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Early version of use case for cognitive performance integrating 
data and models (D2.2 – SGA3) 

 
Figure 1: An integrative perspective on multisensory object recognition. 

The top-left panel illustrates schematically the behavioural task that we use to study multisensory object recognition 
in rodents. The top-right panel illustrates the ensemble recording approach to record simultaneously from four brain 
areas: barrel cortex (S1BF), secondary visual cortex (V2), perirhinal cortex (Prh) and the hippocampal area CA1. The 
bottom panel provides a sketch of the computational modelling approach to study anticipatory dynamics in whisker 
movements and the putative neuronal correlates of proprioceptive, somatosensory, and visual predictions and 
prediction errors in the brain. The right part of the panel shows the generative model used to implement active 
sensing in an active inference agent, whereas the left panel shows the putative neuronal underpinnings of the model 
variables in the rodent brain. The symbols that appear in the schematic denote proprioceptive and somatosensory 
predictions (Sp and Ss), hidden state variables (x) and causal variables (ν) of the model, whereas the symbols μ and ξ 
denote mean values of model variables and prediction errors, respectively. See (Mannella et al., 2021) for details on 
a preliminary version of the model. The EBRAINS logos indicate that the EBRAINS infrastructure affords the storage 
and processing of both neural data and models. 
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1. Introduction 
The work described in this Deliverable covers our current efforts within the HBP to provide an 
integrative perspective on multisensory object recognition that combines empirical evidence and 
computational modelling of active whisking. This objective addresses directly the central goal of 
HBP (and WP2 in particular) to advance our understanding of the functioning and neuronal 
underpinnings of advanced cognitive functions, such as multisensory perception.  

The specific case study presented in this Deliverable is a multisensory object recognition task 
developed by the University of Amsterdam (UvA), in which rodents were presented each trial with 
one of two objects ("cube" or " parallelepiped") which they had to correctly recognise, by using only 
vision (visual trials), only whisking (tactile trials) or both vision and whisking (visuo-tactile trials).  

This document will cover both the experimental results of the multisensory object recognition task 
and a computational model of the same scenario, which was realised by the National Research 
Council (CNR). Both the experiment and the computational model have been developed to test 
whether in rodents, visual and whisker-based exploration of the objects is guided by a process of 
prediction error minimisation and whether it is possible to identify neural signatures of prior and 
current predictive representations and prediction errors in sensory and higher-order regions of the 
rodent brain. 

Notably, the work described in this Deliverable will culminate in the Live Paper 2.1a on "Active 
inference in tactile sensing during multisensory object recognition". The "Live Paper" format will 
permit the readers to actively explore and interact with both the (neurophysiological and kinematic) 
data from the rodent experiment and the computational model. For this, the paper will include "Live 
Figures" that will allow the readers to explore different ways in which data can be grouped and 
plotted and to change several parameters of the computational model, to study which 
parameterisations explain kinematic and neural data better. 

This work links to the EBRAINS research infrastructure in the following ways: 1) it uses the Data and 
Knowledge Graph service that stores neurophysiological data, and uses EBRAINS brain atlases, see 
e.g. (Bjerke et al., 2018); 2) it uses computing facilities of EBRAINS to run the computational models 
and analyse the empirical neural data; Hence this paper uses the EBRAINS infrastructure by using 
our dataset stored in the Knowledge Graph. The dataset itself is processed and curated using 
dedicated HBP tools. The electrophysiological data is formatted in the universal Neo format (a 
Python toolbox for the management of ephys data); the analysis of the neural data is performed 
with the Python Elephant toolbox in EBRAINS, and the anatomical data is aligned to the rodent 
reference atlas in EBRAINS. The Live Paper 2.1a will primarily contribute to the Modelling areas 
(Service Categories) of the HBP. Please note that all the data, models, and software to extract 
features from data described in this deliverable will be made fully available in EBRAINS during the 
process of submission of the Live Paper 2.1a.  

The communities that will be most interested in the Live Paper are neurophysiologists and 
computational modellers interested in systems neuroscience. 

2. Multisensory object recognition task 
This section describes the multisensory object recognition task developed by UvA. Below we briefly 
summarise the task and data analyses. 

2.1 Experiment set-up and scientific rationale 
In the multisensory object recognition task, rats were presented each trial with one of two possible 
objects (henceforth, "cube" or "parallelepiped") when they were at the decision point of a T-maze. 
Then, they had to choose one of two sides of the maze and received sucrose reward after correctly 
poking the side associated with the correct object, see Figure 2. 
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Figure 2: The multisensory object recognition task.  

A behavioural trial consists of an inter-trial interval (ITI), a sampling and a decision epoch. During the sampling epoch 
the object was presented either in the Visual, Tactile or Multimodal (Tactile and Visual) modality. The rat was tasked 
to make a poke on the arm associated with either object. 

Crucially, the task included three (randomly presented) kinds of trials: Visual trials, in which the 
light was on, but the object was further away and not reachable by whiskers; Tactile trials, in which 
the light was off, but the object was within reach of whiskers; and Visuo-Tactile trials, in which the 
light was on, and the object was close by. The presence of these three kinds of trials permits studying 
the differences between unimodal (Visual or Tactile) and multimodal (Visuo-Tactile) situations. The 
behavioural protocol for the task has been described in the Knowledge graph: 
https://search.kg.ebrains.eu/?category=Contributor&q=julien#452d5de0-99c2-4505-b00a-
9e305b6e27ed. 

During the experiments, whisking kinematics were recorded using a high-speed camera, which 
permits tracing whisker movements and the time of contact with the objects. In parallel, 
simultaneous single unit recordings and local field potential were collected from two sensory cortical 
areas (barrel cortex, sbf1, and visual cortex, V2; cf. Oude Lohuis et al. 2022) and two medial 
temporal lobe structures (hippocampal area CA1 and perirhinal cortex) that we hypothesise to be 
crucial in the formation and retrieval of multimodal memories (Bos et al., 2017; Vinck et al., 2016). 

The scientific hypotheses that we are most interested in testing is 1) whether visual and whisker-
based exploration of the objects is guided by a process of prediction error minimisation, as 
postulated by theories of predictive coding and active inference; and 2) whether neural signatures 
of prior predictions and prediction errors on object locations and dimensions are computed locally 
in sensory structures, such as the barrel cortex and/or higher-order regions, such as the medial 
temporal lobe, and the hippocampus. 

2.2 Data analyses 
Together with EBRAINS, we make a joint effort between UvA and CNR to analyse the experimental 
data stemming from the multisensory object recognition task. Below we summarise our current 
advancements in the analysis of kinematic and neurophysiological data. 

https://eur04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsearch.kg.ebrains.eu%2F%3Fcategory%3DContributor%26q%3Djulien%23452d5de0-99c2-4505-b00a-9e305b6e27ed&data=05%7C01%7CC.M.A.Pennartz%40uva.nl%7C799fb273dc404a9fa2ea08dbf6476652%7Ca0f1cacd618c4403b94576fb3d6874e5%7C0%7C0%7C638374558740673839%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=hlLeSBo0viJvDI7ZlFWkqpblI7dF26i1Lqf8JnCB9us%3D&reserved=0
https://eur04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsearch.kg.ebrains.eu%2F%3Fcategory%3DContributor%26q%3Djulien%23452d5de0-99c2-4505-b00a-9e305b6e27ed&data=05%7C01%7CC.M.A.Pennartz%40uva.nl%7C799fb273dc404a9fa2ea08dbf6476652%7Ca0f1cacd618c4403b94576fb3d6874e5%7C0%7C0%7C638374558740673839%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=hlLeSBo0viJvDI7ZlFWkqpblI7dF26i1Lqf8JnCB9us%3D&reserved=0
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2.2.1 Analysis of kinematic data 

Figure 3: Schematic of the analysis of kinematic data. 
This figure illustrates the approach to the analysis of whisking kinematics. The left panels illustrate sample whisker 
dynamics (with or without filtering). The Y-axis denotes angles (top) or angle differences (bottom) whereas the X-axis 
denotes time. The bottom-right panels illustrate examples of cross-correlations between whisker dynamics and touch 
events, which permit measuring anticipatory and reactive aspects of whisking. See the main text for explanation. 

The aim of the analysis of whisking kinematics is twofold. First, finding a measure able to 
discriminate situations in which whisking behaviour is adjusted in an anticipatory manner (to reflect 
an expectation of object touch) versus adjusted in a reactive manner, as a reaction to an unexpected 
touch. Second, assessing the ratio of the amount of anticipatory versus reactive whisking behaviours 
in different trials (Tactile vs Visuo-Tactile trials). 

The original data, extracted from video recordings by UvA, consist of the time series of the dynamics 
of 6 whiskers (see Figure 3). Whiskers are chosen so that 3 whiskers are part of the left whisker pad, 
and the other 3 whiskers are in the respective position in the right whisker pad. Dynamics represent 
the angular inclination at each time interval of a trial of each whisker with respect to the head. 
These time-series are extracted for each trial within the Visual, Visuo-Tactile and Tactile conditions. 
The data also include the two time-series of touch events for each trial, accounting for touches by 
the left and right groups of whiskers, respectively.  

To analyse the data, CNR developed a novel measure of anticipation/reaction, using standard Python 
libraries for statistical analysis (SciPy and Pandas). The anticipation/reaction measure considers the 
cross-correlations between whisking time-series (filtered at their most informative range of 
frequencies) and touching time-series. Lags from 0 to the maximum number of spikes in the cross 
correlograms are considered. These scores convey information about the temporal correlations, 
indicating which of the timeseries must be shifted forward in time to obtain higher correlation. Thus, 
they can be used to build a measure of the temporal anticipation of touch events through whisker 
dynamics. We are currently refining this measure to test the hypothesis that the animals adjust their 
whiskers in an anticipatory manner and anticipatory dynamics are especially prominent during Visual 
Trials, in which the animals can use visual information to correct their sensorimotor model before 
acquiring any somatosensory information. 

As explained below, a further step will be to put these data in relation with those simulated by an 
active inference model of rat behaviour, whose hierarchical generative model is made up by a 
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sensorimotor layer and a decision-making layer, which generates predictions about the kind of object 
that is currently observed.  

2.2.2 Analysis of neural data 

To investigate the neural mechanisms driving sensory detection, the effect of behavioural 
parameters (such as sensory modality) on neural activity is studied. An example of this analysis is 
the encoding model depicted in Figure 4. Such a model fits the behavioural parameters on the neural 
data, highlighting the contribution of individual behavioural parameters. If for instance modality 
were to be an import driver for neural activity in the investigated area, then the behavioural 
parameters for stimulus presentation and modality will contribute more to the generation or 
explanation of neural activity. This analysis allows us to include other parameters such as the 
prediction signal generated by the computational model described in Section 3. All our analyses are 
written in Python, the source code will be published together with the Live Paper 2.1a and users can 
run the pipeline on EBRAINS using their own parameters. The analysis will depend on HBP data-
processing packages such as Neo and Elephant and other open-source libraries for python. 

Further, the data will be analysed with respect to spike and local field potential (LFP) interactions. 
Previously it has been shown that neurons lock their firing on the whisking kinematics of rats (Grion 
et al., 2016). The contribution of a prediction signal as described by the model in Section 3 to this 
interaction will be investigated. 

Figure 4: Figure illustrating the analysis of neural data.  
The firing rate of a single unit is nearly replicated by the prediction signal of the encoder model (blue and black traces 
in the top row, respectively). The encoder model uses behavioural parameters (black, bottom rows) to predict neural 
activity. 

3. Computational model of active whisking 
The Live Paper will include the description of a computational model of active whisking based on 
the framework of active inference, which describes action and perception as guided by an overall 
process of minimisation of prediction errors (Friston, 2005; Rao & Ballard, 1999); or more formally, 
a minimisation of variational free energy (Friston, 2010; Parr et al., 2022). The computational model 
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used for the Live Paper will be an extension of the recently published model of (Mannella et al., 
2021) and is realised in Python. 

3.1 Brief illustration of the computational model 
The computational model is inspired by previous findings about how rats and mice adapt their 
whisking kinematics to optimise their whisker placement during tactile sensing. Across several 
studies, it emerged that rats and mice use an anticipatory strategy to adapt their whisker amplitude 
to the distance (and location) in which they expect to encounter objects (Voigts et al., 2015). In 
other words, they might form an internal prediction based on a (memorised) expectation of the 
location of an object and adapt their whisking behaviour accordingly. To explain these findings, we 
adopt an active inference perspective and hypothesize that the brain generates object-specific 
predictions about whisker protractions and touches and treats unexpected whisker contacts as 
prediction error signals (discrepancies between the expectation and reality), to be minimised by 
adjusting whisker behaviour.  

Figure 5 provides a schematic illustration of the computational model (left panel) and of some of 
the "synthetic time series" that the model can generate during whisking-based exploration (right 
panel); see (Mannella et al., 2021) for a detailed description of a preliminary version of the model. 
The left panel of Figure 5 shows the graphical model (Bayesian net) of the model. The nodes denote 
the (multimodal) model variables, which comprise sensory predictions in three modalities 
(proprioception, touch, and vision), hidden variables and internal motor causes (that modulate 
whisker amplitude). A key assumption of the model is that the animal uses an active sensing strategy 
to recognise objects. It initially sets whisker amplitude according to prior predictions about object 
identity and location (derived for example from visual information, if available); and continuously 
adjusts whisker movements to minimise prediction errors (e.g., unexpected touches). In turn, this 
prediction error minimisation process ensures that the animal has accurate predictions about object 
location and identity - hence effectively "recognising" it. Compared to the published study of 
(Mannella et al., 2021), the computational model used in the Live Paper includes two main novel 
elements that are key to model rodent multisensory object recognition data. The first novel element 
is a "visual stream" that processes visual information about the two objects present in the task. The 
second novel element is a decision-making system that is responsible for the final choice that the 
animal does in the task: moving to one of the two sides of the T-maze. The computational model 
used in the Live Paper 2.1a is therefore a hierarchical model that comprises a sensorimotor layer 
(guiding visual and whisker-based exploration) and a decision-making layer.  
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Figure 5: Computational model. 

Top-right panel: schematic of the generative model used by the active inference agent. The computational model is 
hierarchical and includes a lower-level (sensorimotor) layer that includes three modalities: touch, proprioception, 
and vision. Furthermore, it includes a higher-level (decision) layer that is responsible to make decisions about object 
identity based on sensorimotor information gathered during visual and/or whisker-based exploration. Top-left panel: 
simplified neuronal implementation of the generative modelling scheme in the rodent brain. The symbols that appear 
in the schematic denote proprioceptive and somatosensory predictions (Sp and Ss), hidden state variables (x) and 
causal variables (ν) of the model; whereas the symbols μ and ξ that appear in the bottom-left schematic denote mean 
values of model variables and prediction errors, respectively. See (Mannella et al., 2021) for details on the model. 
Bottom panel: "synthetic time series" generated from the model, by plotting how the model variables (e.g., 
predictions and prediction errors) vary over time during multisensory object recognition. The model-based analysis 
consists in using the "synthetic time series" generated by the model in the different conditions (e.g., Visual, Visuo-
Tactile or Tactile) as predictors of rodents’ neural activity in the same conditions. Figure contains head of the mouse 
from (top left) from Mannella et al.2021. 

The right panel of Figure 5 shows some "synthetic time series" of the model variables (e.g., hidden 
states, somatosensory visual and second order prediction errors – errors between priors in the 
sensorimotor layer and generated priors in the decision layer) during an example episode of object 
exploration. These "synthetic time series" will become important in the model-based analyses of the 
experimental results of the multisensory object recognition task, as explained below.  

3.2 Model-based data analysis 
The main usage of the computational model is supporting "model-based data analysis". For this, we 
will use the "synthetic time series" that emerge from internal parameters of the computational model 
(e.g., predictions and prediction errors) as predictors of time series that emerged from the neural 
recordings in rodents - when the animal and the computational model are facing the same task. This 
analysis is done using custom-written Python software, which will be published on EBRAINS together 
with the Live Paper. 

Specifically, we will firstly match the (whisking) behaviour of our model with the behaviour of 
animals that face the same kind of trials (e.g., the recognition of the Cube object during Tactile 
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trials). To establish this matching, we will use the anticipation/reaction measure described above 
(in the analysis of kinematic data). Having established a matching between animal and model 
behaviour, and under the assumption that whisker kinematics reflect the expectancy of rats, our 
active inference model will be able to compute "synthetic time series": predictions and prediction 
errors based on whisking kinematics and other body parameters of the rat during each trial. This 
allows us testing to what extent the parameters (e.g., predictions and prediction errors) extracted 
from the model explain neural data in the four brain areas that were simultaneously recorded (barrel 
cortex, visual cortex, hippocampus and perirhinal cortex) - which would amount to asking to what 
extent these four areas show signatures of a prediction error minimisation process, as we 
hypothesise. 

In sum, the model will be used to complement the data analysis approach illustrated in Figure 4, 
with additional predictors (that cannot be directly observed but only inferred with the aid of a 
computational model). The final model is available in the Knowledge Graph1. 

4. Looking Forward 
In this document, we described a rodent multisensory object recognition task (Section 2) and a 
computational model (Section 3) developed to analyse the results, at both behavioural and neural 
levels. This empirical and computational work will form the core of the Live Paper 2.1a. In the Live 
Paper, we will test the idea that to recognise objects, rodents use an active whisking strategy that 
is guided by predictions and prediction errors (as described in Section 3) and - crucially - neuronal 
signatures of predictions and prediction errors can be found across the four brain areas that we 
recorded. To test this hypothesis, we validated the capability of the model to reproduce whisker 
behaviour, trial-by-trial; the model is able to generate synthetic time series for predictions and 
prediction errors that can be used to identify signatures of the same processes in the neuronal 
populations that we recorded, again trial-by-trial. The computational model is already able to 
reproduce whisker behaviour and generate synthetic time series (see Section 3). However, to achieve 
the ambitious goal of the Live Paper 2.1a, our current modelling work focuses on the fine-tuning of 
the part of the generative model that guides whisker movements, to ensure that the synthetic 
movements generated by the model align very accurately with the real whisker dynamics of rodents 
(a correct matching at the behavioural level is a key prerequisite for an accurate neural-level 
analysis).  

All of the work described in this Deliverable (data analysis, computational modelling, "alignment" of 
model and data) is currently under development and is at different stages of completion. The 
computational model can be found here: https://search.kg.ebrains.eu/instances/3034a3bc-dd52-
440c-a7e5-23104ebf36de. The data analyses, computational model, and alignment of model and 
data are finished. The most advanced results will be part of Live Paper 2.1a (the advanced draft has 
been discussed and reviewed internally, and as a result refinements and improvements are being 
conducted before submission to a peer-reviewed journal in the coming weeks). Deliverable D2.2 has 
been affected by consequences of data collection speed on model integration, and limited lab access 
due to COVID-19 restrictions both at the UvA (the Netherlands) as well as CNR (Italy).  

  

 
1 https://search.kg.ebrains.eu/instances/3034a3bc-dd52-440c-a7e5-23104ebf36de  

https://search.kg.ebrains.eu/instances/3034a3bc-dd52-440c-a7e5-23104ebf36de
https://search.kg.ebrains.eu/instances/3034a3bc-dd52-440c-a7e5-23104ebf36de
https://search.kg.ebrains.eu/instances/3034a3bc-dd52-440c-a7e5-23104ebf36de
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