecture of the NRP for the release v4.0 (Section 3), and finally a proto-service (Section 
4): the deployment of large-scale NEST simulations on the NRP that leverage the capabilities for 
distributed computations of the EBRAINS infrastructure (specifically, the Piz Daint supercomputer in 
Lugano, Switzerland). 

2. The last legacy release: NRP v3.2 
Release 3.2 of the NRP is intended to be the final legacy version. As such, the focus of the NRP 
development team was on software reliability and usability rather than on new features. A lot of 
work thus went into bug fixing and feature consolidation; this is clearly reflected in the evolution of 
the NRP software stack in this latest release (see Table 1).  

Table 1: Comparison of the main components of the software stack for NRP releases since April 2020 

Release 3.0 Release 3.1 Release 3.2 

Python 2.7 Python 3.8 Python 3.8 

Ubuntu 18.04 Ubuntu 20.04 Ubuntu 20.04 

ROS Melodic ROS Noetic ROS Noetic 

Gazebo 9 Gazebo 11 Gazebo 11.3 

NEST 2.12 NEST 2.18 NEST 2.18 

PyNN 0.9.4 PyNN 0.9.5 PyNN 0.9.5 

The upgrade from Gazebo 11 to Gazebo 11.3 is more important than it may appear. Indeed, Gazebo 
11.3 introduces the “–lockstep” run option that, in theory, guarantees the execution of all plugins 
at their proper specified frequency. Previous Gazebo versions indeed worked on a best-effort basis, 
resulting in highly variable output rates for every plugin, sometimes way below their target (i.e. 
configuration-specified) values. This was a major pain point for our users, e.g. those working with 
simulated sensors requiring high update rates, such as DVS cameras. Using the NRP v3.2 and Gazebo 
11.3 will now enable them to get a consistent, predetermined number of samples from their sensors 
for each timestep of the physics engine.  

Among the new features introduced by v3.2, two of them are notable as they were introduced as a 
result of user requests. First, the Docker-based local installation of the NRP can now use Jupyter 
notebooks to run the Virtual Coach interactively. Up to v3.1, this was only possible through source 
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install, as the ports of the NRP Docker container were not adequately mapped. This is now fixed 
and, with v3.2, Jupyter notebooks can be run as easily from a source install as from a Docker 
container. 

Additionally, NRP users can now run the Intel Loihi neuromorphic chip (configured with Nengo 
scripts) as a backend for simulating spiking neural networks on the NRP. This provides NRP users with 
the option to work with one of the most popular neuromorphic chips available. 

The source code of the NRP is open source and available on the following Bitbucket repository: 
https://bitbucket.org/hbpneurorobotics/neurorobotics-platform/src/master. 

The Docker installer for local install is available at https://neurorobotics.net/local_install.html. 

The NRP documentation is available at https://neurorobotics.net/Documentation/nrp/index.html. 

3. NRP v4.0: a new software architecture for a new 
philosophy 

The software development of the NRP started in 2013, at a time when concepts such as process 
isolation and containerisation had not yet become widespread (the Docker Engine itself only 
appeared in 2013). It also followed a co-design path with the HBP, meaning that the technical 
specifications of the NRP emerged only progressively and evolved across the project lifetime. In the 
early years, a fairly monolithic architecture was therefore chosen, consisting in a synchronisation 
component (the so called closed-loop engine, or CLE) orchestrating communications between two 
simulators tightly integrated into the NRP code: Gazebo and NEST. Another foundational choice was 
the use of ROS as a communication layer between multiple components of the software architecture. 
On this basis, multiple features were added to the legacy NRP over the course of the HBP, with the 
final iteration being described in section 2. 

This process, in spite of the many useful features that it introduced into the Platform, revealed the 
limits of the software architecture initially chosen. For example, the latter is poorly adapted to 
distribution over the nodes of a supercomputer for high-performance computing (HPC) applications. 
Similarly, many features were added at the cost of an NRP-specific fork of the open source software 
making up the NRP software stack. With the decision to build EBRAINS, a research infrastructure 
expected to outlive the HBP by at least a decade, the static nature of the legacy architecture thus 
compromised both long-term performance and sustainability of the NRP insofar as continuously 
evolving domain, user and technology requirements were bound to erode the usefulness of the 
Platform. Over time, this would eventually require its complete redesign. 

3.1 Modularity and advantages thereof 
To remediate this situation, it was decided to proactively proceed with this complete redesign, with 
a view to make the NRP intrinsically capable of evolution. This entailed refactoring the legacy CLE 
into a set of new components, referred to as NRP-core, fulfilling the same functional role 
(orchestration of multiple simulators) but with a key difference: NRP-core was indeed designed to 
make the NRP modular in terms of the simulators and control modules that can be integrated into a 
single simulation. NRP-core is thus the hub element in a spoke-hub architecture. The communication 
interfaces between simulators/modules and NRP-core are custom-made, although most of them can 
be derived from generic classes that are provided together with the rest of the NRP-core code. The 
combination of one given simulator / module and its communication interface to NRP-core is referred 
to as an “engine”.  

https://bitbucket.org/hbpneurorobotics/neurorobotics-platform/src/master
https://neurorobotics.net/local_install.html
https://neurorobotics.net/Documentation/nrp/index.html
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NRP-core keeps the essence of the transfer function (TF) framework offered by the legacy NRP1. 
This allows users to decouple the computational features of individual modules from the definition 
of the connections that exist between one another. Because these functions are implemented in 
Python, the new NRP retains the ability to pause a simulation, modify any TF, and restart the 
simulation with the modification being immediately accounted for. This usability feature from the 
legacy versions of the NRP is therefore fully preserved. 

NRP-core also implements a simulation manager, NRPCoreSim, which itself can run in two different 
modes: one is for timestep-driven simulations (see section 3.1.1), the other for event-driven 
simulations (see Section 3.1.2). These two modes implement different mechanisms for orchestration 
and communications between simulators, each implemented in a different software component 
(FixedTimeIncrementLoop – or FTILoop for brevity – and EventLoop, respectively). Finally, 
NRPCoreSim can run as a stand-alone application, or be controlled through a new component (NRP-
server) connected to user interfaces (Frontend Graphical User Interface or Virtual Coach). 

For NRP users, the main advantages of such an approach are as follows: 

1) The NRP-core can orchestrate any number of time-step-based engines (simulators or control 
modules) running concurrently, this number being only limited by the availability of compute 
resources. This is especially interesting for users that create modular cognitive architectures. 

2) New simulators can easily be added, thus providing the NRP with the capability to keep up to 
date with technological evolution and providing users with options to incorporate their own tools 
through a well-documented application programming interface (API). 

3) The communication protocols between NRP-core and engines are not prescribed: an API is 
provided to extend the number of supported protocols. Furthermore, these communication 
protocols can be mixed. For example, it is easy to run one engine communicating with NRP-core 
through gRPC with protobufs, together with another engine communicating through JSON over 
REST. NRP users who need specific simulators that are not supported out-of-the-box can thus 
easily integrate the former into the NRP ecosystem as new engines. 

4) The maintainability of the NRP code base is considerably increased, as no fork of any simulator 
is required; in the worst-case scenario, updates to the client-server interfaces can be necessary, 
but by and large, updates to individual simulators can be leveraged by NRP users without 
significant resource investment. 

Refactoring the NRP software architecture is a massive undertaking, especially considering the 
already significant maturity level of the latest legacy version. However, it had to be done to provide 
users with an NRP ecosystem that is more open, more versatile, more HPC-ready and more forward-
looking. 

3.1.1 Timestep-driven simulations 

NRP-core running with FTILoop is designed specifically for supporting simulations that progress 
through time in well-defined increments (time steps). Unlike event-driven simulations, such 
timestep-driven ones can achieve full reproducibility, and thus hold a special place in the toolbox 
of computational (neuro)scientists. The FTILoop establishes synchronous communications with 
engines (the spokes in the aforementioned hub-spoke architecture) through a client-server 
paradigm, and ensures that new data is shared across modules at exactly the right simulation 
timestep. Figure 2: summarises this new architecture for the NRP with timestep-driven simulators 
that have already been integrated as engines (e.g. Unity, OpenSim) or for which integration is in the 
works (e.g. The Virtual Brain). 

For NRP users interested in fully deterministic time-driven simulations, the main advantages of such 
an approach are manifold: 

 
1 These functions were renamed as “Transceiver Functions” (also abbreviated as TFs) in the new NRP, to 
emphasise the conceptual proximity as well as the small differences in syntax between the two frameworks, 
and to remove any ambiguity in the documentation.   



    
 

D5.6 (D53) SGA3 M18 ACCEPTED 220520.docx PU = Public 20-May-2022 Page 7 / 13 
 

1) The removal of ROS as a communication layer, as well as its replacement by fully synchronous 
client-server communications, removes a major source of non-determinism that was so far 
intrinsic in every NRP simulation, thereby increasing the usefulness of the platform as a scientific 
tool. 

2) The NRP can more easily be distributed over a given HPC architecture by adapting the 
containerising configuration of NRP-core and simulators to the requirements of such distribution. 
This is essential for the development of some of the NRP-based EBRAINS services (see for example 
Section 4). 

3) The ability to run NRP-core with FTILoop as a standalone application (i.e. headless execution of 
NRP experiments) considerably increases code reusability. It also enables the use of NRP-core-
based simulations into learning frameworks (e.g. the L2L framework developed within HBP) by 
simplifying containerisation of experiments. 

 

 
Figure 2: Components of the upcoming NRP v4.0 and their relation to timestep-driven simulators 

All the code related to NRP-core and the FTILoop can be found here: 
https://bitbucket.org/hbpneurorobotics/nrp-core 

3.1.2 Event-driven simulations 

NRP-core with FTILoop provides determinism and reproducibility, but it is not adequate for event-
based communications and processes. In particular, it is not suitable for the inclusion of interactions 
with cyber-physical systems, such as hardware in the loop, or virtual reality tools supporting real-
time man-machine interfaces with the simulations. As such, the capabilities provided by ROS-based 
legacy versions of the NRP cannot be carried over to the new NRP by FTILoop alone. For use cases 
requiring such capabilities, we thus decided to create EventLoop, an orchestration component that 
can replace FTILoop in NRP-core for any simulation requiring event-driven capabilities. 

The main characteristics of EventLoop are asynchronous communications and loose interactions 
between NRPCoreSim and Engines. This required a series of components to be specifically developed 
in NRP-core: the input and output nodes. Indeed, NRPCoreSim operating synchronously with FTILoop 
uses a class of objects called EngineClients to interact with Engines, for both control and data 
exchange. The most significant feature of these EngineClients is that they are written in a way that 
blocks execution of the NRP simulation until data is properly produced or processed. In the 
asynchronous mode, they are therefore substituted by input and output nodes that have a much 
looser connection to NRPCoreSim (i.e. are non-blocking). They implement the connection of inputs 
and outputs of TFs to Engines via asynchronous data channels. EventLoop thus runs at a fixed 
frequency (in actual time, *not* in simulation time) and implements the following steps: 

• processing new messages received through Input nodes and rely them to connected TFs. 
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• execution of TFs. 

• sending output of TFs through the corresponding output nodes to apposite engines. 

The TFs must also be adapted to the execution mode of NRPCoreSim. As they are Python functions, 
the connections between TFs and Input and Output nodes can be specified declaratively by users 
with the use of dedicated decorators in the definition of TFs. The syntax, in this case, is very similar 
to that used to connect TFs to Engines in the synchronous case, so as to ease the process of porting 
experiments in NRP-core from time-step-driven to event-driven operation modes. This path should 
be very attractive to scientists in the neuro-robotics domain, which will be able to safely train 
modular neuro-controllers in a simulated environment, and afterwards port them to real robots. 

Finally, NRPCoreSim with EventLoop can run under real-time constraints (as defined here: 
https://en.wikipedia.org/wiki/Real-time_computing#Criteria_for_real-time_computing), provided 
that certain requirements are met. These requirements are summarised below: 

• All TFs in the experiment must be implemented in C/C++. The possibility to use precompiled 
C/C++ functions as TFs (instead of Python) has been added to NRP-core to support use-cases 
where performance is necessary. This is indeed the case if a user wants to execute NRPCoreSim 
under real-time constraints. 

• In the implementation of TFs, the user must avoid operations that prevent a deterministic 
schedule in the execution of the loop. A guide for best practices in implementing real-time code 
can be found here: https://design.ros2.org/articles/realtime_background.html. 

• The OS and transport layer used in the experiment must be real-time ready 

In future iterations of NRP-core, the addition of monitoring tools for assessing real-time performance 
and violations of real-time constraints is planned so that users can be confident in the performance 
observed with EventLoop. 

All the code related to the EventLoop currently resides in the following branch of NRP-core: 
https://bitbucket.org/hbpneurorobotics/nrp-core/branch/event-loop   

3.2 New NRP frontend 
The NRP frontend of the legacy version of the NRP is based on AngularJS – a very popular framework 
for web applications back when the development of the NRP was initiated within the HBP. Released 
in 2010 by Google, AngularJS, however, is meeting its end of life: by the end of 2021, it will not be 
further supported. New frameworks like Angular, VueJS and React have since long replaced it for 
developing progressive web applications. To provide a future-proof platform and address concerns 
of familiarity for developers, as well as browser support, updates and security, it is therefore 
mandatory to make a switch to more modern technologies. 

Additionally, the original design of the legacy web frontend was also heavily geared towards the 
initial conception of the NRP with Gazebo and NEST as its main simulators. With the change of 
philosophy embodied through the redesign of the NRP in version 4, now is thus an excellent point in 
time to adjust the frontend accordingly. As the core of the NRP moves away from a specific bundle 
of simulators towards a more modular infrastructure, so the web frontend will move towards a 
collection of tools and services communicating with the NRP-core that are designed to be used and 
extended in the future by community developers. This will allow users of the NRP to quickly adopt 
existing web interfaces (see Figure 3) and libraries designed by the individual simulators’ own 
communities or write their own tools if necessary. 

If the Platform is supposed to be extendable in the future by the community, then the technology 
used must enticing, or at the very least familiar, to the potential users concerned. As such, having 
to learn the inner workings of an outdated technology heavily discourages any effort. For this reason, 
React (https://reactjs.org/) was chosen as the user interface (UI) framework; indeed, it currently 
enjoys a high popularity while also being one of the most future-proof options, as it is supported by 
Facebook. Most importantly, it is a lightweight and versatile framework that focuses on reusable 
components; different parts of the web frontend can therefore remain self-contained and flexible, 

https://en.wikipedia.org/wiki/Real-time_computing#Criteria_for_real-time_computing
https://design.ros2.org/articles/realtime_background.html
https://bitbucket.org/hbpneurorobotics/nrp-core/branch/event-loop
https://reactjs.org/
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thus avoiding a monolithic and closely intertwined architecture that would be hard to change in the 
future. The services used to communicate with, and steer execution of, simulations through NRP-
core are rewritten to be: a) pure Javascript without any ties to other frameworks and b) obvious in 
function and location in the code so that, later, community developers can easily find what they 
need to make new tools run in conjunction with the NRP. Finally, further integration with EBRAINS 
tools services, present and future, will be made considerably easier through this framework (e.g. 
integration of NEST-desktop depicted in Figure 3). 

All the code related to the new frontend for the upcoming NRP v4.0 will be merged with the NRP 
master repositories upon release. Until then, it can be found here for evaluation: 
https://bitbucket.org/hbpneurorobotics/nrp-frontend/src/development/  

 

 
Figure 3: GZ3D environment and spike raster plot from NEST-desktop in the new NRP frontend.  

The latter will retain the look and feel of the legacy frontend but will fundamentally differ in that any existing web 
interface can be integrated in a matter of minutes, provided it is ready to be deployed on its own. For example, the 
plotting capabilities of NEST-desktop featured herein cannot be leveraged by the legacy frontend. 

4. Large-scale NEST simulations on the NRP: 
towards a unique EBRAINS service 

A prototype EBRAINS service was created to enable users to run custom-embodied large-scale brain 
simulations inside the NRP. This service is intended to run large-scale, multi-area networks of spiking 
neurons simulated in NEST and connected through the NRP with the physically realistic simulation 
of a musculoskeletal system in Gazebo. This allows neuroscientists to explore in silico the complex 
relationships that exist between network topology, neuronal electrophysiology and expressed 
behaviour, without the size of the simulated network being a limiting factor (see also section 6.2). 
This prototype was made possible by using the client-server paradigm described in section 3, as well 
as the distribution of NEST (as a server) over multiple nodes of the supercomputer Piz Daint (CSCS, 
Lugano, Switzerland).  

As a demonstrator, we implemented an experiment that features a multi-region rodent brain model 
(1,089,137 spiking neurons interconnected through 1,588,469,795 Synapses in NEST, developed by 
multiple Japanese teams 2 ) controlling the movements of a musculoskeletal system (a rodent 
forelimb) with 8 muscles, in conditioning tasks that involve pressing a lever (also modelled inside 
the physical simulation). While the brain-body connection is currently simplistic (activation of 

 
2 Joint publication in preparation. 

https://bitbucket.org/hbpneurorobotics/nrp-frontend/src/development/
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neuronal populations in the motor cortex directly causes muscle contraction), it already provides a 
complete view of what the service will look like for EBRAINS users.  

Access to the service prototype is given through the NRP frontend. On a new bespoke user interface 
(Figure 4, left), the user can request supercomputing resources on Piz Daint, launch new NRP 
instances, and manage running jobs. Once a simulation has been launched, the user can control and 
interact with the experiment through the same graphical interface as in a local installation (Figure 
4, right), but with the compute power of a supercomputer actually running NEST. 

 
Figure 4: User interface for resource allocation and experiment view during simulation 

For the more technically inclined readers, the following paragraph details the software architecture 
for the proposed service. This architecture spans across Virtual Machines (VMs) on Pollux (a cluster 
of VMs at CSCS, Lugano, Switzerland) and Piz Daint nodes. The NRP frontend runs on a Pollux VM and 
routes the connections from the user’s browser to the instantiated NRP backend on a Piz Daint node 
via a dedicated tunnelling machine, itself set up on a different Pollux VM (see Figure 5). A UNICORE 
(Uniform Interface to Computing Resources) interface was implemented inside the NRP proxy that 
sends requests of user resources and NRP control scripts to Piz Daint, where SLURM (the job 
scheduler) manages node allocation. The first requested node runs the NRP backend, while all the 
others run a distributed NEST simulation, made possible by the new implementation of a NEST server 
in NEST 3.0. A corresponding NEST client was created as a device inside the NRP, which connects 
with the NEST server instances on the various compute nodes. Finally, MPI distribution is leveraged 
to balance brain simulation traffic of NEST across multiple nodes. 

 
Figure 5: Architecture of the service prototype 

This service prototype is not available to the general public through EBRAINS yet, as it still needs to 
be connected to a service account and to the EBRAINS federated user resource management system. 
However, it is a prime example of collaboration between multiple engineering teams (NRP, NEST, 
infrastructure) to eventually deliver unique added value to users through EBRAINS. To the best of 
our knowledge, there is no equivalent to this service anywhere in the world, and we are therefore 
looking forward to its official introduction as an EBRAINS offering. 

The code corresponding to this work will be merged to the NRP repositories upon release of the 
service itself. Until then, it is available for evaluation on dedicated branches:  
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• For the adapted NEST client: https://bitbucket.org/hbpneurorobotics/cle/src/NRRPLT-7915-
integrate-nest-client-server/  

• For the new graphical user interface to Piz Daint in the frontend: 
https://bitbucket.org/hbpneurorobotics/exdfrontend/src/NRRPLT-
8277_daint_from_nrp_frontend/ 

• For the new UNICORE interface to Piz Daint in the NRP proxy: 
https://bitbucket.org/hbpneurorobotics/nrpbackendproxy/src/NRRPLT-
8277_daint_from_nrp_frontend/   

5. Conclusion 
The NRP evolves to better serve its users. Concretely, version 4.0 will propose a modular architecture 
supported by the ongoing refactoring of both its frontend and backend components. This will make 
the NRP future-proof and greatly enhances the maintainability of its codebase, which are essential 
characteristics in the perspective of the integration of the Platform into services of the EBRAINS 
infrastructure. Although v4.0 is still a few months away (see Annex), the client-server architecture 
that underpins the refactoring of the old CLE into the new NRP-core has already enabled a unique 
technical achievement. Large-scale NEST simulations on the NRP are indeed a unique value 
proposition of EBRAINS to neuroscientists that want to bridge the gap between brain structure, 
activity and behaviour. 

Finally, while the present document delves into multiple topics that are of direct interest to the 
users of the NRP, it does not constitute an exhaustive list of the efforts that are underway. Indeed, 
many activities of the NRP software development team are as essential as they are transparent to 
NRP users, and they are not described in detail herein. These include e.g. the deployment of a 
proper workflow for continuous integration / continuous deployment (CI/CD), the ongoing migration 
of all Virtual Machines (VMs) from the Pollux cluster to Castor cluster (both at CSCS in Lugano; Pollux 
will be shut down at the end of September 2021), the refactoring of the authentication workflow of 
the online NRP to accommodate the new Keycloak technology adopted by EBRAINS, etc. Thus, 
besides the various activities reported hereinbefore, NRP users can rest assured that there is a lot 
going on behind the scenes to make the NRP (and, of course, the EBRAINS services based thereupon) 
as usable and robust as possible. 

  

https://bitbucket.org/hbpneurorobotics/cle/src/NRRPLT-7915-integrate-nest-client-server/
https://bitbucket.org/hbpneurorobotics/cle/src/NRRPLT-7915-integrate-nest-client-server/
https://bitbucket.org/hbpneurorobotics/exdfrontend/src/NRRPLT-8277_daint_from_nrp_frontend/
https://bitbucket.org/hbpneurorobotics/exdfrontend/src/NRRPLT-8277_daint_from_nrp_frontend/
https://bitbucket.org/hbpneurorobotics/nrpbackendproxy/src/NRRPLT-8277_daint_from_nrp_frontend/
https://bitbucket.org/hbpneurorobotics/nrpbackendproxy/src/NRRPLT-8277_daint_from_nrp_frontend/
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6. Annex: Roadmap of upcoming activities 
The following is a tentative timeline of the software development activities of the NRP, provided 
for information purposes only. It does not contain information of relevance to the NRP users about 
the current functionalities of the NRP but is meant to provide more concrete information regarding 
what they can expect in the coming months and years. 

 
Figure 6: Tentative timeline of software development activities of the NRP 

The numbered months are related to the timeline of the Human Brain Project. Blue lines indicate 
internal deadlines set by the software development team of the NRP, red lines indicate Deliverables 
and Milestones included in the Description of Action of the Human Brain Project of relevance to the 
NRP users. Details for each element are provided in section 6.1. 

6.1 Significant activities and deliveries 
• M22: One service prototype (large-scale NRP-NEST simulations; see Section 4) available for 

evaluation by EBRAINS leadership, with all frontend-related features and infrastructure-related 
functions (e.g. authentication, user resource management through service account, etc.) 
required from a minimally viable product. 

• M23: Release of NRP v4.0 (see Section 3). 

• M24 - HBP Milestone: Provision of integrated dynamical closed-loop models developed within the 
HBP, useable on the NRP. 

• M28: One NRP-based service moves into production (large-scale NRP-NEST simulations; see 
Section 6.2), supported by apposite GUIs, deployed on HPC infrastructure. The second NRP-based 
service (NR Public Library; see Section 6.2) is presented to EBRAINS leadership for evaluation. 

• M31: Release of NRP v4.1, including new OLE and related demonstrators, as well as consolidated 
client-server interfaces between the CLE for an updated set (to be confirmed) of simulations 
engines (OpenSim and, e.g. PyBullet, TVB, etc.). 

• M34: Complete integration into the NRP of all EBRAINS-level components: 

o Service accounts established and tested 

o Connection to EBRAINS data and compute proxies (and thus to the federated user resource 
management system) operational and tested. 

o Data provenance tracking operational and tested. 

o User roles properly inherited from EBRAINS Collab. 

o CI/CD process fully operational and in line with final EBRAINS specifications. 

o Repositories containing NRP code fully migrated in line with EBRAINS specifications. 

M32 M33 M34 M35 M36M26 M27 M28 M29 M30 M31M20 M21 M22 M23 M24 M25
2021 2022 2023

M13 M14 M15 M16 M17 M18 M19

D5.6

Service prototype 
available for
EBRAINS evaluation

Milestone M24

NRP release 4.1
D5.9

Refactoring + new features Integration final services + processesValidation with internal users

EBRAINS Components 
integratedFirst service 

in production

NRP release 4.0

NRPL in 
production



    
 

D5.6 (D53) SGA3 M18 ACCEPTED 220520.docx PU = Public 20-May-2022 Page 13 / 13 
 

o All quality control procedures specified by EBRAINS passed.  

• M36: HBP Deliverable D5.9 (D56): Public report detailing the latest features available on the NRP 
and the full list of EBRAINS services based thereupon. 

• M36: second NRP-based service (NRPL; see Section 6.2 below) in production, compatible with all 
existing NRP versions. 

6.2 Description of the proposed EBRAINS services based 
on the NRP 

The NRP itself can be considered both as a tool and a service (which has been online for many years). 
However, we intend to provide more value to our users by offering additional services based on the 
NRP with specific purposes. The first two of such new EBRAINS services will thus be (pending approval 
by EBRAINS management): 1) the NeuroRobotics Public Library (NRPL); and 2) embodied simulations 
of very large-scale spiking neural networks in NEST (based on the proof of concept described in 
section 4). 

The NRPL is to be a service offered to both the Robotics and Neuroscience communities, intended 
to run on an Openstack park of Virtual Machines (e.g. the Castor cluster at CSCS). The NRP Public 
Library is a service where experiments can be shared by an initial “owner” / author and offered to 
NRP users through a graphical web interface. The NRP Public Library is intended to store the 
experiment files and (where necessary) actual datasets produced by the corresponding experiment 
in long-term archival storage. From their browser, the users should be able to browse these 
experiments, clone experiment files to their private space, and finally run and modify them. This 
service is intended to support lectures in the academic world and to offer both code and simulation 
engines as supporting information for scientific publications. While this functionality is closely 
related to currently available functions of the online NRP (e.g. cloning and sharing experiments), it 
needs to go beyond as there must be mechanisms for: 1) keeping the saved experiments and data 
safe (from, e.g. hard drive failure) by leveraging an EBRAINS solution for long-term safe data storage 
(e.g. SWIFT storage); 2) handling the evolution of the NRP itself (e.g. versioning and interactive 
deployment). Indeed, such a publishing service cannot be sustainable if the experiments available 
online are broken by updates to the NRP itself. This entails keeping a copy of every Docker image 
deployed online across time (e.g. in the EBRAINS Docker registry, Harbor) and also ensuring that the 
Openstack infrastructure (i.e. Virtual Machines) remains compatible with every one of those images. 

Provision of embodied simulations of very large-scale spiking neural networks in NEST is a service 
intended for the Neuroscience and Neuromorphic Computing communities. Intended to run on the 
Piz Daint supercomputer at CSCS (at least until the end of the HBP) for the NRP backend and 
simulation engines, and with a virtual machine (e.g. on Castor at CSCS) running the NRP frontend, 
this service addresses the need of researchers studying the computational properties of brain models 
or robotic controllers built upon large-scale spiking neural networks. It will be unique in its ability 
to connect simulated bodies to large (millions of neurons, billions of synapses) brains, and let them 
interact in a closed loop within physically realistic environments. 
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