
Project Number: 284941 Project Title: Human Brain Project

Document Title: Neuromorphic Platform Specification

Document Filename: HBP_SP9_D9.7.1_NeuromorphicPlatformSpec_56b296e
from 13 May 2014

Deliverable Number: D 9.7.1

Deliverable Type: Platform Specification

Sub Project: SP9

Planned Delivery Date: M6 - 31 March 2014

Actual Delivery Date: M7

Authors: The deliverable has been written by the SP9 part-
ners UHEI, UMAN, CNRS-UNIC, TUD and KTH. The com-
plete version history with commit-info is available in the
git repository: git@gitviz.kip.uni-heidelberg.de:hbp-sp9-
specification–d9-7-1.git

Abstract: This document provides the technical specifications for
the Neuromorphic Computing Platform of the Human Brain
Project. For each of the two complementary large-scale
hardware implementations, detailed technical descriptions
of the architecture, the user view and the electronic com-
ponents are given. In addition, the support software re-
quired for the execution of experiments on the Platform is
described and benchmark tasks for neuromorphic comput-
ing are proposed. The document closes with a list of key
performance indicators and a timeframe for the Platform’s
construction.

Keywords: neuromorphic, VLSI, analog, mixed-signal, many-core,
brain-inspired computing, PyNN

HBP_SP9_Specification 13 May 2014 (git 56b296e) 1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 2

Neuromorphic Platform Specification

13 May 2014 (git 56b296e)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 2

Executive summary

The Human Brain Project will construct and operate a Neuromorphic Computing Platform
consisting of two complementary hardware systems and the software infrastructure nec-
essary for their operation. The size and the research opportunities of the HBP hardware
systems will be unrivaled. They offer the first and so far only generic and remotely accessi-
ble neuromorphic computing facilities to perform research on this new computing paradigm.

This specification document is primarily written for regular consultation by researchers.
It provides hardware and software developers and the user community with a technically
detailed, comprehensive and quantitative description of the systems under construction. It
also enables administrators to monitor progress using a set of high-level “key-performance-
indicators (KPIs)”.

This document has an introduction and four main parts. It starts with an introduction to
neuromorphic computing and a description of the specific implementation and capabilities
of the HBP Neuromorphic Computing Platform. For consistency with the other HBP platform
specification deliverables, the software tools required to access, configure and operate the
neuromorphic computing systems are described first (in part 1). Parts 2 and 3 contain
detailed specifications of the two complementary hardware systems. These systems are the
“Physical-Model (PM)” system to be installed in Heidelberg (Germany) and the “Many-Core
(MC)” system to be installed in Manchester (UK). Part 4 introduces the benchmarks for the
systems, and part 5 lists the scientific key performance indicators for monitoring the platform
building progress.

The ability to build such a large scale and unique facility on an extremely short timescale
during the 30 months ramp-up phase of the HBP builds on 10 years of preceding work,
in particular the research, design and development carried out in the SpiNNaker, FACETS
and BrainScaleS projects. The scale of the Human Brain Project allows for the aggregation
of existing components, and for their assemblage into a user facility. This specification
document therefore includes a precise, quantitative description of components developed
prior to the HBP.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 3

HBP_SP9_Specification 13 May 2014 (git 56b296e) 4

Contents

The Neuromorphic Computing Platform 15
What is Neuromorphic Computing? . 15
What are the key features of the HBP Neuromorphic Computing Platform? . . 16
How will the NM Platform be used? . 20
Integration of the NM Platform into the HBP Platform Ecosystem 20
The purpose of this document . 21

1 User interface to the Neuromorphic Computing Platform 23

1.1 Overall goals 25

1.2 Use cases 27
1.2.1 A single run of a simple network model . 27
1.2.2 A scripted run of a complex network model with input data and parameter

files . 28
1.2.3 Using the Neuromorphic Computing Platform through the Unified Portal and

Brain Simulation Platform . 30
1.2.4 Parameter sweeps . 31
1.2.5 Closed-loop experiment involving a virtual environment 31

1.3 Functional requirements 33
1.3.1 Model and experiment descriptions . 33
1.3.2 Job control interface . 33

1.3.2.1 Batch mode . 34
1.3.3 Data handling . 34
1.3.4 Closed-loop experiments . 35

1.4 Non-functional requirements 37
1.4.1 Sharing . 37
1.4.2 Authentication and Authorization . 37
1.4.3 Security . 37
1.4.4 Accounting . 38
1.4.5 Efficiency and user volumes . 38
1.4.6 Reliability . 38

HBP_SP9_Specification 13 May 2014 (git 56b296e) 5

1.5 Architectural overview 39
1.5.1 Job submission API . 39

1.5.1.1 Overview . 39
1.5.1.2 Endpoints . 40
1.5.1.3 Resource descriptions . 40
1.5.1.4 Serializations and allowed document types 41
1.5.1.5 Physical architecture . 41

1.5.2 Python client for REST API . 41
1.5.3 Model/experiment verification . 41
1.5.4 Resource management software in Heidelberg and Manchester 42
1.5.5 Tools for exporting Brain Builder model descriptions as PyNN descriptions . . 42

1.6 Interfaces to other platforms 43
1.6.1 Services required from other Platforms . 43
1.6.2 Services provided to other Platforms . 43

1.7 Key performance indicators and Function blocks 45

2 Neuromorphic Computing with Physical Emulation of Brain Models 51

2.1 Physical Model Platform: NM-PM 53
2.1.1 Neuromorphic Physical Model . 53
2.1.2 Constitutent Parts of the Neuromorphic Physical Model version 1 (NM-PM1) . 54

2.2 Users view of the NM-PM system 59
2.2.1 Usage of the NM-PM as a modeling back-end 59
2.2.2 Low-level user access . 60
2.2.3 Real-time interaction with the NM-PM . 61
2.2.4 Evaluation Workflow . 62

2.3 Neuromorphic Circuits 65
2.3.1 Overview . 65
2.3.2 Continuous-Time Layer 1 Communication . 69

2.3.2.1 Technical Implementation of the Layer 1 Communication 70
2.3.2.2 Serial Layer 1 Sender - Sending Repeater 71
2.3.2.3 Synapse Driver . 71
2.3.2.4 Repeater . 72
2.3.2.5 Neuron to Layer 1 and Layer 2 Interfaces 73
2.3.2.6 Crossbar and Synapse Driver Switch Matrices 74
2.3.2.7 L1 Pinout of the HICANN Chip . 76

2.3.3 Analog Neural Network Core (ANNCORE) circuits 76
2.3.3.1 Synapse drivers . 76
2.3.3.2 Synapses . 80
2.3.3.3 Membrane Circuits . 80
2.3.3.4 Additional Features of the Denmem-Block 81

HBP_SP9_Specification 13 May 2014 (git 56b296e) 6

2.3.3.5 Single-Poly Floating Gate Analog Parameter Storage 81
2.3.4 Digital Control . 86

2.3.4.1 General system control . 86
2.3.4.2 DNC interface and Layer 2 circuits 88
2.3.4.3 Configuration Interface . 92
2.3.4.4 Configuration Modules . 94
2.3.4.5 Digital synapse control . 102

2.4 Wafer-Scale Integration 111
2.4.1 Post-Processing Procedure . 111

2.4.1.1 Post-Processing Design Rules . 113
2.4.1.2 Integration of PP Layers into ASIC Design Flow 114

2.4.2 Reticle Design . 115
2.4.2.1 Pinout and HICANN Indexing . 119

2.4.3 UMC Wafer Map and Post-Processing Masks 120

2.5 Wafer Module 123
2.5.1 Overview . 123
2.5.2 Wafer Module Composition . 123
2.5.3 Mechanical Specification of Components . 125

2.5.3.1 Wafer Bracket (WBr) . 125
2.5.3.2 Sealing Rings . 126
2.5.3.3 Positioning Mask for the Elastomeric Stripe Connectors (PMk) 126
2.5.3.4 Elastomeric Stripe Connectors (ElCo) 128
2.5.3.5 Wafer Module Main PCB (MainPCB) 129
2.5.3.6 Main power supply board (PowerIt) 136
2.5.3.7 Auxiliary Power Supply PCB (AuxPwr) 137
2.5.3.8 Breakout PCBs for analog readout signals of the Wafer (AnaB) 139
2.5.3.9 Monitoring and Control PCB of Reticles (Cure) 140
2.5.3.10 Main System Control Unit (MaCU) . 143
2.5.3.11 Top Cover (ToCo) . 143
2.5.3.12 Insertion Frame for mounting of additional PCBs (InFra) 145
2.5.3.13 FPGA Communication PCB (FCP) . 145
2.5.3.14 Wafer I/O PCB (WIO) . 146

2.6 Communication Modules 151
2.6.1 Overview . 151
2.6.2 Board Design . 152

2.6.2.1 Kintex7 board . 152
2.6.2.2 Wafer IO boards . 155

2.6.3 FPGA Firmware . 156
2.6.3.1 Overview . 156
2.6.3.2 Low-level interfaces . 157
2.6.3.3 Layer 2 HICANN interface . 160
2.6.3.4 Core logic . 162

HBP_SP9_Specification 13 May 2014 (git 56b296e) 7

2.6.3.5 HICANN ARQ . 163
2.6.3.6 HostARQ . 164

2.7 Analog Read-Out 169
2.7.1 Flyspi FPGA PCB (Flyspi) . 169
2.7.2 Analog Front End Board . 170
2.7.3 FPGA Firmware and Software interface . 171

2.7.3.1 FPGA Firmware . 171
2.7.3.2 Software Interface . 172

2.8 Compute Cluster and Networking 175
2.8.1 Node architecture . 175
2.8.2 Network architecture . 176

2.9 System Control and Power Supply Infrastructure 179
2.9.1 Power Supply . 179

2.9.1.1 HICANN Voltages . 179
2.9.1.2 Reticle Power Supply . 181

2.9.2 Control System . 182
2.9.2.1 Communication Channels . 182
2.9.2.2 System Monitoring . 184
2.9.2.3 Raspberry Pi - Main System Control Unit 187
2.9.2.4 Monitoring and Control PCB for Reticles - Cure 188
2.9.2.5 System Sequence Plans . 190
2.9.2.6 Error Management . 190

2.10 Hardware-Software Interface 197
2.10.1 Host to FCP Communication . 197

2.10.1.1 Transport Layer Protocol . 197
2.10.2 Host to FCP Payload Data Formats . 198

2.10.2.1 FPGA Trace / Pulse Data . 198
2.10.2.2 FPGA Playback Data . 199
2.10.2.3 FPGA Configuration . 201
2.10.2.4 HICANN Configuration Data . 201
2.10.2.5 Sideband Data . 202

2.10.3 Analog Readout . 203
2.10.3.1 Host-to-Analog Readout Module USB protocol 203
2.10.3.2 Pin assignment for analog input header 209
2.10.3.3 FPGA registers for ADC board configuration 209
2.10.3.4 FPGA registers for Fast ADC controller 209
2.10.3.5 FPGA packet format for SPI-based ADC controller 211
2.10.3.6 FPGA bus base addresses . 211

2.10.4 HICANN Configuration Registers . 212
2.10.4.1 Hicann SRAM controller . 214
2.10.4.2 Hicann neuron builder . 214

HBP_SP9_Specification 13 May 2014 (git 56b296e) 8

2.10.4.3 Hicann denmem configuration . 215
2.10.4.4 HICANN analog output configuration registers 216
2.10.4.5 HICANN floating gate controller instructions 217
2.10.4.6 HICANN merger tree configuration 217
2.10.4.7 HICANN background event generator configuration 219
2.10.4.8 HICANN reapeater SRAM controller configuration 220
2.10.4.9 HICANN DNC interface and Layer 2 circuit configuration 221
2.10.4.10 Digital Synapse Control . 222

2.10.5 JTAG Access . 231
2.10.5.1 HICANN JTAG Access . 231
2.10.5.2 FPGA JTAG Access . 235

2.10.6 Experiment control . 236

2.11 Hardware Abstraction Layer 237
2.11.1 User Coordinate System . 237

2.11.1.1 Implementation . 238
2.11.2 Stateless API . 240

2.11.2.1 Real-time Access . 240
2.11.3 Low-level Stateful API . 241
2.11.4 Executable System Specification - Simulation Layer 243

2.11.4.1 Implementation . 243
2.11.4.2 Comparison with real system . 244
2.11.4.3 Using the ESS . 244

2.11.5 Hardware Simulations . 245

2.12 System Management Layer 247
2.12.1 Cluster . 247
2.12.2 Hardware Resources . 247
2.12.3 Users . 248

2.13 PyNN Frontend and Translation Libraries 249
2.13.1 Calibration . 249
2.13.2 Automated Mapping of Neural Networks to Hardware 252

2.13.2.1 Neuron Placement . 252
2.13.2.2 Merger Routing . 255
2.13.2.3 Input Placement . 257
2.13.2.4 Wafer Routing . 258
2.13.2.5 Synapse Driver Routing . 265
2.13.2.6 Synapse Array Routing . 268
2.13.2.7 Parameter Transformation . 270

2.13.3 PyNN.hardware.nmpm . 274

HBP_SP9_Specification 13 May 2014 (git 56b296e) 9

3 Neuromorphic Computing with Many-core Emulation of Brain Models 277

3.1 Multi-core Platform: NM-MC 279
3.1.1 Physical Architecture . 280
3.1.2 Software . 283

3.2 SpiNNaker Chip Datasheet 287
3.2.1 Chip Organization . 290

3.2.1.1 Block Diagram . 290
3.2.1.2 System-on-Chip hierarchy . 291
3.2.1.3 Register description convention . 292

3.2.2 System architecture . 293
3.2.2.1 Routing . 294
3.2.2.2 Time references . 295
3.2.2.3 System-level address spaces . 295

3.2.3 ARM968 processing subsystem . 296
3.2.3.1 Features . 296
3.2.3.2 ARM968 subsystem organisation . 297
3.2.3.3 Memory Map . 297

3.2.4 ARM 968 . 300
3.2.4.1 Features . 300
3.2.4.2 Organization . 300
3.2.4.3 Fault-tolerance . 300

3.2.5 Vectored interrupt controller . 301
3.2.5.1 Features . 301
3.2.5.2 Register summary . 302
3.2.5.3 Register details . 302
3.2.5.4 Interrupt sources . 305
3.2.5.5 Fault-tolerance . 306

3.2.6 Counter/timer . 308
3.2.6.1 Features . 308
3.2.6.2 Register summary . 308
3.2.6.3 Register details . 309
3.2.6.4 Fault-tolerance . 311

3.2.7 DMA controller . 312
3.2.7.1 Features . 312
3.2.7.2 Using the DMA controller . 312
3.2.7.3 Register summary . 313
3.2.7.4 Register details . 314
3.2.7.5 Fault-tolerance . 319

3.2.8 Communications controller . 321
3.2.8.1 Features . 321
3.2.8.2 Packet formats . 321
3.2.8.3 Control byte summary . 323
3.2.8.4 Debug access to neighbouring devices 324

HBP_SP9_Specification 13 May 2014 (git 56b296e) 10

3.2.8.5 Register summary . 325
3.2.8.6 Register details . 325
3.2.8.7 Fault-tolerance . 328

3.2.9 Communications NoC . 329
3.2.9.1 Features . 329
3.2.9.2 Input structure . 329
3.2.9.3 Output structure . 330

3.2.10 Router . 331
3.2.10.1 Features . 331
3.2.10.2 Description . 331
3.2.10.3 Internal organization . 333
3.2.10.4 Multicast (MC) router . 334
3.2.10.5 The point-to-point (P2P) router . 335
3.2.10.6 The nearest-neighbour (NN) router 336
3.2.10.7 Time phase handling . 336
3.2.10.8 Packet error handler . 337
3.2.10.9 Emergency routing . 337
3.2.10.10 Register summary . 337
3.2.10.11 Register details . 338
3.2.10.12 Fault-tolerance . 347
3.2.10.13 Test . 348

3.2.11 Inter-chip transmit and receive interfaces 349
3.2.11.1 Features . 349
3.2.11.2 Programmer view . 349
3.2.11.3 Fault-tolerance . 349

3.2.12 System NoC . 351
3.2.12.1 Features . 351
3.2.12.2 Organisation . 352

3.2.13 SDRAM interface . 353
3.2.13.1 Features . 353
3.2.13.2 Register summary . 353
3.2.13.3 Register details . 355
3.2.13.4 The delay-locked loop (DLL) . 361
3.2.13.5 Fault-tolerance . 363

3.2.14 System Controller . 364
3.2.14.1 Features . 364
3.2.14.2 Register summary . 364
3.2.14.3 Register details . 365

3.2.15 Ethernet MII interface . 378
3.2.15.1 Features . 378
3.2.15.2 Using the Ethernet MII interface . 378
3.2.15.3 Register summary . 378
3.2.15.4 Register details . 379
3.2.15.5 Fault-tolerance . 383

HBP_SP9_Specification 13 May 2014 (git 56b296e) 11

3.2.16 Watchdog timer . 384
3.2.16.1 Features . 384
3.2.16.2 Register summary . 384
3.2.16.3 Register details . 385

3.2.17 System RAM . 387
3.2.17.1 Features . 387
3.2.17.2 Address location . 387
3.2.17.3 Fault-tolerance . 387
3.2.17.4 Test . 388

3.2.18 Boot ROM . 389
3.2.18.1 Features . 389
3.2.18.2 Address location . 389
3.2.18.3 Fault-tolerance . 389

3.2.19 JTAG . 390
3.2.19.1 Features . 390
3.2.19.2 Organisation . 390
3.2.19.3 Operation . 390

3.2.20 Input and Output signals . 391
3.2.20.1 Key . 391
3.2.20.2 SDRAM interface . 391
3.2.20.3 JTAG . 391
3.2.20.4 Ethernet MII . 392
3.2.20.5 Communication links . 392
3.2.20.6 Miscellaneous . 393
3.2.20.7 Internal SDRAM interface . 394
3.2.20.8 Internal SDRAM power & ground . 394

3.2.21 Packaging . 395
3.2.22 Application notes . 396

3.2.22.1 Firefly synchronization . 396
3.2.22.2 Neuron address space . 396

3.3 SpiNNaker Software Datasheet 397
3.3.1 Run-time software . 398

3.3.1.1 Run-time software stack . 399
3.3.1.2 Inter-processor communication . 399
3.3.1.3 Runtime memory map . 402

3.3.2 Application programming interface (API) . 403
3.3.2.1 Event-driven programming model . 403
3.3.2.2 Programming interface . 404

3.3.3 Neural net simulation frameworks . 425
3.3.3.1 Spiking Neural net simulation framework 425
3.3.3.2 MLP simulation framework . 428

3.3.4 Neural net simulation development route . 430
3.3.4.1 pyNN.spiNNaker . 431
3.3.4.2 PyNN API functions list . 434

HBP_SP9_Specification 13 May 2014 (git 56b296e) 12

3.3.4.3 Simulation setup and control . 435
3.3.4.4 Object-oriented interface for creating and recording networks 435
3.3.4.5 PopulationView . 435
3.3.4.6 Assembly . 435
3.3.4.7 Object-oriented interface for connecting populations of neurons . . 436
3.3.4.8 Procedural interface for creating, connecting and recording networks 437
3.3.4.9 Neural Models . 437
3.3.4.10 Specification of synaptic plasticity 437
3.3.4.11 Current Injection . 438

3.3.5 Damson development route . 442
3.3.5.1 Damson program compilation . 442
3.3.5.2 Damson code components . 442
3.3.5.3 Mapping code to SpiNNaker processors 443
3.3.5.4 Runtime system . 443
3.3.5.5 Damson development flow . 443

3.3.6 PACMAN: partition and configuration manager 443
3.3.6.1 Introduction . 443
3.3.6.2 Splitting . 446
3.3.6.3 Grouping . 450
3.3.6.4 Mapper . 451
3.3.6.5 Object File Generator . 453
3.3.6.6 Neural Data Structure generation . 455
3.3.6.7 Automatic Run Script generation . 456
3.3.6.8 MLP PACMAN . 457

3.3.7 Coding guidelines . 467
3.3.7.1 All languages . 467
3.3.7.2 C . 467
3.3.7.3 ARM assembly . 468
3.3.7.4 Python . 469

3.3.8 Documentation guidelines . 469
3.3.8.1 C / C++ . 469
3.3.8.2 Assembly language . 470
3.3.8.3 Robodoc configuration file . 472

4 Benchmarks 475

4.1 Overall goals 477

4.2 Quality criteria for neuromorphic benchmark tests 479
4.2.1 What units should be benchmarked? . 479

4.3 Use cases 481
4.3.1 Tracking the performance of a neuromorphic computing system over time . . 481

HBP_SP9_Specification 13 May 2014 (git 56b296e) 13

4.3.2 Determining whether the Neuromorphic Computing Platform is suitable for
a specific task . 481

4.4 Functional requirements 483

4.5 Architectural overview 485

5 Following the platform building: Key Performance Indicators and time
plans 487

5.1 KPIs and time plans 489
5.1.1 KPIs of the NMPM . 489

5.1.1.1 Wafer Production . 489
5.1.1.2 Printed Circuit Board Production . 489
5.1.1.3 Wafer Module Production . 491
5.1.1.4 Software and Hardware Usage KPIs 491

5.1.2 KPIs of the NMMC . 492
5.1.2.1 Cabinet Assembly . 492
5.1.2.2 Sub-rack assembly . 492
5.1.2.3 Network . 493
5.1.2.4 Fan Tray Assembly . 494
5.1.2.5 Power Supply Assembly . 494

5.1.3 KPIs of the common software part . 494
5.1.4 KPIs of the benchmark part . 495

Bibliography 501

Glossary 503

A Technical drawings of Wafer Module components 515

HBP_SP9_Specification 13 May 2014 (git 56b296e) 14

The Neuromorphic Computing Platform

What is Neuromorphic Computing?

Neuromorphic computing represents a radically new paradigm for information processing.
The underlying concept is a direct mapping of brain architecture and functions on an array of
asynchronously communicating, massively parallel computing elements in custom electronic
hardware. An essential consequence is that the memory-holding structure and function of
the neural circuits and the computing elements themselves are not physically separated
as they are in traditional computing. Rather, they are intertwined on the same hardware
substrate. This approach offers several advantages of neuromorphic systems compared to
the traditional computing approach when simulating brain circuits.

Data and code describing brain activity are not shifted back and forth over large distances
during simulation. This leads to a large advantage in energy consumption per basic operation.
Such basic operations are the generation of an action potential or a synaptic transmission.
On a logarithmic scale, the energy gap between the biological brain and a detailed simula-
tion on a supercomputer is as large as 14 orders of magnitude. Using simplified models in
supercomputer simulations reduces this gap to 10 orders of magnitude. Existing operational
neuromorphic systems with comparable model complexity operate about 4 to 6 orders of
magnitude above the brains energy consumption [71] or with the same distance to tradi-
tional computing. There are no known systems or even concepts to reach this performance
with traditional supercomputers. Conceptual studies for a future exascale machine may re-
duce the energy consumption per fundamental operation only by a factor 2-5 [13] to reach a
power consumption of 20-30 MW for such system.

Massive parallelism also affects the speed of brain simulations on neuromorphic systems
[71]. Traditional very large-scale supercomputer based simulations with cell-level precision
execute 100 to 1000 times slower than biological real-time. This makes them unsuitable for
interfacing with physical robotic devices, and even more for the study of the dynamics that
drives learning and development. Neuromorphic systems simulate brain activity at least at
biological real-time. This is a considerable advantage when interfacing them with robotic
systems. Specific implementations can even deliver considerable acceleration above real-
time, up to a factor 10.000. This provides the only known method to study the dynamics of
learning and development, covering time scales from biological milliseconds to years, or to
explore large network parameter spaces.

The massive parallelism makes neuromorphic systems tolerant against failures of individ-
ual components. Like the brain, which loses about one living cell per second, neuromorphic

HBP_SP9_Specification 13 May 2014 (git 56b296e) 15

systems can cope with failing components through graceful degradation rather than catas-
trophic failure. This resilience will be a prerequisite for constructing future, very large
neuromorphic systems made from unreliable components like memristors.

In addition to the technical advantages described above, there are several fundamental
open research questions related to neuromorphic computing. The biological brain operates
with noisy and diverse components. It is not deterministic but inherently stochastic. Un-
derstanding these features and exploiting them for a fundamentally new way of computing
requires a large-scale and fully configurable research platform like the one under construc-
tion in HBP. Here, it is particularly important to grant access to scientists that have not
contributed to the design and construction, but rather use the platform as a user facility,
very much like scientists already use traditional generic computers. This service is arguably
the most significant contribution of the Neuromorphic Computing Platform in the HBP.

Finally, there may exist a formal theory of the brain based on fundamental insights from
mathematics or theoretical physics. Examples for such insights are analytical topology or
topological field theories. Although still rather speculative, such a fundamental theory
would need to be validated by controlled experiments. Neuromorphic systems on artificial
substrates may well provide the only viable experimental access.

What are the key features of the HBP Neuromorphic Computing
Platform?

The HBP delivers neuromorphic computing with key features that are summarized in this
section.
Complementarity: The platform provides access to two different and complementary

neuromorphic computing technologies.
The mixed-signal PM (physical model) system (figure .1) initially consists of 4 million analog

neurons and 1 billion synapses implemented on 20 8-inch silicon wafers. Biological and
electronic parameters of the cells, as well as the network topology, are user configurable.
The biological model for the neurons is the Adaptive-Exponential-Integrate-and-Fire Model
(AdEx), synapses have 4-bit precision weights and feature short-term and long-term plasticity.
The system is accelerated and runs at 10.000 times biological real-time.

The digital MC (many-core) system (figure .2) initially consists of 500.000 ARM968 processor
cores. A single chip contains 18 cores running integer arithmetics at 200 MHz, a shared
system RAM and a router for address and package based spike transmission. Each chip has 6
bi-directional links capable of transmitting 6 million spikes per second. A 128 Mbyte DRAM is
stacked on the chip die. The system runs at biological real-time.
Configurability: In view of the exploratory phase of neuromorphic computing it is essential

that the systems under construction are as unconstrained as possible given the chosen techno-
logical approaches. Both HBP systems offer a very high degree of configurability with respect
to the network architecture and the local models used for neurons, synapses and plasticity.
The PM system uses cross-bar switches, analog floating gates and SRAM cells for this purpose.
The MC system is based on programmable ARM cores connected by bi-directional links. Both
systems are capable of performing a wide spectrum of experiments ranging from biological
reverse-engineered circuits to highly abstract networks, which may be as extreme as random

HBP_SP9_Specification 13 May 2014 (git 56b296e) 16

1

5

6
7

2
3

4

8

8

Figure .1: Rendered View of the NM-PM1 system (for explanations see page 55)

103$machine:$864$cores,$1$PCB,$75W$$ 104$machine:10,368$cores,1rack,$900W$
$

105$machine:$103,680$cores,$1$cabinet,$9kW$$

106$machine:$1M$cores,$10$cabinets,$90kW$$

Figure .2: Concept view of the NM-MC1 system

connectivity.
Low Energy and High Speed: Both HBP NM systems offer several orders of magnitude

advantages over traditional simulation computers in terms of their energy consumption and
simulations time. The energy gap in performing a single synaptic transmission between the

HBP_SP9_Specification 13 May 2014 (git 56b296e) 17

biological brain and a detailed computer simulation is as large as 14 orders of magnitude,
corresponding to 10 fJ in the former case and 1J in the latter. Simplified models executed
on traditional computers lead to a reduction to 0.1 mJ, which is still 10 orders of magnitude
worse than biology. The NM systems of HBP are consuming 10.000 pJ and 100 pJ for the MC
and the PM systems, respectively. It is essential to note, that these numbers are not obtained
from isolated lab samples but rather from fully functional systems including all overheads
from control systems, losses in power supplies and similar effects.

Simulations of large networks on traditional computers typically run 100 to 1000 times
slower than biological real-time. This renders a real-time link to physical robots or a study of
slow learning and developmental processes impossible. In this respect the complementarity
of the two HBP systems is very evident. The MC system operates at biological real-time,
making it an ideal candidate to connect to physical robots with vision and sound sensors as
well as mechanical moving parts and actuators. The PM system, with the large acceleration
factor of 10.000, can compress a day of development into 10 seconds. This provides the
only known access to slow learning and developmental processes with an effective biological
timing precision in the sub-millisecond regime, where processes like STDP drive the dynamics
of synapses. The large acceleration factor even allows to explore evolutionary time-scales
in experiments lasting several days or even months.

Scalability: The scale of both phase 1 systems is entirely determined by the financial funds
available for their construction. For growth of up to a factor 10 the cost for larger systems will
simply scale with the growth factor. No fundamentally new technological approaches would
have to be developed. This is an important feature of the massively parallel approach and it
should be exploited whenever extra funding becomes available. For even larger systems the
costs will start to grow faster than linear because of costs for more advanced infrastructure
like space, power and cooling. Also, new assembly technologies like 3D-integration and
automated manufacturing would drive the costs. At this point, upgradability will become an
important feature (see below).

Hybrid Operation: Although there are early experiments that need to be performed with
stand-alone neuromorphic systems, the important new insights will only arise once those
systems interact with data or the environment, and once learning and development is driven
by those interactions. In the case of the real-time MC system, closed external perception-
action loops can be implemented using physical robots. For the accelerated PM system this
is not feasible. Here, the external data will be provided by an nearby high performance
computer operating in a closed loop with the NM system (figure .3). This so-called hybrid
operation of an NM system with a traditional computer is also required for other purposes like
functional simulations of larger brain areas for a multi-scale approach, or for performing the
mapping and routing of reverse engineered biological networks to the hardware substrate.
For this reason the PM system will operate a 5 TFlop machine in close physical proximity to
the NM system.

Non-Expert User Access: The application of NM systems has so far been restricted to
users with very detailed knowledge about the specific underlying hardware system and the
dedicated software package provided to operate the system. This is very different from
traditional computers, where established software packages allow efficient use with very
little training effort. The HBP NM Platform systems will provide a unified software suite that

HBP_SP9_Specification 13 May 2014 (git 56b296e) 18

Bridging'
Scales'(x,t)'

€

cm
dV
dt

= −gleak V − E l()

Δt = tpost – tpre

Ac4on'
Percep4on'
Rewards'

Hybrid'
(NeuromorphicAHPC)'
Mul4scale'Modelling'

Microscopic'–'macroscopic'
'

Milliseconds'–'years'
'

Rapid&cycling&of&experiments&

Output'of'
biologically'
equivalent'

data'

Input'of'
microscopic'

and'
macroscopic'

theory'

Virtual'environment'

Figure .3: Hybrid operation

enables access by non-expert users. A typical example are neuroscientists running experi-
ments implementing reverse engineered circuits. The software suite contains a description
language for networks (PyNN), the mapping and routing from biology or a theoretical model
to the hardware substrate, a simulation and verification tool, and tools for the storage and
the analysis of the produced data. As a whole, the NM software suite will be integrated into
the HBP Unified Portal, allowing for an integration with the Neuroinformatics Platform, the
brain simulations and the neurorobotics simulation environment.

Upgradability: It is expected that data integration and simulation in HBP will deliver a
clearer idea of which aspects of neural circuits are essential for computation. This new
knowledge will most likely require the design of new and improved electronic circuits, in-
cluding the necessary new chip design. Also, device and VLSI technologies will develop and
more advanced process nodes are likely to become accessible to neuromorphic computing.
The groups in the NM Subproject are therefore already developing concrete plans to upgrade
their systems. In this context, “upgradability” is very important. Infrastructure elements
like power supplies, cooling, racks, control boards, readout- and monitoring systems, and the
software tools will be transferred to and reused by the new hardware generations in order
to reduce the development time.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 19

How will the NM Platform be used?

The high degree of configurability and the requirement to allow for the use by non-experts
require the set-up of an integrated user concept. It is planned to provide training session
for prospective users. In the training session the hardware architectures and software tools
will be described and hands-on exercises will be offered to gain experience with this new
type of computing. New users should initially work very closely with the experts in the NM
subproject. After gaining some initial experience, users will be able to access the NM systems
remotely from their home labs. The operation of the systems will be carried out through a
web based interface and a sharing of the system resources by a scheduling system. On-call
experts will be available to support remote and local users.

Integration of the NM Platform into the HBP Platform Ecosystem

The NM platform is an integral part of the HBP platform ecosystem. It will be operated
through the HBP Unified Portal which offers access to all users of the HBP infrastructure.

Figure .4: Integration of the Neuromorphic Computing Platform into the HBP Platform Ecosys-
tem

The HBP integration of the NM platform is visualized in figure .4. Neuroscience data is
aggregated by the Neuroinformatics Platform and then used as a basis for circuit building
and simulation performed by the Brain Simulation Platform. The simulations run on high
performance computers, which offer a very high degree of flexibility but are not very energy
efficient and operate typically 100-1000 times slower than biological real-time. The simula-
tions do interact with the Neurorobotics Platform, which offers the possibility to run closed
loop simulations with virtual sensors, actuators and environments.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 20

The detailed cell models used by the Brain Simulation Platform will then be reduced in
complexity. In a first approach, point neurons will be used as an extreme case of complexity
reduction. The reduced circuits can be transferred to and executed on the machines of
the NM Platform with a large energy and speed advantage. In particular the physical model
machine can execute emulations 10.000 times faster than biological real-time. In that
system a day of learning and development can be reduced to an effective wall clock time
of 10 seconds. Also, the accelerated operation allows to scan large parameter regimes for
a systematic study of model variations. The large exploratory power of the NM Platform
should also guide theoretical studies. The Platform is therefore closely integrated with the
European Institute for Theoretical Neuroscience (EITN) in Paris.

Finally, the NM Platform machines will be part of the overall computing infrastructure
in HBP. The high performance computers may be used to perform placing and routing for
the neuromorphic machines, and the experience with the construction of the neuromorphic
machines can also give guidance to the design of future, energy efficient high performance
computers.

The purpose of this document

This specification document is primarily written for regular consultation by researchers. It
provides hardware and software developers and the user community with a technically de-
tailed, comprehensive and quantitative description of the systems under construction. It also
allows administrators to monitor the progress through a set of high-level “key-performance-
indicators (KPIs)”.

As construction of the first phase systems proceeds and upgrade concepts evolve, the
document will be continuously updated. It will be available in the HBP document repository
as a living document accessible to all developers and users.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 21

HBP_SP9_Specification 13 May 2014 (git 56b296e) 22

Part 1

User interface to the Neuromorphic
Computing Platform

HBP_SP9_Specification 13 May 2014 (git 56b296e) 23

HBP_SP9_Specification 13 May 2014 (git 56b296e) 24

1.1 Overall goals

The Neuromorphic Computing Platform will enable users to run simulation/emulation exper-
iments on the two neuromorphic computing systems, the Heidelberg system (“Neuromorphic
Computing with Physical Emulation of Brain Models”, part 2 and the Manchester system
(“Neuromorphic Computing with Digital Many-core implementation of Brain Models”, part 3).

This part of the specification addresses the user interface to the Platform, both direct
access by users and interactions with other HBP platforms.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 25

HBP_SP9_Specification 13 May 2014 (git 56b296e) 26

1.2 Use cases

We expect that a user may wish to interact with the Platform in one of three ways:

• direct interaction through a web page

• interaction via the HBP Portal

• scripted interaction

For the Heidelberg system, there may be three types of experiments:

1) single runs (potentially long-running, using plasticity);

2) parameter sweeps or other batch-mode experiments;

3) closed-loop experiments involving interaction with a virtual environment.

For the Manchester system, the same three types of experiment are possible, plus closed-loop
experiments with a real environment, through interaction with the Neurorobotics platform.

1.2.1 A single run of a simple network model

Primary actor Bill, a computational neuroscientist

Description Bill has created a network model with point neurons and short-term synaptic
plasticity using the PyNN API. He has simulated the model using the NEST and NEURON simula-
tors, and now wishes to check that the results from neuromorphic hardware are comparable.

Preconditions The model and experiment description are in a single Python script on Bill’s
laptop.

Success scenario

1) In a web browser, Bill navigates to the home page for the Neuromorphic Computing
Platform and logs in to his user page.

2) Bill can see a list of previous jobs he has run on the Platform.

3) Bill clicks a button to request a new job.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 27

4) Bill copies the content of the Python script from his text editor and pastes it into the
appropriate text box.

5) Bill selects the Manchester system.

6) Bill submits the job request.

7) Bill is returned to his user page, where he can see that his new job has been added to
the list of jobs with the status "in queue".

8) When the job is complete, Bill receives an e-mail containing a link to the job detail
page.

9) Bill clicks on the link, which opens the job detail page in his browser. This page shows
that the job has successfully completed, and contains links to download the log and
output data files generated by the experiment.

10) Bill downloads the data files and compares the results to his NEST simulations.

Alternate scenarios

1) There is a syntax error in Bill’s script.

a) when Bill submits the job request, he is taken back to the job submission page,
where a traceback of the error appears.

b) Bill corrects the error and resubmits the job.

2) There is an error in the output data-handling section of Bill’s script, after the simulation
section.

a) Bill receives an e-mail informing him that the job was unsuccessful, and containing
a link to the job detail page.

b) The job detail page shows the error traceback and contains a link to download the
log file, enabling Bill to debug his script.

1.2.2 A scripted run of a complex network model with input data
and parameter files

Primary actor Carol, a computational neuroscientist

Description Carol has developed a detailed model of a sensory system, which uses spike-
timing-dependent plasticity and receives naturalistic stimulation. Even on a traditional HPC
computer, the simulation takes several days to run. Carol wishes to take advantage of the
large acceleration factor of the Heidelberg system to bring the run time down to a few
minutes, so that she can study the effect of parameter variations. Since she expects to
submit many jobs with different parameters, she wishes to script the job submission process
rather than click through a website.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 28

Preconditions The model and experiment descriptions are written using the PyNN API and
are in separate Python files in a public Git repository. The repository also contains parameter
files, a file containing data used to construct the sensory stimuli, and a main script which
reads all these files, launches the simulation and then handles the output data processing.

Success scenario

1) Carol downloads a Python client for the Neuromorphic Computing Platform job submis-
sion REST API.

2) Using the client library, she writes a short script to submit a job to the Neuromorphic
Computing Platform and retrieve the results.

3) The job request script includes the name of the system (the Heidelberg system in this
case), the URL of the Git repository, the path to the main script within the repository,
and the list of arguments (parameter file name, etc.) required by the script.

4) After submitting the job request, the script receives a URL that returns a document
indicating the job status.

5) The script polls the job status URL repeatedly until the job is complete, at which point
the job status document contains the URLs of the output data files and the log file.

6) the script downloads the output data files and saves them to the local disk.

Alternate scenarios

1) There is an error somewhere in Carol’s code

a) the job status document indicates there has been an error, and contains the error
traceback and the URL of the log file

2) The public Git repository is unavailable

a) the job status document indicates there has been an error, and indicates the cause
of the problem

3) Carol cancels the job submission script, or reboots her computer, after the job has been
submitted but before the job has completed.

a) the job remains in the queue

b) when the job completes Carol receives an e-mail containing a link to the job detail
page.

4) after submitting the job but before it has completed, Carol realizes she has made a
mistake.

a) Carol uses the Python client for the Neuromorphic Computing Platform job sub-
mission REST API to cancel the job.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 29

1.2.3 Using the Neuromorphic Computing Platform through the
Unified Portal and Brain Simulation Platform

Primary actor Dennis, a neuroscientist.

Description Dennis has used the Brain Builder component of the Brain Simulation Platform to
create a network model of a brain region, using point neurons. He has successfully executed
a simulation of the model on the HPC Platform using the NEST simulator, and now wishes to
execute the model on the Manchester hardware preparatory to beginning a collaboration with
the Neurorobotics sub-project. Dennis is not comfortable with Python coding, and wishes to
use the Unifying Portal to perform his simulations.

Preconditions Dennis’ model is available in the Unifying Portal.

Success scenario Using the Unifying Portal:

1) Dennis selects and executes a task that exports a Brain Builder model in a format
suitable for execution on the Neuromorphic Platform (PyNN).

2) He configures a Neuromorphic simulation job, selecting the Manchester hardware.

3) He launches the job, which is then queued and executed when time is available on the
hardware.

4) About an hour later, Dennis receives an e-mail telling him his job has completed suc-
cessfully.

5) Dennis returns to the Unifying Portal, from where he can access the data files generated
by his simulation, as well as provenance information about the execution, e.g. what
version of the hardware system was used.

Alternate scenarios

1) Dennis’ model contains features that are not supported by the Neuromorphic Computing
Platform.

a) The export task fails, with a clear error message indicating which features are not
supported.

b) Dennis consults the documentation for the Neuromorphic Computing Platform and
modifies his model so that it will run on Neuromorphic Hardware.

c) He runs simulations with the modified model on the HPC Platform, and finds that
the results are qualitatively unchanged.

d) He now submits a new job for the Neuromorphic Computing Platform, using the
modified model, which successfully runs to completion.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 30

1.2.4 Parameter sweeps

Primary actor Esin, a computational neuroscientist

Description Esin wishes to explore the parameter space of her network model. Due to its
long run time, she needs to make use of the large acceleration factor of the Heidelberg
system.

Preconditions The model and experiment descriptions are written using the PyNN API in a
single Python file in a public Git repository.

Success scenario

1) Esin writes a batch configuration file. This provides values for those parameters that
will be varied across runs. She commits this to the Git repository.

2) Esin downloads a Python client for the Neuromorphic Computing Platform job submission
REST API.

3) Using the client library, she writes a short script to submit a job to the Neuromorphic
Computing Platform and retrieve the results.

4) The job request script includes the name of the system (the Heidelberg system in this
case), the URL of the Git repository, the path to the model script within the repository,
and the path to the batch configuration file.

5) After submitting the job request, the script receives a URL that returns a document
indicating the job status.

6) The script polls the job status URL repeatedly until the job is complete, at which point
the job status document contains the URLs of the output data files and the log files
from all of the runs in the batch.

7) the script downloads the output data files and saves them to the local disk.

Alternate scenarios

1) One of the parameter sets in the batch run contains values outside the valid range for
the Neuromorphic hardware.

a) The invalid run is skipped, and a warning is written to the log file.

1.2.5 Closed-loop experiment involving a virtual environment

Primary actor Fumiko, a roboticist.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 31

Description Fumiko has developed a robot simulation within a virtual environment. The
robot perceives its environment via a model retina, and acts upon its environment through
actuators. Communication from the retina to the robot brain model and from the brain to
the actuators is via spikes. The retina, actuators and virtual environment are implemented
as a C++ application.

Preconditions Working with the developers of the Neuromorphic Computing Platform, Fu-
miko has successfully installed the virtual environment software on the Platform, working
via remote shell access. The Python code for the brain model is in a Git repository, which
has been checked out on the platform.

Success scenario

1) Fumiko writes a Python script which connects the brain model with the retina and
actuators, using a PyNN extension that connects spike-emitting and spike-receiving
ports (for example, using the MUSIC interface).

2) Using the REST API, Fumiko launches the job, which runs until the robot completes a
pre-defined task, or until a pre-defined time limit is reached.

3) When the job is complete, Fumiko receives an e-mail that contains a URL for the job
status.

4) Fumiko accesses this URL through the REST API and downloads the data and log files
generated by the job.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 32

1.3 Functional requirements

1.3.1 Model and experiment descriptions

1) Model descriptions must be written as Python scripts using the PyNN API.

2) To the extent supported by PyNN and the neuromorphic hardware, scripts may read all
or part of the model description from NineML or NeuroML files.

3) Model scripts may read parameter values from external files.

4) The name of the simulator or hardware platform to use must be provided as a command-
line argument, not within the script.

5) Up until the first internal release of the Platform, PyNN API versions 0.7 (http:
//neuralensemble.org/trac/PyNN) and 0.8 (http://neuralensemble.org/
docs/PyNN/) shall be supported.

6) After the first internal release, older versions of the API will be deprecated as new
versions are released.

7) Experiment descriptions must be written as Python scripts using the PyNN API.

8) The model and experiment descriptions may be combined in the same script, or as
separate Python scripts; in the latter case there must be a main script which launches
the experiment.

9) Scripts should avoid performing data analysis or visualization; rather the recorded data
should be saved to file for later analysis and visualization.

10) The Platform shall provide one or more Tasks for the Task Repository of the Unifying
Portal which export a Network level model constructed using the Brain Builder as a
PyNN script.

1.3.2 Job control interface

1) Users and other Platforms will access the Neuromorphic Computing Platform by sub-
mitting jobs to a job queue server and retrieving results from the server.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 33

http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/docs/PyNN/
http://neuralensemble.org/docs/PyNN/

2) The job queue server shall provide a REST API so that job submission, monitoring and
retrieval of results can be performed by scripts and by other Platforms.

3) The REST API shall provide the following functionality:

a) submission of jobs to be run on the neuromorphic hardware systems.

b) the ability to select which neuromorphic hardware system (Heidelberg or Manch-
ester) to use.

c) the ability to provide model and experiment description scripts directly within the
submission or by specifying an external version control repository.

d) the ability to specify a project to which the job belongs.

e) the ability to monitor job status (e.g. queued, being processed, completed suc-
cessfully, incomplete due to errors).

f) the ability to retrieve information about completed jobs or about errors. The
information will include URLs for all files produced by the simulation.

4) During development, the Platform shall provide a web portal for job submission and
monitoring. Use of the portal will be phased out once all of its functionality can be
provided by the Unifying Portal.

5) The Platform shall provide a Python client library for the job queue server API.

1.3.2.1 Batch mode

1) Where single runs provide one model description and one experiment description, a
batch job provides a single model but multiple experiments.

2) Each batch-mode job shall receive a single identifier, and the results shall be transmit-
ted as a whole, rather than separately for each experiment within the batch.

3) Batch jobs shall be controlled by a configuration file, indicating the parameter set to
use for each run within the batch.

4) For the Heidelberg hardware, parameters to be varied during parameter sweeps may
not affect the network structure, since this would require re-mapping, and the benefit
of the time acceleration would be lost.

1.3.3 Data handling

1) The Neuromorphic Computing Platform will not provide long-term file storage, but
shall make use of resources provided by the Neuroinformatics Platform (Dataspace)
and possibly the HPC Platform.

2) All data files generated by the Neuromorphic Computing Platform shall have a unique
URI.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 34

1.3.4 Closed-loop experiments

1) By closed-loop experiments, we refer to experiments in which a neuronal network
simulation interacts with an environment, either real or virtual, using sensors and
actuators.

2) Sensors must generate, and actuators be controlled by, spike events.

3) An interface shall be defined to connect spike producers/consumers to neuronal net-
work models (an example of such an interface that could be used is MUSIC [Djurfeldt,
2010])

4) This interface shall be accessible through Python, enabling the entire closed-loop ex-
periment to be defined in a single Python script.

5) Closed-loop experiments that use virtual environments, sensors and actuators shall be
submitted using the same job submission system as open-loop experiments.

6) Closed-loop experiments that use real robots and real environments shall require reser-
vation of a block of time on the relevant hardware platform, since a real-time, more
interactive mode of operation is required.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 35

HBP_SP9_Specification 13 May 2014 (git 56b296e) 36

1.4 Non-functional requirements

1.4.1 Sharing

Unless the results of a job are explicitly deleted, they will continue to be accessible by the
user on the server. A mechanism is needed to enable access by someone other than the
person who submitted the job. One possibility is to assign each job to a project, and then
allow access by any user who is a member of that project.

1.4.2 Authentication and Authorization

1) Only authenticated and authorized users may submit jobs to the Platform.

2) Only the user who submitted a job, or an administrator, may cancel.

3) Access control to in-process and completed jobs shall be based on projects: all users
who are members of the project associated with the job may access it.

4) Only an administrator may delete a job; other users with access may hide it.

5) No later than the first public release of the Platform, the Neuromorphic Platform shall
use the central HBP user directory and authentication workflow.

6) In the initial, development phase, a local database will be used for authentication and
authorization.

1.4.3 Security

Since the model and experiment definition format is Python code, there is an evident security
risk. To mitigate this risk:

1) only authenticated and authorized users will be able to submit jobs (see previous
section)

2) use of certain Python modules and functions will not be allowed (e.g. detected through
static code analysis)

3) scripts will first be executed with a "mock" hardware backend in a sandboxed Python
environment before being run on the neuromorphic hardware.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 37

1.4.4 Accounting

The Neuromorphic computing systems are a limited resource. Although it may not be neces-
sary in the initial development stage to ration access, a quota system shall be implemented
by the time of the first public release of the Platform.

1.4.5 Efficiency and user volumes

The job queue system shall not put any further constraints on the number of simultane-
ous users and on job throughput beyond those imposed by the resource limitations of the
hardware backends, i.e. the neuromorphic hardware shall not be kept waiting by the user
interface.

1.4.6 Reliability

The job queue server is expected to have regular (1 / month) scheduled maintenance win-
dows. Each maintenance window will be no more than 60 minutes long.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 38

1.5 Architectural overview

1.5.1 Job submission API

1.5.1.1 Overview

Whichever interaction method is used, the workflow for single runs will be as follows:

• the user provides a model and experiment description in the form of a Python script
using the PyNN API. The script could be provided by uploading, or by giving the reference
to a database entry or software repository (e.g. as a URI).

• the user provides any necessary parameter and/or data files. Again, these could be
uploaded or references to databases given.

• the user selects the hardware platform and configuration to be used.

• the central server verifies that the model and experiment description are valid and
suitable for the hardware. For a PyNN script, this could involve running the script with
a mock/dummy backend in a sandboxed environment.

• the job is placed on a queue. The user is provided with a URL that can be checked/polled
for job status.

• when available for new jobs, each individual hardware platform regularly polls the
queue. When a job for that platform is found, all files are transferred to the local
system and the experiment executed. This may consist of several stages (e.g. mapping
followed by execution), in which case the job status can be modified accordingly after
each stage.

• all data and log files generated by the experiment are transferred from the local
workspace, either to the central server or to a database/distributed file system (e.g.
the INCF Dataspace).

• the job status is set to "complete" (or "error", as appropriate), an e-mail is sent to the
user.

• the user can retrieve the data/log files from the central server, together with any rel-
evant metadata (e.g. provenance information). The central server could also directly
notify other systems (e.g. in the case of the HBP Portal).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 39

1.5.1.2 Endpoints

This is an initial proposal, which will be modified as necessary during development to ensure
all functional and non-functional requirements are satisfied.

URI Action Description
/ GET return the URIs of the queues and

project list
/queue/{stage}/ POST place a job on the given queue

GET return the list of jobs on the queue
/queue/{stage}/{job-id} GET retrieve the specified job

DELETE remove the specified job from the
queue

/queue/{stage}/next GET take the job from the head of the
queue

/results GET show a list of jobs for the current
user

/results/{job-id} PUT used by the hardware platforms
when a job is taken off the queue

GET retrieve the specified job
DELETE hide the specified job
PATCH used for updating job status

/projects GET list projects of which the current
user is a member

POST create a new project
/projects/{project} GET return list of jobs for this project

DELETE hide a project
{stage} may be “submitted” or “validated”. This may not be needed if validation is

sufficiently quick. Other stages (e.g. “mapped”) could be used if needed. By “retrieve a
job” we mean obtain a representation of a Job resource (see below); the job is not removed,
a separate deletion step is necessary.

1.5.1.3 Resource descriptions

The API will return and accept the following resources, encoded as JSON. For each resource
we give its name and the names and types of its attributes. “[{type}]” indicates that the
attribute contains a list of items of the given type.

resource Job
experiment_description - text
input_data - [DataItem]
hardware_platform - HardwarePlatform
user - User
project - Project
timestamp_submission - timestamp
timestamp_completion - timestamp
status - ("submitted", "validated", "mapped", "finished", "error")

HBP_SP9_Specification 13 May 2014 (git 56b296e) 40

output_data - [DataItem]
logs - [DataItem]

resource User
username - text
full_name - text
e_mail - text

resource Project
short_name - text
full_name - text
members - [User]

resource DataItem
uri - text
mime-type - text
contents - text

resource HardwarePlatform
name - text
configuration - dictionary containing strings and numbers

1.5.1.4 Serializations and allowed document types

Resource serializations will use the JSON format with UTF-8. We plan to use vendor-specific
mimetypes to provide versioning.

1.5.1.5 Physical architecture

There are no particular requirements for the location of the central server. This could be in
Heidelberg, Manchester, Gif-sur-Yvette or run on a cloud service.

1.5.2 Python client for REST API

The Python client is intended to make the REST API easier to use, by providing utility functions
to simplify authentication, job monitoring, batch-job submission, data handling. The client
will contain two main sub-modules, one for Platform users, and one for use at the hardware
sites in Manchester and Heidelberg, to simplify the task of linking the central job queue
server to local resource management software such as SLURM (see below).

1.5.3 Model/experiment verification

For reasons of efficiency and responsiveness it is best to catch errors in submitted Python
scripts as early as possible. We therefore plan to introduce an initial verification step,

HBP_SP9_Specification 13 May 2014 (git 56b296e) 41

performed on the job queue server, before a job is accepted onto the queue. This verification
may involve static code analysis, and will almost certainly involve running the script with a
"mock" PyNN back-end.

The requirement that Platform users be authenticated and authorized to submit jobs
renders the risk of users submitting malicious code minimal. Nevertheless, to minimise
inadvertent side-effects of running jobs, the verification step will be run in a sandboxed
environment probably based on Linux containers (e.g. using Docker).

1.5.4 Resource management software in Heidelberg and
Manchester

The central queue server is a front-end to the entire Neuromorphic Computing Platform.
Each of the hardware sites, Heidelberg and Manchester, will implement a system to take
jobs from the queue, execute the job, and perform error- and data-handling. Most of this
work can be done by the Python client for the REST API, possibly working with local resource
management software such as SLURM.

1.5.5 Tools for exporting Brain Builder model descriptions as PyNN
descriptions

Simplifying brain models produced by the Brain Simulation Platform so that they can run on
the Neuromorphic Hardware Platform is the job of Task 9.3.2. This is a research project, in
collaboration with the Theory sub-project, and so the tools cannot be specified at this time.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 42

1.6 Interfaces to other platforms

1.6.1 Services required from other Platforms

1) Data storage – Neuroinformatics and HPC Platforms

2) Authentication – Unifying Portal

3) Provenance tracking – Unifying Portal

4) Execution of complex mapping tasks - HPC Platform (?)

1.6.2 Services provided to other Platforms

1) Execution of network simulation/emulation experiments on neuromorphic hardware.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 43

HBP_SP9_Specification 13 May 2014 (git 56b296e) 44

1.7 Key performance indicators and Func-
tion blocks

To enable monitoring the progress of the user interface to the Neuromorphic Computing
Platform, the following “Functions” have been defined. A numerical measure of the overall
progress may be obtained by counting the number of Functions that have been implemented.

Task No: 9.3.1 Partner: CNRS (P7)
Function No:

9.3.1.1
Leader: Andrew Davison

Function Name: Job queue server, minimal functionality
Description: A developer can submit a single job using a REST API,

to be executed on the development system by NEURON
or NEST, local authentication, local data storage, no
provenance tracking

Planned Start Date: Month 7 Planned Completion
Date:

Month 12

Requires Functions: none

Task No: 9.3.1 Partner: CNRS (P7)
Function No:

9.3.1.2
Leader: Andrew Davison

Function Name: Python client for job queue REST API
Description: A Python package is provided to simplify use of the job

queue REST API
Planned Start Date: Month 12 Planned Completion

Date:
Month 13

Requires Functions: 9.3.1.1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 45

Task No: 9.3.1 Partner: CNRS (P7)
Function No:

9.3.1.3
Leader: Andrew Davison

Function Name: E-mail notifications
Description: The Platform will send e-mails to the user who submit-

ted a job (unless the user has opted out of such e-mails)
upon completion of the job or on encountering an un-
recoverable error.

Planned Start Date: Month 13 Planned Completion
Date:

Month 14

Requires Functions: 9.3.1.1

Task No: 9.3.1 Partner: CNRS (P7)
Function No:

9.3.1.4
Leader: Andrew Davison

Function Name: Verification/sandboxing
Description: When a job is submitted to the queue server it will

first be executed in a sandbox environment with a mock
simulator, before being made available to the hardware
systems.

Planned Start Date: Month 15 Planned Completion
Date:

Month 18

Requires Functions: 9.3.1.1

Task No: 9.3.1 Partner: CNRS (P7)
Function No:

9.3.1.5
Leader: Andrew Davison

Function Name: Job queue server with central authentication
Description: Authentication for the job queue server is provided by

the HBP central authentication service
Planned Start Date: Month 18 Planned Completion

Date:
Month 23

Requires Functions: 9.3.1.1

Task No: 9.5.4 Partner: UHEI (P45)
Function No:

9.5.4.1
Leader: Eric Müller

Function Name: Job queue server usable by Heidelberg system
Description: Jobs submitted to the queue server can be executed by

the Heidelberg facility
Planned Start Date: Month 13 Planned Completion

Date:
Month 18

Requires Functions: 9.3.1.2

HBP_SP9_Specification 13 May 2014 (git 56b296e) 46

Task No: 9.5.4 Partner: UMAN (P73)
Function No:

9.5.4.2
Leader: David Lester

Function Name: Job queue server usable by Manchester system
Description: Jobs submitted to the queue server can be executed by

the Machester facility
Planned Start Date: Month 13 Planned Completion

Date:
Month 18

Requires Functions: 9.3.1.2

Task No: 9.3.1 Partner: CNRS (P7)
Function No:

9.3.1.6
Leader: Andrew Davison

Function Name: Data storage using resources provided by Neuroinfor-
matics or HPC Platforms

Description: Jobs executed on the Neuromorphic Computing Plat-
form can store output data using resources provided by
the Neuroinformatics or HPC Platforms

Planned Start Date: Month 24 Planned Completion
Date:

Month 25

Requires Functions: 9.3.1.1

Task No: 9.3.1 Partner: CNRS (P7)
Function No:

9.3.1.7
Leader: Andrew Davison

Function Name: Provenance-tracking of Neuromorphic jobs
Description: Full provenance information is stored for jobs executed

on the Neuromorphic Computing Platform
Planned Start Date: Month 18 Planned Completion

Date:
Month 23

Requires Functions: 9.3.1.6

Task No: 9.3.2 Partner: CNRS (P7)
Function No:

9.3.2.1
Leader: Andrew Davison

Function Name: Export of Network level model constructed using the
Brain Builder as a PyNN script

Description: A Task is provided for the Unifying Portal Task Registry
that can export Network level models consisting of point
neurons as a PyNN script, which can be executed on the
Neuromorphic Platform.

Planned Start Date: Month 7 Planned Completion
Date:

Month 24

Requires Functions: none

HBP_SP9_Specification 13 May 2014 (git 56b296e) 47

Task No: 9.3.1 Partner: CNRS (P7)
Function No:

9.3.1.8
Leader: Andrew Davison

Function Name: Job submission and retrieval using Brain Simulation
Platform

Description: Jobs can be submitted from the Brain Simulation Plat-
form, executed on the Neuromorphic Computing Plat-
form, and the results retrieved on the Brain Simulation
Platform.

Planned Start Date: Month 26 Planned Completion
Date:

Month 30

Requires Functions: 9.3.2.1, 9.3.1.7
Task No: 9.5.4 Partner: CNRS (P7)
Function No:

9.5.4.3
Leader: Andrew Davison

Function Name: Batch jobs
Description: The Platform will support submission, monitoring and

execution of batch jobs, where a single network is ex-
ecuted repeatedly with different neuron/synapse pa-
rameters and/or inputs.

Planned Start Date: Month 19 Planned Completion
Date:

Month 24

Requires Functions: 9.5.4.1
Task No: 9.5.4 Partner: UHEI (P45)
Function No:

9.5.4.4
Leader: Eric Müller

Function Name: Quotas
Description: Each user will have a usage quota, to ensure equitable

use of the Platform
Planned Start Date: Month 24 Planned Completion

Date:
Month 30

Requires Functions: 9.5.4.1, 9.5.4.2

HBP_SP9_Specification 13 May 2014 (git 56b296e) 48

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Task 9.3.1

F 9.3.1.1

F 9.3.1.2

F 9.3.1.3

F 9.3.1.4

F 9.3.1.5

F 9.3.1.6

F 9.3.1.7

F 9.3.1.8

Task 9.3.2

F 9.3.2.1

Task 9.5.4

F 9.5.4.1

F 9.5.4.2

F 9.5.4.3

F 9.5.4.4

Figure 1.7.1: Scheduling of Functions to be implemented in building the user interface to
the Neuromorphic Computing Platform. The numbers in the top row refer to
project months. Month 7 is April 2014, Month 30 is March 2016.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 49

HBP_SP9_Specification 13 May 2014 (git 56b296e) 50

Part 2

Neuromorphic Computing with
Physical Emulation of Brain Models

HBP_SP9_Specification 13 May 2014 (git 56b296e) 51

HBP_SP9_Specification 13 May 2014 (git 56b296e) 52

2.1 Physical Model Platform: NM-PM

This part of the SP9 specification covers all hardware and software aspects related to the
task termed "Neuromorphic Computing with Physical Emulation of Brain Models" in the HBP
project. The first chapter gives an introduction to the physical system as it will be constructed
as part of the SP9 platform. The second chapter introduces the individual components and
how they relate to each other. The remaining chapters of this documentation cover all
components in detail. The overall structure is a bottom-up approach, starting with the
mechanical and electrical aspects of the hardware in chapters 2.5 to 2.9, then moving up to
the communication protocols and software interfaces tying all components together (chapters
2.10 and 2.11). Chapters 2.12 and 2.13 document the different software libraries necessary
to access the hardware components and to translate biological network descriptions into the
configuration data for the hardware. Finally, chapter 2.2 presents a high-level view of the
system as it will be seen by the scientist who plans to use the system for her or his research.

2.1.1 Neuromorphic Physical Model

The part of the SP9 platform implementing “Neuromorphic Computing with Physical Emula-
tion of Brain Models” is based on a hardware system termed Neuromorphic Physical Model
(NM-PM). It consists basically of a custom hardware system which implements the physical
emulation of brain models and a conventional compute cluster to interface the custom part
to the user and to execute parts of the model in synchrony to the physical models. These
hybrid models are essential for all tasks involving motor feedback to the environment, since
the physical model is limited to modelling neurons and synapses.

Fig. 2.1.1 shows the main components of the NM-PM system. The core of the custom
hardware implementing the physical models is an electronic assembly called a Wafer Module
(Wafer Module). It consists of a 20cm silicon wafer mounted on top of a large printed circuit
board. The wafer is manufactured in 180nm Complementary Metal-Oxide-Semiconductor
(CMOS) technology from the Taiwanese micro electronics contract manufacturer UMC. It
contains 384 identical Application Specific Integrated Circuits (ASICs) named High-Input Count
Analog Neuronal Network Chip (HICANN), implementing the physical models of up to 512
neurons and 114688 synapses each. Therefore, a Wafer Module has a total modelling capacity
of up to 44 million synapses and 200k neurons. The first version of the SP9 platform will consist
of 20 wafer modules for a total capacity of up to 4 million neurons and 0.88 billion synapses.

The most important features of the physical model implemented in the HICANN chip are
the large number of inputs which can be connected to a single neuron, 14336, and the

HBP_SP9_Specification 13 May 2014 (git 56b296e) 53

Figure 2.1.1: Simplified overview of the NM-PM1 system.

acceleration factor of the emulation compared to wall time, which is typically 104.
In addition to the HICANN Wafer, the Wafer Module hosts 48 FPGA Communication PCBs

(FCPs), as well as power supply and interface submodules. The Wafer Module needs only
a single -48V telecommunications supply. A separate single-board computer controls the
operation of a Wafer Module and communicates via a standard Ethernet link with the com-
pute cluster. Thus, the Wafer Module is completely software controlled, including power
sequencing and initialization.

The Wafer Modules are distributed across five industry-standard 19" racks. Fig.2.1.2 shows
a computer generated image of the planned arrangement. In addition to the Wafer Modules
each rack contains 12 Analog Readout Modules (AnaRMs) to digitize the analog membrane
voltages of the neurons located on the HICANN Wafer.

The communication between the Wafer Module and the compute cluster is mediated by
the FPGA Communication PCBs (FCPs), which are connected by 48 Gigabit-Ethernet links to
one standard Ethernet switch per Wafer Module. These Wafer Module switches provide a
10 Gigabit uplink to a central 48 port Top-of-Rack (ToR) 10 Gigabit switch.

The compute cluster consists of 20 four-core diskless workstations, one per wafer module,
each equipped with a 10 Gigabit Remote Direct Memory Access (RDMA)-capable network
interface. Four additional cluster nodes serve as dedicated storage nodes, connected to the
central switch by 40 Gigabit Ethernet.

2.1.2 Constitutent Parts of the NM-PM1

This section contains a full list of all individual parts of the NM-PM1 hardware. It is provided
for reference. A detailed specification of all components is given in the respective chapters
of this document.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 54

1

5

6
7

2
3

4

8

8

Figure 2.1.2: Rendered View of the NM-PM1 system. 1� Wafer Module, 2� Wafer Module
network switch, 3� analog readout subsystem, 4� ToR 40Gbit network switch,
5� storage server node, 6� computer server node, 7� Wafer Module power
supply, 8� top and bottom fan units for Wafer Module

Main components of the NM-PM:

Wafer Module 20 modules distributed across 5 industry standard 19" racks

Compute Cluster 20 1U compute server nodes and four 3U Input/Output (I/O) server nodes

Analog Readout Subsystem five rack mountable assemblies, one per wafer module rack,
each containing 12 Analog Readout Modules (AnaRMs).

Wafer Power Supply Industry standard -48V supplies. Three 2kW units capable of current
sharing are mounted together in one 1U case. Five of these 6kW assemblies are mounted
at the bottom of the central network rack. Each supplies one rack with four Wafer
Modules.

Wafer Module network switch One 48-port Gigabit Ethernet (GbE) aggregation switch per
Wafer Module incorporating two 10-Gigabit Ethernet (10GbE) uplink ports per switch.

Top-of-Rack network switch 48-port 10GbE switch with four additional 40-Gigabit Ethernet
(40GbE) ports. All ports use electrical interfaces based on Small Form-Factor Pluggable
(SFP+) or Quad SFP (QSFP) standards, respectively.

Components of the compute cluster:

Compute/Wafer Node 20 1U compute server nodes with one single-socket high-end Desktop
CPU (Intel® Core™ i7-4770), 16 GiB RAM, and one low-latency 10GbE network interface
card.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 55

Storage Node Configured as the Compute Node. Additional components are Solid-state Disks
(SSDs) connected via Peripheral Component Interconnect Express (PCIe) bus and con-
ventional Hard disk drives (HDDs).

Network Connectivity is provided by the ToR network switch and a GbE-based control net-
work (cf. wafer module components).

Components of the wafer module:

HICANN Wafer A 20cm silicon wafer containing the neuromophic circuits, distributed across
384 HICANN ASICs and connected to each other on the wafer surface.

Wafer Module Main PCB (MainPCB) The MainPCB connects to the wafer by 384 elastomeric
connectors. It contains Power Field-Effect Transistors (Power-FETs) to individually
switch all supplies to the wafer. Power can be controlled on a per-reticle basis (8
HICANN chips).

FPGA Communication PCB (FCP) 48 FCP boards plug into the MainPCB and connect directly
to the communication links of the wafer.

Wafer I/O PCB (WIO) Four interface boards sit on top of the FCPs, housing the 48 Gigabit-
Ethernet connectors and Phy-circuits. They come in a horizontal and a vertical variant,
termed Horizontal Wafer I/O PCB (WIOH) and Vertical Wafer I/O PCB (WIOV), respec-
tively.

PowerIt Main Power Supply PCB (PowerIt) A 2kW main power supply board providing elec-
trical insulation and down-conversion of the -48V input to an intermediate 10V supply
used by the auxilliary power supplies and the Field-Programmable Gate Array (FPGA)
boards. It also contains the point-of-load converters for the main wafer supply volt-
ages (two times 1.8V, 400A each). An on-board Microcontroller Unit (MCU) provides
electronic switching of all power supplies and on-board monitoring of all voltages and
currents.

Auxiliary Power Supply PCB (AuxPwr) Two AuxPwrs provide miscellaneous supply voltages.

Analog Breakout PCB (AnaB) Two breakout boards to connect the analog readout channels
from the wafer to the respective cabeling.

Single-Board Control Computer One Raspberry-Pi [10] is used as a control computer allowing
full system control via one Ethernet link. It communicates by I2C with the power
supplies and the power control and monitoring boards.

Monitoring and Control PCB for Reticles (Cure) Six small boards which plug in directly into
the MainPCB. They provide monitoring of all wafer voltages and control the array of
Power-FETs on the main board.

Wafer Module Mechanical Assembly The mechanical assembly provides mechanical mount-
ing for the main pcb and the main power supply boards. It fixates and protects the
wafer and generates the mechanical pressure for the elastomeric connectors.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 56

Components of the analog readout subsystem:

Flyspi FPGA PCB (Flyspi) 12 small data aquisition Printed Circuit Boards (PCBs) containing
a fast Analog-to-Digital Converter (ADC), an FPGA and 512MiB Dynamic Random Access
Memory (DRAM) memory.

Analog Frontend PCB (AnaFP) Each Flyspi carries one AnaFP containing multiplexers and
one pre-amplifier to connect the analog readout channels from the Wafer Module to
Flyspi.

Flyspi Breakout PCB (FsBo) 12 small mechanical adapter boards for mounting the Flyspis.

Control Computer Intel Next Unit of Computing (NUC)[9] based Linux system provides the
Universal Serial Bus version 2.0 (USB 2.0) resources for connecting the Analog Readout
Modules (AnaRMs) to the Compute Cluster.

Analog Readout Mechanical Assembly 3U rack-mount for the 12 Flyspis, the Control Com-
puter and four USB 2.0 hubs.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 57

HBP_SP9_Specification 13 May 2014 (git 56b296e) 58

2.2 Users view of the NM-PM system

This chapter describes the user’s view of the NM-PM. Each section characterizes a class of
tasks that can be accomplished with the NM-PM, as well as the required tools and, where
appropriate, a recommended workflow to accomplish the task. These tasks encompass the
use of the hardware system as a neuroscientific modeling tool as well as the evaluation of
hardware performance.

Here, neuroscientific modeling stands for the creation and investigation of mathematical
models of spiking neural networks. The NM-PM allows the user to emulate such a model on
a large-scale, parallel hardware device with a high acceleration (section 2.1.1), provided
the model is compatible with the provided feature set. This type of usage is outlined in
sections 2.2.1 to 2.2.3.

The evaluation whether the model is compatible with the provided feature set is detailed
in section 2.2.4.

2.2.1 Usage of the NM-PM as a modeling back-end

The central part of the user interface of the NM-PM is the PyNN (PyNN) Application Pro-
gramming Interface (API) (section 2.13.3, [16, 19]). It provides an abstraction layer for the
Physical Model alongside conventional software simulators for spiking neural networks such
as NEST and NEURON. This abstraction layer exposes the configuration of spiking neural net-
works at a level of individual, configurable neurons and synaptic connections between them.
In the case of the NM-PM it hides the complexity of hardware configuration (fig. 2.2.1). This
includes the mapping (section 2.13.2), which computes a hardware configuration which rep-
resents the network topology given by the user, and the calibration (section 2.13.1), which
translates the user-defined neuron and synapse parameters to hardware-specific settings for
the analog components (e.g. section 2.3.3.3). The mapping uses the Hardware Abstraction
Layer, (section 2.11.2) as the interface to the hardware system as well as to the hardware
Executable System Specification (ESS) (section 2.11.4).

The most basic use case for the NM-PM consists in the creation of a Python script which
defines a spiking neural network using PyNN . The utilized neuron and synapse models have
to be compatible with those implemented on the NM-PM, i.e. a leaky integrate-and-fire
neuron and conductance based synapses with an exponential kernel (IF_cond_exp in PyNN
notation) or an adaptive exponential leaky integrate-and-fire neurons and conductance based
synapses with an exponential kernel ([15], EIF_cond_exp_isfa_ista in PyNN notation).
The ranges for neuron, synapse and connectivity parameters are limited by the hardware

HBP_SP9_Specification 13 May 2014 (git 56b296e) 59

PyNN

Calibration
Data Hardware Abstraction Layer

Hardware
Simulation

NM-PM

Mapping
(place, route & translate)

Figure 2.2.1: PyNN is the main user interface for the NM-PM. It hides the mapping and cal-
ibration steps from the end-user. Expert users can still access the hardware
abstraction layers directly.

implementation.
The results of the simulation can be obtained using the PyNN API with limitations only due

to bandwidth constraints (section 2.6.3.6) and, for analog voltage recording, the limitations
of concurrent voltage recording given by the hardware system (chapter 2.7).

2.2.2 Low-level user access

The PyNN interface to the NM-PM provides the user with a view of the neuromorphic device
which limits the configuration capabilities to a level of abstraction that is shared between
neuromorphic and conventional simulators for spiking neural networks. In the case of the
NM-PM, the most important features that are not accessible from the level of PyNN are the
translation of topology and parameters between the biological model and its representation
on the hardware device. For instance, PyNN provides no way to specify which analog circuit
on the Physical Model will represent a given logical neuron. The software components
that are responsible for this abstraction are the Mapping (section 2.13.2), which handles the
topological translation, and the Calibration (section 2.13.1) that performs the transformation
of analog parameters.

There are several scenarios in which the user wants to query information from the mapping
or control its behavior:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 60

1) The neural network topology can not be fully realized and the user wants to know the
number or exact location of unrealized synapses.

2) The placement algorithm provides a suboptimal solution, and a better solution is known.

3) Some components should not be used, e.g., because the tolerance for analog deviations
required by the user is lower than the deviation of a specific component.

Equivalently, the calibration output may need to be examined or controlled:

1) The calibration results for a given component need to be assessed.

2) A different calibration method needs to be used for a given use case. Example: synaptic
time constants are calibrated by measuring the decay time course of the membrane
potential in one voltage range, while the user requires to tune the firing rate for a given
stimulus protocol.

Finally, a direct access to the neuromorphic chip is occasionally required. One example
would be an evaluation of the influence of a technical parameter on an emulated network,
or low-level debugging which still utilizes the mapping and calibration software to cre-
ate a quick starting point. These tasks can be accomplished using the low level interfaces
Hardware Abstraction Layer Backend (HALbe) (section 2.11.2) and Stateful Hardware Abstraction Layer (StHAL)
(section 2.11.3), giving the user access to the same level of control that is utilized by the
mapping and calibration software.

2.2.3 Real-time interaction with the NM-PM

The NM-PM allows for an operation mode in which the accelerated emulation on the neuro-
morphic hardware platform interacts with a concurrent, real-time simulation that runs on
a conventional computing platform (section 2.8.1). Thus, the simulation of the full model
is distributed between neuromorphic and conventional devices. This operation mode differs
from the one outlined in 2.2.1: there, experiment results are queried by the software after
experiment completion. The need for a separate operation mode arises, because the high
acceleration factor in the NM-PM is necessarily shared with the software part of the simula-
tion. This requires an efficient implementation of this software part with as few indirection
layers between computation and communication with the hardware device as possible.

fig. 2.2.2 shows the use case for a simulation that requires real-time interaction. A model
of a system is defined which contains a spiking neural network and (in general) a non-spiking
component, for example a neural system that interacts with a physical environment. The
interaction is specified in terms of spikes. This means that, e.g., the computation of firing
rates is part of the non-spiking component.

The NM-PM is used to simulate the model as follows: The user provides a description of the
emulated neural network in the form of a hardware configuration, e.g., using a PyNN script,
and implements the conventional part of the simulation as a software program. The latter
uses the real-time API provided by HALbe (see section 2.11.2.1).

On the hardware side, external spikes are configured to be sent to the Compute Node
skipping the large spike recording buffers. On the Compute Node, spikes are delivered

HBP_SP9_Specification 13 May 2014 (git 56b296e) 61

Spiking Neural
Network

Non-Spiking Part

Model definition

Age

compute node(s)

Simulation on
the NM-PM

neuromorphic part

communication
bidirectional,
spike-based comm.

Hardware configuration
e.g. mapping

custom implementation

real-time communication,
address translation

F

Figure 2.2.2: Hybrid simulation on the NM-PM. A system that consists of a neural network and
a non-spiking part (left) is being simulated on the hybrid neuromorphic-classical
device (right). The neural network is emulated on the neuromorphic part while
the remaining part of the system is simulated in real-time, synchronously and
with the same speed-up on a conventional compute node. The communication,
which is defined on a spike level in the simulated model, is accomplished via
real-time communication between the computational devices. The address
translation is taken care of in the software part of the simulation.

to the software implementation, which handles a potentially required translation between
hardware and local neuron addresses. Similarly, the custom executable emits spikes that
are sent to the hardware device using a low-latency communication channel. Due to the
strong latency requirements this operation mode requires exclusive access to all hardware
components taking part in the simulation, i.e., no other experiments should run utilize the
Compute Nodes, Wafer Modules or network devices partaking in the simulation.

2.2.4 Evaluation Workflow

The gains in emulation speed that arise from the use of an accelerated-time, analog neuro-
morphic network emulator come at the cost of limitations with respect to neuron parame-
ters, parameter variation, connectivity and communication bandwidths. While the system
has been specified to accommodate typical parameter ranges that are employed in models of
cortical neural systems [48, 3.12.1], a given model can exceed at least one of those ranges.
For instance, a model can require a neuron parameter outside of the supported range or
specify the recording of more neurons with a high firing rate than can be accommodated
by the allotted communication channels. Thus, a user usually needs to evaluate her model
before running it on the NM-PM, e.g., in a large-scale sweep over a parameter range. Simple
parameter limits can be checked and enforced at the time of the model definition. Several
of the limitation types – e.g., bandwidth limitations of an individual component – depend on
the dynamics of a given network model together with the case-specific mapping assignment.
For these limitations, a validation on a system simulation level is required instead, which is
accomplished with the ESS (section 2.11.4).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 62

Hardware developers profit from the ESS as well, because it can be used as a software
system validation tool. Because it uses the output of the mapping, it can detect several
classes of logic and configuration errors, such as faulty routing or incorrect settings for
switches, repeaters, synapse drivers, synapse addresses, mergers etc.

The possible distortions that can occur when the specified operation range of the hardware
device is exceeded, can be classified as follows:

Parameter Limitation A neuron or synapse parameter is required by the model, which lies
outside of the supported range on the hardware device. Example: The axonal delay
does not correspond to the transmission delay on the hardware device.

Parameter Variation The variation of a parameter is larger than required by the model.
Example: the membrane time constant of all neurons is required to be precisely equal,
while it differs in the analog circuit due to fixed pattern noise.

Topological Limitation The topology of the model network can not (in principle, or practi-
cally) be mapped to the available hardware system. This leads to a network in which
a number of synapses has not been realized. Example: An all-to-all connectivity is
required for a network that uses all neurons on a single wafer (chapter 2.5).

Bandwidth Limitation The bandwidth of a component that transmits spikes to, from or
within an emulated network, is exceeded. Example: Each neuron in a large network
receives background stimulus with a high firing rate.

Model Mismatch The neuron or synapse model that is provided by the hardware device, does
not correspond to the one required by the network model. Example: The network is
defined as a network of leaky integrate-and-fire neurons with current-based synapses,
while the hardware device provides conductance based synapses.

An elaborate workflow exists that allows to approach these distortions in the context of a
given network model, which is shown in Figure 2.2.3.

The user starts with his network model, or, in the case of the hardware maintainer, with a
benchmark library. In addition to each model, a set of performance evaluation measures is
defined, which allows to discriminate between successful and unsuccessful execution of the
model.

This allows to investigate the distortions listed above individually as well as simultaneously.
Individually, distortions are modeled by approximating the distortion mechanism in the PyNN
description directly and using a conventional software simulator. A view of the system
dynamics is obtained using the ESS to model the dynamic behavior of the hardware system.

A demonstration of this approach with descriptions of possible countermeasures can be
found in [17].

HBP_SP9_Specification 13 May 2014 (git 56b296e) 63

Difference ?
Analysis

- Model Distortion
Compensation Methods

Bi
oG

ra
ph

Description of
Network Distortions
caused by Translation

A
cc

u
ra

te

D
is

to
rt

ed

Benchmark Library

Performance Evaluation Measures

Target Output
Descriptors for

Model A

Target Output
Descriptors for

Model B

Target Output
Descriptors for

Model C

Model A Model B Model C

PyNN Descriptions of Benchmark Models

Modeling Language PyNN

Automated Translation

Hardware Configuration, Calibration + Control

Virtual Wafer-Scale
Hardware System

FACETS Chip-Based
Prototype System

SD-RA
M

NN

Figure 2.2.3: Hardware and Model evaluation workflow. Description in section 2.2.4. This
figure has been adapted from [17].

HBP_SP9_Specification 13 May 2014 (git 56b296e) 64

2.3 Neuromorphic Circuits

2.3.1 Overview

The High-Input Count Analog Neuronal Network Chip (HICANN) is the primary building block
for hardware emulation of brain models. It contains the mixed-signal neuron and synapse
circuits as well as the necessary support circuits and the host interface logic. Eight HICANN
chips are integrated on a single reticle. The size of the HICANN chip is chosen to be 5x10
mm2. This allows to fully qualify the HICANN in silicon using Multi Project Wafer (MPW)
prototyping only, thus limiting cost.

The individual reticles are connected directly on the wafer by depositing and structuring
an additional metal layer on top of the whole wafer. The necessary pitch of this post-
processing is about 10�m for single layer respectively 20�m for dual layer metal, allowing
for a connection density of 103 wires/mm between adjacent edges of neighboring reticles
(containing multiple HICANN chips). This will accommodate the maximum connection density
existing at the short edges of the HICANN die, where 512 wires need to be interconnected to
256 differential bus lanes. More details of these Direct Wafer-to-Wafer Connectionss (DCONs)
can be found in chapter 2.4.

In Fig. 2.3.1 the main functional blocks can be identified. The largest one is the Analog
Neuronal Network Core (ANNCORE) which contains 115k synapses and up to 512 neurons. The
interconnects between the HICANN chips run vertically and horizontally through the chip,
with crossbar switches at their intersections. Additional switch blocks give the ANNCORE
access to these signals.

Eight HICANN dies are combined to form the individual reticle of the wafer-scale system.
Fig. 2.3.2 shows the connections between adjacent reticles which are created by post-
processing the wafer. The reticle is larger than the area occupied by eight HICANN dies (grey
border) to accommodate the contact pad windows for the post-processing. Inside the reticle
the L1 bus signals of the HICANN dies are edge connected by the topmost metal layer1. To
achieve the fault tolerance necessary for wafer scale integration each reticle has individual
power supplies, JTAG and clock connections to the MainPCB of the Wafer Module. Each
HICANN has an individual high-speed serial link to one of the FCP on the MainPCB for fast
host communication and packet based event routing. These connections are also realized
by post-processing which rearranges the pads of the eight HICANN dies into regular spaced
contact rows inside the reticle.

1The reticle layout contains small routing structures in between the HICANN dies where edge connection is
impossible.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 65

64 repeater with active retiming

64 inputs to synapse drivers

ouputs from 8 neuron-L1 interfaces

sparse crossbar between
horizontal and vertical L1 busses

32 repeater with active retiming

64 horizontal bus lanes

passive sparse switch matrix

to adjacent HICANN

unspecified part contains mostly digital
standard cell logic providing
configuration, long-term plasticity, L2
communication, neuron event building
and the off-chip protocol handling

128 vertical L1 bus lanes

lower half of
ANNCORE

256x224 synapses
256 denmem circuits

upper half of
ANNCORE

256x224 synapses
256 denmem circuits

Figure 2.3.1: Block diagram of a HICANN chip.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 66

256

256

128

HICANN

1 2 3 4

5 6 7 8
HICANN

HICANN

HICANNHICANN

HICANNHICANN

HICANN

reticle

Figure 2.3.2: Wafer-scale connections of a reticle.

synapse drivers

an
al

og
ST

D
P

re
ad

ou
t a

nd
R

A M
in

t e
rf a

c e

synapse drivers

synapse drivers

an
al

og
ST

D
P

re
ad

ou
t a

nd
R

A M
in

t e
rf a

c e

synapse array
224x256

synapse drivers

ne
ur

on
bu

il d
er

synapse array
224x256

56x64 pre-synaptic inputs56x64 pre-synaptic inputs

56x64 pre-synaptic inputs56x64 pre-synaptic inputs

Figure 2.3.3: Block diagram of the analog network core.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 67

Fig. 2.3.3 shows the main elements of the ANNCORE. Its geometry is optimized for a
maximum input count of 14k for a single neuron. To allow different neuron sizes, the
neurons are built from a set of membrane circuits, each containing full neuron functionality.
Each membrane circuit receives input from 224 synapse circuits. By a set of configuration
bits up to 64 membrane circuits can be connected together, resulting in a neuron with 14k
synpases. The number of realizable neurons of an ANNCORE ranges therefore from 512, using
224 synapses per neuron, down to eight, using only maximum sized neurons. Any combination
in-between is also possible. These high number of input signals needs an excessive bandwith:
considering the case of a mean firing rate of 10Hz, the maximum acceleration factor of 105

and 16k inputs this equals to an average event rate of 164 Gigaevents/s, easily crossing
the Teraevent/s barrier in periods of bursty neural activity. Using traditional digital coding
techniques an event packet would use about 16 to 32 bit, containing target address and
delivery time. To make this communication demand feasible the ANNCORE uses a combination
of space and time multiplexing. Due to the high density of the DCONs between the reticles
and the on-die wiring between the HICANN chips inside the reticle a large number of signals
can be multiplexed spatially. The actual implementation uses 1k wires running alongside the
synapse drivers (see Fig. 2.3.1)2.

To reach the necessary numbers, each of these wires carries the events from 64 pre-synaptic
neurons by utilizing a time-multiplexing serial protocol. For historic reasons, this protocol
is called the Layer 1 (L1) routing, as opposed to the non-multiplexed local connections used
inside previous generation neuromophic chips from Heidelberg which were called Layer 0
(L0). Subsequently, Layer 2 (L2) is the discreet-time event based inter-chip communication
layer used between HICANN and the FPGA subsystem.

To further reduce the complexity at the sender as well as the receiver side the event is
transmitted in continuous time, i.e. the time of an pre-synaptic event is determined by
the moment of its arrival at the synapse driver. The drawback here is the potential timing
error introduced in the case of heavy simultaneous firing. The average probability of such a
collision happening is determined by the duration of the transmission for an event, the accel-
eration factor, the number of neurons sharing a wire and the joint firing probability of these
neurons. The user can always adjust the first three parameters in a way to accommodate his
requirements.

The L1 events are converted into pre-synaptic signals in the synapse drivers located at
both edges of the synapse array (see Fig. 2.3.3). The synapse drivers connect to the pre-
synaptic inputs of two rows of synapses. Each synapse can decode part of the L1 address to
allow synapses connected to different membrane circuits to respond to different pre-synaptic
neurons.

The fire outputs of the membrane circuits feed eight output busses running along the
central column of the ANNCORE. 64 membrane circutis share one bus.

2The wires running vertically are shared between two adjacent HICANNs, therefore each HICANN has access to
1k wires (carrying 512 signals) while implementing only one half of it.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 68

2.3.2 Continuous-Time Layer 1 Communication

This section gives an overview of the components related to the Layer 1 (L1) communication
system within the HICANN chip. Fig. 2.3.4 shows a single serial L1 data frame. To transmit
the events from up to 64 pre-synaptic neurons an event is encoded using two frame bits and
6 data bits.

tbit

tframe

Vl1

start-bit bit 0 (LSB) bit 1 bit 2 bit 3 bit 4 bit 5 (MSB) stop-bit

Figure 2.3.4: Timing of a serial l1 data frame. Shown is the differential signal Vl1_pos�Vl1_neg.

MT

sending repeater

MT merger tree

Figure 2.3.5: Schematic diagram of the L1 routing across several HICANN chips.

Fig. 2.3.5 shows how an event is routed across several HICANN boundaries via the L1
routing network. Fig. 2.3.1 depicts the spacial location of the indiviual componetns of the
L1 network:

Serial L1 Sender (sending repeater) converts the events generated in the ANNCORE neuron
circuits to a serial L1 frame and drives them on a horizontal L1 bus lane

Synapse Driver receives L1 frames and converts them to the pre-synaptic signals

Repeater restores the timing of the L1 signals at the HICANN chip boundary

Crossbar Switch programmable interconnect between horizontal and vertical L1 lanes or
vertical lanes and synapse driver inputs

L1 bus lanes horizontal and vertical wires distribute the L1 signals

HBP_SP9_Specification 13 May 2014 (git 56b296e) 69

2.3.2.1 Technical Implementation of the Layer 1 Communication

Differential Signalling and Electrical Considerations

The length of a wire traversing a HICANN die is about 10 mm. This wire will see a total
capacitance to its surrounding of about 2 pF3. If this load is driven with the full CMOS swing
of 1.8 Volts each wire needs a power of C · V2 · Events/sW (considering a simple square pulse
as code for an event). For an acceleration factor of 105 and a mean firing rate of 10 Hz this
equals to 6.5�W. If one scales this up to a whole wafer containing 200k Neurons on about
400 HICANN chips the total power is 1.5kW for the transmission of the neural event signals
alone 4. Clearly this is no feasible solution. Therefore, to limit the power consumption a
serial event uses a low-voltage differential wire l1, consisting of l1_pos and l1_neg.

The timing parameters for the typical process corner are: tframe=4ns, tbit=500ps and the
differential DC amplitude Vl1=150mV. The average number of transitions per event is 5.5,
a rounded number of 6 will be used in further discussions. This reduces the total power
consumption to 5 Watt (in the case of a differential voltage swing of 100mV). This is a
300-fold reduction compared to the parallel CMOS case.

The resistance of such a wire is 36m�/sq⇥ 20ksq = 720� and the time constant therefore
� = RC/2 = 0.7ns 5. To reach a bit rate of 2GBit/s a certain amount of overdrive is needed.
The overall geometry of the l1 buses in the HICANN chip show that the effective length is
much more than 10 mm. If repeaters are placed along the edges of the chip the worst case
for an unbuffered l1 line is 5 mm vertical up to the central crossbar, 5 mm horizontal and 5
additional mm vertical after the crossbar plus two times about 3 to 4mm input lines to the
ANNCORE (see Fig. 2.3.1 for reference), branching off the vertical segments. To reduce the
total RC-time constant of such a network to a value that can sustain 2 GBit/s the metal width
must be increased from the previous example. Simulations have shown that a metal width
and spacing of 1.2�m using the thick (2.2�m) metal 6 process option gives satisfactory results
for all process corners and worst case routing scenarios. Only one additional provision has to
be made: the total parasitic capacitance of de-selected switches in the central crossbars as
well as the synapse driver switch matrices must be limited. Therefore these structures are
only sparsely populated with switch transistors. See section 2.3.2.6 for further details of the
switch arrangement.

Serial Layer 1 Line Driver

The serial data stream is send through a driver using strong pre-emphasis to overcome the
large RC time constant. To conserve energy both differential lines are shorted to equalize
their potential before the new differential voltage is applied. If the data stream is constant
for more than one bit period it is connected to a differential voltage of 100 to 150mV and a
common mode voltage of about 750mV. The common mode voltage can be adjusted by the

3The considered metal lines had the following parameters: 500 nm width, 800 nm spacing, metal 6, metal
5 orthogonal and only sparsly used, full coupling to metal 4. The dominating capacitance is the coupling
capacitance within the layer which accounts for more than 90% of the total capacitance.

4In this calculation an event bus uses 6 address bits and 1 strobe bit, the address bits toggle with half the
frequency of the strobe signal.

5Using a simple model which distributes the total wire capacitance equally at both end of the wire.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 70

external L1 power supply to compensate any PMOS/NMOS imbalance introduced by process
variations. This assures that the effective common mode applied by the pre-emphasis driver
is the same than the common mode in the dc case.

2.3.2.2 Serial Layer 1 Sender - Sending Repeater

There are two possible sources for an L1 bus: L2!L1 converter or a neuron block. Both use
the same circuit as a L1 serializer and sender, called a ’sending repeater’. These sending
repeaters are normal L1 repeaters (see below) with the additional functionality of a parallel
input.Eight sending repeaters are located in the right horizontal repeater block, therefore,
each HICANN can drive Layer 2 (L2) or neuron events on up to eight horizontal L1 buses.

The digital controller of the HICANN uses a clock frequency of 1/tframe generated by an
internal Phase-Locked Loop (PLL) from the external reference clock. A Delay-Locked Loop
(DLL) in each sending repeater generates the frame timing by dividing the clock period into
eight bit periods. The build-in serializer uses the time bins generated by the DLL to produce
the bit stream from the neuron number, adding start and stop bits to the data frame.

Since the neurons fire asynchronously, it is not as easy to get the timing reference for
the sender DLL. The currently employed solution synchronizes the neuron output to the
reference clock. This limits the time-resolution of a neuron to tframe, which results in 40�s
at an acceleration factor of 104 and tframe = 4ns. These synchronous event are send to the
digital controller which contains some additional FIFO and mixing stages, called Merger Tree
(MTREE), to allow a flexible allocation of the eight sending repeaters. The L2!L1 converter
is part of the MTREE structure.

2.3.2.3 Synapse Driver

Every two synapse rows share an L1 receiver circuit. Since they are alternately mounted left
and right from the synapse array, there is one L1 input every four rows, totaling in 56 inputs
per side and block.

To implement dynamic synapses a capacitor bank with 64 individual capacitors is imple-
mented within the synapse driver. For each of the 64 possible pre-synaptic neurons of the
L1 bus connected to the synapse driver the capacitor stores a voltage which is equivalent to
the so-called recovered partition. See [59] for more details. The facilitation or depression
of the synapse is mediated by the modulation of the default pulse width of the enable signal
in accordance with the current value of the recovered partition.

Each L1 receiver consists of a differential amplifier restoring CMOS levels from the serial
L1 signal. Since this receiver is the only circuit consuming a significant amount of static
bias current without anyL1 activity it is optimized for a minimum power consumption with a
positive input (Vl1_pos > Vl1_neg), which is the inactive line level of the L1 bus. Simulations
show that in this case its current consumption stays below 100�A at a speed still sufficient
for 2 Gbit/s. This is a crucial detail of the L1 implementation since the number of receivers
on a wafer is about 220k!

The single ended CMOS L1 signal is used as an input to six dynamic data capture latches
and a DLL. The DLL captures the frame timing by aligning the delayed falling edge of the
start bit with the original rising edge of the stop bit, thereby dividing the frame in 16 time

HBP_SP9_Specification 13 May 2014 (git 56b296e) 71

bins. For each data bit there is a time bin which lies exactly in the middle of its data eye
and is used to trigger the capture latch. After the setup time of bit 6 has passed the data
capture latches contain the parallel data word. Any later time bin can be used to trigger
further processing in the synapse driver. The DLL signals also allow to produce enable pulses
for the synapses with controlled pulse widths. This is necessary for the synapse operation as
explained in section 2.3.3.1.

The training phase of the receiver DLL is divided in two phases. A special input circuit masks
all transition of the reference signal, which is the original data, outside of an expectation
window around the rising edge of the stop bit derived from the DLL. Therefore, in the
locked case, the DLL can compensate small timing variations caused by temperature drift or
leakage from the control voltage storage capacitor without being disturbed by the additional
transitions in the signal caused by the random data payload of the frame.

To achieve the initial lock the data frame must be free of these data transitions. After
initialization of the L1 routing topology it is therefore necessary to send a certain amount
of dummy events containing only neuron number zero. This is accomplished by digital
background generation circuits which are part of the MTREE in the digital control logic
2.3.4.4. In addition to providing the necessary initialization signals for all the DLLs in the
L1 signal paths, they can be reused during network operation to provide Poisson distributed
background stimuli to the network.

2.3.2.4 Repeater

A repeater is used to compensate for the loss in signal amplitude and timing precision the
L1 signal suffers on its way across a HICANN die. At each crossing from one die to another,
whether its by edge connection or direct connect, a repeater is inserted. It consists of a
combination of a receiver similar to the one used in the synapse driver and the serializer and
driver circuits.

The L1 re-timing repeater is located at the end of every second vertical and horizontal
L1 bus. If two HICANN chips are edge or wafer-scale connected each bus gets a repeater
inserted, the odd numbered buses have their repeaters at the right respectively top HICANN,
the even ones at the left respectively bottom HICANN.

Repeaters are bidirectional an can be configured to drive either the off-chip or the on-chip
part of the L1 bus they are connected to. Each repeater contains eight SRAM bits to configure
data direction, crosstalk compensation, power down and debug modes.

The repeater re-samples the data to its own DLL before retransmitting it. This allows
the L1 signal to retain its signal quality across the whole wafer. The main source for the
degradation of the edge positions is crosstalk from neighboring L1 buses. Two techniques are
used to limit its deteriorating effect. First, every second L1 bus is twisted at two locations.
The twist is done identically for every affected L1 bus between horizontal L1 lane number 54
and 55 in each synapse switch matrix (see section 2.3.2.6). In a first order approximation,
this cancels the crosstalk since the positive and the negative L1 line of the aggressor run in
parallel to the victim for the same length.

Each repeater includes two crosstalk cancellation capacitors (FEXT) which can be inserted
between adjacent L1 buses. Theses crosstalk cancellation capacitors reduce crosstalk in
neighboring receivers. This is essential to allow an arbitrary data direction for each L1 link.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 72

A necessity to group L1 buses by data direction would put an additional burden on the
already complex mapping algorithms.

To achieve the necessary bi-directionality each repeater consists of a receiver with an in-
put multiplexer and a driver circuit with duplicated output stages which can be individually
enabled or disabled. Disabling both switches off the total repeater circuit, removing quies-
cent power from all components. Enabling just one is correlated with the input multiplexer
and configures the repeater for one data direction.

Depending on data direction FEXT capacitors are either switched between pos_self and
neg_neighbour or pos_neighbour and neg_self. 6 They can also be disabled altogether. They
provide a FEXT compensation by coupling the aggressor signal into the receiver’s opposite
(non-victim) line. Thereby converting most of the crosstalk from a harmful differential to
benign common mode crosstalk.

The repeater’s configuration SRAM is always powered. The debug mode works as follows:
if enabled, the repeater’s intermediate parallel data path is split and connected to two 7 bit
debug buses running along the chip periphery. To check crosstalk immunity, two sets of 14
debug data lines are used, connected to the repeaters in a modulo two fashion. The digital
control of the chip can receive and send data on these buses with a rate of 250 MHz, which
is minimum L1 period as well as the clock frequency of the digital control. Small memories
are used within the digital control block to test short L1 sequences without relying on DNC
data transfer. This debug feature allows full testing of the L1 routing on the wafer.

The location of the six repeater blocks can be seen in figure 2.3.6. The four blocks at the
top and bottom of the chip contain 64 repeaters each, the blocks at the left and right edge
contain 32 repeaters each. The addressing in each block follows the counting direction of
the connected L1 buses. Address 0 is located at the chip outer edge for the top and bottom
blocks, respectively and at the bottom of the horizontal (crossbar) repeater blocks.

2.3.2.5 Neuron to Layer 1 and Layer 2 Interfaces

All L2!L1 interfaces use a two-stage design: the DNC-interface converts the L2 packets into
a synchronous, parallel L1 event (spL1, 6 bit parallel data plus a valid bit synchronized to the
clock). The spL1!L1 converters are implemented by using eight special repeater circuits
located in the left horizontal repeater block (sending repeaters). Their addresses in the left
repeater block are 0, 4, 8, etc. and the connectivity to the L1 signals is shown in figure
2.3.6.

The digital part of the interface circuit, called the merger tree, can be programmed
to insert events into the spL1!L1 converters which have not been originating in the AN-
NCORE. Background Generators generate L1 events either with a fixed frequency or a Poisson-
distribution, their neuron number is always 0.

The test input port of these repeaters serves asSynchronous Parallel Layer 1 (SpL1)input.
The synchronously-generated valid signal is used as test clock input for the repeater; auto-
matically supplying the necessary L1 timing reference.

To keep the DLLs of all repeaters locked the Background Generators are enabled, their
neuron number 0 makes sure that every DLL in the L1 path can lock to the signal.

6Alternatively, the FEXT compensation capacitors can be connected between pos_self and pos_neighbour or
neg_neighbour and neg_self.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 73

The neuron!spL1 interface generatesSpL1data packets from the asynchronous fire events
of the neuron circuits. 32 adjacent neurons on the upper and the lower half respectively
share one neuron!spL1 interface circuit. It consists of a 64 bit priority encoder, selecting a
single neuron and generating the according binary number (which is programmable by a six
bit SRAM) together with the valid signal. Neurons with lower priority store their requests and
are served after the serializer has send the higher priority one. A two stage flip-flop bank
synchronizes the parallel signals for further processing as SpL1data. The maximum event
rate is 125MHz. The resulting time-resolution in biological real-time is 40�s.

2.3.2.6 Crossbar and Synapse Driver Switch Matrices

Only odd-numbered horizontal L1 lanes can be connected to SPL1 repeaters in one row of
HICANNs on the wafer. The layout of the crossbar switch matrices is organized in a way that
even-numbered lanes on a HICANN in a different row can be used for horizontal distribution
ofL1 signals in the according HICANN row if they are connected by a vertical L1 bus.

Fig. 2.3.6 shows the L1 connectivity of two edge-connected HICANNs. Vertical connectivity
is established by direct stacking of two such rows. Switch transistor positions are shown as
block dots. The switches on even-numbered horizontal L1 lanes can be used to horizontally
distribute L1 signals that originate on a vertically adjacent HICANN. The location and indexing
of nets/ports is identical to the physical implementation in HICANN. The dark grey boxes are:
Crossbar switch matrix (5): left, (2): right. Synapse switch matrix (1): top right, (3): bottom
right, (4): top left, (6): bottom right. Repeater block (A): top right, (B): bottom right,
(C): center right, (D): center left, (E): top left, (F): bottom left. One repeater is denoted
as lighter or darker rectangle (containing one driver and one pass-through) in the repeater
blocks. Note: In the HICANN chip, one of the two permutation lines is located at the top,
the other a the bottom. Similarly, instead of two permutations lanes at the right edge, one
is located at the left and the other at the right side, respectively. The figure does not reflect
this fact, since it is transparent to the user and does not affect connectivity.

The permution of a single line only cannot be implemented using the L1 repeater circuits
driving every second L1 lane per chip edge (see section 2.3.2.4).

Figures 2.3.7, 2.3.8 and 2.3.9 show the switch locations within the crossbars and synapse
switch matices.

Crossbar Each 128 lane vertical block contains 4 equally spaced switches per horizontal lane
resulting in a step size of 32 lanes. Each vertical lane has two switches per crossbar
connecting an even-numbered and the according odd-numbered horizontal lane. I.e.
transistors are located at positions 0, 32, 64, 96 in horizontal L1 line 0 and 1 and at
positions 1, 33, 65, 97 in horizontal L1 line 2 and 3. The configuration is read/written
row-wise: Each access writes/reads 4 bit (transistor set(1) or unset (0)) with bit 0
corresponding to the lowest vertical lane number.

Synapse Driver The synapse driver switch matrices connect the vertical L1 lanes to horizon-
tal lanes which are connected to local synapse drivers and to lanes connected to the
adjacent HICANN (see Figure 2.3.6). The switch transistor layout for local and adjacent
HICANN is identical for two horizontal lanes at a time. Local and adjacent connectivity

HBP_SP9_Specification 13 May 2014 (git 56b296e) 74

1
2

6
0

1
2

7
1

2
3

4
5

6
9

5
9

4
9

3
9

2
9

1
9

0
8

9
8

8
7

1
2

5
1

2
4

1
2

3
1

2
2

1
2

1
1

2
0

2
5

5
1

2
8

1
2

9
1

3
0

1
3

1
1

3
2

1
3

3
1

3
4

1
3

5
2

5
4

2
5

32
5

2 2
5

12
5

0 2
4

92
4

8
2

2
32

2
2 2

2
12

2
0 2

1
92

1
8 2

1
72

1
6

2
2

4
2

2
5

9
6

9
7

23451 0

233
41 0 6
3

6
2

3
5

1
0

3
2

5
4

7
6

8
9

8
8

9
1

9
0

9
3

9
2

9
5

9
4

9
7

9
6

1
2

1
1

2
0

1
2

3
1

2
2

1
2

5
1

2
4

1
2

7
1

2
6

1
2

9 1
2

8
1

3
1 1

3
0

1
3

3 1
3

2
1

3
5 1

3
4

2
1

7 2
1

6
2

1
9 2

1
8

2
2

1 2
2

0
2

2
3 2

2
2

2
2

5 2
2

4
2

4
9 2

4
8

2
5

1 2
5

0
2

5
3 2

5
2

2
5

5 2
5

4

0123

1
0

8
1

0
9

11
0

11
1

11
1

11
0

1
0

9
1

0
8

3210

-4

-3
2

+
3

2
+

3
2

+
3

2
+

3
2

+
3

2
+

3
2

syndr. top left syndr. bot. left

syndr. top right syndr. bot. right

le
ft
 H

IC
A

N
N

ri
g
h
t
H

IC
A

N
N

3
2

3
3

S
P

L
1

[0
]

S
P

L
1

[4
]

1 2 3

4 5 6

A

B

C
D

E

F

3
4

3
5

3
2

3
3

+
1

6

-4

-3
2

+
1

6

+
1

6
+

1
6

Figure 2.3.6: L1 connectivity of two edge-connected HICANNs. See text for detailed descrip-
tion.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 75

is swapped between left and right side: Horizontal lane 0 connects to the local driver
in the top left synapse driver switch matrix and to the adjacent HICANN in the top right
switch matrix. In each block of 32 vertical L1 bus lanes, a synapse driver can connect
to four consecutive lanes. With each synapse driver row, the position is incremented
by four. This results in the following pattern (see Figure 2.3.6): synapse driver row 0
(in terms of fc_anncore) connects to vertical columns 0-3, 32-35, 64-67, 96-99; row 1
connects to vertical columns 4-7, 36-39, 68-71, 100-103 and so on. The configuration
is again written row-wise: Each access writes/reads 16 bit (transistor set(1) or unset
(0)) with bit 0 corresponding to the lowest vertical lane number. The number of row
addresses (112 per synapse block and side) is twice the number of synapse drivers since
two rows address local and adjacent connections as described above. These two rows
can be configured independently.

Inter-HICANN-connections In figure 2.3.6 the permutation scheme for the L1 connections
at the HICANN boundaries is shown. By permuting the whole vertical and horizontal
buses by two lanes all lanes are equally accessible on the wafer scale despite the fixed
connection schemes used in the individual HICANN chips.

2.3.2.7 L1 Pinout of the HICANN Chip

The pinout of the HICANN chip follows the L1 lane numbers illustrated in Figure 2.3.6. Note
the flip of the two highest-value lanes in the vertical and right blocks due to the permutation
of these lanes inside the HICANN chip. Therefore, it can be directly edge-connected in the
reticle without additional routing.

Differential pinout: At the top and bottom edge, the signal lines facing the edge of the chip
are the positive signals of the differential L1 pairs. At the left and right edge the lowermost
signals are the positive signals of the differential L1 pairs.

2.3.3 Analog Neural Network Core (ANNCORE) circuits

2.3.3.1 Synapse drivers

The synapse drivers are the interface between the serialized event data and the synapse
array (see Fig. 2.3.3). They contain the deserializer and data capture circuits described in
subsubsection 2.3.2.3.

The lower four bit of the sampled neuron address are subsequently transmitted into the
synapse array. The upper two are compared to stored addresses for a set of strobe lines for
the synapse address decoders. The length of these strobe pulses encode for the momentary
value of the so called recovered partition R [59] that controls the magnitude of the synaptic
transconductance if it is modulated by short term plasticity mechanisms (short term depres-
sion or facilitation: STDF). The circuit used here resembles the one in [59] with the major
exception that the storage capacitor for R needs to be replicated 64 times, since the value
of R is independent for each pre-synaptic neuron.

The DLL provides the necessary timing information to reliably control the strobe pulse
length. The length of the strobe pulse is limited to a L1 frame period since only one

HBP_SP9_Specification 13 May 2014 (git 56b296e) 76

0
1

9

17

25

33

41

49

57

0 32 64 96
1

127

left crossbar switch matrix

S
P

L
1
 r

e
p
e
a
te

r

1
0

255 224 192 160 128

8

16

24

32

40

48

56

63

right crossbar switch matrix

2

Figure 2.3.7: Left and right crossbar switch matrix in HICANN. Note the numbering of the
horizontal lanes and the permution.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 77

0
3
2

6
4

9
6

1
1
2
7

0 1
6

9
6

11
0

1

1
7

9
7

111

to
p

 le
ft s

y
n

a
p

s
e

 s
w

itc
h

 m
a

trix

to local anncore

Figure 2.3.8: Top left synapse switch matrix in HICANN. The bottom left synapse switch matrix
is an exact copy mirrored on the horizontal axis.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 78

1
2
8

1
6
0

1
9
2

2
2
4

2
5
5

0 1
6

9
6

11
0

1 1
7

9
7

111

to
p

 rig
h

t s
y

n
a

p
s

e
 s

w
itc

h
 m

a
trix

to local anncore

Figure 2.3.9: Top right synapse switch matrix in HICANN. The bottom right synapse switch
matrix is an exact copy mirrored on the horizontal axis.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 79

preout synapse connection (in each four synapse cell)

0 lower left
1 upper left
2 lower right
3 upper right

Table 2.3.1: Mapping of syndriver pre-out signals

concurrent pulse can be transmitted into the synapse array.
To limit the power consumption and crosstalk of the parallel L1 data a reduced voltage

swing of 1/2 Vdd (0.9V) is used inside the synapse array. The lower four address bits will be
decoded in the synapses. They are therefore transmitted pseudo-differentially which also
reduces crosstalk significantly.

To control the capacitive loading of the vertical L1 busses only a certain number of switches
and activated connections to the Syndrivers is allowed. To share these signals between
adjacent Syndriver rows, neighbouring Syndrivers have a bypass switch between their inputs,
allowing to form vertical chains of syndrivers sharing one common connection to the vertical
L1 busses.

2.3.3.2 Synapses

The synapse circuits are an enhanced version of the ones reported in [60]. The major change
is the inclusion of a four bit address decoder replacing the single pre-synaptic signal used
previously. Each synapse has a fixed connection to one of the strobe signals from the synapse
driver and a programmable four bit address. Table 2.3.1 lists the mapping of the syndriver
pre-out signals to the synapse array.

This allows for a much higher mapping efficiency in the case of sparsely connected random
networks. The fixed maximum conductance gmax for the synapse Digital-to-Analog Converter
(DAC) can still be set row wise by a programmable analog parameter. The output signal of
a synapse in the case of an input event matching its address is as follows: a square current
pulse with the amplitude weight⇥ gmax and the length �STDF.

2.3.3.3 Membrane Circuits

A neuron is formed by connecting together up to 64 Dendrite Membrane Circuit (DenMem)
circuits7. Each DenMem contains a set of ion-channel emulation circuits connected to the
membrane capacitance. These ion-channel circuits represent the following membrane cur-
rents:

• Excitatory synapses

• Inhibitory synapses

7This section is only a short summary of the neuron implementation. For a more detailed description please
reference either [49] or [48].

HBP_SP9_Specification 13 May 2014 (git 56b296e) 80

• Leakage

• Adaptation

• Spike generation (exponential behavior of membrane potential)

A generic ion-channel circuit was developed that is used for the first four mentioned classes
of membrane currents. The exponential is build using an operational amplifier as it is no
direct conductance. These circuits allow the implementation of the adaptive exponential
integrate and fire model [15].

Neighbouring DenMem circuits can be tied together by shorting their membranes’ potential.
The spike detection circuit is enabled in one selected DenMem only and its output signal
propagates to all interconnected DenMems of the neuron. As this pulse is transmitted back
into the synapse array for STDP, it could be understood as a model of a back propagatin action
potential, but as there is no correlation between the propagation delay in biology and the
delay caused by digital transmission, this is only an artifact. It is planned to add a controlled
back propagating action potential delay in the future as part of a multi-compartment neuron
implementation.

The digital spike pulse is not only transmitted to the synapse array, but also to the priority
encoder located in the digital event generation circuits in the center of each HICANN8. It is
possible to enable or disable this transmission for each DenMem9.

2.3.3.4 Additional Features of the Denmem-Block

Each HICANN includes two analog readout channels. Within each DenMem circuit an opera-
tional amplifier with output-enable is located. Every second denmem connects to one of two
common output lines. This setup allows the simultaneous recording of any pair of adjacent
DenMem membrane voltages. Two 50� output buffers drive these signals off the HICANN die.

One DenMem circuit per HICANN can be connected to a test current generator. This
facilitates neuron characterization. It reuses resources from the floating gate parameter
storage and allows the replay of short time-varying current patterns.

2.3.3.5 Single-Poly Floating Gate Analog Parameter Storage

The principle of the single-poly floating gate analog paramter storage is covered in the report
"Analog Floating Gate Memory in a 0.18� Single-Poly CMOS Process". This subsubsection will
specify the integration in the HICANN chip. The following analog parameters are required in
the HICANN system:

1) neuron parameters

2) STDP parameters

8Eight asynchronous priority encoder with 64 inputs each determine which action potential is transmitted back
into the network (see section 2.3.2.5).

9In future implementations a variable delay could be implemented at this point. This would allow emulating
the transmission delay observed in biology at long range axonal connections. Each neuron could have as many
different delays as the number of denmem circuits it consists of.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 81

3) synapse driver parameters

4) global parameters outside the ANNCORE (repeaters, off-chip buffers, etc)

Only the neurons (i.e. the DenMem circuit) get individual parameters. Four floating gate
parameter storage blocks are located beneath the DenMem circuits. Each block consist of 129
columns with 24 storage cells each. While columns 1 to 128 generate the bias currents and
voltages of one half of an DenMem block, column 0 generates the parameters used for STDP,
synapse drivers and global purposes called global parameters below. A custom rail-to-rail
buffer has been developed to drive these signals.

As there are two mirrored floating gate arrays for the upper respectively the lower half
of the HICANN while there is only one DenMem block symmetry is broken. Right and left
floating gate arrays need a dedicated mapping to the neuron parameters. Table 2.3.3 and
2.3.4 show the mapping of floating gate parameters to neuron and global parameters.

All bias inputs use the same current range: 100nA to 2�A. The floating-gate cells can cover
this range for all process corners. In the typical case the maximum current is about 2.5�A.
The programming logic provides 10 bits of resolution for the nominal 2.5�A range and at least
8 bit precision10. All current cells are current sources. To generate the dedicated biasing
currents, current mirrors are used for parameter mapping.

The voltage cells can provide the full 1.8 Volt swing by using a readout transistor connected
to the floating gate as source follower. The bias current used by the source follower is set to
1�A. The offset of the source follower is compensated automatically, since the programming
logic uses the same source follower to read back the cell’s voltage while programming.

To allow fast parameter changes all cells providing the same current/voltage in one floating
gate block, i.e. the cells located in the same line, can be programmed in parallel. Also all
four floating gate blocks are independent of each other and can therefore be programmed
at the same time.

10The maximum error is always smaller than 4nA, which is about 1/2 LSB at 8 bits.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 82

Parameter Type Function and multipli-
cator

Range (tech) Range 104

Igl neuron gl1:1, 1:3 or 1:33 33 nA to 666 nA 400 nS to 4 uS
El El 0 to 1.4 V
Igladapt a 1:1, 1:3 or 1:33 33 nA to 666 nA 400 nS to 4 uS
Iradapt �w 1:11, 1:187 or 1:328 1 nA to 12.3 nA
Ifire b upto 4 uA
Vexp Vt
Ibexp Vt, �t
Esyn reversal potential
Iconv maximum synaptic con-

ductance
usually set to max

Vsyntc synaptic time constant 1.25 V to 1.45 V
Vsyn voltage level of line to

synapse array
set to 1 V

Iint synaptic input integra-
tor bias

set to 2 uA

Ipl refractory periode 50 ns to 500 ns 500 us to 5 ms
VT � 0 to 1.4 Volt
Vreset neuron global reset voltage 0 to 1.4 Volt
Ireset current used to pull

down membrane at re-
set

usually set to max

Vbout bias for neuron output
amplifier

2 uA

Vbexp bias for buffer of Vexp 2 uA

intern OP bias bias of floating gate ar-
ray amplifiers

2 uA

Vdllres layer1 dll reset voltage
Vccas,cbias amplifier bias

Vfac synapse driver facilitation bias volt-
age

Vdep depression bias voltage
Vgmax synaptic current
Vbstdf stdf bias
Vstdf ?

Vm synapse V1 in [60]
Vclr V2 in [60]
Vcla V2 in [60]

Vthigh stdp readout threshold causal?
Vtlow threshold acausal?
Vbr

Table 2.3.2: Floating gate parameter description summary

HBP_SP9_Specification 13 May 2014 (git 56b296e) 83

line fg parameter global parameter neuron parameter
0 voltage0 Vreset(even) not connected
1 current0 intern OP bias Ibexp
2 voltage1 Vdllres not connected
3 current1 Vbout Iconvi
4 voltage2 Vfac not connected
5 current2 Ibreset Ispikeamp
6 voltage3 Vdep El
7 current3 Ibstim Ifire
8 voltage4 Vthigh Vsyni
9 current4 Vgmax < 3 > Igladapt
10 voltage5 Vtlow Vsyntci
11 current5 Vgmax < 0 > Igl
12 voltage6 Vclra Vt
13 current6 Vgmax < 1 > Ipl
14 voltage7 Vstdf Vsyntcx
15 current7 Vgmax < 2 > Iradapt
16 voltage8 Vm shared Esynx
17 current8 Vbstdf Iconvx
18 voltage9 not connected Esyni
19 current9 Vdtc Iintbbx
20 voltage10 not connected Vexp
21 current10 Vbr Iintbbi
22 voltage11 not connected Vsynx
23 current11 Vccas, Vcbias Irexp

Table 2.3.3: Floating gate parameter mapping for left side

HBP_SP9_Specification 13 May 2014 (git 56b296e) 84

line fg parameter global parameter neuron parameter
0 voltage0 Vreset(odd) Esynx
1 current0 intern OP bias Iconvi
2 voltage1 Vdllres Esyni
3 current1 Vbexp Iconvx
4 voltage2 Vfac Vexp
5 current2 Ibreset Iintbbx
6 voltage3 Vdep Vsynx
7 current3 Ibstim Iintbbi
8 voltage4 Vthigh Vsyntci
9 current4 Vgmax < 3 > Ipl
10 voltage5 Vtlow Vsyni
11 current5 Vgmax < 0 > Igladapt
12 voltage6 Vclrc Vsyntcx
13 current6 Vgmax < 1 > Irexp
14 voltage7 Vstdf Vt
15 current7 Vgmax < 2 > Ibexp
16 voltage8 Vm shared El
17 current8 Vbstdf Ispikeamp
18 voltage9 not connected not connected
19 current9 Vdtc Ifireb
20 voltage10 not connected not connected
21 current10 Vbr Igl
22 voltage11 not connected not connected
23 current11 Vccas, Vcbias Iradapt

Table 2.3.4: Floating gate parameter mapping for right side

HBP_SP9_Specification 13 May 2014 (git 56b296e) 85

2.3.4 Digital Control

The top level HICANN digital control consists of the following parts:

• General system control

• Layer 2 (L2) event handling circuits

• Link protocol handling for the high-speed serial links to the FPGA Communication PCB
(FCP)

• Configuration Interface (with internal bus fabric)

• Configuration Modules (connected to the bus fabric)

2.3.4.1 General system control

The general system control portion of the digital part covers reset handling, clock generation
and system time counter control, as well as slow control access by means of a Joint Test
Action Group (JTAG) interface.

JTAG Interface

The physical JTAG interface is connected to a standard JTAG Test Access Port (TAP)-controller
that is capable of receiving instructions and shifting data in and out. All available instructions,
together with a functional description, are listed in table 2.10.26. Two types of instructions
can be distinguished:

• Control instructions: These are for example used to set up clock frequencies, the
system time counter, or for high-speed link initialization. Parts of the design like each
individual Automatic Repeat Request (ARQ) instance can also be reset via JTAG. All
control registers have JTAG reset values which are described in section 2.10.5.

• Debug instructions: These include read back of (Cyclic Redundancy Check (CRC)) error
or timeout counters or other status values. There is also a possibility to inject or
read back configuration or pulse data payload into/from the 64 bit data buses of the
Digital Network Chip Interface (DNC Interface). This way communication with the
HICANN is possible, even without a correctly working high-speed connection. Since JTAG
communication has no deterministic timing, pulse communication is only reasonably
possible with time stamp processing disabled (see section section 2.3.4.2).

Within one 8-HICANN reticle, the JTAG ports of the chips are daisy-chained as described in
section 2.4.2.1. With each HICANN having a 6 bit instruction register, this results in a 48 bit
wide instruction register on each reticle.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 86

Clock Generation and System Time Counter

HICANN has a differential clock input EXT_CLK_(P/N) that must be driven with a 50 MHz clock
signal that adheres to the Low-Voltage Differential Signaling (LVDS) signaling standard. Two
PLLs are present on the chip and receive input from this external clock signal. One Custom
Phase-Locked Loop (FC-PLL) and an off-the-shelf PLL which is called Faraday Phase-Locked
Loop (F-PLL). It is provided with the digital standard cell library that has been used for the
digital part of HICANN ([25, 26]). Operation of both PLLs can be disabled and controlled by
the according JTAG instructions in table 2.10.26.

One output of the FC-PLL provides a 250 MHz clock with a fixed ratio of 5:1 wrt. the input
clock. This clock is used to run a 15 bit wide system time counter that is present in each
HICANN. Together with a counter in the FPGA that is derived from the same global clock
source, these counters are the time base for pulse delivery and recording. The FC-PLL also
provides clock outputs that drive the high-speed interface logic. These can be switched
between low-speed (1 Gbit s�1) and high-speed mode (2 Gbit s�1) using the JTAG commands
in table 2.10.26.

The reminder of the HICANN is clocked by the F-PLL. While its single output can be tuned
to a wide frequency range using JTAG commands from table 2.10.26, the allowed clock
frequency range is 100 MHz to 250 MHz. Two clocks are derived from this output:

• An 1:1 version that drives the on-wafer pulse communication circuitry and all logic
related to the digital pulse transport without time stamps (see section 2.3.2). The
clock frequency can be set lower than the target value of 250 MHz in order to increase
the reliability of the on-wafer communication.

• An 1:4 version (up to 62.5 MHz) that drives all the remaining core logic.

Asynchronous First-In First-Outs (FIFOs) are used to transfer data between the different
clock domains. These FIFOs are located directly behind the resp. ports of the DNC Interface
logic.

Reset Handling and Counter Synchronization

The HICANN has a low-active reset input RESET_N that mainly serves as a power-up reset
and must be kept low (i.e. active) during power up. All internal Finite State Machines (FSMs)
are reset by this signal to their idle state and the chip will leave idle state only upon external
input. Data path and configuration registers are not necessarily cleared. Reset values of
registers that are being cleared by this reset are given in the resp. sections. A second
reset mechanism ist the test logic reset signal of the chip’s JTAG controller. Reset values of
relevant control registers are given in section 2.10.5.

System time counter start The RESET_N input also clears the value of the system time
counter to zero. This counter is then armed and waits for the global SYS_START signal to
be toggled. This signal needs to be toggled at all HICANNs that are part of a large neural
network within one EXT_CLK period in order to have their counters synchronized. Since the
SYS_START signal is shared with the JTAG TMS signal on one HICANN pin (see section 2.4.2.1),

HBP_SP9_Specification 13 May 2014 (git 56b296e) 87

it has to be assured that no JTAG activity takes place before issuing SYS_START. The correct
(power-up) reset sequence is described in the following paragraph.

Reset and synchronization sequence Since the JTAG reset resets the FC-PLL and F-PLL (thus,
core clock frequency) to default values and disables all high-speed communication there is a
strong interdependency between JTAG reset and the design reset. Together with the system
time counter start requirements described in the previous paragraph, the following power-up
reset sequence can be identified:

1) Power on with reset active, or activate reset in case a reset cycle is carried out.

2) Issue JTAG reset

3) Set F-PLL clock frequency

4) Release reset

5) Toggle SYS_START at all HICANNs in the system

After this sequence, the chip has been correctly reset and all counters are running syn-
chronously. All further initialization can then be done according to the actual use case.

2.3.4.2 DNC interface and Layer 2 circuits

Overview

The Layer 2 circuits on the HICANN are responsible for the communication with the FPGA
Communication PCB (FCP) and also for the access to the external world. All Layer 2 circuits
are grouped in a module named DNC interface which might be used a synonym for the Layer
2 circuits throughout this section.

The transmission provides two different packet formats to be able to transport pulse event
data and configuration data. A block diagram in fig. 2.3.10 presents the setup of the Layer 2
Communication circuits.

Incoming configuration data is forwarded to the on-chip bus fabric based on the Open
Core Protocol (OCP)11 bus which targets the ARQ protocol (described in section 2.3.4.3).
Incoming pulse events are handled by the "Layer 2 to Layer 1 interface" (l2tol1_if for
short), where the events are delayed up to the target release time and finally released on
the target Layer 1 bus. The opposite module l1tol2_if can also receive events from Layer
1. It generates packets containing the address and the time stamp and forwards this packet
to the transmission protocol. Answer packet from the ARQ control block are also transmitted
towards the DNC interface for external control functionality.

It is possible to control all communication data between Layer 1, HICANN configuration
and FCP over the JTAG test interface. This allows for detailed verification access to observe
the functionality of all components and allows fast measurement stimuli insertion without
having the whole communication system available. The following subsections present the
communication modules on the HICANN chip in more detail. A detailed specification can also
be found in [22].
11Open Core Protocol Specification 2.2 [3]

HBP_SP9_Specification 13 May 2014 (git 56b296e) 88

 DNC

 interface

link_ctrl_top

tx1rx1_ddr_lvds_if

layer 2

to

layer 1

interface

layer 1

to

layer 2

interface

configuration ctrl

2GBit/s LVDS

on chip bus

JTAG
System

time

L
a
y
e
r
 1

L
a
y
e
r
 1

Figure 2.3.10: Block diagram of the layer 2 HICANN connection

Layer 2 packet communication – link_ctrl_top

The link_ctrl_top module contains all required components to establish the bidirectional
2GBit/s connection with the FCP, to hold the communication line in a ready state and to
handle different types of data packets.

The communication is established using a master-slave control. The FPGA on the FCP is the
master, that controls the process of initialization and the dnc_if of the HICANN is the slave,
that waits for signals of the master. The second difference is the layout of the communication
macro tx1rx1_ddr_lvds_if. It contains all required full custom components for the LVDS
connection. It requires a special layout to be adapted to the special floorplan of the HICANN
ASIC. The detailed description of the packet communication mechanisms can be found in
chapter 2.6.

The Layout of the hicann_tx1rx1_ddr_lvds_if has to fulfil several constraints in
order to fit into the physical design of the HICANN. Since Layer 1 connections of the HICANN
were diagonally routed above the hicann_tx1rx1_ddr_lvds_if macro on top metal layer
(Metal6) (see HICANN layout) and because of signal integrity reasons, the signal routing inside
the macro should be limited to three metal layers. As an exception power/ground and quasi-
statical nets (i.e. JTAG signals) can be routed on Metal4. The macro is placed with its pads
heading to the inner core, thereby easing the connection to the post processing pads for the
final design. The final layout of the macro is pictured in fig. 2.3.11.

Layer 1 access – l1tol2_if, l2tol1_if

The layer 1 to layer 2 (l1tol2_if) interface captures the 6 bit neuron identifier of eight
available layer 1 buses. In parallel the current system time with a size of 15 bit is stored.
Together with the number of the layer 1 bus, a digital event of 24 bit is created, that
is forwarded to the digital wide range communication layer. To handle burst occurrence of
neural events first-in-first-out (fifo) buffers are used at the output of each layer 1 connection.
It is possible to transmit one event in a Layer 2 packet or two events in one packet. Depending

HBP_SP9_Specification 13 May 2014 (git 56b296e) 89

LVDS
receiver pads

LVDS
transmitter

pads

m
e
ta

l
5
 r

o
u
ti
n
g
 c

h
a
n
n
e
l

Deserializer Serializer

C
o
re

 s
u
p
p
ly

C
o
re

 s
u
p
p
ly

Current
bias

Digital transmission line
control

Figure 2.3.11: Layout view of the hicann_tx1rx1_ddr_lvds_if macro. The metal 5 routing
channel can be seen in den middle.

on the pulse rate of the neurons, the required packet is generate automatically. A block
diagram of the l1tol2_if interface can be found in fig. 2.3.12.

In the direction from Layer 2 packet communication towards the Layer 1 buses (l2tol1_if),
buffer elements are required to delay the pulse events until their release time is reached.
The HICANN offers two event storages in the current release, in future releases up to 16
buffers are available to be able to release neural events timely very close to each other. The
lower 5 bit of the 15 bit event timestamps are compared with the current system time and
released exactly at the required time. If two events needs to be released at the same time,
one of them is delayed and released at the next possible time. The upper 10 bit of the time
stamp were previously handled in the FPGA on the FCP, so that we have a reduced hardware
complexity in the HICANN. The 5 bit of the time stamp equals 1.28 ms of biological time. The
corresponding block diagram can be found in fig. 2.3.13 for the final version with 16 storage
elements.

A detailed description of the Layer 1 interface can be found in [22].
All Layer1 events going that have to be transmitted to the PCS are sent through the Serial

Parallel Layer 1 Interface (abbreviated spl1_if). This module communicates with the
l2tol1_if and the l1tol2_if modules.

The dnc_if and the spl1_if have their own configuration address. Table 2.10.22 con-
tains the possible settings.

Configuration packet handling

As described in the next subsection, the configuration of the HICANN is done using the ARQ
protocol. The required data is received by the Layer 2 connection in a 64 bit configuration
data vector. It is directly forwarded to the dnc_if and handled there as described above.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 90

packet
multiplex

FIFO
l1_event0

l1_event1

l1_event2

l1_event3

l1_event4

l1_event6

l1_event7

l1_event4

l1_event5

simtime

packet

enable

64bit

Figure 2.3.12: Block diagram of the l1tol2_if interface with fifo buffers and packet generator.

l1
event

l1
event

l1
event

l1
event

l1
event

= = = = =
system time

event selection
l1_nrn_out

l1_nrn_out_en

16 buffers

16 reduced comparators

selection and
release buffering

To L1

Figure 2.3.13: Block diagram of the l1tol2 interface with fifo buffers and packet generator.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 91

The protocol also generates packets that are required at the host control. Therefore the
dnc_if has a receiving bus fabric connection, whose data is transmitted as a configuration
packet of the Layer 2 connection towards the FCP, where it is also forwarded to the connected
host control. To handle burst transfers of configuration data buffers are used at the transmit
and receive side of the on-chip bus fabric.

Bus fabric DNC interface

The bus fabric DNC interface consists of an RX- (DNC interface to bus fabric) and a TX-Port
with the following configuration (see OCP Specification [3] page 64 for default values of the
parameters not listed below):

data_width = 64 // size of DNC configuration interface packet
addr = 0 // no address
cmdaccept = 1 // blocking flow control
write_enable = 1 // only write, the sender is always the master
read_enable = 0
sdata = 0 // no read
tags = 0
threads = 0
resp = 0 // no response needed
sreset = 0 // reset is not part of the ocp
mreset = 0

The RX-port always accepts the maximum packet rate while the DNC interface as the slave
of the TX-port uses SCmdAccept to block the master if the link is busy. As stated above,
packets received through the RX-port might get discarded in the bus fabric due to FIFO full
conditions.

2.3.4.3 Configuration Interface

The configuration interface implements the bus fabric connecting all digital modules with
the host computer. The host communication is part of the data transported by the FCP.
While the digital event communication is handled within the DNC interface the configuration
data has to be distributed throughout the HICANN to all digital modules. This is done by a
bus fabric based on the OCP. It has independent up- and downlinks, therefore two bus fabric
links connect the DNC interface with the bus fabric. The FCP uses a packet-based transfer
scheme with a fixed packet size of 64 bits for the configuration data. An internal CRC ensures
that the data is unaltered. Due to the protocol overhead12 the packet rate is 22 MHz at a link
data rate of 2 GBit/s, resulting in a maximum data rate of 176 MByte/s per direction. If the
network is working, the majority of the link traffic will be digital event data, substantially
reducing the effective configuration data rate.

The host data is first sent via GBit-Ethernet to one of the FPGAs on the HICANN system
board. The FPGA-based network is subsequently used to carry it to its destination HICANN.

12A packet including CRC data uses 80 bits plus some additional frame bits.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 92

name bit no. size description
Tag 63:62 2 tag-id
Seq Valid 61 1 sequence number valid
Seq 60:55 6 sequence number modulo 64
Ack 54:49 6 acknowledge number modulo 64
Application Layer Data 48:0 49 application layer specific
Frame 63:49 15 see frame definition
Write 48 1 defines write packet if one
Address 47:32 16 write address, address map defined

by target module
Data 31:0 32 write data, content defined by

target module
Frame 63:49 15 see frame definition
Write 48 1 no write packet if zero
Read 47 1 marks read packet if one
Data 46:0 47 read data, content defined by

target module
Frame 63:49 15 see frame definition
Write 48 1 no write packet if zero
Read 47 1 no read packet if zero
Misc 46:0 47 reserved for future use

Table 2.3.5: configuration interface link layer (top) and application layer write, read, misc
(bottom three)

Two things can happen on this way: packets may get lost or packets may be reordered.
Therefor a data link layer is necessary to ensures a correct transmission. To keep the resource
usage within the HICANN chips low the host handles most of the link layer complexity.

Configuration Data Link Layer Protocol

Since the individual functional units within the HICANN chip differ vastly in speed, multiple
virtual connections can be established between the HICANN and the host. For every virtual
connection there is a fixed connection tag assigned to it, that is placed at the beginning of the
configuration interface link layer packet. Table 2.3.5 illustrates the different packet formats.
The number of virtual connections implemented in HICANN is 2, one for the synapse memories
and one for the rest. This allows for independent control accesses while transferring large
amounts of synaptic weights. While all packets within one virtual connection are strictly in
sequence, no order is imposed concerning packets from different virtual connections. The
host sends all request packets with a certain tag with strictly increasing sequence numbers.
After the DNC interface the packets are routed to as many independent link layer controllers.
A simple fixed priority scheduler multiplexes the transmit data from the different link layer
controllers into the TX-fifo of the DNC interface.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 93

The link layer implements the ARQ13 protocol with selective repeat error recovery as
specified in [54]14. The link layer uses a six bit sequence number. Acknowledge packets
are merged within the normal packet stream of the opposite direction using a six bit field
for the acknowledge number in each packet. If the packet contains only an acknowledge,
the sequence number valid bit is false. This also implies that the application layer data
is non-existent. The buffer size is 16 packets per direction and tag id, resulting in a total
memory size of 512 Byte.

The advantage of this implementation is that the link never fails, it just gets slower if
there are a lot of dropped packages. So no error handling is necessary in the application
layer within HICANN. The pipeline depth between the input FIFO and the response FIFO of
the application layer interface is known for each virtual connection. If the number of empty
entries in the response FIFO is equal to the maximum number of requests in the pipeline, the
input FIFO does not get popped any more. This has the advantage that a FIFO full condition
of the response FIFO, which is usually caused by too much event traffic on the FCP link,
translates itself eventually to a FIFO full condition on the input FIFO. This leads to a buffer
full condition at the host, which can then wait with the next request unit the congestion is
over or throttle down the request rate to match the effective link capacity.

2.3.4.4 Configuration Modules

• Layer 1 switch control

• Universal SRAM controller module

• Neuron builder control and DenMem configuration

• Analog output configuration

• Floating gate controllers

• Spl1 output merger

• Background event generators

• Repeater controllers and test pattern generators

Layer 1 switch control

Control of the Layer 1 switch transistors is performed by six independent control modules:
crossbar left, crossbar right, synapse driver top left, top right, bottom left and bottom right
(see section 2.3.2.1). For crossbar configuration, only the four lowest bits are valid, for
synapse driver switch matrices 16 bits are valid. For the crossbars bit 0 is corresponding
to the lowest vertical lane number, whereas for the synapse switch matrices, bit 0 is cor-
responding to the highest vertical lane number. The address corresponds directly to the
vertical/horizontal line number as depicted in fig. 2.3.6. Configuration is stored in latches

13Automatic Repeat Request
14In the nomenclature of the referred report it uses full duplex mode with tiny packets.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 94

that are located in the digital part. These latches are cleared to zero by the external reset,
i.e. no connection is enabled after power-up reset.

SRAM control (sramctrl.sv)

The SRAM control module generates the timing for the full custom SRAM blocks located in the
synapse drivers, the synapses, the neuron spl1 output circuits, the denmem circuits and the
repeaters. To support configurable timing as well as an easy interface for additional module
specific IO, the SRAM module uses an address field one bit wider than the addressable SRAM.
The uppermost address bit selects between configuration address space (address MSB = 1) and
SRAM address space (address MSB = 0). The configuration space contains the timing control
registers as well as a user selectable number of static register ports. The output ports use
storage registers located in the SRAM module while the input ports always reflect the state
of the respective input lines of the SRAM module. The generic version of the SRAM controller
is instantiated with the following parameters described in table 2.10.2a.

The timing control registers are organized as described in table 2.10.2b.
The content of IO data is defined by the module instantiating the SRAM controller.

Neuron builder control (neuronbuilder.sv)

The neuron builder control module consists of the SRAM controller for the full custom neuron
output, neuronbuilder and denmem circuits located in the center of the ANNCORE macro
block. The SRAM controller settings that are used in this module are listed in table 2.10.3.

It instantiates two output and one input registers, as described in table 2.10.4. The bit
fields in the output registers are defined as in table 2.10.5. The controlled RAMs are used
as described in table 2.10.6. The maximum address is 511. The addressing scheme for the
neuron builder SRAM is also depicted in fig. 2.3.14.

See section 2.3.4.4 for a description of the meaning of the nmem and nb bits.

Denmem configuration

Additionally to the analog parameters, sourced by the floating gate array, several digital
parameters are used to control a denmem and to generate complex neurons of several denmem
circuits. These bits are set in the neuron builder control module (c.f. section 2.3.4.4).

The switch bigcap enables the larger neuron membrane capacitance for for the upper or
lower block.

The slow and fast bits are used to switch the multiplication factors for current parameters.
The upper three and lower three (0 to 2) bits of these fields belong to the upper and lower
HICANN half, respectively.

Fast and slow bit 0 control the current mirror for the Iradaptparameter of a denmem. The
next bits control Igladapt and Igl, respectively.

Additionally to these global configuration bits, 8 SRAM bits can be programmed in each pair
of denmems. Starting with address 3, these bits can be accessed with every fourth address
of the neuronbuilder ram. Table 2.10.8 describes the function of the bits. The configuration
of the input/output bits is described in table 2.10.8b. The neurons have separate current
input and analog output lines.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 95

1 3

0 2

spl1: 6

nmem top:8

nmem bot: 8

nb_vertical:1
�reen top: 1
�reen bot: 1

1

0

Top left
Denmem

Top right
Denmem

Bottom left
Denmem

Bottom right
Denmem

HW addr

horizontal Interconnectunused
used

Figure 2.3.14: Overview of the denmem configuration

Even address numbers from the neuron builder RAM are used to access the neuronbuilder
bits to connect bottom neurons to SPL1 and to interconnect bottom and top membrane, while
odd addresses are used, when accessing bits connecting the upper neurons to SPL1.

Analog output configuration

The two analog outputs are controlled in neuron builder control (section 2.3.4.4). At reset,
both amplifier outputs are set to high impedance and the calibration current from the DNC
interface is connected to the output pad of the upper analog output.

The input of each output amplifier can be chosen by a ten-fold analog multiplexer, as
described in table 2.10.9.

Floating gate control(unit::fgateContol)

Each floating gate array is controlled by an individual instance of fgateControl, being re-
sponsible for parameter programming, analog parameter readout of floating gate cells and
current stimulation of neurons.

An fgateControl consists of three parts, an interface to the on-chip bus fabric, a program-
ming state machine and a dual port latch memory with two banks to enable memory update
while the floating gates are programmed.

Numbering of fgateControl instances is as follows: top left=0, top right=1, bottom left=2
and bottom right=3.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 96

Programming state machine The fgateControl programming state machine can be controlled
by six different commands (table 2.10.10). The command read sets the floating gate in read
out mode and connects a cell to the analog output. This analog value can be read until
another command is executed. After reset, the state machine is ready for calibration - it is
set to readout mode, but no parameter is connected to the output.
writeUp and writeDown do the actual cell programming for a floating gate line. At first,

the values of the individual cells are compared to the values in the memory and only the cells
with values below respectively above the desired value will be programmed. In the second
step, the cells are programmed, followed by another comparison step. The last two steps
are repeated until all cells reached their values or the maximum number of cycles has been
reached. While the controller is active, a busy flag is set. If not all cells could be written to
the proper value, an error flag is set and the column address of the first cell which did not
reach its value can be read out (see table 2.10.15). To get the next wrong programed cell,
the instruction getNextFalse is used. Once no further wrong programmed cell is available,
the error flag will go down.

The instructions stimulateNeurons and stimulateNeuronsContinuous use the pro-
gramming memory and the DAC in the floating gate array to stimulate a neuron by a changing
current. The first one replays the RAM values only once, while the second one starts at the
beginning when the last ram address is reached.

Several parameters of the programming state machine can be set to optimize programming
(table 2.10.11). The parameter maxcycle is the maximum number of cycles allowed in a
programming process. currentwritetime and voltagewritetime are the respective
lengths of a writing pulse. Depending on the aimed value, these parameters are very critical
for writing precision. When the values are controlled during a write process, the controller
waits a certain number of intern clock cycles after a cell has been accessed as the readout
line needs to be loaded. A small value will shrink precision, a large value will cause long
writing times.

As the effect of a writing pulse for voltage cells gets smaller the higher the actual voltage
on a floating gate is, longer writing pulses are a good choice for higher values. To allow
longer writing pulses for higher voltages, the write times can be doubled during a write
process. The parameter acceleratorstep gives the number of programming cycles after
which the write time is doubled. This doubling of the actual write time happens every
acceleratorstep cycles. The counter register that holds the write time is therefore 9 bits
wide although it can initially only be set to a 6 bit wide value (that from table 2.10.11). The
doubling only stops if the 8th bit of the write time register (actualWriteTime[7]) is set, i.e.
the actually applied write time cannot become larger than 254 cycles.

As the floating gate programming is in the order of magnitude of milliseconds, the slow
HICANN clock is multiplied by fg_pulselength+1 to be able to use smaller counters.
Setting fg_pulselengh can also be used to setup the speed of the neuron stimulation. If
set too maximum, the maximum period of the neuron stimulus is 32 ms at normal HICANN
clock speed.

Given a clock period of 40 ns (i.e. 100/4 MHz) and maximum values for all parameters
including maxcycle we get a write time per block of 34.98 seconds. For all parameters set to
maximum value and acceleratorstep set to 1 we get 35.28 seconds. These results have been

HBP_SP9_Specification 13 May 2014 (git 56b296e) 97

calculated with the python code in the following listing. With the currently used default
settings in HALbe, the programming time should be 21.96 seconds. The used parameters (in
the order as used in the following listing) are (15,9,255,63,9).

def progtime_per_row(writetime,pulselength,maxcycles,readtime,accstep):
total_clock_cycles = 0 # cycles
last_double = 0
for cnt in range(maxcycles+1):

if cnt == (last_double+accstep) and writetime < 128:
last_double = cnt
writetime=writetime*2

total_clock_cycles += writetime*(pulselength+1)
total_total_cycles += (readtime+4.6)*(pulselength+1)*129

return total_clock_cycles

Reading out the error flags after programming can take as much as 615 ms (as measured on
Wafer 2) per row (i.e. 14.76 seconds in total). This number was not included in the previous
calculations. The number was measured when programming with minimal programming
parameters and with every column in every row showing an error flag.

Programming memory The latch based programming memory has two banks of 65 20 bit
words and two ports for interfacing - one for the control interface which can be directly
accessed via the on-chip bus and one for the programming state machine. The port of the
programming interface is read only and has only ten bits data width so every word is split at
this port. The memory has been designed this way to allow a better bus utilization.

Control interface The control interface is the top level unit of fgateControl and gives
access to the state machine and ram. Access to Random Access Memory (RAM) is directly
gained if bus address bit 8 is 0.

The state machine can be controlled if bus address bit 8 is set. The
biasRegister (table 2.10.12) can be accessed if address bit 3 is set. Here groundvm
shorts Vm to ground and calib connects the current measurement resistor in the array to
the calibration current source.

If bit 1 is active, the so called operationRegister (table 2.10.13) can be writteni or
read.

If address bit 0 is active, the addressInstructionRegister (table 2.10.14) is written
and a request signal is send, switching the programming state machine into the instruction
decode state.

The register slaveAnswerData (table 2.10.15) can be accessed if 2 is set. This register
is the only digital feedback from the programming state machine accessible. error is set if
a value was not reached during programming. The column address of this value can be found
in slaveAnswer than. When busy is set, the programming state machine is active and not
ready for other instructions. When using fgateControl busy has to be polled to see when the
controller is finished.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 98

Calibration If the calib option(see table 2.10.11) is set, the calibration current from the
DNC interface is connected to the current measurement resistor in floating gate array and
the voltage drop-out can be measured at the analog output of the floating gate array.

SpL1 output merger (neuronctrl.sv)

The SpL1 output merger connects the eight SpL1 output buses from the ANNCORE with the
DNC interface and the SpL1 driving repeaters. Its general structure is shown in fig. 2.3.15.
Each merger module in the tree is depicted by a multiplexer symbol and has two input and
one output registers. An event appearing at an input is transmitted to the output register.
If the output register is full, the event is stored in the according input register. Sending of
a non-empty input register always precedes an input event on the other channel. A chain
of merger modules acts like a fifo since the output register is only transmitted to the next
merger module in the chain if the input of the merger it connects to can accept an event. If
a merger at the top of the tree can not accept an input event the event is dropped. Each
merger module supports the configuration bits that are listed in table 2.10.16.

The mergers have two modes of operation. If their enable bit is set to 1, they merge both
input streams into successive cycles of the output stream. If their enable bit is set to 0,
they statically output only one input stream as selected by their select bit. If the slow bit
is set to 1, the merger outputs events at most every second clock cycle. After an event has
been sent in this mode the merger waits for one clock cycle before transmitting a possible
next event. This has been implemented to guarantee that the sending repeaters only emit
one event every second cycle.

By programming the mergers to be either static or mergers, two, four, six or eight neuron
SpL1 channels can be merged into one SpL1 output data stream. The possible combinations
and the utilized outputs can be deduced from fig. 2.3.15. The eight outputs from the different
tree levels pass through a last row of mergers that merge the input from the DNC interface
into the event stream coming from the neurons or the background event generators. For
testing purposes, eight additional tri-state buffer groups at the outputs of this last row of
mergers allow for the re-direction of the event stream to a neighbouring output register.
Table 2.10.17 lists all configuration addresses for the SpL1 output merger module. The
data-width is 16 bits.

The top of the tree is formed by the background event mergers. They combine the neuron
SpL1 output with the output from eight background event generators. The neuron number
of a background event generator can be individually configured if the background event
generator is used in non-random mode.

The data from the neuron SpL1 outputs can be sampled either at the rising (phase=0) or
falling (phase=1) edge of the 250MHz sysclk.

All registers are initialized to zero. After reset, the dnc mergers (lowest row) are configured
as static muxes (enablednc=0). Their input can be selected by the dncen bits, which act
as the select input for the mergers (select dnc=1 switches to dnc input). Making use of the
merger feature of the dnc mergers is similar to configuring the merger tree: set enable=1
for the respective dnc merger. If the SpL1 repeater output is going to be used, the slow-bit
must be set to one as well. The slow bits can be set to zero everywhere else in the merger
hierarchy.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 99

1 0 1 01 0 1 0 1 0 1 01 0 1 01 0 1 01 0 1 0

1 0 1 01 01 0 1 0

1 0 1 0

1 0

background merger

merger tree level 0

merger tree level 1

merger treelevel 2

loopback enable

spl1/dnc enable

background event generators neuron spl1 outputs

8 8

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

dnc out

neuron out register
(data to dnc) 06 123457

06 123457
spl1 repeater
output register

7

7 6

6

5

5 4

4

3

3 2

2

1

1 0

0

Figure 2.3.15: Block diagram of the spl1-merger tree.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 100

To use the individual neuron number feature of the background generators, the neuron
number has to be written into the appropriate register before enabling the background
generator. Additionally, the background event generator has to be set to non-random periodic
mode.

Background Event Generators

There are 8 background event generators, which can produce regular or pseudo-random
spiketrains. Each background generator has the configuration parameters defined in ta-
ble 2.10.18. The configuration is written to the registers in the neuronctrl module that
also holds the configuration for the merger tree. The location of the background event
generator configuration in this module is listed in table 2.10.17.

In random mode the spikes are generated with a 16-bit linear feedback shift register(LFSR)
with tap configuration: 16, 14, 13, 11, which implements a maximum length polynomial for
16 bit. 15 At each clock cycle the bits are shifted towards the MSB, the LSB is set as following:

LSFR[0] = LSFR[15]� LSFR[13]� LSFR[12]� LSFR[10]

with � meaning an XOR, and the right hand side of the equation holding the values of the
previous cycle. The value in the LFSR register is compared to the PERIOD value. If LFSR
is bigger than PERIOD and in the cycle before LFSR was not bigger than PERIOD, then a
spike is generated. Hence, the minimal inter-spike-interval is 2 clock cycles. The register
cycles through the maximum number of 65535 states, which means that the spike sequence
is repeated every 3.28 s assuming 5ns sysclk and a speedup factor of 104.

In non-random mode, spikes are generated every period + 1 cycles.

Repeater control

Each instance of the repeater control module is in charge of one of the six repeater blocks.
It has the following functions:

• Control the static configuration signals of a repeater block

• SRAM controller for the SRAM built into the repeaters

• two light-weight test pattern generators (TDO) and two receivers (TDI) to access the
parallel debug ports of a repeater block

The SRAM controller settings are as follows:16

IO address map of the reapeter block’s SRAM controller can be found in table 2.10.21.
Table 2.10.20 shows the function of the repeater SRAM bits.
Recen and touten are set to zero with the HICANN reset. In the sending repeater, also dir

is cleared. If touten and tinen are activated simultaneously, no data is visible at the tdo-data

15The LFSR in the HICANN is exactly the same as Fibonacci LFSR example on wikipedia: http://en.wikipedia.
org/wiki/Linear_feedback_shift_register#Fibonacci_LFSRs

16Due to an error in the HICANN V1 the address bits are permuted: bit 0! bit 6, bit 1! bit 5 etc. There is also
a wrong comment in the repeaterctrl.sv source code: rep_adrw is 7 not 6! All addresses in this paragraph
assume a correct bit ordering, the software will swap them transparently.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 101

http://en.wikipedia.org/wiki/Linear_feedback_shift_register#Fibonacci_LFSRs
http://en.wikipedia.org/wiki/Linear_feedback_shift_register#Fibonacci_LFSRs

outputs, but the DLL-output can be still monitored with the tclko-pin. For the TDI pattern
receiver this looks like receiving patterns with neuron number zero (see below).

TDO operation After setting the corresponding tinen bits in the receivers, the TDO pattern
generator allows sending of up to three SpL1 events to the receiver parallel test data in port.
If the receiver is configured for serial ouput, it transmits these events on the corresponding
L1 line. The pattern generator is started by setting start to one. After waiting the number
of sysclk cycles specified in the entry 0 time field, it generates a SpL1 event with the neuron
number of entry 0 at the receiver test port. Afterwards it proceeds with entry 1 and 2.
If start is still one after entry 2 has been transmitted, the pattern generator repeats the
sequence. The repeater locks onto sysclk if tinen is active.

TDI operation The test data receiver gets its input from the repeater with activated touten.
Only two repeaters per block can have touten enabled: one with odd address and one with
even address! The moment its start bit is set, an internal counter starts counting sysclk
cycles starting by one. Each time an SpL1 event is present at the test data out port of the
repeater block, it is stored in a test_data_in entry together with the current counter value
in gray code format. After entry 3 has been written no further data is stored and the full
bit in the config register is set to one. If the 10 bit counter wraps around to zero counting is
stopped to mark the overflow condition. Setting start to zero resets the full flag.

2.3.4.5 Digital synapse control

Digital Synapse Control (DSC) is the digital controller for the analog synapse array. Two
instances of this block are implemented on one HICANN: one for each synapse array block.
DSC is used for three tasks:

1) Read and write synapse weights and decoder addresses.

2) Read and write synapse driver configuration memory.

3) Perform Spike Timing Dependent Plasticity (STDP) during network operation.

For tasks 1 and 3, the basic mode of operation is for the user to write to configuration,
control, and data registers only. A state machine then performs the actual access to the
synapse array in response to certain command codes given in one of the registers. Task 2
is implemented by passing the request on the internal bus to an instance of the sramCtrl
module (Section 2.3.4.4).

The DSC was designed as part of [29]. A more detailed description of the implementation
can be found there.

Pipelined connectivity

The module is connected on Tag 1 of the internal bus using a pipelined interconnect. A
request - either read or write - can be made in every clock cycle of the bus. It will then take
6 cycles to reach one of the DSC blocks, where it is processed within one cycle. Then, the
response is returned again with 6 cycle delay.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 102

STDP

For the realization of STDP, DSC has to evaluate the analog correlation measurement per-
formed in the synapse circuit itself (Section 2.3.3.2). The synapse circuit maintains two ana-
log accumulation voltages a+, a� reflecting the timing and number of recent spike pairs at the
synapse. Here, a+ reflects the accumulation of seemingly causal pairs, where pre-synaptic
firing precedes post-synaptic action potentials (pre-before-post). Inversely, a� represents
seemingly anti-causal pairs (post-before-pre).

For the automatic weight update, these voltages are converted by an evaluation circuit to
a single correlation bit. This is done two times with different configurations p0 and p1 of the
evaluation circuit to produce two bits C0 and C1 as input to the weight computation.

Evaluation The following description is given in [29]:

For the evaluation of the local accumulation capacitors, the evaluate block is
used. The syn_encrb signal triggers readout of the capacitors to a temporary
storage location in the evaluation unit. The sca/scab pair of control signals for
one and scc/sccb for the other capacitor control whether both, one, or none of
them are stored. The 4 bit pattern control the evaluation operation. With csen
a digital bit is generated from the analog evaluation result and presented on the
corrin bus, which is multiplexed as for the synapse bitlines. A low-active reset bus
corresetb is split to the selected columns to reset both accumulation capacitors.

The evaluation block in Figure 2.3.16 implements a generic evaluation function
EH ([. . .]). It is configured by an evaluation pattern p with bits p = (eaa,eac,eca,ecc)
that control the evaluation operation. Two analog parameter voltages Vth,Vtl are
provided from the global parameter storage. The accumulation trace a(t) [. . .]
is represented using the dual capacitor value with a positive “causal” capacitor
with value a+(t) and a negative “acausal” one with value a�(t). The combined
trace is then given by a(t) = a+(t)� a�(t). The temporal storage locations Vc,Va
in the evaluation block are set depending on whether scc or sca is asserted:

Vc a+(t) if scc = 1� sccb = 0 (2.3.1)

Va a�(t) if sca = 1� scab = 0 (2.3.2)

If neither scc nor sca is set, Vc and Va remain unchanged. The evaluation function
is described by

EH (Vtl,Vth,p,Vc,Va) =

®
1 if Vtl+eacVc+ecaVa

1+eac+eca
> Vth+eccVc+eaaVa

1+ecc+eaa
0 else.

(2.3.3)

Weight computation With the two result bits

C0 = EH (Vtl,Vth,p0,Vc,Va) (2.3.4)

C1 = EH (Vtl,Vth,p1,Vc,Va) , (2.3.5)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 103

and the current weight of the synapse w, a new weight w0 is computed using a look-up table
LC

0C1

w
. This look-up table provides the 4 bit value of w0 for every possible w and combinations

of C0 and C1, where at least one is set:

w0 = LC
0C1

w
(2.3.6)

Iteration The automatic weight update controller will perform the following algorithm,
when started:

1: repeat
2: r CREG.adr
3: s 0
4: for r CREG.lastadr do
5: for s < 8 do
6: SYNOUT ReadWeights(r, s)
7: SYNCORR ReadCorrelation(r, s)
8: SYNIN LookupWeights(SYNIN, SYNCORR)
9: WriteWeights(r, s, SYNIN)

10: ResetCorrelation(r, s, SYNCORR)
11: s s + 1
12: end for
13: r r + 1
14: end for
15: until CREG.continuous = 0

The functions ReadWeights(), ReadCorrelation(), WriteWeights(), and ResetCorrelation()
are symbolic representations for the operations described in Section 2.10.4.10. Lookup-
Weights() describes the weight computation mechanism described in Section 2.3.4.5. The
field CREG.continuous (Register 2.10.4) controls if the iteration is repeated or not. See
Section 2.10.4.10 for all register definitions.

Implementation

Figure 2.3.16 schematically shows all signals of the synapse array analog block that are
controlled by DSC.

Figure 2.3.17 shows a block diagram of the internal organization of DSC.

Analog interface timings This section is taken from [29]:

Reading weight or decoder address Figure 2.3.18 shows a timing diagram for a read access to
a synapse weight. The timing for reading decoder bits is identical, but instead of syn_ensynb
the syn_endecb signal is used. Every constraint that applies to syn_ensynb mentioned below
also applies to syn_endecb. Synapses are addressed in one 128 bit column set. The column
set is selected by presenting an address on the syn_a and syn_ab address bus, side selection
on syn_en, and an enable pattern on en. A typical enable pattern would be en = 0x80808080

HBP_SP9_Specification 13 May 2014 (git 56b296e) 104

syn_d / syn_db

syn_endrvb

syn_enctrlb

syn_engmaxb

sy
n_

en
sy

nb

sy
n_

en
de

cb

sy
n_

en
cr

b

sy
n_

ge
n

dio
corrin
corresetb

en

pattern
sca/scab
scc/sccb
csen

syn_a/syn_ab

pcb
ramoeb
ramwb

evaluate

Syndriver
SRAM

......DRV

CTRL

GMAX

Synapse weights,
 decoder addresses,
STDP accumulation

Slice 0 Slice 1 Slice 2 Slice 3

syn_en

sy
n_

ge
nb

Figure 2.3.16: Overview of the synapse array organization and the signals controlled by the
DSC. (Figure taken from [29] with permission.)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 105

Control
Con�g
Status
LUT

SYNIN
SYNOUT

SYNCORR
SYNRST

Automatic
update

controller

Ac
ce

ss
 S

ta
te

 m
ac

hi
ne

Access
instruction

Bus input

SynDrv
adapter

sramClient

dio
corrin

corresetb
en

pattern
sca/scab
scc/sccb

csen
pcb

ramoeb
ramwb

syn_d/syn_db

Common
address generation

syn_endrvb

syn_enctrlb

syn_engmaxb

syn_a/syn_ab

syn_en

Registers

Figure 2.3.17: Overview of the implementation of the DSC module showing the main compo-
nents and registers. (Figure taken from [29] with permission.)

syn_a address

syn_ab inv. address

syn_en side

en col. set

pcb
dio data

ramoeb
syn_ensynb

tpc tdrvo toe

ts to tk

Figure 2.3.18: Timing diagram of a synapse array read operation. Signals not shown are at
their inactive level. (Figure taken from [29] with permission.)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 106

syn_a address

syn_ab inv. address

sny_en side

en col. set

dio data

ramwb
syn_ensynb

tds

ts

tdrvi twe tk

Figure 2.3.19: Timing diagram of a synapse array write operation. Signals not shown are at
their inactive level. (Figure taken from [29] with permission.)

to select the first 32 bit from every slice. Each byte of en configures one multiplexer and
only one bit per byte may be set.

When syn_ensynb is active, the wordline for synapse weights of the currently selected
row is activated. Therefore, the address decoder must have settled before syn_ensynb is
active and the address lines must stay stable while it is active. This safety margin between
syn_a/syn_ab and syn_ensynb is described by the settling time ts and the keep time tk. The
Static Random Access Memory (SRAM) bitlines are pre-charged for a time tpc by activating
pcb. Afterwards, the wordline is activated for a time tdrvo to drive the stored bit value onto
the bitlines. Activating ramoeb for time toe enables the dio output driver to present the
result to user logic. The output is stable after time to.

Writing weight or decoder address Figure 2.3.19 shows timing of a write access to a synapse
weight. The same timing is used for decoder address writing by exchanging syn_ensynb
with syn_endecb. Again, the address decoder settling and keep times ts and tk have to be
satisfied. Additionally, after presenting the write data on dio and selecting the demultiplexer
configuration with en, the user must wait for a settling time tds until the demultiplexer has
settled. Then, the bitlines are driven for a time tdrvi by activating ramwb. When they have
reached a stable state the wordline is activated for the selected row by activating syn_ensynb
for duration twe.

Accumulator readout and evaluation The timing diagram for a readout and evaluation
sequence of the local accumulators in the synapse is shown in Figure 2.3.20. Settling and
keep times ts, tk have to be satisfied between syn_a/syn_ab and syn_encrb. While syn_encrb
is active, the accumulation circuit drives the readout lines for time tcro. The temporal
storage capacitors Vc and Va are set by activating scc and sca, respectively17 for time tsc.
Asserting the 4 bit evaluation pattern p triggers the evaluation operation as described in
Section 2.3.4.5. The pattern may not overlap with activation of sca and scc, which is
accounted for by the waiting time tscw. The pattern is kept for time te. When the analog

17Not shown in the figure: sccb and scab are the inverted versions of scc and sca

HBP_SP9_Specification 13 May 2014 (git 56b296e) 107

syn_a address

syn_ab inv. address

syn_en side

en col. set

syn_encrb
corrin corr

scc
sca

pattern 0 p 0

csen

ts tcro tsc te

tk

tscw tcsen

tco

Figure 2.3.20: Timing diagram of readout and evaluation of the local accumulation capaci-
tors. Signals not shown are at their inactive level. (Figure taken from [29]
with permission.)

comparison is finished, activation of csen for a time tcsen generates a digital bit from the
result and drives it to the corrin port as selected by the multiplexer configuration en. The
output is stable after time tco.

Accumulator reset The accumulator reset clears the local capacitors to zero. The corresetb
bus controls which of the synapses are reset in a column set. The reset at the accumulation
circuit is enabled by the weight word line. Therefore, syn_ensynb must be activated for a
reset. This implicates, that accumulation can only be reset during a synapse weight read or
write sequence. Figure 2.3.21 shows timing for reset during a write access. This is the most
likely case for the STDP application: After reading weights and evaluating accumulation,
new weights are written and the accumulators reset. Two additional timing parameters are
relevant: the settling time of the corresetb multiplexer tcs and the time needed for reset by
the cell tcri. In a combined write/reset cycle, syn_ensynb needs to be pulled down for the
larger of the times twe and tcri.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 108

syn_a address

syn_ab inv. address

syn_en side

en col. set

dio data

ramwb
corresetb reset

syn_ensynb

tds

ts

tdrvitwe/tcritk

tcs

Figure 2.3.21: Timing diagram of reset to zero of the local accumulation capacitors. Signals
not shown are at their inactive level. (Figure taken from [29] with permission.)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 109

HBP_SP9_Specification 13 May 2014 (git 56b296e) 110

2.4 Wafer-Scale Integration

HICANN is designed in a way that the horizontal and vertical L1 busses can be driven to
adjacent HICANNs by the L1 repeater cells that are located at the chip edges (see section
2.3.2). As a consequence, L1 connectivity over several chips can be obtained by placing
chips next to each other on the silicon wafer. This edge-connectivity cannot be extended
over the whole wafer because the lithography steps that are carried out during manufacturing
introduce a maximum area of approx. 2 cm⇥2 cm that can be exposed at a time. This area is
called a reticle and is stepped repeatedly over the whole wafer with a constant pitch. Eight
edge-connected HICANNs in two rows of four chips are placed within one reticle. Reticles
cannot be edge-connected because the manufacturer reserves gaps between reticles for
placing process monitoring structures. In order to bridge these gaps, i.e. to establish
full-wafer connectivity, a post-processing method has been developed in cooperation with
Fraunhofer IZM [39]. Post-processing also forms the mating pad structures for connection to
the MainPCB via elastomeric stripe connectors (see section 2.5.3.4). It will be described in
section 2.4.1. The design of one reticle is described in section 2.4.2. An introduction to the
wafer-scale integration idea is given in section 2.3.1 and figure 2.3.2.

2.4.1 Post-Processing Procedure

The post-processing procedure has been developed within the FACETS and the BrainScaleS
projects. Some documentation on the development can be found in the specification docu-
ment of the 1st version wafer-scale hardware [35]. Only the actually used procedure will be
described in the following. It is a slight modification of method B described in [35].

Figure 2.4.1 shows a cross-section of the post-processing. Three conducting routing layers
are available: First, the fine-pitch routing that is used for inter-reticle connections only.
Second, the intermediate routing which is being used to re-distribute signals. Both fine-
pitch and intermediate routing are fabricated on top of layer Benzo Cyclo Butene (BCB)
(2) in different process steps due to their different feature sizes (see below). The third
routing layer is the top layer which is exclusively used to form the large contact pads that
are connecting to the stripe connectors, which in turn connect to the MainPCB. Cu-studs
form the contacts between the top metal layer of the silicon wafer and both fine-pitch and
intermediate routing. The via contacts from intermediate to top layer routing need to be
drawn but do not require a separate processing step (see below). The stripe connector pads
have deepenings above these vias to the subjacent intermediate routing. These vias should
therefore only be placed at the edges of the stripe connector pads in order to provide a flat

HBP_SP9_Specification 13 May 2014 (git 56b296e) 111

support for the Elastomeric Stripe Connectors (ElCos) within the relevant pad area (please
refer to section 2.4.2 for details).

Figure 2.4.1: Schematic cross-section of post-processing layers. Note that the openings for
vias between intermediate routing and contact pads are generated during step
(5). The via material itself is deposited together with the large pads in step
(6). As a consequence, the large pads have deepenings above the vias.

The following process steps are carried out during post-processing; steps with production
layers are marked with numbers that correspond to the layer numbers in figure 2.4.1.

• sputtering of plating base TiW/Cu
• lithography with photoresist for electro-plating mask of Cu-studs

(1) electro-plating of Cu-studs
• strip photoresist
• wet chemical etching of plating base

(2) deposition of a planarizing polymer layer (BCB)
• lithography with photoresist for electro-plating mask of via openings
• dry etching of via openings
• strip photoresist
• sputtering of plating base TiW/Cu
• lithography with 5µm photoresist for electro-plating mask of fine pitch inter-reticle

connections
(3) electro-plating of fine pitch wires (thickness 2 . . . 5µm)
• strip photoresist
• lithography with 10µm photoresist for electro-plating mask of intermediate on-reticle

routing
(4) electro-plating of intermediate routing wires (thickness 3 . . . 4µm)
• strip photoresist
• wet chemical etching of plating base

(5) deposition and structuring of a planarizing polymer layer (BCB)
• sputtering of plating base TiW/Cu
• lithography with photoresist for electro-plating mask of large contact pads

(6) electro-plating of Ni with goldflash of top layer (stripe connector pads, thickness
4 . . . 6µm)

• strip photoresist
• wet chemical etching of plating base

The planarizing BCB layers equalize the comparably bumpy surface of the wafer and provide
a plain surface for the subsequently manufactured conducting structures. An illustrated
photograph of a post-processed wafer, as it will be used for NM-PM1 is shown in figure 2.4.2.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 112

Figure 2.4.2: Photograph of the post-processing structures on an NM-PM1 wafer at various
zoom levels.

2.4.1.1 Post-Processing Design Rules

All required post-processing design rules are collected in table 2.4.1 and illustrated in figure
2.4.3. Only one size of passivation opening is allowed in order to guarantee a homogeneous
quality of the wafer contacts on the whole surface. These passivation openings must be
overlapped by the Cu-studs by 5µm on each side, while United Microelectronics Corporation
(UMC) standard design rules apply for top metal. Arrays of these contacts must be formed to
allow for large in/egress currents on power signals. Minimum fine-pitch spacing is allowed
between Cu-studs in arrays.

Fine pitch routing is only used for inter-reticle connectivity and cannot be contacted by
any other routing. Intermediate routing is used for connecting Cu-studs to top-layer contact
pads, with corresponding overlap constraints on Cu-studs and the vias to the contact pads,
respectively. Cu-studs, intermediate routing and top layer pads can be stacked as can be
seen in figure 2.4.1. This can for example be used to place large contact arrays directly
underneath top layer pads. In case minimum spacing is not required, lines should always be
equally spaced as far apart as possible.

When put next to each other, Cu-studs have a larger pitch than the fine-pitch routing.
Since the minumum pitch of the fine-pitch routing is required over the full width of the top
and bottom edge of a reticle, Cu-studs are arranged in an L-shaped manner that is illustrated
in figure 2.4.3a). These structures are used in all situations that require minimum pitch
fine-pitch routing.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 113

Figure 2.4.3: Illustration of PP design rules. a) fine-pitch routing with coverage of Cu-studs.
b) intermediate routing with coverage of Cu-studs. c) intermediate routing
with vias to top layer contact pads.

Rule type value [µm] description
A equals 5⇥ 5 passivation opening
B equals 15⇥ 15 Cu-studs, centered above pass. opening
C min 4 spacing between fine-pitch lines
D min-max 4 . . . 10 width of fine-pitch lines
E min 10 spacing between intermediate routing lines
F min-max 10 . . . 35 width of intermediate routing lines
G min 0 overlap of Cu-studs by intermediate routing
H equals 8 overlap of top via on intermediate routing and

top layer
J min 35 minimum width of top via structure in all di-

mensions
K min 51 minimum width of top pad structure in all di-

mensions

Table 2.4.1: post-processing design rules

2.4.1.2 Integration of PP Layers into ASIC Design Flow

All post-processing geometries are drawn in the Cadence DFII design environment, which is
also used for designing the HICANN chip. This way, the layout can be drawn as an exact
overlay of the UMC structures. Unused design kit layers are used to draw the post-processing
geometries. They are listed in table 2.4.2.

A patched extraction rule file is available for Layout Versus Schematic (LVS) checking1.
Together with a Verilog description of the reticle’s connectivity (see section 2.4.2), LVS
checking can be performed on the full reticle, including post-processing structures. Design
Rule Checks (DRCs) cannot be performed automatically, since the according rule files have
not been patched, yet. However, all required checking can be done at IZM and potential DRC

1The rule file is located in the HICANN full-custom repository:
ncf-hicann-fc/units/reticle/signoff/calibre/rules/icpro_lvs_m7.rules

HBP_SP9_Specification 13 May 2014 (git 56b296e) 114

stream
layer

stream
datatype

DFII
layer name

purpose in post-processing (PP)

56 0 ME6 metal6 routing (original layer)
63 63 IPWM intermediate PP layer 10 . . . 35µm, incl.

landing pads for 89.36
66 0 PAD pass. opening (overlapped by "90.4 PP via")
85 0 GTEXT PP Text Label
89 36 FLPMARKP PP Via from top to intermediate layer
90 4 RFMMCMK PP Via to metal6 (Cu-studs)
91 5 SBK wafer outline
91 6 SMK area on wafer that is usable for PP
106 0 M6_TEXT metal6 Text Label
121 3 prBoundary reticle outline
122 30 PIXELMK PP top layer (stripe connector pads)
123 30 DECODER fine pitch PP routing (at reticle boundary)

Table 2.4.2: Assignment of UMC design kit layers that have been used to draw post-processing
structures. Fraunhofer IZM uses stream layer number only to identify the layers.

errors would require iterating with IZM.

2.4.2 Reticle Design

A schematic layout drawing of a reticle including the on-wafer L1 network is illustrated
in figure 2.3.2. The reticle design in particular covers the connections between adjacent
HICANNs within the reticle, as well as their connections to HICANNs on adjacent reticles
and their connection to the stripe connector pads. A schematic description is not available,
but rather a Verilog structural netlist that instantiates 8 HICANNs and defines all required
intra-reticle connections and the reticle’s pinout.

Inter-HICANN and Inter-Reticle Connections Adjacent HICANNs have mutual connections on
the un-post-processed wafer via the L1 buses, only. Logical connectivity is identical for
each two adjacent HICANNs and is described in section 2.3.2.7 and figure 2.3.6, respectively.
The L1 repeaters are arranged in a way that corresponing pins are facing each other with
the exception that positive and negative signal of a differential pair are swapped due to
symmetries in the repeater layout. This swap needs to be reverted for each inter-HICANN
connection; it is not present in the netlist and needs to be done in the layout between each
two HICANNs. P/N swaps are also drawn at the bottom and left edge of the reticle layout for
correct inter-reticle connectivity. The space required for these swaps, together with the L-
shaped pad layout for the fine-pitch inter-reticle connections give the final reticle dimension
of 20 145µm⇥ 20 048.2µm, which is also illustrated in figure 2.4.4.

Connections to Stripe Connector Pads The used elastomeric stripe connectors are described
in section 2.5.3.4. They offer alternating, vertically conducting and isolating slices with a

HBP_SP9_Specification 13 May 2014 (git 56b296e) 115

Fi
gu

re
2.

4.
4:

La
yo

ut
of

th
e

st
ri

pe
co

nn
ec

to
r

pa
ds

co
ve

ri
ng

on
e

re
ti

cl
e.

Th
e

bo
ld

bl
ac

k
lin

e
m

ar
ks

th
e

re
ti

cl
e

de
si

gn
bo

rd
er

.
Ye

llo
w

:
st

ri
pe

co
nn

ec
to

r
pa

ds
.

Pi
nk

:
in

te
rm

ed
ia

te
ro

ut
in

g.
Th

e
nu

m
be

rs
in

re
d

id
en

ti
fy

th
e

he
ig

ht
of

th
e

re
sp

.
pa

d.
In

di
ce

s
in

si
gn

al
na

m
es

on
ly

ha
ve

te
ch

ni
ca

l
re

le
va

nc
e

an
d

ca
n

be
ig

no
re

d.
Ac

tu
al

in
de

xi
ng

of
H

IC
AN

N
ch

ip
s

is
de

sc
ri

be
d

in
se

ct
io

n
2.

4.
2.

1.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 116

width of 50µm each. For reliable connectivity and avoidance of shorts, the minimum pad
width and spacing was therefore decided to be 200µm, allowing for at least two conducting
slices per pad and two spacer-slices for isolation between pads. Pad length has been set to
1200µm to accomodate the width of a connector of roughly 1000µm with some headroom.
This pad size, together with mechanical constraints for holding the stripe connectors (see
section 2.5.3.3), led to the pad layout that is illustrated in figure 2.4.4, which has two
columns of pads (i.e. two stripe connectors) per two vertically adjacent HICANNs. Power
pads carrying large currents need to be wider due to the limited current rating of single
conducting slices. For that reason, the size of all power pads has been set as an initial
constraint for the stripe connector pad arrangement. All pads are shown in figure 2.4.4,
including their dimensions. For information on power consumption on the different supply
voltages, please refer to table 2.9.1.

Stripe Connector Pinout Pad positions on the post-processing have been chosen such that
access to the corresponding top metal passivation openings could be achieved with as short as
possible intermediate routing distance. The resulting stripe connector pinout of one reticle
is shown in figure 2.4.5.

Analog power and ground pads for top and bottom HICANN are placed near the vertical
center of each chip and simultaneously supply top and bottom chip half. Not every signal
port of the HICANN chips can be connected to a dedicated stripe connector pad due to the
number of usable pads being limited by the size of the power pads and the usable height
inside the reticle. For that reason, some ports have to be multi-purpose and some signals
have to be shared between two HICANNs:

• Multi-purpose pins

– AREADOUT1_ICALIB: Analog readout line 1, and if analog readout is disabled inside
the HICANN chip, current input for calibration of internal resistors. Present on
each HICANN.

– TMS_SYS_START: Digital input. Starts the system time counter on its positive edge
when toggled after power-up or reset. Otherwise, serves as Test Mode Select (TMS)
pin of the chip’s JTAG interface.

• Shared pins

– RESET_N: Low-active reset pin of both HICANNs.

– TMS_SYS_START: Is also shared, besides being multi-purpose.

– TCK: Clock signal of the chip’s JTAG interface.

– DI_VBIAS_LVDS: Common mode voltage of the LVDS transmitter circuits on both
upper and lower HICANN.

Additionaly, the JTAG TDO pin of the top HICANN is connected to the JTAG TDI pin of the
bottom HICANN via intermediate routing, effectively chaining the two vertically adjacent
HICANNs together. As a consequence, only the TDI pin of the top HICANN and the TDO pin of
the bottom HICANN are present on the stripe connector pads.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 117

Fi
gu

re
2.

4.
5:

Pi
no

ut
of

on
e

do
ub

le
-H

IC
AN

N
co

lu
m

n.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 118

2.4.2.1 Pinout and HICANN Indexing

The pinout of one reticle is given in table 2.4.3. Only 4 TDI and TDO pins are present,
respectively due to the TDO-TDI connection within one column of two HICANNs. TDI and TDO
pins of adjacent columns within one reticle need to be interconnected on the MainPCB to
form the reticle’s JTAG chain.

All power signals are global for one reticle and shall be shorted on the MainPCB. The signals
EXT_CLK_(P/N), RESET_N, TMS_SYS_START, TCK and DI_VBIAS_LVDS are global for one reticle
as well and shall also be shorted on the MainPCB.

Type Name Description

digital
input

DI_I_DAT_RX_(P/N)<0:7> diff. data input of Digital Network
Chip (DNC) interface

DI_I_CLK_RX_(P/N)<0:7> diff. clock input of DNC interface
EXT_CLK_(P/N)<0:7> diff. system clock input
RESET_N<0:3> low-active design reset, shared betw.

2 vertically adj. HICANNs
TMS_SYS_START<0:3> shared and multi-purpose, see section

2.4.2
TCK<0:3> JTAG clock, shared betw. 2 vertically

adj. HICANNs
TDI<0:3> JTAG test data input of HICANNs

1,3,5,7 (JTAG indexing)

digital
output

DI_O_DAT_TX_(P/N)<0:7> diff. data output of DNC interface
DI_O_CLK_TX_(P/N)<0:7> diff. clock output of DNC interface
TDO<0:3> JTAG test data output of HICANNs

0,2,4,6 (JTAG indexing)

analog
AREADOUT1_ICALIB<0:7> multi-purpose, see section 2.4.2
AREADOUT2<0:7> analog readout line 2
DI_VBIAS_LVDS<0:3> LVDS common mode voltage, shared

betw. 2 vertically adj. HICANNs

power

DI_VCC33ANA<0:7> LVDS power supply of DNC interface
DI_VCC<0:7> digital supply of DNC interface
DI_VCCANA<0:7> analog supply of DNC interface
VDD<0:7> digital supply
VDDA<0:7> analog supply
VDDBUS<0:7> synapse line driver supply
VDD25<0:7> floating-gate readout supply
VDD5<0:7> floating-gate readout supply
VDD25<0:7> floating-gate programming supply

power
DI_GNDANA<0:7> analog ground of DNC interface
GND<0:7> digital ground
GNDA<0:7> analog ground

HBP_SP9_Specification 13 May 2014 (git 56b296e) 119

Table 2.4.3: Pinout description of an 8-HICANN reticle.

All DI_* differential input pin pairs are 3.3 V tolerant and conform to the LVDS standard. The
differential EXT_CLK input is 1.8 V tolerant and accepts standard LVDS input with a common
mode of 1.25 V. All other digital pins are 1.8 V tolerant and have a single ended signal level
of 1.8 V (both inputs and outputs).

The system-wise relevant indexing of HICANN chips 0 to 7 inside the reticle follows the
channel indexing in the FPGA firmware on the corresponding FCP. This is identical to the
indexing on the formerly used DNC, which has been used in an earlier revision of the specified
system. This is inverse to the JTAG indexing that automatically results from the JTAG chain
connectivity. Both channel indexing and JTAG indexing are illustrated in figure 2.4.6.

Figure 2.4.6: Indexing of HICANN chips inside one reticle for the given scenarios.

2.4.3 UMC Wafer Map and Post-Processing Masks

The position of reticles on the wafer can be determined by means of the wafer map in figure
2.4.7. The total size of one reticle, including process monitoring structures at its edges, is
20 395µm⇥ 20 468.2µm and has been set by UMC, with the die size given in section 2.4.2 as
a basis. How to read the map: The center of the reticle with coordinate (5,5) has an x-offset
of 0µm with respect to the wafer center and a y-offset of 10 234µm.

Eight reticles that are touching the effect diameter of the UMC wafer map cannot be
completely post-processed since the effect diameter of the post-processing procedure is
smaller (in particular: X2/Y2, X3/Y1 and the point symmetric ones). The masks still cover
all 56 reticles that have been marked good by UMC in order to have the post-processing
structures distributed over the wafer as homogeneous as possible. However, these eight
reticles are not being contacted by the MainPCB which results in a total of 48 reticles that
are accessible by the FCPs. The complete drawing of the post-processing layout including all
mask data is shown in figure 2.4.8.

In addition to the post-processing structure that contact the active reticles, the masks
contain mechanical and electrical alignment structures that are required for a correct po-
sitioning of wafer and MainPCB with respect to each other. The position of the strucures
relative to the Wafer center are as follows:

• Mechanical alignment: Geometrical center of structure:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 120

Figure 2.4.7: Wafer map of the NM-PM1 wafer.

– top right: (x, y) = (65 231µm, 65 231µm)

– bottom left: (x, y) = (�65 231µm,�65 231µm)

• Electrical alignment: The origin of the drawn structure is at its bottom left corner.
Coordinates of the origins:

– top left, left: (x, y) = (�67 589µm, 62 266.3µm)

– top left, top: (x, y) = (�72 984µm, 54 298.1µm)

– bottom right, right: (x, y) = (72 975.4µm,�54 506.5µm)

– bottom right, bottom: (x, y) = (67 589µm,�62 474.7µm)

Please refer to chapter 2.5 for a description of the alignment and the usage of these struc-
tures.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 121

Figure 2.4.8: Full mask layout data of the post-processing structures applied to the NM-PM1
wafer. The zoomed in area shows one reticle with its surrounding fine-pitch
connections to the adjacent reticles.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 122

2.5 Wafer Module

2.5.1 Overview

The main functional unit of the Neuromorphic Physical Model version 1 is the Wafer Module.
This unit consist of the HICANN Wafer and all its supporting components. These components
are electric devices as well as mechanical components. Altogether one Wafer Module will
consists of 68 PCBs and more than 16 mechanical components. These components such as
power supply boards and communication and monitoring devices have to be fitted into a
small form factor to allow scalability. The Wafer Module has only one central power supply
point which supplies it with -48 V. All the internally used voltages are generated by the Wafer
Module itself. Further connections to the outside of the Wafer Module are the communication
channels and the analog readout signals.

2.5.2 Wafer Module Composition

This section describes the composition of the Wafer Module. The construction of such a
complex system with a large number of inter depending components leads to the necessity
of using a 3D CAD program. This helps solving conflicts due to component placing and helps
visualizing the interplay between components. The 3D CAD program Solid Works [69] is used
for that purpose. The mechanical components can be therefore directly produced by the
mechanical workshop.

The main parts with their needed quantity for one Wafer Module are:

• Wafer Bracket for mechanical fixation and cooling of the wafer (WBr)
(quantity: 1)

• Post processed Wafer (quantity: 1)

• Sealing rings to keep wafer under nitrogen atmosphere (quantity: 2)

• Positioning Mask for the Elastomeric Stripe Connectors for positioning of the Elastomeric
Stripe Connectors (PMk) (quantity: 1)

• Elastomeric Stripe Connector (quantity: 384)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 123

Figure 2.5.1: Exploded view of the design drawing of the Wafer Module

• Printed circuit board with a height of 430 mm and a width of 430 mm
(MainPCB) (quantity: 1)

• FPGA based communication PCBs (FCP) (quantity: 48)

• Physical-layer and communication connector boards with horizontal orientation (WIOH)
(quantity: 2)

• Physical-layer and communication connector boards with vertical orientation (WIOV)
(quantity: 2)

• Breakout boards for the analog readout signals of the Wafer
(AnaB) (quantity: 2)

• Main system control unit (MaCU) (quantity: 1)

• Main Power supply board delivering the main 1.8 V wafer supply and the 10 V interme-
diate power supply (PowerIt) (quantity: 1)

• Auxiliary Power Supply PCB for the remaining supply voltages
(AuxPwr) (quantity: 2)

• Top Cover for the mechanical stability of the system (ToCo)
(quantity: 1)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 124

• Insertion frame for mounting of additional PCBs (InFra)
(quantity: 1)

2.5.3 Mechanical Specification of Components

This section provides a description of all used components in the Wafer Module and the
connectors between them. The mechanical sizes and other important production details
such as screw holes can be found in the appendix A

2.5.3.1 Wafer Bracket (WBr)

The Wafer Bracket (WBr) is an equilateral octagon made out of a planarized aluminum plate.
The space between two opposite parallel edges of this octagon is 250 mm. The thickness
of the plate is 15 mm. On the left side of fig. 2.5.2 the top view of the WBr is shown. The
large round cavity in the middle of the octagon is for the placement of the Wafer. The two
coaxial flutes surrounding this cavity are for the sealing rings that guarantee air tightness.
In between these flutes different holes in a circular pattern are visible. The holes with the
largest diameter are for distance plates to adjust the distance between wafer and MainPCB.
This is used to adjust the maximal compression length for the Elastomeric Stripe Connectors
and to balance possible differences in Wafer thickness.

Figure 2.5.2: Top and bottom view of the Wafer Bracket.

The smaller holes without the thread of screw are for springs which are used during the
alignment process of the system. These springs make sure that the MainPCB is kept in a
determined distance above the Wafer surface. In this position the Elastomeric Stripe Con-
nectors are not touching the wafer and the adjustment procedure can be performed. In the
other stud holes are inlaid Heli-Coils1 which are used to screw the Top Cover against the
Wafer Bracket.

1Heli-Coil inserts are precision formed screw thread coils of stainless steel wire having a diamond shaped
cross-section thread inserts

HBP_SP9_Specification 13 May 2014 (git 56b296e) 125

A concentric round cavity with a diameter of 200.2 mm and a depth of 1.325 mm is milled
around the center of the plate. In this cavity the Wafer will be placed. The diameter of
the milling is greater than the Wafer diameter to balance the differences due to thermal
expansion. The cavity is about 0.8 mm deeper than the thickness of the Wafer with the post
processing above (about 0.75 mm). The free space will be covered by the ElCos.
To avoid contact problems between the wafer and the Main-PCB produced by oxidation the
clearance is filled with nitrogen. For the necessary air tightness a sealing ring has to be
placed between the WBr and the MainPCB. To avoid mechanical strain during the assembly
process two sealing rings instead of one are used. They are placed on both sides of the screw
holes. These sealing rings are placed into two round gaps with inner diameters of 205 mm and
230 mm. The gaps will have a thickness of 3 mm and a depth of 2.5 mm.

In the left side of figure 2.5.2 the bottom view of the WBr is shown. The hole in the center
is used to place the Wafer-bracket into the adjustment facility. The drill holes with the
counter sunk are for the insertion of a mechanical tool which is used to push out a placed
wafer. In order to keep the system airtight these holes will be closed by screws with a silicon
inlay.
The two channels ending in two holes each are used to place temperature sensors and their
belonging cabling. These sensors are placed close to the backside of the Wafer and so
temperature profiles can be recorded.

2.5.3.2 Sealing Rings

The Wafer should be kept under nitrogen atmosphere after the system is assembled. There-
fore sealing rings are placed between the WBr and the MainPCB. They have diameters of
205 mm and 230 mm and a diameter of the cross section of 3 mm. These sealing rings will
make sure that no air can enter from the sides.
To guarantee that no air can enter from the top, the MainPCB has to be hermetically sealed.
The material of the MainPCB is FR42 which is not airtight by default. The used vias should
not be drilled through. Therefore only blind or micro vias are used inside the covered area.

2.5.3.3 Positioning Mask for the Elastomeric Stripe Connectors (PMk)

The Positioning Mask for the Elastomeric Stripe Connectors (PMk) is a 0.51 mm thick mask
made of a non-conducting composite material. Good results were achieved using 0.5 mm
thick FR4 material which is used in the PCB production process. It is used for the positioning
and fixation of the ElCos.

The mask is connected with 4 countersunk head screws which sunk-in the mask and which
are screwed through the MainPCB into the Top Cover (ToCo).
Figure 2.5.3 shows the distribution of the cut-outs which match the position of the ElCos.
The shown mask has 388 cut-outs, one for each ElCo. The shape of a cut-out is not a perfect

2FR-4 is a composite material composed of woven fiberglass cloth with an epoxy resin binder that is flame
resistant (self-extinguishing).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 126

Figure 2.5.3: Angular view of the Positioning Mask for the Elastomeric Stripe Con-
nectors out of SolidWorks.

rectangle. Figure 2.5.4 shows a detailed view of one cut-out. The circular arcs on the short
sides of the cut-out have a diameter of 1.1 mm. This is a result of the usage of a 1.1 mm
milling cutter. To give additional space to the ElCos during compression the long sides of the
cut-out are not milled straight but are following an arc with a radius of 400 mm. Because of
these arcs the smallest gap in the longer direction is 1.1 mm and the widest gap is 1.2 mm.

Figure 2.5.4: Dimensioned drawing of one cut-out of the Positioning Mask for the Elastomeric
Stripe Connectors.

For the optical alignment and for the filling with nitrogen the 6.4 mm holes are needed.
The smaller holes are used for screwing the mask through the MainPCB to the ToCo.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 127

2.5.3.4 Elastomeric Stripe Connectors (ElCo)

The wafer will be electrically connected to the MainPCB by using flexible Elastomeric Stripe
Connectors from the Zebra Silver series from Fujipoly [37].

Figure 2.5.5: Close-up view of an Elastomeric Stripe Connector

The length of the connectors is 18 mm, their height is 1 mm and their width is 1 mm. The
ElCos are made of two alternating layers of non-conducting silicon and silicon that is made
conductive by interlaced silver balls. The contact pitch is 0.1 mm. Figure 2.5.5 shows a
close-up view of such a connector.
Due to the fine pitch a connector of 1 cm length has 100 contact planes. Combining several
contacts can help balancing the tolerances in the length direction (see b of fig. 2.5.6). The
contact areas made by the post processing (see section 2.4.1) on the Wafer have a width
of 0.2 mm and there will be a space of 0.2 mm between two adjacent ones. This method
guarantees the usage of at least two contact surfaces. With the used pitch of 400 µm the
total number of 180 contacts per stripe is reduced to one fourth and therefore to 45 contacts
per cm stripe. Because of the uncertainty in positioning the connector only 43 contacts
will be used. The power connections are spread over several contact areas and the space
between the contact areas is in this case filled. The tolerance in the crosswise direction of
the ElCo can be equated by using wider contact pads on the wafer and the board (see a) of
fig. 2.5.6). This limits only the number of usable connectors. But even with a space of 1 mm
between two adjacent connectors 10 of these can be placed on each reticle.
To compensate the tolerances in the height a more complicated consideration has to be done.
The resistance of the connectors is almost constant in a range of 10% up to 40% compression.
If a connector of 1 mm height is used the range will be from 0.9 mm down to 0.6 mm. This
can cover a variation in the z-direction of 0.3 mm as shown in c) of fig. 2.5.6.

The volume resistivity of the connectors is RV = 10�5 �m. The formula for the calculation

HBP_SP9_Specification 13 May 2014 (git 56b296e) 128

Figure 2.5.6: Tolerance balancing of the Elastomeric Stripe Connector in all three dimensions

of the resulting resistance is R = RV⇥H
A (A is the area of the cross-section).

The resulting resistance for each contact is:
R = 10�5 � m·10�3

0,05·10�3 m·10�3 m=200 m�.
The necessary pressure for a compression of 10% is for one ElCo is about 0.4 N. For a
compression of 40% it rises to 1.5 N.
To reach a medium compression of about 25% 0.8 N is needed for each connector.

Number of contacts and necessary force in dependence of the number of Elastomeric
Stripe Connectors

The number of connectors determines the force needed to assemble the whole system. The
number of usable contacts for each HICANN is depending on the number of connectors.
As already mentioned one fourth of the contacts of a connector can be used for signals.
For power or ground connections the contacts on the Wafer can be stretched over several
contacts without gaps.
Table 2.5.1 shows the number of usable signals per HICANN depending on the number of
used connectors and the percentage of pins for power or ground. It also shows the resulting
cumulative force needed.

2.5.3.5 Wafer Module Main PCB (MainPCB)

The main component for the integration of the Wafer into an electrical and mechanical
framework is a printed circuit board called MainPCB. This MainPCB has to distribute the
supply voltages to the HICANN chips on the wafer. It has also to distribute the power supply
to the FPGA Communication PCBs (see section 2.9.1). Besides that it has to fan out the
differential signals to the connectors of the FCP (see section 2.6.2.1).
The size of the wafer and the complexity of the requirements leads to a board size of
430 x 430 mm2 with a thickness of 2.1 mm. Figure 2.5.7 shows the top side of the MainPCB.

Two different areas on the surface of the PCB can be spot. The first one is the inner part
of the PCB which shows a regular pattern of little squares. These squares are the equivalent
to the reticles on the Wafer. To avoid destructions on the wafer the voltage supply of each
reticle is monitored and can be switched on and off individually (see chapter 2.9). The pads
of the necessary components for this task such as Power Field-Effect Transistors and blocking

HBP_SP9_Specification 13 May 2014 (git 56b296e) 129

Ereticle P�rtPWR H�CANNPWR H�CANNsig Etot�l Ftot�l

[%] [N]
4 40 17 14 180 192
4 50 21 11 180 192
4 60 26 9 180 192
6 40 25 20 270 288
6 50 31 16 270 288
6 60 39 13 270 288
8 40 35 27 360 384
8 50 43 22 360 384
8 60 53 18 360 384

Table 2.5.1: Ereticle: ElCos per reticle, P�rtPWR: percentage of power and ground pins,
H�CANNPWR: power pins per HICANN, H�CANNsig: signal pins per HICANN,
Etot�l: total number of connectors, Ftot�l: cumulative force for all connectors

Figure 2.5.7: Angular view of the top side of the MainPCB with the connectors marked

capacities are forming the visible pattern. Each HICANN chip has 12 different supply voltages
which should be monitored and switched on and off separately. But the total amount of
384 HICANNs on the Wafer together with the high number of voltages affords a trade-off.
Not each HICANN, but each reticle (8 HICANNs) can be switched on or off individually. This
monitoring task is done by 8 daughter boards (Cures). These boards are connected to the
MainPCB using 8 sodimm-connectors placed on the four edges. The pin-out of these Sodimm

HBP_SP9_Specification 13 May 2014 (git 56b296e) 130

connector between MainPCB and Cure PCBs (MainPCB to Cure PCB connectors) connectors is
shown in figure 2.5.17

At the right-bottom and the top-left corner of the MainPCB four connectors are visible
which are rotated by 315 degrees. On top of these connectors the AnaBs will be placed.
These PCBs will be split into one master and one slave module. The master module will be
placed at the right-bottom corner of the MainPCB.

At each corner of the inner reticle area the connectors for the main power supply of the
Wafer are placed. In the upper-left and in the lower-right corner 1.8 V analog power supply
voltage for the Wafer (1.8 V) is fed in. In the upper-right and in the lower-left corner 1.8 V
digital power supply voltage for the Wafer (1.8 V) is fed in.

The other four smaller power connectors are for the intermediate voltage for the Wafer
Module (7-13.5 V). This power supply is directed through the MainPCB to the FCPs.

Two more connectors with a rotation of 45 degrees are visible in the corners. These 120
pin PC104plus power connector for the auxilary power supply of the MainPCB and the Wafers
are used to supply the Wafer with the additional voltages. The pin-out of these connectors
is shown in fig. 2.5.8

The AnaB PCB which is located on the right-bottom corner of the MainPCB (see fig. 2.5.7
is called master.

The electrical connection of the MainPCB and the Wafer will be formed over 384 ElCos
(see section 2.5.3.4) placed on the bottom side of the PCB. The connection is organized in
pairs of Elastomeric Stripe Connectors. Therefore two HICANNs stacked by their short side
are connected via one connector pair called connector pair between MainPCB and Wafer
(MainPCB to Wafer connector pair). The configuration of this connector pair can be found
in section 2.4.2. Figure 2.5.11 shows the layout of the bottom side of the MainPCB. In the
middle a pattern with the pads for those connectors is visible. The wider contacts are for the
supply voltages and the smaller ones are for data and control signals. The figure shows also
that the reticles are turned through 45 degrees. This is done in order to gain more routing
area. Each reticle has 32 impedance controlled differential pairs to be routed to the side of
the board. The impedance for each pair should be 100 ohms. With a good signal-to-noise
ratio this results in a space necessity of about 750 µm per pair. The number of staggered
reticles and the limited number of layers on the PCB prohibits the usage of more than one
layer for this routing. Without the turning of the wafer the routing space has a maximum
of 20 mm. 32 pairs with 750 µm each are dissipating at least 24 mm of space. With the 45
degree turn of the wafer the routing area can be increased by a factor of 1.4 up to 28 mm.

The production method of the MainPCB and the system requirements let to constraints for
the layout of the MainPCB.

• The tolerances in the thickness of the board over the whole area are usually about
±10 %. This would lead to a tolerance of ±0.21 mm. The tolerances are mainly
determined by the proportion of metalized and non-metalized areas. Therefore a
highly symmetric layout was chosen to minimize the thickness variations. Another
influence is the thickness of the Carbon fiber reinforced plastic CFRP (PrePreg) layers.
With a careful layout the tolerances should be about ±0.1 mm.

• Gas-tightness of the board area on top of the wafer can be achieved by using only blind-
and buried-vias in this region.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 131

VDDBUS

I2C_Power_SDA I2C_Power_SCL
1

30

VDDBUS

Sense_GND_VDDBUS
SENSE_VDDBUS

VDD25

VOL

DI_VCC

VDD12

GND
DI_VBIAS
VDD5

DI_VCC33ANA

VOH

DI_VCCANA

VDD25

Sense_VDD25
Sense_GND_VDD25
Sense_VOH
Sense_GND_VOH
Sense_VOL
Sense_GND_VOL

Figure 2.5.8: Pinout of the AuxPwr connector

HBP_SP9_Specification 13 May 2014 (git 56b296e) 132

mpcb2anab master
connector

Connector A Connector B

1

5

10

15

20

25

30

35

40

45

50

55

60

1

5

10

15

20

25

30

35

40

45

50

55

60

1

5

10

15

20

25

30

35

40

45

50

55

60

1

5

10

15

20

25

30

35

40

45

50

55

60

Pin 1

119

Pin 2

120 119 120

Pin 1 Pin 2

Pin 1

Pin 2

120

119

A

B

Pin 1

Pin 2

119

120

mpcb board edge

GND

VCC5

VCC5

VCC5

V_Intermed

V_Intermed

V_Intermed

ST<3>

ST<5>

ST<7>

VCC5

VCC5

1wire-temp

EN-Stop

VCC5

Cure_Mod_TMS

Cure_Mod_TCK

Cure_Mod_TDI

Cure_Mod_TDO

I2C_Temp_SCL

I2C_Temp_SDA

UCD_Reset<6>

UCD_Reset<7>

UCD_Reset<8>

UCD_Reset<9>

VCC33

VCC33

VCC33

UCD_Reset<10>

UCD_Reset<11>

AR<55>

AR<54>

AR<53>

AR<52>

AR<51>

AR<50>

AR<49>

AR<48>

AR<71>

AR<70>

AR<69>

AR<68>

AR<67>

AR<66>

AR<65>

AR<64>

AR<63>

AR<62>

AR<61>

AR<60>

AR<59>

AR<58>

AR<57>

AR<56>

AR<47>

AR<46>

AR<45>

AR<44>

AR<43>

AR<42>

AR<41>

AR<40>

Cure_Main_INT

I2C_Main_SDA

I2C_Main_SCL

I2C_Power_SDA

I2C_Power_SCL

UCD_Reset<5>

UCD_Reset<4>

UCD_Reset<3>

UCD_Reset<2>

UCD_Reset<1>

UCD_Reset<0>

AR<39>

AR<38>

AR<37>

AR<36>

AR<35>

AR<34>

AR<33>

AR<32>

AR<31>

AR<30>

AR<29>

AR<28>

AR<27>

AR<26>

AR<25>

AR<24>

I2C_Cure_SDA

I2C_Cure_SCL

ST<8>

ST<6>

ST<4>

GP<0>

GP<1>

GP<2>

GP<3>

GP<4>

GP<5>

Figure 2.5.9: Pin-out of the MainPCB to AnaB-Master connector A and MainPCB to AnaB-Master
connector B

HBP_SP9_Specification 13 May 2014 (git 56b296e) 133

mpcb2anab slave
connector

Connector A Connector B

1

5

10

15

20

25

30

35

40

45

50

55

60

1

5

10

15

20

25

30

35

40

45

50

55

60

1

5

10

15

20

25

30

35

40

45

50

55

60

1

5

10

15

20

25

30

35

40

45

50

55

60

Pin 1

119

Pin 2

120 119 120

Pin 1 Pin 2

Pin 1

Pin 2

120

119

A

B Pin 1

Pin 2

119

120
mpcb board edge

GND

V_Intermed

V_Intermed

V_Intermed

ST<9>

ST<11>

ST<1>

1wire-temp

I2C_Temp_SCL

I2C_Temp_SDA

AR<7>

AR<6>

AR<5>

AR<4>

AR<3>

AR<2>

AR<1>

AR<0>

AR<23>

AR<22>

AR<21>

AR<20>

AR<19>

AR<18>

AR<17>

AR<16>

AR<15>

AR<14>

AR<13>

AR<12>

AR<11>

AR<10>

AR<9>

AR<8>

AR<95>

AR<94>

AR<93>

AR<92>

AR<91>

AR<90>

AR<89>

AR<88>

AR<87>

AR<86>

AR<85>

AR<84>

AR<83>

AR<82>

AR<81>

AR<80>

AR<79>

AR<78>

AR<77>

AR<76>

AR<75>

AR<74>

AR<73>

AR<72>

ST<2>

ST<0>

ST<10>

GP<0>

GP<1>

GP<2>

GP<3>

GP<4>

GP<5>

Figure 2.5.10: Pinout of the MainPCB to AnaB-Slave connector A and MainPCB to AnaB-slave
connector B

HBP_SP9_Specification 13 May 2014 (git 56b296e) 134

Figure 2.5.11: Angular view of the bottom side of the MainPCB

Layer structure and via stack

The high signal-density and the large amount of supply power needed leads to the necessity
of a multi-layer fine pitch board. From the inner part of the MainPCB more than 1500 dif-
ferential pairs and 400 monitoring signals have to be routed to the connectors at the edges.
The differential pairs have to be impedance controlled with an impedance of 100 ohms. To
achieve these requirements and to keep an acceptable signal-to-noise ratio a lot of routing
space is needed. Therefore all the differential pairs of a reticle have to be routed in one
routing layer. The reticles behind (closer to the center) are also needing the full reticle
space for routing which efforts the usage of laser drilled micro-vias. These micro-vias are
connecting a layer only with its directly underlying layer and therefore they are not visible
in the layer beneath that underlying layer.

The usage of this kind of micro-vias appoints to a certain layer thickness and a special
manufacturing method. The board has 14 layers with two cores in the middle which results
in a total thickness of 2.1 mm. Figure 2.5.12 shows the layer structure and the usage of the
different layers. The starting point of the production is a four layer board with the layers
grouped symmetrically around two cores. Through this base only mechanical drilled vias
can be used. They are visible on all the 4 layers. Now five identical production steps are
following. In each step two foils will be glued on both sides of the PCB. Then the copper
structure of this layers will be developed and the foils will be fixed on the board using an
operation with high pressure and high temperature. Now the micro-vias on the both outside
layers can be drilled with a laser using a diameter of 0.15 mm. The problem with this

HBP_SP9_Specification 13 May 2014 (git 56b296e) 135

Figure 2.5.12: Layer structure and via stack of the MainPCB.

method is that the material gets more and more brittle with each production step. In normal
production only 4 of these steps are allowed. A cautious handling of these processes with
an accurate monitoring after each step allows the extension to 5 pressing operations. This
leads to the maximum of 14 layers for the MainPCB.

2.5.3.6 Main power supply board (PowerIt)

To minimize the necessary cabling into and inside the Wafer Module there is only one power
supply entry point into the Wafer Module. This point is located at the PowerIt Main Power
Supply PCB. The board width is 250 mm and the height is 240 mm. Figure 2.5.13 shows a
computer-generated picture of the top side of the board.

The input voltage of the PowerIt is main input voltage of the Wafer Module (-48 V). The
PowerIt will generate 4 voltage supplies out of this input voltage.

• The first voltage supply is the 1.8 V analog power supply voltage for the Wafer (1.8 V).

• The second voltage supply is the 1.8 V digital power supply voltage for the Wafer (1.8
V).

• The third voltage supply is the intermediate voltage for the Wafer Module (7-13.5 V).

• The fourth voltage supply is the 5 V standby supply voltage for the Wafer Module which
will supply the Main System Control Unit. This voltage will only be switched of in case

HBP_SP9_Specification 13 May 2014 (git 56b296e) 136

Figure 2.5.13: Top view of the PowerIt Main Power Supply PCB. Computer-generated picture
made with SolidWorks

of a power failure (such as input over-voltage) of the PowerIt itself.

The intermediate voltage will be used as a supply for different components of the Wafer
Module. A detailed description of the power distribution can be found in section 2.9.1 and is
illustrated in figure 2.9.1.

• Power supply of the 48 FPGA Communication PCBs.

• Power supply of the 4 Wafer I/O PCBs

• Power supply of the 2 Auxiliary Power Supply PCBs.

• Power supply of the 2 Analog Breakout PCBs.

2.5.3.7 Auxiliary Power Supply PCB (AuxPwr)

The remaining voltages of the Wafer are produced by two Auxiliary Power Supply PCB. The
width of the Auxiliary Power Supply PCB is 208 mm and the height is 208 mm. To fit into the
Wafer Module the board will have a rectangular cut-out with a width of 116 mm and a height
of 116 mm. The input voltage of these AuxPwrs is the intermediate voltage generated by
the PowerIt board. The boards are placed in the upper right and in the bottom left corner of
the MainPCB and each board supports one half of the wafer. Figure 2.5.7 shows top view of
MainPCB with the two AuxPwrs visible. In fig. 2.5.14 a bottom view of the AuxPwr is shown.
The 120 pin PC104plus power connector for the auxilary power supply of the MainPCB and

HBP_SP9_Specification 13 May 2014 (git 56b296e) 137

Figure 2.5.14: Angular view of the back side of the Auxiliary Power Supply PCB. Computer-
generated picture made with SolidWorks.

the Wafer and some additional ground connectors are visible. The fact that the rest of the
PCB remains empty is due to the fact that the AuxPwr is still under development.

The 10 voltages generated by the AuxPwr are:

1) VDDBUS: synapse line driver supply (VDDBUS)

2) VDD25: floating-gate programming supply (VDD25)

3) DI_VCCana: analog supply of DNC interface (DI_VCCana)

4) V_OL: lower voltage level for the Layer 1 signaling (V_OL)

5) V_OH: upper voltage level for the Layer 1 signaling (V_OH)

6) DI_VCC: digital supply of DNC interface (DI_VCC)

7) DI_VCC33ana:LVDS power supply of DNC interface (DI_VCC33ana)

8) LVDS common mode voltage (DI_Vbias)

9) VDD5: floating-gate readout supply (VDD5)

10) VDD12: floating-gate programming voltage (VDD12)

All the generated voltages are monitored by a micro-controller placed on the AuxPwr. In
case of voltage problems it will shut down the output voltages and send a message to the
Main System Control Unit.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 138

Figure 2.5.15: Angular top view of the Analog Breakout PCB.

2.5.3.8 Breakout PCBs for analog readout signals of the Wafer (AnaB)

Each of the 48 reticles of the Wafer delivers 2 analog signals which sums up to 96 signals for
the Wafer. These signals are routed as 50 ohm terminated single ended lines to the corners
of the MainPCB which are not occupied by the AuxPwrs.

Each of the two AnaB PCBs collects 48 analog readout and 6 trigger signals from the 24 FCPs.
Always four adjacent FCPs are sharing one trigger signal. These signals are then delivered
to the boards via 2 fine pitch connectors. The pin-out of these connectors is shown in the
figures 2.5.9 and 2.5.10. The AnaB PCB which is located on the right-bottom corner of the
MainPCB (see figure 2.5.7 is called master. This PCB connects the MainPCB to the Main System
Control Unit (MaCU). The connection to the MaCU is established via the 26 pin connector for
the connection of Analog Breakout PCB with Raspberry Pi (AnaB to Rasperry Pi connector)
connector using a ribbon cable. It passes the 5 V standby supply voltage for the Wafer Module
to the MaCU and the it generates the 5 V supply voltage for the Monitoring and Control PCB
for Reticles. It also handles all the Inter-Integrated Circuit Link (I2C) buses for power and
temperature control of the system (see section 2.9.2.1). Each AnaB collects the analog
signals of 24 reticles and distributes them to 6 standard 16 pin SMD pin header connectors
marked as 16 pin connector for the connection of Analog Breakout PCB with Flyspi Breakout
PCB (AnaB to FsBo connector) in the fig. 2.5.15. Each of these connectors will deliver 8
analog signals together with one trigger signal via a shielded ribbon cable to the farm of
Analog Readout Module placed outside the Wafer Module.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 139

Figure 2.5.16: Angular top view of the Monitoring and Control PCB for Reticles. Computer-
generated picture made with SolidWorks

2.5.3.9 Monitoring and Control PCB of Reticles (Cure)

To avoid defects resulting of voltage problems like power-shorts or over-voltages all the
voltages of all 48 reticles on the Wafer are monitored. In case of a problem the affected
voltage on the affected Reticle can be switched off individually (see section 2.9.2.4). Each
Cure will monitor and control the voltage supply of 6 Reticles. This task is done stand
alone by micro-controllers on the Cure in order to avoid latency and non reacting due to
I2C connection problems. The Cures are controlled by the MaCU. In fig. 2.5.16 the top side
of the Cure is shown. At the front side the cut-outs for the board edge connector which
connects the board to the sodimm-connectors on the MainPCB are visible. The pads are not
shown in the picture. At the back side the programming connectors for the micro-controllers
in front of them are placed. The other pin headers which are placed vertically allow a direct
connection to the voltage measuring points of the belonging Reticles (see fig. 2.5.18).

The pin-out of these MainPCB to Cure PCB connectors connectors is shown in figure
fig. 2.5.17

HBP_SP9_Specification 13 May 2014 (git 56b296e) 140

Pin 1

71 72

273 74

204203

TDO

TDI

TMS
TCK

Interrupt

Cure_Mod_adr<0>

Cure_Mod_adr<2>

Cure_Mod_adr<1>

I2C_SDA

I2C_SCL

VCC5

VCC5

EN_1<2>

EN_1<3>

EN_6<3>

EN_6<2>

EN_6<1>

EN_6<0>

EN_5<3>

EN_5<2>

EN_5<1>

EN_5<0>

EN_4<3>

EN_4<2>

EN_4<1>

EN_4<0>

EN_3<3>

EN_3<2>

EN_3<1>

EN_3<0>

EN_2<3>

EN_2<2>

EN_2<1>

EN_2<0>

EN_1<1>

EN_1<0>
V_MEAS_A_1<0>

V_MEAS_A_1<1>

V_MEAS_A_1<2>

V_MEAS_A_1<3>

V_MEAS_A_1<4>

V_MEAS_A_1<5>

V_MEAS_A_1<6>

V_MEAS_A_1<7>

V_MEAS_A_1<8>

V_MEAS_A_1<9>

V_MEAS_A_1<10>

V_MEAS_A_1<11>

V_MEAS_B_1<0>

V_MEAS_B_1<1>

V_MEAS_B_1<2>

V_MEAS_B_1<3>

V_MEAS_B_1<4>

V_MEAS_B_1<5>

V_MEAS_B_1<6>

V_MEAS_B_1<7>

V_MEAS_B_1<8>

V_MEAS_B_1<9>

V_MEAS_B_1<10>

V_MEAS_B_1<11>

GND

GND

GND

GND

GND

V_MEAS_A_3<0>
V_MEAS_B_3<0>

V_MEAS_A_3<1>
V_MEAS_B_3<1>

V_MEAS_A_3<2>
V_MEAS_B_3<2>

V_MEAS_A_3<3>
V_MEAS_B_3<3>

V_MEAS_A_3<4>
V_MEAS_B_3<4>

V_MEAS_A_3<5>
V_MEAS_B_3<5>

V_MEAS_A_3<6>
V_MEAS_B_3<6>

V_MEAS_A_3<7>
V_MEAS_B_3<7>

V_MEAS_A_3<8>
V_MEAS_B_3<8>

V_MEAS_A_3<9>
V_MEAS_B_3<9>

V_MEAS_A_3<10>
V_MEAS_B_3<10>

V_MEAS_A_3<11>
V_MEAS_B_3<11>

V_MEAS_A_5<0>
V_MEAS_B_5<0>
V_MEAS_A_5<1>
V_MEAS_B_5<1>

V_MEAS_A_5<2>
V_MEAS_B_5<2>
V_MEAS_A_5<3>
V_MEAS_B_5<3>

V_MEAS_A_5<4>
V_MEAS_B_5<4>
V_MEAS_A_5<5>
V_MEAS_B_5<5>
V_MEAS_A_5<6>
V_MEAS_B_5<6>
V_MEAS_A_5<7>
V_MEAS_B_5<7>

V_MEAS_A_2<0>
V_MEAS_B_2<0>

V_MEAS_A_2<1>
V_MEAS_B_2<1>
V_MEAS_A_2<2>
V_MEAS_B_2<2>

V_MEAS_A_2<3>
V_MEAS_B_2<3>
V_MEAS_A_2<4>
V_MEAS_B_2<4>

V_MEAS_A_2<5>
V_MEAS_B_2<5>
V_MEAS_A_2<6>
V_MEAS_B_2<6>

V_MEAS_A_2<7>
V_MEAS_B_2<7>
V_MEAS_A_2<8>
V_MEAS_B_2<8>

V_MEAS_A_2<9>
V_MEAS_B_2<9>

V_MEAS_A_2<10>
V_MEAS_B_2<10>

V_MEAS_A_2<11>
V_MEAS_B_2<11>

V_MEAS_A_4<0>
V_MEAS_B_4<0>

V_MEAS_A_4<1>
V_MEAS_B_4<1>

V_MEAS_A_4<2>
V_MEAS_B_4<2>

V_MEAS_A_4<3>
V_MEAS_B_4<3>
V_MEAS_A_4<4>
V_MEAS_B_4<4>

V_MEAS_A_4<5>
V_MEAS_B_4<5>
V_MEAS_A_4<6>
V_MEAS_B_4<6>

V_MEAS_A_4<7>
V_MEAS_B_4<7>
V_MEAS_A_4<8>
V_MEAS_B_4<8>

V_MEAS_A_4<9>
V_MEAS_B_4<9>

V_MEAS_A_4<10>
V_MEAS_B_4<10>

V_MEAS_A_4<11>
V_MEAS_B_4<11>

V_MEAS_A_6<0>
V_MEAS_B_6<0>

V_MEAS_A_6<1>
V_MEAS_B_6<1>
V_MEAS_A_6<2>
V_MEAS_B_6<2>

V_MEAS_A_6<3>
V_MEAS_B_6<3>
V_MEAS_A_6<4>
V_MEAS_B_6<4>

V_MEAS_A_6<5>
V_MEAS_B_6<5>
V_MEAS_A_6<6>
V_MEAS_B_6<6>

V_MEAS_A_6<7>
V_MEAS_B_6<7>
V_MEAS_A_6<8>
V_MEAS_B_6<8>

V_MEAS_A_6<9>
V_MEAS_B_6<9>

V_MEAS_A_6<10>
V_MEAS_B_6<10>

V_MEAS_A_6<11>
V_MEAS_B_6<11>

V_MEAS_A_5<8>
V_MEAS_B_5<8>

V_MEAS_A_5<9>
V_MEAS_B_5<9>

V_MEAS_A_5<10>
V_MEAS_B_5<10>

V_MEAS_A_5<11>
V_MEAS_B_5<11> 65

NC

NC
NC
NC
NC
NC

NC

NC
NC
NC

NC

NC

NC

NC

5

10

15

20

25

30

35

1 1

5

10

15

20

25

30

35

40

45

50

55

60

65

5

10

15

20

25

30

35

1 1

5

10

15

20

25

30

35

40

45

50

55

60

Pin 1

Pin 2

71

72

73

74

203

204
� =1.6mm �=1.1mm

solder pads

Figure 2.5.17: Pinout of the MainPCB to Cure PCB connector connector

HBP_SP9_Specification 13 May 2014 (git 56b296e) 141

VDD_12
DI..33ANA

VDDBUS
VOL
VOH

D_VBIAS

VDD5
VDD25
VDD
DI_VCC
VDDA
DI..ANA

D_VBIAS
VOH
VOL

VDDBUS
DI..33ANA

VDD_12

DI..ANA
VDDA
DI_VCC
VDD
VDD25
VDD5

5
4
3
2
1
0

6
7
8
9

10
11

0
1
2
3
4
5

11
10

9
8
7
6

3
1
2
0
1
0
0
1
0
2
1
3

3
0
1
2
2
0
0
2
2
1
0
3

MCLR
VCC
GND
PGD
PBC
NC

1 1 1

PIC-3 PIC-2 PIC-1

Reticle1

Reticle2

Reticle3

Reticle4Reticle6

Reticle5

V_MEAS_B...<X>EN_SIG...<X> EN_SIG...<X>

corresponding V_MEAS_A

5930
A912
7234
7234
7234
A912
A912
7234
7234
7234
A912
5930

5930
A912
7234
A912
A912
A912
A912
A912
A912
7234
A912
5930

MOSFET MOSFET

GND

SDA

SCL

3.3V

12V

5V intern

5V extern

Figure 2.5.18: Pinout of the connectors on the Cure board

HBP_SP9_Specification 13 May 2014 (git 56b296e) 142

Figure 2.5.19: Top side of the Raspberry Pi

2.5.3.10 Main System Control Unit (MaCU)

The Main System Control Unit is realized by a standard Raspberry Pi [58] as control computer
of the Wafer Module. It allows full system control via one Ethernet link. The Raspberry Pi
(Raspberry Pi) communicates using I2C with the control units placed on the power supplies and
the Monitoring and Control PCB for Reticless. It also collects all the temperature information
of the system. The Raspberry Pi is connected using a ribbon cable to the AnaB on the right
bottom side of the MainPCB. More detailed information is given in section 2.9.2.3.

2.5.3.11 Top Cover (ToCo)

Top and bottom view of the Top Cover is shown in fig. 2.5.21. The ToCo is milled out of a
20 mm thick planarized aluminum plate with a hight of 440 mm and a width of 440 mm. The
inner structure is formed by an equilateral octagon which is merged over the diagonals to
the outer frame. The distance between two sides of this octagon is 242 mm.

The ToCo does not only increase the stability of the system but is also used to fix peripheral
electronic units described in section 2.5.3.5. In the bottom view of the ToCo a pattern of
stamps in the middle of the octagon is shown. This stamps have three important functions.

• The first function is the constant distribution of the back pressure from the Wafer over
the Elastomeric Stripe Connectors onto the MainPCB over the wafer-area.

• As the second function they work as a heat conductor. Because of its size the solid ToCo
can absorb a large amount of heat and because of its high surface area it can be cooled
easily.

• The third function of the stamps is their function as a current sink. Both the ToCo
and the WBr are connected to electrical ground. To relieve the ground planes inside
the MainPCB the stamps of the ToCo are electrical connected to the ground pads upon

HBP_SP9_Specification 13 May 2014 (git 56b296e) 143

SDA
SCL
SDA

SCL
SDA
SCL

1wire Temp-Sensors

I2C-Cure
/dev/i2c-1

I2C-Power
/dev/i2c-2

I2C-Temp-Sensors
/dev/i2c-3

SDA
SCL

I2C-Kintex
/dev/i2c-4

MOSI
MISO
SCLK CE0

CE1

SPI

SPI

SDA
SCL

I2C
/dev/i2c-5

GPIO_EN0

3.3V
5V

3.3V

GND

GND

GND

GND

GND

Figure 2.5.20: Pinout of the AnaB to Rasperry Pi connector

HBP_SP9_Specification 13 May 2014 (git 56b296e) 144

Figure 2.5.21: Top view of the Top Cover

the MainPCB. To achieve a good thermal and electrical conduction the ToCo is electro
silvered.

2.5.3.12 Insertion Frame for mounting of additional PCBs (InFra)

The InFra is screwed to the ToCo in order to allow the insertion of the assembled Wafer
Module into the rack. It is also used to mount the Wafer I/O PCBs. Figure 2.5.22 shows a
computer-generated picture of the InFra. Mechanical details such as screw hole positions
can be found in appendix A.

Figure 2.5.22: Angular view of the Insertion frame for mounting of additional PCBs

2.5.3.13 FPGA Communication PCB (FCP)

The configuration, the monitoring and the pulse stimulation of the HICANNs on the Wafer
is done on daughter boards. These boards are called FCP and they are placed vertically

HBP_SP9_Specification 13 May 2014 (git 56b296e) 145

Figure 2.5.23: Angular top view of the FPGA Communication PCB. Computer-generated pic-
ture made with SolidWorks

on the MainPCB (see fig. 2.5.11). Each of these FCPs is responsible for 8 HICANNs that are
placed on one Reticle. This sums up to 48 board whick are placed on the bottom side of the
MainPCB. In fig. 2.5.11 the 48 connectors placed on the bottom side of the MainPCB are visible.
Figure 2.5.23 shows a computer-generated picture of the top side of the FPGA Communication
PCB. More details and a picture of the prototype can be found in section 2.6.2.1.

2.5.3.14 Wafer I/O PCB (WIO)

For the data exchange between the FCPs on the same or on different Wafer Modules the
FCPs are requiring additional components. These components such as Gbit Ethernet PHYs
and RJ45 Gigabit and USB3.0 connectors are placed on larger PCBs placed on top of the FCPs.
Each of this so called Wafer I/O PCBs will provide the necessary components for 12 FCPs.
This sums up to 4 WIOs for one Wafer Module. The necessity of cooling the current consuming
components (specially the FPGAs) on the FCPs restricts the placement options of the FCPs
on the MainPCB to one direction. This is the vertical upwards direction because the airflow
in the Wafer Module is from bottom to top. Therefore two different types of WIOs have to

HBP_SP9_Specification 13 May 2014 (git 56b296e) 146

V_Intermed V_Intermed

Socket_ID<0>

Socket_ID<2>

Edge_ID<1>

TH = ToHICANN

FH = FromHICANN

Pin 1

63 64

265 66

120119

DAT_TX_7_TH_N
DAT_TX_7_TH_P

CLK_RX_7_FH_P
CLK_RX_7_FH_N

DAT_TX_6_TH_N
DAT_TX_6_TH_P

CLK_RX_6_FH_P
CLK_RX_6_FH_N

DAT_TX_5_TH_N
DAT_TX_5_TH_P

CLK_RX_5_FH_P
CLK_RX_5_FH_N

DAT_TX_4_TH_N
DAT_TX_4_TH_P

CLK_RX_4_FH_P
CLK_RX_4_FH_N

DAT_TX_3_TH_N
DAT_TX_3_TH_P

CLK_RX_3_FH_P
CLK_RX_3_FH_N

DAT_TX_2_TH_N
DAT_TX_2_TH_P

CLK_RX_2_FH_P
CLK_RX_2_FH_N

DAT_TX_1_TH_N
DAT_TX_1_TH_P

CLK_RX_1_FH_P
CLK_RX_1_FH_N

DAT_TX_0_TH_N
DAT_TX_0_TH_P

CLK_RX_0_FH_P
CLK_RX_0_FH_N

CLK_TX_0_TH_N
CLK_TX_0_TH_P

DAT_RX_0_FH_P
DAT_RX_0_FH_N

CLK_TX_1_TH_N
CLK_TX_1_TH_P

DAT_RX_1_FH_P
DAT_RX_1_FH_N

CLK_TX_2_TH_N
CLK_TX_2_TH_P

DAT_RX_2_FH_P
DAT_RX_2_FH_N

CLK_TX_3_TH_N
CLK_TX_3_TH_P

DAT_RX_3_FH_P
DAT_RX_3_FH_N

CLK_TX_7_TH_N
CLK_TX_7_TH_P

DAT_RX_7_FH_P
DAT_RX_7_FH_N

CLK_TX_6_TH_N
CLK_TX_6_TH_P

DAT_RX_6_FH_P
DAT_RX_6_FH_N

CLK_TX_5_TH_N
CLK_TX_5_TH_P

DAT_RX_5_FH_P
DAT_RX_5_FH_N

CLK_TX_4_TH_N
CLK_TX_4_TH_P

DAT_RX_4_FH_P
DAT_RX_4_FH_N

Socket_ID<1>

PMBUS_Clk
PMBUS_Data

Socket_ID<3>

HICANN_RESET
H_TCK
H_TDIH_TDO

H_TMS_SYSSTART
SampleTrigger

Edge_ID<0>

EXT_CLK_N
EXT_CLK_P

5

10

15

20

25

30

1 1

5

10

15

20

25

5

10

15

20

25

30

1 1

5

10

15

20

25

Pin 1

Pin 2

63

64

65

66

119

120
� =1.35mm �=1.1mm

Figure 2.5.24: Pinout of the MainPCB to FCP connector connector

HBP_SP9_Specification 13 May 2014 (git 56b296e) 147

Figure 2.5.25: Computer-generated picture of the bottom side of the WIOH

be built which are called WIOH and WIOV referring their direction into the system. Detailed
description about these PCBs can be found in section 2.6.2.2.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 148

Figure 2.5.26: Computer-generated picture of the bottom side of the WIOV

HBP_SP9_Specification 13 May 2014 (git 56b296e) 149

HBP_SP9_Specification 13 May 2014 (git 56b296e) 150

2.6 Communication Modules

2.6.1 Overview

Configuration of the HICANNs, pulse stimulation and monitoring, and communication between
wafers is done on FCPs, see Fig. 2.1.1. These boards contain a Xilinx Kintex7 FPGA (Part
no. XC7K160T-1FFG676C) that executes the above tasks [74].

The interfaces of the FCP are shown in Fig. 2.6.1. One FCP is connected to eight HICANNs
on the wafer. Communication is done via one LVDS interface per HICANN, which is a custom
design on the HICANN and uses LVDS pins with standard serializer/deserializer modules on
the FPGA side. The interface to the host uses one Gbit-Ethernet port. Seven Xilinx Gigabit
Transceiver protocol (GTX) transceivers are available for pulse communication with other
FCPs. From these, three links are used for connecting other FCPs on the same wafer module.
The FCPs are arranged in groups of four, and the local inter-FCP links are used for realizing
full connectivity between the FCPs in one group. The remaining inter-FCP links are employed
for inter-wafer pulse communication.

Besides the communication interfaces, the FCP contains three Double Data Rate (DDR)3
memory interfaces. One of them is used as frame buffer for Ethernet communication, the
other two are employed for pulse storage. One of the pulse memories is used as playback
memory, storing pulses for stimulation. The other one is used as trace memory, storing pulse
activity during an experiment, which can be read out afterwards by the host.

The following sections describe the design of the FCP and the firmware development for

HICANN

Kintex 7

FPGA

FPGAs on other

wafers/modules

Host PC

4x

GTX

3x

GTX

FPGAs on same

communication

module

1xEthernet

8x

custom

LVDS

Figure 2.6.1: Communication channels and partners of the Kintex7 FPGA

HBP_SP9_Specification 13 May 2014 (git 56b296e) 151

92mm

6
6

m
m

0.5GByte
DDR3-800
SDRAM

0.5GByte
DDR3-800
SDRAM

256MByte
DDR3-1600
SDRAM

LVDS Backplane
Repeater

Main-PCB
Connector

IO-Board Connector

System
Flash

Linear Regulators

DC/DC
Converters

GTX-Transceiver
and Memory Controller
Reference Clock PLL

Kintex7-160T FPGA

Figure 2.6.2: Photograph of the FCP.

the Kintex7 FPGA.

2.6.2 Board Design

2.6.2.1 Kintex7 board

Each FPGA board, as shown in Fig. 2.6.2 includes a Xilinx Kintex 7 FPGA as its core component,
which is responsible for interfacing to eight HICANNs on the wafer, communication to the host
via Gbit Ethernet and transmission of pulses to other FPGA boards via seven GTX transceivers.
Furthermore, it provides external storage for Ethernet frames, stimulation pulses and pulse
tracing. To achieve the maximum possible throughput the storage tasks are separated onto
three independent DDR3 memories.

The board features the following components:

• Kintex7 FPGA speed grade 1

• 512MB DDR3-800 SDRAM for playback data (two 2Gbit chips, 32bit interface, 400MHz)

• 512MB DDR3-800 SDRAM for trace data (two 2Gbit chips, 32bit interface, 400MHz)

• 256MB DDR3-1600 SDRAM for Ethernet (one 2Gbit chip, 8bit interface, 800MHz)

• 32MB SPI Flash memory for multiple FPGA firmware images

• Card edge connector to Wafer-IO-Board with 80 pins (J1)

• 8 GTX transceiver connections via J1 used for:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 152

– Serial Gigabit Media Independent Interface (SGMII) link to Gigabit Ethernet PHY
(1.25Gbit)

– three connections to adjacent K7-Node-Boards (6.25 Gbit)

– four links to USB3.0 connectors high-speed signal pair for inter-wafer communica-
tion hosted by Wafer-IO-Board (6.25 Gbit)

• Card edge connector to Main-PCB with 120 pins (J2)

• 8 HICANN connections via J2 buffered by back-plane LVDS transmitters with optional
+6dB pre-emphasis

• On-board power supply with an input voltage of 6-13V

• Board power control by PMBus commands (default is power OFF)

• PMBus access to board status (voltages, PGOOD signals, currents and temperatures)

• Power Good and Done LED

• Socket-ID[3:0], Edge-ID[1:0] and PMBus addresses defined by slot on Main-PCB

• Wafer-ID[7:0] is provided via PMBus command

• Reference clock PLL for GTX transceivers (125MHz) and memory controllers (200MHz)

• 3.3V debug/GPIO header

• Two debug LEDs

• On-board 50MHz system reference clock generation for stand alone test (without Wafer-
IO-Board) of HICANN connections

• Wired OR sample trigger signal generation

PMBus groups, Socket- and Edge-IDs Figure 2.6.3 depicts the Wafer-Module from the bottom
side, showing the PMBus groups and the Edge- and Socket-ID predefinition. Within each
PMBus group, the addresses of the UCD9246 power controllers and FPGAs are made unique,
by determining them from Socket-ID bits [1:0]. All the identification bits together up to the
Wafer-ID are used to calculate system wide unique MAC and IP addresses.

Power-up The FCP by default is switched off after the input supply voltage rises above 6V. To
enable the board, all OPERATION registers inside the UCD9246 digital power controller must
be written by a broadcast command. This causes the digital power controller to synchronously
ramp up the four DC/DC converter controlled supply domains. The downstream placed linear
regulators will ramp up the analog domains too, right after their internal power up circuit
detects high enough supply voltage for proper operation. If all DC/DC domains are regulated
within their limits the UCD9246 generates it’s power good signal which causes the FPGA to
load the firmware image from the 32MB SPI Flash. If a valid image was loaded the Done LED

HBP_SP9_Specification 13 May 2014 (git 56b296e) 153

220mm

2
2

0
m

m

PMBus Group PMBus Group PMBus Group

PMBus Group PMBus Group PMBus Group

PMBus Group

PMBus Group

PMBus Group

PMBus Group

PMBus Group

PMBus Group

0 1 2 3 4 5 6 7 8 9 A B

0 0 0 0 0 0 0 0 0 0 0 0

Edge ID = 0

B A 9 8 7 6 5 4 3 2 1 0

2

Edge ID = 2

2 2 2 2 2 2 2 2 2 2 2

0123

4567

89AB

1 1 1 1

1 1 1 1

1 1 1 1

E
d

g
e

 I
D

 =
 1

E
d

g
e

 I
D

 =
 3

BA98

7654

3210

3

3

3

3

3

3

3

3

3

3

3

3

Socket ID

Figure 2.6.3: PMbus group, Edge- and Socket-ID predefinition.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 154

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

1
2
x

R
J
4
5

ETH

PHY

ETH

PHY

ETH

PHY

Wafer-IO-Board-H

JTAG

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

2
x
 U

S
B

3
.0

12x

RJ45

E
T

H

P
H

Y

E
T

H

P
H

Y

E
T

H

P
H

YWafer-IO-Board-V

J
T

A
G

S
A

T
A

S
A

T
A

Figure 2.6.4: Board layout of the wafer IO boards.

lights up and the FPGA firmware starts operation. Towards this point the FPGA is reachable via
PMBus, showing that it’s up. The next step is to read out the FPGA status register (on-board
PLL configured and locked) using the PMBus and writing the Wafer-ID into the corresponding
register. After a valid Wafer-ID is detected by the FPGA firmware it calculates the MAC and
IP address and initializes the Ethernet PHY. This process finalizes the start-up sequence.

2.6.2.2 Wafer IO boards

The Wafer-IO-Boards are designed to host all IO connectors of the 12 FCPs placed on one
edge of the Wafer-Module. In addition to the connectors the three quad Gbit Ethernet PHYs
are placed on the board too, supporting one SGMII MAC connection for each FCP.

The IO boards host the following components:

• 12 RJ45 Gigabit Ethernet connectors with integrated magnetics integrated as one 12x
dual row connector block

• Three quad SGMII Gbit Ethernet PHYs

• 48 USB 3.0 ports realized as 24 stacked double connectors (the one 3.0 high-speed
signal pair is directly connected to one GTX transceiver of a FCP)

• One free FPGA programmable LED per USB 3.0 port

• 50MHz system reference clock input connector and clock tree circuitry

• SYS_START signal input connector and distribution circuitrry

• Connector and circuitry to make each FCP reachable by JTAG

• Small PMBus debug header

HBP_SP9_Specification 13 May 2014 (git 56b296e) 155

UDP interface

DDR3

interface

DDR3

interface

DDR3

interface

7 GTX

interfaces

 8 HICANN interfaces

Host ARQ

HICANN

ARQ

Playback

controller

Trace

controller

Frame decoder/encoder

Routing

module

System

monitor

I2C

interface

JTAG

interface

Core logic

Interface logic

Figure 2.6.5: Main modules of the Kintex7 FPGA firmware

• On-board power supply for all active components with an input voltage of 6-13V

2.6.3 FPGA Firmware

2.6.3.1 Overview

The structure of the Kintex7 FPGA firmware is shown in Fig. 2.6.5. Its modules are split into
interface logic and core logic.

The interface modules provide simple interfaces to the respective communication partners
and encapsulate details of the interface control like generation of special clocks or instan-
tiation of dedicated Xilinx Intellectual Property (IP) blocks. There are separate interfaces
to the three DDR3 memories and seven separate GTX interfaces. Ethernet communication
is provided by a custom designed User Datagram Protocol (UDP) interface. The eight HI-
CANN interface modules not only provide access to the LVDS communication lines, but also
contain arbitration and protocol handling for pulse and configuration packets. They also
encapsulate pulse buffering and sorting functionality for pulses sent to the HICANNs, to en-
sure their release at a defined target time. The firmware also provides a UDP-JTAG adapter
for enabling low-level access to the HICANN. A system monitor module reads out the FPGA
device temperature and different supply voltages. It can be accessed from outside via a I2C

HBP_SP9_Specification 13 May 2014 (git 56b296e) 156

interface.
The core logic is responsible for processing and routing of the data from the different

interfaces. A variant of the ARQ protocol is used for safe data transmission between host PC
cluster and FPGA. Data for the host communication are handled and distributed by a frame
decoder/encoder module. A trace controller manages writing of pulses to be traced in the
dedicated DDR3 memory, and reading-out of the memory content to the host. The playback
controller allows for release of pre-stored pulses and HICANN configuration packets from the
corresponding DDR3 memory. A routing module handles inter-FPGA routing of pulses. Finally,
safe transmission of HICANN configuration data is ensured by a separate module implementing
another variant of the ARQ protocol.

In the following sections, the main modules are described in more detail.

2.6.3.2 Low-level interfaces

UDP interface

Ethernet communication in the Kintex7 FPGA is done via a custom-designed UDP interface. It
implements the main features of UDP in a relatively light-weight design. The SGMII protocol
is used to connect the FPGA to an external Ethernet physical layer chip. The UDP module
was designed for Gbit-Ethernet usage, but is compatible with 100Mbit and 10Mbit modes as
well.

The interface of the UDP module to the core logic is frame-based: Start-of-frame and
end-of-frame signals are sent before and after the actual frame data. The receiving side
does not wait when providing data of a frame. The core logic has to process it immediatly
or implement a buffer. The same signals as for the receiving side are used for the interface
on the sending side, but with different timing requirements. The core logic requests sending
of a frame by a start-of-frame signal. In turn, the UDP module prepares the frame header.
Afterwards, it provides a ready-signal, notifying that the next data word can be sent. The
actual sending of the frame is initiated with the end-of-frame signal provided from the core
logic.

DDR3 interfaces

Three independent memory controller interfaces have been implemented to access the ex-
ternal DDR3 memory chips [40]:

• 256MiB DDR3 Memory for Ethernet frame buffering

• 512MiB DDR3 Memory for playback

• 512MiB DDR3 Memory for tracing

A Memory Interface Generator (MIG) IP provided by Xilinx was used to implement each
memory controller interface. The toplevel of the IP block was modified to reduce the
number of hierarchy levels and to allow easy configuration for the different external memory
chips with different physical interface widths. The memory interfaces provide a FIFO-like
user interface instead of the Xilinx Advanced Extensible Interface (AXI) standard to maximize

HBP_SP9_Specification 13 May 2014 (git 56b296e) 157

WRITE

ADDR 0

MASK 0 MASK 1

DATA 0 DATA 1

clk

app_cmd

app_addr

app_en

app_rdy

app_wdf_mask

app_wdf_data

app_wdf_rdy

app_wdf_wren

app_wdf_end

READ

ADDR 0

DATA 1

clk

app_cmd

app_addr

app_en

app_rdy

app_rd_data

app_rd_data_valid

app_rd_data_end

DATA 0

Write

Read

Figure 2.6.6: Address handling for the playback and trace memory interfaces

throughput. They both follow the specification in [75]. The Ethernet frame buffer uses
a clock frequency ratio of 4:1, which is fully covered by this document. The other two
memories use a 2:1 ratio, for which the address handling is not specified. Figure 2.6.6 shows
the employed address handling scheme, which has been developed from the behavioural
memory models provided by Xilinx. It has been successfully verified in simulation and tests
on the FPGA.

GTX transceivers

The GTX transceiver modules are used for inter-FPGA pulse communication on one wafer and
between wafers. It implements the Xilinx Aurora 8b/10b streaming interface. Currently, a
raw data rate of up to 6.25Gbps is supported. The module provides a FIFO-like user interface
in both directions.

System monitor

The system monitor periodically reads the FPGA device temperature. This value is provided
to the DDR3 memory interfaces for internal calibration purposes. Furthermore, the FPGA
device temperature can be read out via the I2C interface. The system monitor also provides

HBP_SP9_Specification 13 May 2014 (git 56b296e) 158

several measured voltage levels, which can also be accessed by I2C. The 13 register values
to be read out are:

I2C Address Content

0x0 Current FPGA temperature
0x1 Current FPGA Vccint
0x2 Current FPGA Vccaux
0x3 Current FPGA Vccbram
0x4 Minimum FPGA temperature
0x5 Minimum FPGA Vccint
0x6 Minimum FPGA Vccaux
0x7 Minimum FPGA Vccbram
0x8 Maximum FPGA temperature
0x9 Maximum FPGA Vccint
0xA Maximum FPGA Vccaux
0xB Maximum FPGA Vccbram
0xC Current MGTVCCAUX voltage

The fixed-point conversion is already done in the FPGA. It has the format:

• Temperature: 10.6 format

• Voltage: 4.12 format

The system monitor is only operational if the initialization logic has detected a successful
lock of the external PLL.

I2C interface

The I2C interface has been implemented to be SMBus compatible, including Read/Write Word
and Read/Write Byte commands. It is operational shortly after initial FPGA configuration has
completed. The I2C slave address is configured to 0x28 + (SOCKET_ID & 0x3) through the
initialization logic. The following registers are available:

I2C Register Content

0x00 Initialization Logic Status (16-Bit, readonly)
0x01 Wafer ID (16-Bit, RW), writable only if wafer ID locked bit

is not set in Initialization Status
0x10 HICANN TX Interface Power Down (16-Bit, RW): 2 bits for

each channel (Bit 0: TX Clock, Bit 1: TX Data)
0x11 HICANN TX Post-Emphasis Enable (8-Bit, RW): 1 bit for each

channel
0x12 HICANN TX Equalization Enable (8-Bit, RW): Bit 0: EQ en-

able, Bit 1-7: Reserved, read-as-zero
0x80-0x8C System Monitor Registers (16-Bit, readonly)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 159

2.6.3.3 Layer 2 HICANN interface

Overview

The HICANN interface was initially designed in the DNC [61] [63]. As the current system
structure merged functionalities of the DNC into the FPGA, its low-level communication
components are adapted to run in the selected FPGA. The HICANN transmission control can be
found 8 times in the FPGA design, one for each HICANN. It schedules the packet transmission
towards the HICANN and modifies the received pulse packet events in their timestamps. A
detailed block diagram can be found in figure 2.6.7. Transmission and receiving of packets
and the configuration of one HICANN channel is presented in the following chapters. To
ensure fast interaction with all connected HICANNs, each of these channels is completely
independent from the other ones in all packet routing mechanisms.

One HICANN connection has 8 RAM cells, each with 64x24bit memory, corresponding with
the L1 channels in the HICANN. So each neuron on the eight available busses has one entry
in the memories. The RAM cells are dual port memories for speedup of the sorting algorithm
that is used for timestamp prioritized routing [62]. The channel supports different packet
types: two different event packets for different numbers of events, one communication
packet for HICANN configuration and different control packets for flow control. The low
level communication interface consists of two transmit LVDS [65] cells for clock and data
and a serializer that generates the bitstream for transmission. On the receiving side, there
are two LVDS cells, also for clock and data and a deserializer for bitstream to parallel
data conversion. Each direction offers 1 Gbit/s data rate. Transmission is assured by error
detecting, CRC, and optional error correction mechanism via acknowledge-resend packets.

The eight RAM cells need to be allocated to the receiving or the transmitting direction.
This is done in the configuration phase and corresponds with the configuration of HICANNs L1
channels. For each L1 channel, one RAM block is available. If the FPGA transmits towards
a L1 channel, the RAM block is in sorting heap mode to buffer and sort the event from the
FPGA. If the FPGA receives events from a L1 channel, the corresponding RAM block is used
as Look Up Table (LUT) for timestamp data that is required for time-based event routing.

Transmission towards the HICANN

The transmission towards the HICANN can be split into the handling of pulse event packets
and of configuration data (ARQ packets). Both packet types need to be buffered in FIFO
memories at the input, to allow reordering via scheduling mechanisms. The reordering is
done using a custom developed heap sorting memory (see [62]). The target L1 channel is
determined and the corresponding heap memory is prioritized selected. The memory orders
all events in a heap tree structure so the top element always contains the next closest event
in time. The top elements of all down-way configured heap memories are compared with
the current system time. The event is released to the HICANN, if the difference of both
is smaller than a preconfigured limit value. This combination of buffering and scheduling
reduces the demand on buffering capabilities on the Wafer, where the focus is on analog
neural structures. The limit for releasing can be set in increments of 32 clock cycles. This
setting must account for the link delay down to the Hicann, which is dependent on the link
traffic, i.e. on the number of neuron-neuron connections routed via this HICANN channel.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 160

Configuration ARQ packets are not modified in their contents or controlled via a timestamp
mechanism. They are forwarded to the HICANN immediately when the link is idle (i.e. no
event packet is scheduled for transmission). So pulse events are privileged in submission
before configuration ARQ packets to ensure timing requirements for neural connections.

Receiving from the HICANN

Incoming packets from the HICANN are immediately forwarded without further processing,
reordering, etc. The event packets arriving from the HICANN contain the timestamp of
the release time and a 9 bit wide identifier for the source neuron. The further packet
handling is done with source-based addresses routing and target-based prioritization via the
timestamp. The packet is forwarded towards the target by using the source identifier. At each
communication point a LUT is used to generate one packet for each required connection. So
the bandwidth requirement is reduced as the new packets are generated as late as possible
depending on the source address. The time-based prioritization uses the target timestamp.
Each packet contains the timestamp of the next closest release time. The sorting of the
pulse events prioritizes the next required packets. When new packet copies are generated
at crossing points, the new packet gets a modified timestamp with the next target release
time. As one packet always contains the next release timestamp in time for all possible target
points, the new release time is generated by simply adding a delta time to the existing time.

For further routing, when a event from the HICANN is received, containing the occurrence
time, the timestamp of the release time at the next target in time is required. Each
neuron-synapse connection is defined with a constant duration for transmission. The smallest
duration of all target paths is added to the received timestamp. The value is contained in
the routing memory of the L1 channel that has offered this event on the HICANN. The LUT
uses the source neuron identifier. After correction of the timestamp the event is forwarded.
If two event packets arrive at the same time, the second one is delayed until the first packet
is modified and then processed itself. Further routing of the event packets can be done in
the FPGA towards the targets via the source neuron id and prioritized by the timestamp via
the calculated target timestamp as described before. Configuration ARQ packets are simply
forwarded towards the FPGA without modification.

Configuration of a HICANN channel

For proper operation of routing mechanisms, the HICANN channel needs to be configured.
One of the most important configuration registers is the one for the direction of the L1
channels. It defines whether a L1 channel of the HICANN is configured for sending towards
the FPGA or for receiving data from the FPGA. Depending on this, the eight RAM cells need
to be assigned to their functionality, either the heap sorted buffer for sorting events and
sending them to FPGA, or the LUT for modifying the timestamp of a received event. In the
transmission section of the channel, for the sorted events the start time towards the HICANN
is defined by the difference between the event timestamp and the current system time. If
this difference goes below a configurable limit, the event is released. The limit is set via a
configuration register. The last required information before the experiment can start is the
content of the look up memories for modifying the event occurrence time into the release

HBP_SP9_Specification 13 May 2014 (git 56b296e) 161

DDR_RX_CHANNELDDR_TX_CHANNEL

L
V

D
S

 T
X

 C
L

K
P

A
D

L
V

D
S

 T
X

 D
A

T
P

A
D

L
V

D
S

 R
X

 C
L

K
P

A
D

L
V

D
S

 R
X

 D
A

T
P

A
D

SERIALIZER DESERIALIZER

BIT
ALLIGN

MACHINE

C
T

R
L
 S

H
A

R
E

TX1RX1

DDR

LVDS

IF

Serializer
Deserializer

Pads
replaced

by
FPGA

primitives

ASYNC
FIFO
8 bit

S
Y

S
C

L
K RX_CLK

Link transmission protocol

TX1RX1 DDR LVDS IF

Packet Control

Packet
TX

Packet
RX

64x
24bit

SRAM

mem
mux

64x
24bit

SRAM

mem
mux

64x
24bit

SRAM

mem
mux

64x
24bit

SRAM

mem
mux

64x
24bit

SRAM

mem
mux

64x
24bit

SRAM

mem
mux

64x
24bit

SRAM

mem
mux

64x
24bit

SRAM

Mem
MUX

Channel configuration

Figure 2.6.7: Block diagram of the L2 HICANN connection in the FPGA

time at the target HICANN.
All configuration data is transmitted by the host control to the FPGA. Each HICANN channel

requires separate configuration data. For debug and testing purposes, all configuration data
can also be set using the JTAG [1] interface. The implemented JTAG registers are presented
in table 2.10.34.

2.6.3.4 Core logic

As shown in Fig. 2.6.5, the core logic contains all modules that are not directly related to
the FPGA interfaces. They are divided into the Host ARQ protocol (HostARQ) module, which
implements the ARQ protocol for safe date transmission between host and FPGA, and the
remaining modules, which constitute the Application Layer for the host-FPGA communication.

Playback module

The playback module decodes the content of the playback memory and releases the stored
pulses and configuration packets to the HICANN interfaces at the defined release times. It
also writes the playback memory entries directly from the host interface to the playback
memory, using the format defined in section 2.10.2, but with frame type header stripped.
The playback memory is read block-wise with maximum burst size to optimize throughput.
The FPGA release time of the next pulse group is continuously compared to the 15bit system
time counter that is continuously running in the FPGA. Release of pulses is started when the
release time is reached. The, pulses in the pulse group are sent to the addressed HICANN
interface, one per clock cycle. In the current implementation, the playback module needs
6 clock cycles for reading and decoding of a pulse group with one pulse. This constitutes
the minimum distance between FPGA release times. Long inter-spike intervals are handled
via special waiting entries. Upon reading of such an entry, the playback module waits for a
number of system time counter periods, defined in the entry.

After an experiment start trigger is received, the playback module waits for one overflow
of the system time counter before releasing any pulses. By this, the starting time of the
experiment is made reproducible. After releasing the last spike, the module automatically

HBP_SP9_Specification 13 May 2014 (git 56b296e) 162

goes into its idle state, being ready for the next experiment.

Trace module

The trace module is responsible for writing received spikes from the HICANNs to the trace
memory, and sending the trace memory content to the host upon request. The module only
starts writing pulses when it receives a start signal from the playback module, which the
latter sends after it has waited for an initial overflow of the system time counter. By this,
both playback and trace modules start operating synchronously after an experiment start.
The trace module can receive four pulses in one clock cycle. An internal arbitration logic
combines the incoming pulses to memory entries. One 64bit entry can be written to the
memory in each clock cycle, which stores two pulses. For correctly handling spike intervals
longer than one system time counter period, the trace module writes a special control word
to the memory each time the system time counter overflows. Tracing of pulses is stopped
via a control packet from the host.

2.6.3.5 HICANN ARQ

The FCP connects via a single DNC Interface to up to 8 HICANNs. All ARQ links are encapsulated
in a module called the dnc_arq. It resides between the Application Layer (AL) and the DNC
Interface. Figure 2.6.8 shows the top level view and the word formats on both sides. The
dnc_arq is capable of receiving and transmitting one configuration word per clock cycle in
both directions assuming sufficient network bandwidths. The additional header information
at the DNC interface for the transport layer functionality is added and processed internally
which explains the difference in the interface widths.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 163

tagid payload
52 49 48 0

bits

id config packet
66 63 0bits

dnc_arq

Application Layer

DNC interface

Figure 2.6.8: Top level view of the dnc_arq module acting as a buffer between the AL and
DNC Interface in the FPGA of the FCP. The payload and tag fields at the AL
side are encapsulated in the configuration packet, the ID field denotes which
HICANN the packet belongs to.

2.6.3.6 HostARQ

The top level module host_arq_top implements the Transport Layer functionality between
host PC and FCP over GbE. Subsection 2.10.1.1 gives a high-level overview of the protocol,
a more detailed description can be found in [42]. Figure 2.6.9 shows a block schematic
with the neighboring modules. The module serves as a bridge between the AL and the
UDP layer providing full duplex data transfers which look as FIFO-like as possible to the AL.
It runs at a single clock frequency of 125MHz synchronously to the UDP and AL modules.
For the detailed interfaces and timing diagrams see Figure 2.6.3.6. Sending and receiving
data is handled separately in two submodules called rx_link and tx_link with minimal non-

HBP_SP9_Specification 13 May 2014 (git 56b296e) 164

blocking communication between them to ensure independent functionality and thus full-
duplex capability.

U
D

P

A
L

rx

ARQ
target

t/l
buffer

decode
fifo

prefetch decode

rx_link

header
fifo

tx frame
builder

ARQ
master

t/l
buffer

store

tx_link

read
data
fifo

RAM interface 1 cmd
fifo

write
data
fifo

read
data
fifo

RAM interface 0cmd
fifo

write
data
fifo

host_arq_top

data control protocol

Figure 2.6.9: Structure of the host_arq module in context of its neighboring modules.

DRAM frame storage The ARQ window is implemented in the DDR3 DRAM available on
the FCP. This enables configurable buffer sizes in the Megabyte range which relaxes timing
requirements for the software. The tx_link and rx_link submodules manage their own memory
spaces, that hold their respective windows, which they access via dedicated Xilinx MPMC
ports. The DRAM access times dominate the protocol latency in the FPGA due to a prefetching
scheme in the module implementation.

Interfaces

UDP rx side The start and end of a packet is announced via separate flags with data being
marked as valid by raising a valid flag. Note that in the current implementation of the UDP
layer the frame will be read out as a 32 bit word every two clock cycles which yields an
effective bandwidth of 2 Gbit/s.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 165

clock

sof

DEST_PORT [15:0] DEST_PORT

SRC_IP [31:0] SRC_IP

SRC_PORT [15:0] SRC_PORT

valid

data [31:0] D0 D1 D2 D3 D4 D5

eof

Figure 2.6.10: Timing diagram depicting the rx interface of the UDP module. The shown
transmission is consistent with an ARQ packet that carries a single 64-bit
payload word

Application Layer read interface The AL-read interface has been designed to look as FIFO-
like as possible. The ARQ implements full flow control which means that the AL can stall for
arbitrary periods of time between popping payload without loss of data. The decoder FSM
shown in the rx_link module in Figure 2.6.9 takes care of pairing the payload words with their
corresponding type. Figure 2.6.11 shows some examples for reading data to the AL. Signals
with the suffix *_i denote input signals from the rx_link’s point of view, signals marked with
*_o are output signals driven by rx_link.

clock

valid_o

next_i

type_o [15:0] A B C

data_o [63:0] D0 D1 D2 D3

Figure 2.6.11: Timing diagram showing several examples of reading data to the AL from
rx_link’s point of view. First, a single word transaction with type A where
the AL responds after a delay. Second, a single word transaction with type
B where the AL acknowledges the data in the same clock period. Lastly, a
two-word back-to-back transfer with type C

Application Layer write interface Writing data to the tx_link is very similar to the read
interface as discussed earlier. A data word is presented to the tx_link by the AL together
with its type by raising the al_write_valid flag. The tx_link will acknowledge the reception of
that word by raising the al_write_next flag which completes the handshake. This handshake
is necessary because it depends on many factors whether a data word can be stored in
memory at a particular time. Figure 2.6.12 shows some example writes.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 166

clock

al_write_valid

al_write_type [15:0] A B C

al_write_data [63:0] D0 D1 D2 D3

al_write_next

Figure 2.6.12: Timing diagram showing several examples of writing data to the tx_link. De-
pending on the situation data can be written within a single clock, back to
back or after a certain delay.

The UDP tx interface Transmitting a frame through the UDP requires two handshakes where
the UDP acknowledges both with the ready flag. The first handshake represents the request
to send a frame which is indicated through raising the sof flag. After the UDP responded by
raising the ready flag the frame data can now be pushed into the UDP with the push flag. To
end a frame the tx_link raises the sof flag after the last data word has been pushed. Note
that the current implementation of the UDP module buffers the frame entirely before it is
sent to the Ethernet MAC, thus there are no timing requirements on the length of the pause
between two pushes of data. This is useful because while the ARQ header data is quickly
available to be pushed into the UDP there is a significant delay before the payload data is
returned from memory. However, the tx FSM can be modified to adhere to more strict timings
which would require a maximum delay between two pushes if necessary. An example timing
diagram is shown in Figure 2.6.13.

clock
sof_o

DEST_PORT_o [15:0] DEST_PORT

DEST_IP_o [31:0] SRC_IP

SRC_PORT_o [15:0] SRC_PORT

ready_i
push_o

data_o [31:0] D0 D1 D2 D3 D4 D5

eof_o

Figure 2.6.13: Timing diagram demonstrating the interface between the tx_link and the UDP
module.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 167

HBP_SP9_Specification 13 May 2014 (git 56b296e) 168

2.7 Analog Read-Out

The Analog Readout Modules (AnaRMs) are used to sample the membrane voltages of select
neurons on the Wafer Module. Every reticle on a Wafer Module has two analog outputs
(c.f. 2.4.2). A Wafer with 48 reticles thus provides a maximum of 96 membrane voltage
signals. Each AnaRM has eight inputs, which are multiplexed to the input of its ADC. In the
NM-PM1 each rack with four Wafer Modules will contain one analog readout subsystem with
12 AnaRMs. This allows to connect all analog outputs from one Wafer Module to an AnaRM
input and sample 12 voltages simultaneously. The input multiplexers on the AnaRM support
a switching frequency of 20MHz. The analog bandwith of the AnaRM is greater than 300MHz.

Cables run from every Wafer Module to the analog readout subsystem. The inputs of the
12 AnaRMs can be freely configured by plugging in the appropriate cables.

The Flyspi is described in section 2.7.1 and the AnaFP is described in section 2.7.2.
The follwing enumeration lists all components involved in the analog read-out system:

Analog Readout Module (AnaRM) 12 AnaRMs are connected to the Wafer Modules mounted
in the same rack.

Control Computer Intel NUC based Linux system provides the USB 2.0 resources for connect-
ing the AnaRMs to the Compute Cluster.

Mechanical Assembly 3U rack-mount for the 12 Flyspis, the Control Computer and four USB
2.0 hubs.

Each AnaRM consists of three PCBs:

Flyspi FPGA PCB (Flyspi) small data aquisition PCBs containing a fast ADC, an FPGA and
512MiB DRAM memory.

Analog Frontend PCB (AnaFP) Each Flyspi carries one AnaFP containing multiplexers and
one pre-amplifier to connect the analog readout channels from the Wafer Module to
Flyspi.

2.7.1 Flyspi FPGA PCB (Flyspi)

The analog readout is based on a small custom FPGA board designed in Heidelberg. Its main
components can be seen in Fig. 2.7.1:

FPGA Spartan 6 FPGA providing the necessary logic resources

HBP_SP9_Specification 13 May 2014 (git 56b296e) 169

Figure 2.7.1: Photographs of top (left) and bottom (right) side of the Flyspi FPGA PCB (Flyspi).

ADC 12bit ADC with 125MHz sampling rate (Texas Instruments ADS6125).

DRAM 512MiB memory, sufficient to store 7.5hours of membrane voltage traces with full
sampling rate in biological model time using an acceleration factor of 104.

USB 2.0 controller The USB 2.0 controller can sustain up-to 40MB/s transfer rate to the
host. The USB 2.0 cable also supplies power to the AnaRM.

2.7.2 Analog Front End Board

The analog front end board contains an analog front end for the Spartan6 FPGA board. An
analog front end comprises signal multiplexing, signal termination and pre-amplification to
match the ADC’s input voltage range. The front end board described here is connected to
the Spartan6 FPGA board via two Samtec BTH-060-02-L-D-A (0.5 mm pitch) connectors.

Basically, this board selects one out of eight analog input signals, connects the selected
signal to ground via a 50� termination and pre-amplifies the signal to match the ADC’s input
voltage range.

The input signal voltage range at the input of the pre-amplifier (after termination) is
specified to be between 0 V and 0.9 V. The input signal is connected to the front end board
via an 8x2 male pin header with a pitch of 2.54 mm. Three multiplexers with three inputs
each can select one out of three input signals. Their outputs are connected to drive one
common net that is connect to the input of the pre-amplifier and the termination resistor.
The signal assignment for controlling the multiplexers from the point of view of the FPGA
can be found in section 2.10.3.

The pre-amplifier circuit is a modified version of the one that is shown in the data sheet
of the ADC (Texas Instruments ADS6125, Figure 95 in revision A, March 2008). It has been
adopted to match the 2 V differential input voltage range of the ADS6125 with a single ended
input voltage range of 0 V to 0.9 V.

According to the data sheet of the ADS6125 both input signals of the differential input the
ADC should be changed between -0.5 V and 0.5 V around a common mode voltage of 1.5

HBP_SP9_Specification 13 May 2014 (git 56b296e) 170

Figure 2.7.2: block diagram of the FPGA firmware for the analog readout board

V. This results in a peak-to-peak voltage rangen of 2Vpp. This input voltage range is then
mapped to the 12 bit digital output range between 0 and 4095.

In the case of the pre-amplifier used here, this results in a conversion between digital
output of the ADC and a single-ended input voltage as described in the following equation,
where ADC stands for a 12 bit unsigned integer value.

Vinp = 2.0� 6.6 · 10�4 · ADC + 5.7 · 10�9 · ADC2 (2.7.1)

2.7.3 FPGA Firmware and Software interface

The FPGA firmware consists of 4 modules that are depicted in figure 2.7.2 and will be
described in subsection 2.7.3.1. The user’s view on the configuration of the analog readout
module will be described in subsection 2.7.3.2.

2.7.3.1 FPGA Firmware

All data to and from the analog readout board are sent via a USB interface in the FPGA
firmware (module a on figure 2.7.2). This module can read and write data from and to the
DDR memory on the Spartan6 board. It can also send write and write commands via the
on-chip bus fabric that is based on the OCP1. The other modules which are described from
here on are connected to the USB decoder via this on-chip bus. The bus has an address with
of 16 bits and a data width of 32 bits. An overview of the base address of the different
modules that are discussed in this section can be found in section 2.10.3.

A sampling run comprises the recording of endaddr-startaddr samples from the ADC
and the storage of the resulting 12 bit data words to the DDR memory. A sampling run can

1Open Core Protocol, http://www.ocpip.org

HBP_SP9_Specification 13 May 2014 (git 56b296e) 171

be started by:

• a trigger signal that is connected to the analog readout FPGA and the Wafer-scale
neuromorphic system or by

• an asynchronous start signal that can be sent via USB to the FPGA.

To start a sampling run, the FPGA and the ADC itself have to be configured. This configura-
tion comprises three steps (all register definitions for these steps can be found in subsection
2.10.3):

1) To enable the power supply and to set the multiplexer on the analog front end board
(c.f. section 2.7.2) several static control signals have to be set. These signals are
controlled by control module c on figure 2.7.2.

2) To configure the actual ADC chip, there is an ADC controller module (module d in figure
2.7.2). This module sends configuration data via the SPI interface in order to set the
internal reference, and to select the default analog input (or for debugging purposes
the internal test pattern generator). Since this is a generic SPI module the details for
this configuration step can be looked up in the data sheet of the Texas Instruments
ADS6125.

3) Module b in figure 2.7.2 controls the sampling frequency of the ADC, reads back the
parallel data stream from the ADC and writes it into the DDR memory via the Xilinx
memory interface. This module is called "fast ADC controller" in this section and also
controls the start and end time of every sampling run. Before starting a sampling run,
the length of the sampling run (in terms of number of start address in memory and
end address in memory) has to be set in the fast controller. Furthermore, the trigger
configuration has to be set. There are two trigger input pins to the FPGA of which one
can simultaneously be selected and which can be set to de-activated, always active or
as single pass triggers.

2.7.3.2 Software Interface

To configure the Analog Readout Board, the user first has to acquire an object of the type
Handle::ADCHw. This object can be initialized without parameters to acquire the first
board in the list that libusb returns that matches the manufacturer and product ID. If the
object is initialized with a Coordinate::ADC object as a parameter the handle tries to
acquire a board with the given serial number.

All configuration information (for all three configuration steps explained above) is
held in an object of type ADC::Config. This information comprises the trig-
ger channel (Coordinate::TriggerOnADC), one out of eight measurement channels
(Coordinate::ChannelOnADC) and the number of samples that the FPGA should store
during one sampling run.

To prepare the board for measurement it first has to be configured by call-
ing ADC::config(Handle::ADCHw,ADC::Config). The ADC::Config object holds
the trigger channel as Coordinate::TriggerOnADC, the measurement channels as

HBP_SP9_Specification 13 May 2014 (git 56b296e) 172

Coordinate::ChannelOnADC and the number of samples that the FPGA should store dur-
ing one sampling run.

Now the trigger can be activate by calling ADC::prime or recording can be started
immediately by calling ADC::trigger_now. The recorded data can be read by calling
ADC::get_trace. Calling ADC::get_trace does not ensure that valid data is in the ADC
memory. The user can check if the trigger has been activated by calling ADC::get_status
or, when using ADC::trigger_now, has to wait an appropriate time. It can be read arbi-
trarily times without reconfiguring.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 173

HBP_SP9_Specification 13 May 2014 (git 56b296e) 174

2.8 Compute Cluster and Networking

Author: Eric Müller
For configuration purposes, data analysis and execution of closed-loop experiments (cf. sec-
tion 2.2.3) a conventional compute cluster complements the NM-PM system. Due to the
nature of the NM-PM system experiment execution speed mainly depends on configuration
and runtime data (i.e. spike or membrane traces) throughput. Maximizing experiment
throughput is one of the major goals for compute node and network design. Another key
feature is low-latency capability for closed-loop operation of the neuromorphic system and
one or multiple cluster nodes.

2.8.1 Node architecture

During both, configuration and experiment execution phase, a single compute node handles
up to 48⇥1-GbE [33] data streams1 section 2.10.1.1 to a single Wafer Module. To achieve
acceptable performance within the financial budget, as many desktop computer components
as possible are deployed. At present, the Intel® Core™ i7-4770 CPU offers state of the art
single-thread performance at reasonable cost. Per CPU a LINPACK benchmark performance
of approximately 180 GFlops can be reached.

A single compute node consists of:

Component

CPU 1 Intel i7-4770
RAM � 16 GB DDR3-1600 (or better)
Main board Q87-based, KVM support via Intel AMT

1 PCIe ⇥16 Gen3 (16 lanes) slot
4 memory slots, DDR3-1600 (or better)

� 4 USB 2.0 connectors
NIC � 1 10GbE port(s)

 6 µs low-latency,
MPI with RDMA-support

Case 1U including 2⇥-redundant PSU

One or more I/O nodes additionally contain 40GbE PCIe-based Network Interface Con-
trollers (NICs), 2TB (or more) fast storage (SSD-backed), 20 TB (or more) HDD-backed cluster

1one data stream per FCP

HBP_SP9_Specification 13 May 2014 (git 56b296e) 175

20x

10GbE 40GbE

48x
1GbE

Figure 2.8.1: The network topology of the NM-PM1 system: 20 Wafer Modules, 20 Compute
Nodes and one (or more; 4 are shown) I/O Nodes communicate via multiple
switches. The Compute Nodes are directly connected to the central switch via
10GbE. The I/O Nodes are connected via 40GbE. 48 ⇥ GbE connections from
each Wafer Module to the central ToR switch are aggregated into 10GbE.

storage.

2.8.2 Network architecture

Connectivity between wafers systems and hosts is established using multiple Ethernet stan-
dards. The FCPs controlling the neuromorphic system support a single GbE connection each.
This sums up to 48⇥1-GbE upstream connections. An aggregation switch combines all con-
nections into one (or more) 10GbE (cf. [36]) connections. Together with the 10GbE host links,
all aggregated wafer connections are switch in a single ToR switch. This network topology
can be upgraded to a complete fat-tree network. Control connections between frontend/
login and compute nodes are performed on a dedicated GbE network. Figure 2.8.1 shows the
network topology.

Component

Experiment switch 20 48-port GbE, 1-port 10GbE (or more)
low-latency (< 3µs)

Top-of-the-Rack switch � 1 48-port 10GbE, 1-port 40GbE (or more)
low-latency (< 3µs)

Control switches 1 32-port GbE
For all connections between Compute Node, ToR and Wafer Module switches SFP+ or QSFP

HBP_SP9_Specification 13 May 2014 (git 56b296e) 176

direct-attach copper cables are used. External connectivity for the NM-PM1 system is pro-
vided by one or more fiber-based (10GBASE-SR) links to the Kirchhoff-Institute for Physics
(KIP).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 177

HBP_SP9_Specification 13 May 2014 (git 56b296e) 178

2.9 System Control and Power Supply
Infrastructure

This section has been written by Maurice Güttler.
It is not feasible to use a neuromorphic hardware platform, when the user has to think

about turning the power on or handling hardware errors. These tasks have nothing to do
with the experiment and have to be hidden from the user. Therefore a control system is
developed, which works in the background.

2.9.1 Power Supply

The complete Wafer Module is supplied from the main input voltage of the Wafer Module
(-48 V) (V_MainIn). V_MainIn is only connected with the PowerIt board. On the PowerIt the
V_MainIn generates the intermediate voltage for the Wafer Module (7-13.5 V) (V_intermed),
which is the main supply voltage in the Wafer Module. The flow diagram of the system is
illustrated in fig. 2.9.1.

5 V Standby voltage The V5_Stby is immediately turned on with the V_MainIn voltage and
cannot be turned off. The only component supplied by the V5_Stby voltage is the Raspberry
Pi. The Raspberry Pi is the master control unit, which has to be powered at first.

2.9.1.1 HICANN Voltages

The HICANN voltages are generated on the PowerIt and the AuxPwr boards and only supply
the Wafer. The voltage regulators for the 1.8 V digital power supply voltage for the Wafer
(1.8 V) (VDD) and 1.8 V analog power supply voltage for the Wafer (1.8 V) (VDDA) are on the
PowerIt board. All other voltages are created on the AuxPwr boards.

The VDD and VDDA voltages from the PowerIt-Board supply the wafer as a whole, whereas,
the voltages of the AuxPwr only supply one half of the Wafer (see fig. 2.9.2). This way no
current sharing between the voltage regulators on the AuxPwr boards is needed, therefore,
the complexity of the boards and the failure proneness is reduced.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 179

48V 1.8V digital
1.8V analog

5V StandBy
V_Intermed

3.3V
5V

576

10V

1152

10V

10V

10

5V

5V StandBy

ADCs MCU

Voltage
Regulators

Voltage
Regulators

Kintex7
Voltage
Regulators

V_MainIn

PowerIt 2 x Powerboards

48 x K7 Boards

8 x Cure

Wafer

Clkboard

Raspberry Pi

FETs

mpcbV2

I2C-
Switches
Temp-
Sensors

Figure 2.9.1: Power infrastructure of the Wafer-Scale Integration System, red lines represent
the wafer power supply, the V5_Stby voltage(green) is reserved for the Rasp-
berry Pi, the V_intermed voltage(blue) supplies the FCP, AuxPwr and the AnaB
boards

Voltage name Voltage/V Current/A Board

VDD 1.8 200 PowerIt
VDDA 1.8 200 PowerIt
DI_VCC 1.8 10 AuxPwr
DI_VCCANA 1.8 2 AuxPwr
DI_VCC33ANA 3.3 7.8 AuxPwr
DI_VBias 1.25 0.1 AuxPwr
V_OL 0.6 - 1.1 19.2 AuxPwr
V_OH 0.6 - 1.1 19.2 AuxPwr
VDD25 2.5 15 AuxPwr
VDD12 11 0.1 AuxPwr
VDD5 5 0.1 AuxPwr
VDDBUS 1.2 115.2 AuxPwr

Table 2.9.1: List of the HICANN voltages with voltage and current values. The current values
represent the consumption of the entire Wafer.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 180

1

2
Powerboard

Powerboard

mpcbV2

Reticles

1
2
3
4

5
6

7
8

9
10
11

12
14

15
13

18
17

16
22

20
19

24
23

21 25
26

27
28

29

30
31

33

32
36

34
35

42
37

39
38

41
43

40

41
46

44

47
48

Figure 2.9.2: Reticle power supply from the two AuxPwr boards

2.9.1.2 Reticle Power Supply

Each reticle on the Wafer can be switched individually. This is done by using Power-FETs on
the MainPCB as High Side Switches. Figure fig. 2.9.3 shows the schematic of one Power-FET.
On the MainPCB three different Power-FETs from Vishay Siliconix are used. The Si5903DC [7]
is a p-channel Power-FET, which is needed to switch VDD12 and VDD5. The other Power-FETs
are the SiA912DJ [6] and the Si7234DP [5], both are n-channel Power-FETs. The Power-FET
gate is controlled by the Cure board. The 12 voltages are divided into four groups, so
one Enable-line goes to several gates. The following list shows the four groups with the
corresponding voltages:

1) DI_VCC, DI_VCCANA, DI_VCC33ANA, DI_VBias: LVDS common mode voltage (DI_VBias)

2) VDDA, VDD25, VDDBUS

3) VDD, V_OL, V_OH

4) VDD5, VDD12

Furthermore, there are certain dependencies between voltages, for example, between
VDD12 and VDD5. The floating gate cells on the Wafer could be destroyed by turning VDD12
on without VDD5. So using one enable line for both voltages, makes the wafer handling easier
and safer.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 181

Reticle

Power
supply

Enable
line

V_MEAS_A<x>

V_MEAS_B<x>
�V

Figure 2.9.3: An example of a Power-FET on the MainPCB. The drain is connected with the
power supply, the Source pin goes to the Wafer and the gate and the V_MEAS
lines are connected to a Cure board.

To measure the current flowing into the wafer, there are additional measuring lines(V_MEAS_A
and V_MEAS_B) before and after the Power-FET. The measuring lines are routed to the Cure
boards. The current measuring method is described in section 2.9.2.4 later.

2.9.2 Control System

The concept of the control system consists of small low-level components and one high-
level MaCU. The low-level components, e.g. the Cure boards, are only responsible for a
specific function and a spatial part of the system. They follow a command from the system
control unit, but can also act on their own under certain circumstances. Whereas the
MaCU is coordinating the low-level components and gathering all system parameters, like
temperatures, power supply state etc.

2.9.2.1 Communication Channels

The system has three types of communication channels. Figure 2.9.4 shows all communication
buses. There are four I2C buses, one 1wire bus and one JTAG chain.

1-wire The 1-wire (1-wire) bus is only used for 1-wire temperature sensors, which are placed
in the WBr. The advantages of 1-wire is, that it only needs three lines VCC, GND and Data[2].

JTAG A JTAG chain on the MainPCB board links all Cure boards together. So it is possible to
debug or program the microcontrollers on the Cure boards within the system. The program-
ming time increases with the chain length. But the programming time is negligible, since it
happens not very often.

I2C

This section describes the structure and tasks of the I2C chains in the Wafer Module. For a
technical description of the I2C Bus see [52].

The system components communicate over several I2C buses. For every chain the Raspberry
Pi is the I2C-master.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 182

MCU
ARMv6

MCU MCU

1:4 I2C-Switch

1:4 I2C-Switch

1:4 I2C-Switch

1:4 I2C-Switch

1:4 I2C-Switch

4 x 1wire
Temp-Sensor

Ethernet

I2C_Power

PowerIt 2 x AuxPwr

8 x Cure
Wafer

AnaB-
Master

Raspberry Pi

FETs

MainPCB

I2C-Master

I2C_Temp

I2C_Cure
I2C_Kintex7

JTAG_Cure
1wire-Temp

5 x I2C-
Temp-Sensor

12 x
Ethernet

12
Kintex7 + PMBus

12 x
Ethernet

12
Kintex7 + PMBus

12 x
Ethernet

12
Kintex7 + PMBus

12 x
Ethernet

12
Kintex7 + PMBus

Figure 2.9.4: Communication Channels in the Wafer Module

The buses are separated, because it increases the system reliability. If one I2C slave
spontaneously stops working and blocks the bus by pulling down the lines, the other buses
are not affected. Thus allowing the Raspberry Pi to bring the system in a state, where a
defect cannot damage more parts.

The following list contains the I2C chains and the components they are connect to.

• I2C_Power : PowerIt, Auxiliary Power Supply PCB

• I2C_Temp : I2C-Temperature sensors

• I2C_FCP : FPGA Communication PCB

• I2C_Cure : Monitoring and Control PCB for Reticles

I2C_FCP The I2C_FCP bus is different from the other three buses. The bus is used to
communicate with FCP boards.

On each of the FCP boards is a Power Management Bus (PMBus) controller. Unfortunately,
the PMBus controller has a limited address region, there are only four I2C addresses available.
So not more than four FCP boards can be attached to a I2C bus at the same time.

Instead of creating 12 different I2C buses, I2C multiplexer[4] are used to divide the bus
into separate parts. The I2C multiplexer splits one bus into four buses. With two stages of
multiplexers it is possible to reach every FCP board over one I2C bus (see fig. 2.9.4).

The Raspberry Pi has to know the routing table to all FCP boards. From the Raspberry Pis
point of view the multiplexers are ordinary I2C devices, which are controlled via the I2C bus.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 183

I2C-Temperature Sensor I2C-Address

1 0x38
2 0x98
3 0xB8
4 0xF8
5 0xD8

Table 2.9.2: I2C-Addresses of the temperature sensors, see also Figure fig. 2.9.5

Hence, the I2C-master has to configure the I2C multiplexers, before he can communicate
with one of the FCP boards.

2.9.2.2 System Monitoring

The System uses three physical measurands to determine its current state. These are temper-
ature, voltage and current. Each of them gets measured at certain locations in the system.
In addition to these measurands the system checks the availability of the components at
regular intervals.

Temperature Measurement The WBr contains four 1wire temperature sensors [2]. The
sensors measure almost the correct Wafer temperature, because there is only 2.68 mm of
aluminium between the Wafer and the sensors. Each 1wire temperature sensor has a unique
address, which has to be readout before the placement in the WBr.

Furthermore there are five I2C-temperature sensors [47] on the bottom side of the MainPCB
(see fig. 2.9.5). Each of these sensors can measure an extra temperature with an external
diode. The extra diodes are used to measure the temperature under the ToCo. The circles
in fig. 2.9.6 mark the positions of the measurements. The gathering of the data is done by
the Raspberry Pi(see section 2.9.2.3).

Voltage and Current Measurement The voltages and currents get measured on two different
system levels. On the top level the PowerIt and the AuxPwrs measure the voltages and
currents, before they flow into the MainPCB. This represents the global power consumption
of the entire system.

On the reticle level, the power consumption of a single reticle is measurable. This is
possible, because of the dual use of the Power-FETs on the MainPCB (see section 2.9.1.2).
The main purpose is to use them as switches, to turn the reticle on or off. Furthermore,
the voltage before and after the Power-FETs is measured. The subtraction of the two values
returns the voltage drop over the Power-FET and with the Drain-Source On-State resistance,
the current flowing through the PowerFET can be calculated.

The measurement and calculation is done on the Cure board (see section 2.9.2.4).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 184

Kintex7-Connectors

1

2

3

5

4

6

7

8

9

Figure 2.9.5: Position of the temperature sensors on the bottom side of the MainPCB. The I2C
temperature sensor are at the board edges (no. 1-5). The 1wire temperature
sensor are placed in the WBr(not visible in this image) (no. 6-9).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 185

1

3
2

4
5

Figure 2.9.6: Temperature sensor under the Top-Cover. The numbers correspond to the I2C-
temperature senors on the bottom side(no. 1-5)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 186

RCF-
Interface

1wire-
Temp

I2C-
FCP

I2C-
Cure

I2C-Interfaces

Curl-
Module

I2C-
Power

Power
Supply
Module

Reticle
Control
Module

FCP
Control
Module

Halbe

visualisation
web server

Ethernet

I2C-
Temp

Data
Collection
Module

Webserver
Update
Thread

System
Control
Module

User
Interface

local
screen

System Managment Software

Wafer Module

Figure 2.9.7: Internal structure of the System Managment Software

2.9.2.3 Raspberry Pi - Main System Control Unit

The Raspberry Pi is the central control unit of a Wafer Module. It has a standard Ethernet
connector for the communication with the computer hosts and additionally, there are enough
communication channels to the Wafer Module available. Its low price and big user community
make it the ideal interface between the hosts and the Wafer Module.

The connector definition with the Wafer Module can be found in section 2.5.3.10. This
section looks into the software on the System Control Unit.

On the Raspberry Pi runs a linux operation system, called raspbian [58]. The underlying
operating system handles the hardware control and presents an user-friendly API. Thus, the
development of the System Managment Software (SMS) is easier and more independent from
the actual hardware platform.

The SMS is a C++ program, which handles incoming commands from the HALbe, the readout
of temperature sensors, the web server updates, the communication with different I2C-
devices and automated tasks like power up. In fig. 2.9.7 the internal structure of the SMS is
illustrated.

There are only two ways of interaction with the program. The primary access goes over the
HALbe/Remote Call Framework (RCF)-interface. Over this interface the correct usage of the
Wafer Module is granted. Whereas, the interaction over the local screen is less restricted. It
is designed for debug and maintenance purpose only and not for continuous operation.

For the monitoring of the Wafer Module there is the web server update thread. It gathers
the information from the components, like temperature or current, and sends them via the
"Curl-module" to the web server.

Another important module of the software is the "system control module". It is responsible
for the coordination of system-wide tasks, e.g. the system shutdown. In section 2.9.2.5 the
sequence plans for the power up and shutdown can be found. In addition the module works

HBP_SP9_Specification 13 May 2014 (git 56b296e) 187

Cure-Board-ID Reticles

0 1, 2, 3, 6, 45, 47
1 4, 8, 9, 10, 11, 12
2 13, 14, 15, 18, 16, 22
3 17, 19, 20, 23, 24, 25
4 21, 26, 27, 28, 29, 30
5 31, 32, 33, 34, 35, 36
6 37, 38, 39, 40, 42, 43
7 5, 7, 41, 44, 46, 48

Table 2.9.3: Reticle-Cure board mapping

Cure-Board Socket-IDs I2C-address
<2> <1> <0> PIC1 PIC2 PIC3

0 0 0 0 0xC2 0xC4 0xC6
1 0 0 1 0xE2 0xE4 0xE6
2 0 1 0 0xD2 0xD4 0xD6
3 0 1 1 0xF2 0xF4 0xF6
4 1 0 0 0xCA 0xCC 0xCE
5 1 0 1 0xEE 0xF0 0xF2
6 1 1 0 0xDA 0xDC 0xDE
7 1 1 1 0xFA 0xFC 0xFE

Table 2.9.4: I2C-addresses of the microcontrollers on the Cure boards

as a security layer, which checks the correct usage of the system. For example, the module
only allows to turn the reticles on, if the power supplies and Cure boards are running.

Another security feature is the regular availability check of all system components. If
a component has a problem and is not responding, the module has to prevent the oth-
ers from being affected or damaged. A detailed description of the emergency plans is in
section 2.9.2.6.

2.9.2.4 Monitoring and Control PCB for Reticles - Cure

One Cure board monitors and controls six reticles on the MainPCB. It has 24 enable lines
and 144 voltage measuring lines from 72 Power-FETs (see fig. 2.9.3). Obviously, this number
of lines can not be handled with one microcontroller. Therefore, three Microchip dsPic33FJ
microcontrollers [8] are placed on the Cure board, so that every microcontroller is responsible
for two reticles. Table 2.9.3 shows the reticle-Cure board mapping.

Every microcontroller has a 7-bit I2C address, which is a combination of fixed bits, a
Cure board number and a microcontroller number. In table table 2.9.4 all microcontroller
I2C-addresses are listed.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 188

MEAS.

ENABLE

B

A

Reticle 1

12

4

MEAS.

ENABLE

B

A

Reticle 2

12

4

I²C

ADC

Out-Ports

PIC 1

Reticle 1Reticle 1

FETs
8

8

12
NC

NC

Header

8

4

32

Voltage
Dividers

Figure 2.9.8: Block diagram of the Cure board. Image created by Joscha Ilmberger.

Current measuring Every microcontrollers has two ADCs with 16 ADC inputs each. So in
total there are 96 inputs. However, this is not enough to digitize all the 144 measuring lines
from the reticles.

The voltage after the Power-FETs has to be measured by the microcontroller. Because only
with these voltages it is possible to determine, if the reticle receives the applied voltage and
if the Power-FET is working properly. As a result, this leaves only eight free inputs at each
microcontroller.

The first and third microcontroller use the free inputs to measure eight voltages before the
Power-FETs from one reticle. These voltages are VDD, VDDA, V_OL, V_OH, VDDBUS, DI_VCC,
DI_VCC33ANA and VDD25. The second microcontroller measures the supply voltages VCC33,
VCC5, VCC12 and the ADC reference voltage. Figure 2.9.8 shows schematically the routing
of the measuring lines for the first microcontroller.

Although only one third of the HICANN supply voltages are measure before and after the
Power-FETs, the current flowing through the Power-FETs can be estimated. The voltage values
before the Power-FET are replace by the values from the PowerIt and the AuxPwrs boards.
The value of the Drain-Source On-State resistance, which is needed for the calculation, is
taken from the datasheet (see [7], [6], [5]).

I =
Upwrboard � Upwrfet

Rds_on
(2.9.1)

Of course, the current value received from eq. (2.9.1) is not very precise. It does not consider

HBP_SP9_Specification 13 May 2014 (git 56b296e) 189

the voltage drop from the power boards to the Power-FET, which means the calculated
current is always higher than the actual value. Nevertheless, this offset does not affect
the overcurrent protection. It only means, that the threshold for overcurrent has to be set
higher.

2.9.2.5 System Sequence Plans

Power up sequence

The power up sequence is split into two steps. At first the wafer module gets the V_MainIn
voltage, which initiates all the components needed for a controlled system start, e.g. the
Raspberry Pi. Afterwards the systems waits for the command to power up everything else.

Initialisation Phase When the 48V power supply is turned on, the Raspberry Pi, the AuxPwr
boards , the Cure boards and the PMBus controller on the FCP boards start and run a series of
self-tests. Figure 2.9.9 shows this process. The results of the self-tests are evaluated with
the SMS on the Raspberry Pi. Only if all tests pass, the system can proceed with the next
phase.

PowerUp Phase After the initialisation phase is finished, the system waits for the start
command from the user. When the start command is received, the system follows the
PowerUp-Sequence shown in fig. 2.9.10.

The first modules to start are the AuxPwr PCBs. The microcontrollers on the AuxPwr boards
turn the voltage regulators on one by one and start monitoring immediately. If a problem
with one of the regulators occurs, the microcontroller stops the start-up sequence and turns
off all regulators. Then the master controller detects the error and sends the command to
turn off all voltages on the second AuxPwr too.

After all voltage regulators on the AuxPwr boards are on, the VDD and VDDA are the next
voltages to be turned on.

The last step is to turn on the FCP modules. Each FCP checks itself for proper operation.
If every test is passed, the system is ready and reticles can be turned on.

Power down sequence

The shutdown of the system is in general the power up sequence in reversed order. It is not
recommended to shutdown the system at once. Because there can be reverse currents with
high voltage peaks, which could damage sensitive electronics. Therefore, the reticles are
turned off one by one with a small delay.

2.9.2.6 Error Management

Although, all components are tested before the assembly of a Wafer Module, it is possible that
an error occurs during the system operation. Therefore, the System Managment Software
and the low-level components have integrated error handling routines.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 190

��������	���
���������

��	����
��� ������������ ��������� ������������	��������

��
���
��
���

���
��
��
���

��
�
��
��
��

��
��
�

 ����!"#���

$��������%&#�
����'#�������

�����(���)�����
������

��������������
���*��+

'#�������

������
��	��������

���������������
%&#

������
����������������$��������'#�	������*������������,�����

��������	���
�����������%&#

���������,

����,�
��++����������
������������
��	��������-�
��
������./�

������

��	���������
�����0

���������,

��
�������0

1��

���������������
�����0

1��

������+�
	����

��	��������
�������	���

�

2�

������+�
	������
�
�������	���

�

2�

������+�
	������
�
�������	���

�

2�

1��

�����+������

Figure 2.9.9: Initialisation of the wafer module

HBP_SP9_Specification 13 May 2014 (git 56b296e) 191

��������	���
���������

��	����
��� ������������ ��������� ������������	��������

�
��
��
��
�	

��
�

�

�����
��	��������
�������������

��������	���
��
������������

 �������
����� �����

�����!"#$�
�����������
����������

������!"#$�
 ������������
����� �����

!"#$��%���&��'

(��

����������
������

���������
�������������

���������������������
�����'

������)�
	��*�+,�
������

-�

�����������������
��))����

�����)�
�����

(��

����������%��.��
������������

�*��&� ������

$��������&��'

(��

/��������������
��'

-������

(��

-�
����� ��

��	��������
�����

������)�
	��*�

��	��������
����������)

-�
������)�

	��*���	�����
!"#$

����������)

�����
0�����)�����1�
��))���

�����������)'

(��

-�

Figure 2.9.10: Power up the wafer module

HBP_SP9_Specification 13 May 2014 (git 56b296e) 192

��������	
�������	����

�����
���� ������������ �	��������� ��������������������

��
	

��

��
��
�
�
��
�
��
��
��
��
	�
�

��	
���
���
�

�����!"	������#�

�������	���
������

�
��
�!��	
����
���	����#

"	���������
�����

���	��
���
�������
	����
��$	��
�������

%�����
������

	��������&

%��������������

	��������&

�����������

	��������&

������ �
�
��'(�
������

������ �
�
��

����������

������ �
�
���	���
������

���
� ������

)�

�����!"	������#�

����������
������

*��

)�

�����!"	������#�

������������

*��

��������
�������

	��������

��$	��
�������

)�

�����!"	������#�

�������

��������
�������

	��������

��$	��
�������

�����

	��������&

������ �
�
��

����������
)�

*��

Figure 2.9.11: Flow chart of the wafer shutdown sequence

HBP_SP9_Specification 13 May 2014 (git 56b296e) 193

Overcurrent problem - Reticle level

Parts: Monitoring and Control PCB for Reticles
Problem: A Cure board detects one or more voltages with a current value above a defined
threshold
Sequence plan:

• Turn off all Power-FETs of the reticle

• Set Overcurrent-Flag for this reticle

A problem with one reticle does not require a shutdown of the entire system. This way other
experiments, which are using other reticles, are not disturbed and can finish their run.

Over-/undervoltage problem - Reticle level

Parts: Monitoring and Control PCB for Reticles
Problem: One or more HICANN voltages are not in their correct working region.
Seqence plan:

• Turn off the voltages of this reticle

• Set OV/UV-Flag

The Power-FETs cannot regulate the HICANN voltages, they only act as switches (see sec-
tion 2.9.1.2). Therefore, the problem is either on the Wafer or on the PowerIt/AuxPwr
boards. Nevertheless, for safety reasons the reticle is turned off.

Overcurrent problem - Power supply level

Parts: PowerIt Main Power Supply PCB, Auxiliary Power Supply PCB
Problem: One or more voltage regulators exceed a user-defined current threshold.
Sequence plan:

• Turn off all reticles

• Turn off all HICANN voltages, but keep the other supply voltages on

• Set Overcurrent-Flag of the voltage regulator

Over-/undervoltage problem - Power supply level

Parts: PowerIt Main Power Supply PCB, Auxiliary Power Supply PCB
Problem: One or more voltages are not in their correct working region.
Sequence plan:

• Turn off all reticles

• Turn off all power supplies

• Send e-mail to hardware maintenance mailing list

HBP_SP9_Specification 13 May 2014 (git 56b296e) 194

Overtemperature problem (soft limit)

Parts: 1wire Temperature sensor in the Wafer Bracket, I2C Temperature sensor on the Wafer
Module Main PCB
Problem: The temperature of one or more sensors is above a user-defined soft limit.
Sequence plan:

• Send e-mail with system information to the hardware maintenance mailing list

The soft limit is not a critical point for the system. Nevertheless the hardware maintenance
group should look for possible defects, like a failure of the air-conditioning system.

Overtemperature problem (hard limit)

Parts: 1wire Temperature sensor in the waferbrackt, I2C Temperature sensor on the Wafer
Module Main PCB
Problem: One or more temperature sensors measure values above a user-defined hard limit
Sequence plan:

• Turn off all reticles

• Turn off all HICANN voltages

• Send e-mail with information about system status to the hardware maintenance mailing
list

In this case, the temperature has risen above a threshold, where a hardware damage is
imminent. Therefore, the system ends its operating phase and goes into a state, where only
the Raspberry Pi, the Cure boards and the microcontroller on the power supply boards are
running.

Level-1 component not reachable

Parts: PowerIt Main Power Supply PCB, Auxiliary Power Supply PCB, FPGA Communication
PCB
Problem: A component is not responding to any request.
Sequence plan:

• Shutdown the system, like in Figure fig. 2.9.11 However, the sequence is not inter-
rupted, if an error occurs.

• Send e-mail with information to the hardware maintenance mailing list

Level-1 components are essential parts for the system operation, like the PowerIt and the
Cures boards. The Raspberry Pi tests in regular intervals the communication channels to
these Level-1 components. If an error occurs, the system gets shutdown down immediately.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 195

Level-2 component not reachable

Parts: 1wire Temperature sensor in the waferbrackt, I2C Temperature sensor on the Wafer
Module Main PCB
Problem: A temperature sensor returns no data anymore.
Sequence plan:

• Remove the sensor from data acquisition list

• Send e-mail to hardware maintenance mailing list

Level-2 components are not important for the system operation. Only if all temperature
sensors of the Wafer Module are not responding, the Raspberry Pi turns the system down.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 196

2.10 Hardware-Software Interface

2.10.1 Host to FCP Communication

This section specifies the packets used for the communication between Host computers and
FCPs. This communication channel utilizes Ethernet, UDP/IP and a custom ARQ-style proto-
col. For a specification of the latter see section 2.10.1.1. Different data types (e.g., config-
uration data, routing and pulse data) are specified in application layer (cf. section 2.10.2).

As the Ethernet frames, which belong to the Link Layer (cf. [38]), are handled by the FCP’s
Media Access Controller (MAC) unit these are omitted. For a specification of the utilized
standard packet headers (i.e. Ethernet, Internet Protocol version 4 (IPv4) and UDP headers)
see [24, 56, 55].

2.10.1.1 Transport Layer Protocol

Within the OSI model [38] the transport layer provides end-to-end communication channels.
The protocols can be further separated into connection-oriented or connection-less models.
Error detection and correction, flow control and ordering of data are additional features of
transport layer protocols.

The NM-PM1 contains many concurrent data streams per wafer unit: 48 FCPs connected to
the cluster node via 48 GbE links, multiple Analog Readout Modules (AnaRMs) (cf. chapter 2.7)
are connected via their intermediate control computers using USB 2.0 and GbE. Requirements
are high throughput and reliable communication channels for system configuration and most
operational modes (i.e. all operation modes except for real-time communication, cf. sec-
tion 2.2.3).

A simple protocol implementing the requirements is the ARQ protocol realizing the go-
back-N packet-based sliding window method [70]. Messages, i.e. data frames, carry one
sequence number identifying the packet itself and one acknowledge number confirming the
successful reception of remote data. Packets that have not been acknowledged by the re-
mote endpoint will eventually, after timing out, be resent to the remote endpoint. Incoming
data is handled in order; missing packets interrupt data handling until the corresponding
resends will resume the data stream handling.

An easy measure to estimate the required memory or window size given a protocol delay
is the bandwidth-delay or throughput-delay product:

T ⇥ D = C

HBP_SP9_Specification 13 May 2014 (git 56b296e) 197

The link capacity C represents the bits-in-flight. The delay D comprises mostly protocol han-
dling times but also link delays (wire, network hardware). Typical software delays (without
real-time constraints) are in the order of milliseconds. Thus:

10 GBit/s⇥ 1 ms = 10 · 106 Bits ⇡ 1.2 MiB

Assuming standard-sized Ethernet frames (i.e. 1500 Bytes) this yields approximately a win-
dow size of 1.19 MiB/1500 ⇡ 800 frames distributed over 48 streams. The FPGA firmware
uses 512 frames per connection by default.

The packet format (omitting Ethernet, IP and UDP headers) looks like this:

0 31 63

Acknowledge Number Sequence Number

Valid Bit Payload Type Count #N

Payload entries (64 bits)

· · ·
(N� 1)th entry

The sequence field marks the packet number within the sender’s window. The acknowledge
field indicates the last successfully received packet from the communication partner. Packets
carrying a non-zero valid-field are valid data packets if the length field indicates a size > 0.
Payload type and the number of payload entries are stated in the 16-bit type/length fields.

2.10.2 Host to FCP Payload Data Formats

All payload data types are listed in Table 2.10.1. The payload data is aligned to 64 bit for
more efficient handling. It can have a maximum length of 1456 Byte (maximum IP frame
length minus IPv4, UDP and ARQ headers).

Hex. Code Type
0x0CA5 FPGA Trace/Pulse
0x0C5A FPGA Playback Memory
0x0C1B FPGA Configuration
0x2A1B HICANN Configuration

Table 2.10.1: Application Layer Packet Types

2.10.2.1 FPGA Trace / Pulse Data

Payload Type: 0x0CA5
Format:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 198

Pulse entries:

Timestamp 1 Label 1 00 Timestamp 2 Label 2 00
0 15 30 32 47 63

Overflow Indicator:

10 # of Timestamp Overflow 1
0 30 32 63

Field Length [Bits] Description
Timestamp 15 timestamp of the received pulse
Label 12 address of the pulse, from MSB to LSB:

3 bit HICANN ID
9 bit neuron ID

Overflow 31 overflow count since experiment start

Description:
This frame is used for sending pulses stored in the trace memory to the host. In principal,
the layout of the frame (except for the frame header) is the same as in the trace memory.

Handling:
The timestamp, the HICANN ID and the neuron ID is contained in the pulse packet coming
from the HICANN. Overflows in the timestamp counter of the FPGA are stored as separate
trace memory entries with a leading ’high’ bit. Such an entry is generated always at an
timestamp overflow. Due to the higher width of memory entries (currently 64bit), an empty
pulse entry may be following an overflow indicator, denoted by MSBs ’01’. Once the host
requests the reading of the trace memory via an FPGA configuration packet, frames with the
above format are generated in the FPGA and sent to the host.

2.10.2.2 FPGA Playback Data

Payload Type: 0x0C5A

Format:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 199

Single-Pulse Group:

0 FPGA Time 0 Count=1 Label 1 Timestamp 1
0 1 4 16 18 31 36 49 63

Multi-Pulse Group:

0 FPGA Time 0 Count=P Label 1 Timestamp 1
...

Label P-1 Timestamp P-1 Label P Timestamp P
0 1 4 16 18 31 36 49 63

HICANN configuration:

FPGA Time 1 Count = C

HICANN Data 1 Des
...

HICANN Data C Des
0 16 18 31 48 59 63

Timestamp Overflow Indicator:

10 Overflows
0 1 31 63

Wait for next experiment trigger:

11
0 1 63

Field Length [Bits] Description
FPGA Time 14 release timestamp of the group in the FPGA
Pulse Entries P 14 number of pulse packets that should be gen-

erated at the FPGA release time
Timestamp 15 timestamp field of the packet
Label 12 destination address of the pulse, as defined

in FPGA trace/pulse data
Config Entries C 14 number of config. packets that should be

generated at the FPGA release time
Des 3 destination HICANN ID of the config packet
HICANN Data 49 content of the sent HICANN config packet

(lower 49 bit)
Overflows 30 number of timestamp overflows to wait be-

fore continuing

Description:
This packet type is used for transmitting stimulus data to the playback memory of the FPGA.
It can carry both spike data and HICANN configuration data, allowing for synchronisation
between the two. A ’high’ bit at position 48 in the next entry indicates a control command

HBP_SP9_Specification 13 May 2014 (git 56b296e) 200

for the playback state machine. Currently, there are two such commands, separated by the
following select bit (position 15):

• select=’low’ The execution should be stopped until the specified number of timestamp
overflows occured. This is required for correct release of packets that are separated
by more than half the time span of a timestamp counter cycle.

• select=’high’ The execution should be stopped until the next global experiment start
signal is received (via an FPGA configuration packet). This command is used to synchro-
nize the beginning of an experiment run over the whole system.

Handling:
All packets of this type are forwarded directly to the playback memory of the FPGA and stored
there consecutively. Once an experiment start signal is received via an FPGA configuration
packet, the content of the playback memory is read out and pulses or configuration packets
sent to the HICANN. This process is only stopped when all stored entries have been played
back or when a wait command in the playback memory is read. In both cases, the playback
state machine waits for the next experiment start signal. Additionally, if the end of the
stored entries has been reached, the read and write addresses for the memory are reset.

2.10.2.3 FPGA Configuration

Payload Type: 0x0C1B
Format:

ST
C

ST
P

SO
T

ST
T

ST
E

CT
M

CP
M

6331250

Field Length [Bits] Description
CPM 1 Clear Playback Memory
CTM 1 Clear Trace Memory
STE 1 STart Experiment
STT 1 STart Trace
SOT 1 StOp Trace
STP 1 Start reading Traced Pulses
STC 1 Start reading Traced Configuration packets

Description:
This packet is used for global settings in the FPGA and for controlling its behaviour. Most
importantly, it contains a set of control flags that control the execution of an experiment
and the handling of traced pulses and configuration data.
Handling:
The above control flags are directly stored in hold registers that are connected to the corre-
spondent inputs of the playback and trace control modules.

2.10.2.4 HICANN Configuration Data

Payload Type: 0x2A1B

HBP_SP9_Specification 13 May 2014 (git 56b296e) 201

Format:
HICANN Data Ta

g Des
0 48 59 63

Field Length [Bits] Description
Des 3 specifies HICANN address for the packet
Tag 1 specifies ARQ tag on HICANN
HICANN Data 49 HICANN configuration data

Description:
This frame type is used for providing a single packet of raw HICANN configuration data to the
ARQ modules in the FPGA.
Handling:
HICANN configuration data is forwarded to the HICANN ARQ module.

2.10.2.5 Sideband Data

For low-level control of the FPGA, UDP packets with 32bit payload have been defined that are
sent to a specific UDP target port on the FPGA. Two types are defined, system time counter
start/stop trigger, and FPGA reset and reprogramming. These are defined in the following.

System Time Counter Control

Port: 1800
Format:

TC
C 0x55

0 24 31

Field Length [Bits] Description
TCC 1 enable signal for system time counter (active high)

Description:
The TCC flag in the packet is stored in a register in the FPGA whose output enables counting
of the system time counter in the FPGA. If the register is activated, i.e. set from 0 to 1,
the system time counter is reset to 0, a trigger pulse on the sys_start output is generated
to start the system time counters on the HICANNs and the FPGA system time counter starts
running. If the TCC flag is set back to 0, the FPGA system time counter stops.

FPGA Soft Reset and Reprogramming

Port: 1801
Format:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 202

Reset:

RC
R

RF
H

RD
E

RD
P

RH
A 0 0x55

0 4 24 31

Reprogramming Trigger:

0xDEADE11D
0 31

Field Length [Bits] Description
RCR 1 reset of core logic (active high)
RFH 1 reset of FPGA-HICANN interfaces (active high)
RDE 1 reset of DDR3 frame buffer memory (active high)
RDP 1 reset of DDR3 pulse memories (active high)
RHA 1 reset of HICANN-ARQ module (active high)

Description:
Each reset flag in the reset packet is stored in an internal FPGA register. Each register output
is merged with the global reset from the external reset pin via an OR-gate and connected to
the reset input of the corresponding modules.

The reprogramming trigger packet stops operation of the FPGA immediatly and induces a
re-load of the FPGA firmware from the external Flash memory.

2.10.3 Analog Readout

2.10.3.1 Host-to-Analog Readout Module USB protocol

The AnaRM is connected to the host PC via a USB connection. This section describes the
commands that can be sent to the Flyspi of the AnaRM. There are 11 different commands for
which their packet structure is depicted in the following figures.

Except for the commands READBURST, WRITEBURST and WRITEOCPBURST, all commands
use a fixed packet size of 512 bytes. The following register diagrams only show the first
16 bytes of these packets and further bytes of the packet are irrelevant unless otherwise
stated. The first row in each diagram contains the most significant bits of the data stream,
continuing to less significant bits in the lower rows.

31 7 6 0

unused 0x0
©

command field

unused

unused

unused

Figure 2.10.1: NOP (0x0)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 203

Request31 7 6 0

unused 0x1
©

command field

memory address

unused

unused

Reply31 7 6 0

unused 0x1
©

command field

memory address

reply data word

unused

Figure 2.10.2: READMEM (0x1)

31 7 6 0

unused 0x2
©

command field

memory address

memory data

unused

Figure 2.10.3: WRITEMEM (0x2)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 204

Request31 7 6 0

unused 0x3
©

command field

memory address

burst length

unused

Reply31 7 6 0

unused 0x3
©

command field

memory address

burst length

reply data word

reply data word

...

Figure 2.10.4: READBURST (0x3)

31 7 6 0

unused 0x4
©

command field

memory address

burst length

data word

data word

...

Figure 2.10.5: WRITEBURST (0x4)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 205

Request31 7 6 0

unused 0x5
©

command field

unused

unused

unused

Reply31 8 7 6 0

unused 0x5
©

command field

unused

unused status reg.
content

unused

Figure 2.10.6: READSTATUS (0x5)

31 8 7 6 0

unused 0x6
©

command field

unused

unused status reg.
content

unused

Figure 2.10.7: WRITESTATUS (0x6)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 206

Request31 16 15 7 6 0

unused 0x7
©

command field

unused OCP address

unused

unused

Reply31 30 16 15 7 6 0

unused 0x7
©

command field

E unused OCP address

OCP Response

unused

Figure 2.10.8: READOCP (0x7), here the field ’E’ indictes whether the on-chip bus fabric FIFO
was empty after the OCP request

31 30 16 15 7 6 0

unused 0x8
©

command field

W unused OCP address

OCP data

unused

Figure 2.10.9: WRITEOCP (0x8), here the field ’W’ selects whether the OCP request is a write
request (1) or a read request (0).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 207

Request31 7 6 0

unused 0x9
©

command field

unused

unused

unused

Reply31 16 15 7 6 0

unused 0x9
©

command field

E unused OCP address

OCP Response

unused

Figure 2.10.10: READOCPFIFO (0x9), here the field ’E’ indicates whether the on-chip bus
fabric FIFO was empty after the OCP request

31 30 16 15 7 6 0

unused 0xa
©

command field

unused

burst length

W unused OCP address

OCP Data

W unused OCP address

OCP Data
...

Figure 2.10.11: WRITEOCPBURST (0xa), here the field ’W’ selects whether the OCP request
is a write request (1) or a read request (0).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 208

2.10.3.2 Pin assignment for analog input header

The input signal to the AnaFP is connected via an 8x2 male pin header with a pitch of
2.54 mm. The configuration of this pin header is depicted in figure 2.10.12. The individual
signals can be selected via a multiplexer on the AnaFP whose configuration is described in
the next subsection.

7 6 5 4 3 2 1 0

GND 6 5 GND 3 1 GND TRG0

GND 7 GND 4 2 GND 0 TRG1

Figure 2.10.12: Configuration of the analog signal pin header on the AnaFP

2.10.3.3 FPGA registers for ADC board configuration

Register 2.10.1: ADC BOARD CONFIGURATION (0x8000)

un
us

ed

unused

31 25

po
wer

_e
na

ble

0

24

un
us

ed

unused

23 16

MUX0

0 0

15 14

un
us

ed

unused

13 12

MUX1

0 0

11 10

MUX2

0 0

9 8

un
su

ed

unused

7 0

MUX0 switches between analog channels 0, 1 and 2. Both 0 means Mux 0 is in high
output impedance mode.

MUX1 switches between analog channels 3, 4 and 5. Both 0 means Mux 1 is in high
output impedance mode.

MUX2 switches between analog channels 6 and 7 and local ground input. Both 0
means Mux 2 is in high output impedance mode.

power_enable switches linear power regulators on the analog frontend board.

2.10.3.4 FPGA registers for Fast ADC controller

Successive registers starting at on-chip bus address 0x3000.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 209

7 6 5 4 3 2 1 0

unused startaddr[27:24]

startaddr[23:16]

startaddr[15:8]

startaddr[7:0]

unused endaddr[27:24]

endaddr[27:24]

endaddr[23:16]

endaddr[15:8]

endaddr[7:0]

ADCPD ADCRS M1 M0 CB1 CB0 HI1 HI0

unsused TRCH TREN TRSN STOP STRT

ADCPD Invertedly connected to physical power-down pin of ADC.

ADCRS Invertedly connected to physical reset pin of ADC.

M1 Controls in which order the single words that are sampled from the double data rate bus
of the ADC are stored in the internal registers.

M0 Controls whether the clock phases that are sampled via the IDDR2 clock receiver should
be written into the bit positions directly after the ADC data that are written to memory.

CB1 Controls the bit value that is applied in the first phase of the clock output to the ADC
that is generated with an ODDR2.

CB0 Controls the bit value that is applied in the second phase of the clock output to the ADC
that is generated with an ODDR2.

HI1 Most significant bit that will be written to memory together with a single ADC sample.

HI0 Second-to-most significant bit that will be written to memory together with a single ADC
sample.

TRCH Selects one of two trigger channels that are physically connected to the board.

TREN Selects whether the FPGA listens for a trigger signal at its input pins. 1=enabled.

TRSN Selects whether the FPGA should only trigger once and then not listen for trigger
signals any longer. 1=single trigger mode.

STOP Asynchronously stops an ADC sampling run. Normally the sampling run stops when
endaddr is reached.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 210

STRT Asynchronously starts an ADC sampling run. If the sampling run stops because the
endaddr has been reached and this signal is still enabled, the controller will start
another sampling run.

2.10.3.5 FPGA packet format for SPI-based ADC controller

The SPI configuration to the ADS6125 can according to the part’s data sheet can be set via
on-chip bus commands to the FPGA. The module uses only the lower 8 bits of the bus data
field but can make use of the lower 8 bits of the address field.

15 12 11 10 9 8 7 0

unused END USE SEL optional SPI DATA
©

bus addr

unused SPI DATA
©

bus data

USE selects whether the optional SPI DATA field in the lower 8 bits of the bus address field
should be prepended to the SPI DATA field in the lower 8 bits of the bus data field.

END defines whether the SPI chip select signal should be de-asserted after the SPI transfer.
If the signal is set to 0, multiple requests to this bus address can be combined to build
larger concatenated SPI transfers.

SEL Controls which of four chip select signals should asserted during the SPI transfer. One
module instantiation of the on-chip-bus-to-SPI converter in the FPGA firmware can
control up to four different chips via SPI.

2.10.3.6 FPGA bus base addresses

Address Module name

0x1000 ADC configuration via SPI
0x3000 Fast ADC controller
0x8000 Analog readout board controller

HBP_SP9_Specification 13 May 2014 (git 56b296e) 211

0000

1fff

Crossbar left

2000

3fff

Repeater left

4000

5fff

Neuron control

6000

7fff

Neuron builder

8000

9fff

Floating gate top left

A000

Afff

syn. driver switches bottom
left

B000

Bfff

Floating gate bottom left

C000

C7ff

Repeater bottom left

C800

Cfff

Repeater bottom right

Figure 2.10.13: Address map of HICANN configuration registers (Part 1 of 2).

2.10.4 HICANN Configuration Registers

Figures 2.10.13 and 2.10.14 given an overview of the address space of the internal hicann bus.
Not all addresses in the designated spaces are necessarily valid. Refer to the documentation
of the module in the following sections for the actual used addresses.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 212

D000
D0ff

syn. driver switches top right

D100
D1ff

syn. driver switches bottom
right

D200
D2ff

Crossbar right

D300
D3ff

Repeater right

D400

D5ff
Repeater top right

D600
D6ff

Floating gate top right

D700

Dfff

Floating gate bottom right

E000

E7ff

syn. driver switches top left

E800

Efff

Repeater top left

F000

F7ff

DNC interface

F800

Ffff

Spl1 interface

Figure 2.10.14: Address map of HICANN configuration registers (Part 2 of 2).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 213

2.10.4.1 Hicann SRAM controller

source name description
dw data width width of sram data bus (min 8, max 32)
aw address width width of sram address bus+1, i.e. maxint(log2(sram

depth))
tc timing control width of timing control field (2tc max delay in clk

units)
numinp number of inputs number of input ports (with dw width)
numoutp number of ouptuts number of output ports (with dw width)
cnfgadr conifg address address bit selecting configuration registers,

below is the IO-port address space
resval reset value output port register array reset value

(a) Parameters of the SRAM controller module. These parameters can only be controlled a compile time during
Verilog instantiation. They are listed here because the SRAM controller is instantiated multiple times on the
HICANN with different parameter settings for these values.

cnfgadr cnfgadr-1:0 name data bits description
1 0 trd tc-1:0 read delay, data valid after enable
1 1 tsu 7:4 setup time for address or data

before enable -1, i.e. setting
tsu=0 results in a setup time of 1

1 1 twr 3:0 enable pulse width -1
0 IO port dw-1:0 IO read/write IO data

(b) Timing control registers of the SRAM controller

Table 2.10.2: SRAM controller configuration.

2.10.4.2 Hicann neuron builder

name value
dw 25
aw 10
numinp 3
numoutp 2
cnfgadr ’h10
resval 0

Table 2.10.3: SRAM controller settings in neuronbuilder.sv

adr name r/w bit assignment [msb:lsb]
0 out1 r/w n_resetb,spl1_resetb,cc.bigcap,cc.slow,cc.fast
1 out2 r/w cc.aout_en,cc.aoutselect
2 inp r constant 1 (chip version)

Table 2.10.4: SRAM controller static registers in neuronbuilder.sv

HBP_SP9_Specification 13 May 2014 (git 56b296e) 214

name bits funciton
n_resetb 2 neuron reset top block=[0] , bottom block=[1]
spl1_resetb 1 neuron spl1 output reset
cc.bigcap 2 neuron control bits (see subsubsection 2.3.4.4)
cc.slow 6 neuron control bits (see subsubsection 2.3.4.4)
cc.fast 6 neuron control bits (see subsubsection 2.3.4.4)
cc.aout_en 2 enable 50 Ohm output buffer top=[0], bottom=[1],

when top buffer is disabled, biasTG is open
cc.aoutselect 20 select analog output source top=[9:0],

bottom=[19:10] (see subsubsection 2.3.4.4)

Table 2.10.5: Content of the static control and reset registers in neuronbuilder.sv

name bits address
spl1 6 Out of every group of 4 denmems,

bottom left denmem address is adr (mod 0),
top left is adr (mod 1), bottom
right is adr (mod 2) and top right
is adr (mod 3)

nmem top 8 3+4i
nmem bottom 8 3+4i
nb_vertical 1 2i
nb_fireen_top 1 2i + 1
nb_fireen_bottom 1 2i

Table 2.10.6: Content of the bit lines controlled by the SRAM controller in neuronbuilder.sv

2.10.4.3 Hicann denmem configuration

slow fast divisor
0 0 32
0 1 8
1 0 160
1 1 40

(a) Iradapt

slow fast divisor
0 0 3
0 1 1
1 0 27
1 1 9

(b) Igladapt

slow fast divisor
0 0 3
0 1 1
1 0 27
1 1 9

(c) Igl

Table 2.10.7: Scaling factors of the current mirrors for three different currents.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 215

Number function
0 inout
1 inout
2 inout
3 interconnect neuron pair
4 activate firing of left neuron
5 enable fire input of left adjacent neuron + membrane interconnection
6 enable fire input of right adjacent neuron + membrane interconnection
7 activate firing of right neuron

(a)

bit 2 bit 1 bit 0 aout right aout left currentin right currentin left
0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 1 0 0
0 1 1 1 1 0 0
1 0 0 0 0 1(v1 0) 0(v1 1)
1 0 1 1 0 1(v1 0) 0(v1 1)
1 1 0 0 1 0(v1 1) 1(v1 0)
1 1 1 0 0 0(v1 1) 1(v1 0)

(b) Meaning of the inout control bits

Table 2.10.8: SRAM control bits for denmem interconnect and analog output

2.10.4.4 HICANN analog output configuration registers

bit op0 op1 description
0 Vctrl0<0> Vctrl0<1> Dll control voltage of row 0 syndriver

(top/bottom)
1 prebuf<0> prebuf<1> output of inner left syndrivers
2 ft<0> nc fire line of neuron 0
3 fg_out<0> fg_out<1> Floating gate output of left arrays
4 n_out<1> n_out<1> Membrane readout even denmems top
5 n_out<3> n_out<3> Membrane readout even denmems bottom
6 n_out<0> n_out<0> Membrane readout odd denmems top
7 n_out<2> n_out<2> Membrane readout odd denmems bottom
8 nc nc not connected
9 fg_out<1> fg_out<3> Floating gate output of right arrays

Table 2.10.9: Analog output multiplexer configuration

HBP_SP9_Specification 13 May 2014 (git 56b296e) 216

command val function
read 0 sets floating gate array to readout mode

and connects a dedicated cell to the
analog output until another command is
executed

writeUp 1 programs one floating gate line up
writeDown 2 programs one floating gate line down
getNextFalse 3 gets column address of next cell which

did not reach the programmed value during
a programming process

stimulateNeurons 4 stimulates a neuron using the values in
one RAM bank as input; stops at last ram
address.

stimulateNeurons
Continuous

5 stimulates a neuron using the values in
one RAM bank as input continuously until
another instruction is executed

Table 2.10.10: Floating gate control instructions

2.10.4.5 HICANN floating gate controller instructions

2.10.4.6 HICANN merger tree configuration

name function
enable activate merger function, if 0, the merger acts like a static

pipelined multiplexer
select if enable=0, selects the input (see Fig.2.3.15) for input

assignement
slow set slow=1 for each merger connecting to a driving repeater. This

ensures the output rate is limited to clk/2 which is necessary for
spl1 data

Table 2.10.16: Merger tree configuration signals

HBP_SP9_Specification 13 May 2014 (git 56b296e) 217

parameter width function
maxcycle 8 Maximum number of cycles for

programming
currentwritetime 6 length of a current write pulse
voltagewritetime 6 length of a voltage write pulse
readtime 6 Time waited for stable value

during read in write process
accleratorstep 6 Number of cycle after which intern

write time is doubled
pulselength 4 Multiplicator between in tern

controller clock and slow HICANN
clock

Table 2.10.11: Floating gate parameters

parameter bits description
fg_bias [3:0] Bias for upper floating gate programming

voltage
fg_biasn [7:4] Bias for source followers. Maximum value

if set to zero
pulselength [11:8] Clock cycle multiplicator
groundVm [12] shorts Vm to ground
calib [13] activate calibration mode

Table 2.10.12: Bit Configuration of biasRegister

adr name function [bit15-8] [bit7-0]
0 enable nc l2 l1_1 l1_0 l0_3 l0_2 l0_1

l0_0
bg_7-0

1 select nc l2 l1_1 l1_0 l0_3 l0_2 l0_1
l0_0

bg_7-0

2 slow nc l2 l1_1 l1_0 l0_3 l0_2 l0_1
l0_0

bg_7-0

3 dncloopb select dnc for dnc merger 7-0 loopback enable 7-0
4 randomreset background generators random 7-0 reset_n 7-0
5 phase nc input sample reg

clock phase 7-0
6 seed bg common seed 15-8 7-0
7-14 period bg period 15-8 7-0
15 slowenablednc slow for dnc merger 15-8 enable for dnc merger

7-0
16 bg neuron bg1 neuron number 13-8 bg0 neuron number 6-0
17 bg neuron bg3 neuron number 13-8 bg2 neuron number 6-0
18 bg neuron bg5 neuron number 13-8 bg4 neuron number 6-0
19 bg neuron bg7 neuron number 13-8 bg6 neuron number 6-0

Table 2.10.17: Merger tree routing configuration

HBP_SP9_Specification 13 May 2014 (git 56b296e) 218

parameter bits description
maxCycle [7:0] Maximum number of programming

cycles.
readTime [13:8] Time waited until value to be read

is stable
acceleratorStep [19:14] Number of cycles after which the

write time is doubled
voltageWriteTime [25:20] Length of a write pulse
currentWriteTime [31:26] Length of a write pulse

Table 2.10.13: Bit Configuration of operationRegister

parameter bits description
lineNumber [4:0] line number (0:23) in code
columnNumber [12:5] column number (0:128) in code
bankNumber [13] Ram bank
instruction [16:14] Instruction for programming machine

Table 2.10.14: Bit Configuration of addressInstructionRegister

2.10.4.7 HICANN background event generator configuration

name function
random 1: poisson event interval distribution, 0: fixed period between

events
period random=0: event period in sysclk (4ns) cycles, random=1: mean

isi
seed seed value for random generators (one common seed value for all

generators)
reset_n reset_n=0: disable event generators, reset_n=1: load seed and

start event generation
my_nn neuron number that is emitted by the background event generator

Table 2.10.18: Background event generator configuration signals

HBP_SP9_Specification 13 May 2014 (git 56b296e) 219

parameter bits description
slaveAnswer [7:0] Column number of wrong programmed cell
busy [8] High when state machine is active
error [9] Active, when a cell did not reach its

value

Table 2.10.15: Bit Configuration of slaveAnswerData

2.10.4.8 HICANN reapeater SRAM controller configuration

name value
dw 8
aw 8
numinp 13
numoutp 13
cnfgadr ’h20
resval 0

Table 2.10.19: SRAM controller configuation in the Repeater Controller module

name normal repeater function spl1 sending repeater function
recen activates repeater activates ext-driver, receiver is

always on
dir 0:int->ext, 1:ext->int input: same as standard

repeaters, output: 1:activates
int-driver

touten activates test output same
tinen activates test input connects spl1 output from

neuroncontrol
ren,len FEXT compensation

Table 2.10.20: Function of the static configuration registers of the SRAM controller in the
Repeater Controller module

HBP_SP9_Specification 13 May 2014 (git 56b296e) 220

adr(hex) name r/w bit assignment [7:0]
0:repmax-1 repeater SRAM

cells
rw touten, tinen, recen, dir, ren[1:0],

len[1:0]
80 config w fextcap[1:0], drvresetb, dllresetb,

start TDI [1:0], start TDO [1:0]
80 status r reserved [7:2],TDI full flag [1:0]
81:86 test data out w test data out (TDO) channel 0:
81 entry 0 [7:0] w time [7:0]
82 entry 0 [15:8] w neuron number[5:0],time[9:8]
83 entry 1 [7:0] w time [7:0]
84 entry 1 [15:8] w neuron number[5:0],time[9:8]
85 entry 2 [7:0] w time [7:0]
86 entry 2 [15:8] w neuron number[5:0],time[9:8]
81:86 test data in r test data in (TDI) channel 0
87:9c test data out w test data out channel 1
87:9c test data in r test data in channel 1
A0:A1 sram timing rw standard sram timing registers

Table 2.10.21: Address map of the static configuration registers of the SRAM controller in the
Repeater Controller module

2.10.4.9 HICANN DNC interface and Layer 2 circuit configuration

component address configuration value
dnc_if Write 0 data[1:0] := init_ctrl

data[2] := dc_bal_ctrl
data[3] := proto_cfg
data[4] := proto_plsl
data[5] := 500MHz mode
data[6] := crc_reset
data[7] := channel_reset

Read 0 data[15:8] := CRC error counter
data[7:0] := Interface state

spl1_if Write 0 data[7:0] := layer 1 bus connection enable
data[15:8] := layer 1 bus direction
data[16] := use timestamp of events

Write 1 data[0] := reset expired / ignored event counters
Read 0 Expired events layer 1 bus 0-3
Read 1 Expired events layer 1 bus 4-7
Read 2 Ignored events layer 1 bus 0-3
Read 3 Ignored events layer 1 bus 4-7

Table 2.10.22: Configuration address space of layer 2 components

HBP_SP9_Specification 13 May 2014 (git 56b296e) 221

2.10.4.10 Digital Synapse Control

The functionality and implementation of this module is described in Section 2.3.4.5. There
are two instances of DSC at the top and bottom of the chip. The memory range of the top
block starts at address 0. The bottom block start at address 0x8000. All addresses given in
this section are relative to these offsets. Both blocks are accessed using tag 1 of the internal
bus.

Reading and Writing of Synaptic Weights and Decoder Addresses

Register 2.10.2: SYNIN (0x4200)

31 28 27 24 7 4 3 0

W0 W1 . . . W6 W7
©

0x4200

W8 W9 . . . W14 W15
©

0x4201

W16 W17 . . . W22 W23
©

0x4202

W24 W25 . . . W30 W31
©

0x4203

Register 2.10.3: SYNOUT (0x4300)

31 28 27 24 7 4 3 0

W0 W1 . . . W6 W7
©

0x4300

W8 W9 . . . W14 W15
©

0x4301

W16 W17 . . . W22 W23
©

0x4302

W24 W25 . . . W30 W31
©

0x4303

Register definitions The 128 bit registers SYNIN (Register 2.10.2) and SYNOUT (Regis-
ter 2.10.3) are data registers used for the transfer of synaptic weights and decoder addresses
into and out of the synapse array. Weights and decoder addresses are 4 bit in size and
arranged in the registers from low to high.

Register 2.10.4: CREG (0x4000)

re
se

rv
ed

-

31

idl
e

0

30

sc
a

1

29

sc
c

1

28

with
ou

t_
re

se
t

0

27

se
l

0

26 24

las
ta

dr

0

23 16

ad
r

0

15 8

re
se

rv
ed

-

7

ne
wcm

d

0

6

co
nt

inu
ou

s

0

5

en
cr

0

4

cm
d

IDLE

3 0

HBP_SP9_Specification 13 May 2014 (git 56b296e) 222

Opcode Value (binary) Description

IDLE 0000 Do nothing
START_READ 0111 Open one row for reading of synaptic weights
READ 0001 Read weights from one column set into SYNOUT register
WRITE 0011 Write weights from SYNIN register into one column set
RST_CORR 1010 Reset correlation capacitors according to the SYNRST

register
START_RDEC 0010 Open one row for reading of decoder addresses
RDEC 0110 Read decoder addresses from one column set into SYN-

OUT register
WDEC 0101 Write decoder addresses from SYNIN register into one

column set
CLOSE_ROW 1001 Close current row after it was opend with START_READ

or START_RDEC
AUTO 0100 Start the automatic weight update process

Table 2.10.24: Valid opcodes for the cmd field of Register 2.10.4.

The 32 bit control register CREG (Register 2.10.4) is used to trigger operations on the
synapse array, such as writing weights or enabling STDP. The field cmd contains one of the
operation codes defined in Table 2.10.24.

Register 2.10.5: CFGREG (0x4001)

re
se

rv
ed

-

31 29

wrd
el

2

28 27

oe
de

l

2

26 23

dll
re

se
tb

0

22 21

ge
n

0

19 16

pr
ed

el

15

15 12

en
de

l

15

11 8

pa
tte

rn
0.

cc

0

7

pa
tte

rn
1.

cc

0

6

pa
tte

rn
0.

ca

0

5

pa
tte

rn
1.

ca

0

4

pa
tte

rn
0.

ac

0

3

pa
tte

rn
1.

ac

0

2

pa
tte

rn
0.

aa

0

1

pa
tte

rn
1.

aa

0

0

The 32 bit configuration register CFGREG (Register 2.10.5) holds additional information for
the operation of DSC. The fields wrdel, oedel, predel, and endel configure the timing
of synapse array operations. The STDP evaluation patterns are given in fields pattern0 and
pattern1. The bits from fields dllresetb and gen are directly given to the synapse array
analog block.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 223

Register 2.10.6: STATUS (0x4002)

re
se

rv
ed

0

31 3

au
to

_b
us

y

0

2

sli
ce

_b
us

y

0

1

sy
nd

rv
_b

us
y

0

0

The read-only 32 bit register STATUS (Register 2.10.6) provides monitoring information for
the state of DSC. The bits are set to 1, if the automatic weight update controller is active
(auto_busy), a synapse driver memory access in ongoing (syndrv_busy), or an synpase
array access operation is ongoing (slice_busy).

Configuring for operation Reading and writing of synaptic weights and decoder addresses
should be possible after reset with the default timings provided in Register 2.10.5. To
improve performance, timing parameters can be set to smaller values until reading after a
write returns incorrect data.

Access operations There are four use cases:

• Read synaptic weights

• Write synaptic weights

• Read decoder addresses

• Write decoder addresses

For all of them the assignment of 4 bit fields in Registers 2.10.2 and 2.10.3 to synapses in the
array is controlled by the contents of Register 2.10.4: Field CREG.adr selects the row of
the synapse array. Field CREG.sel selects the column assignment according to the following
mapping from the register index i to the column index j:

s CREG.sel (2.10.1)

i 2 {0, . . . , 31} (2.10.2)

j 2 {0, . . . , 255} (2.10.3)

j = fcolset(i, s) =

8
>><
>>:

i + 8s for 0 i < 8
i + 8s + 64 for 8 i < 16
i + 8s + 128 for 16 i < 24
i + 8s + 192 for 24 i < 32

(2.10.4)

The columns addressed by one configuration of CREG.sel

{fcolset(i, s = CREG.sel) | i 2 {0, . . . , 31}} (2.10.5)

are referred to as column set of this configuration.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 224

All accesses are performed by writing an operation code from Table 2.10.24 to CREG.cmd.
In order for hardware to execute the operation, CREG.newcmd must be set to 1.

For read operations the pre-charge of the SRAM bitlines is separated from the read access.
This means, that a row has to be “opened” before reading and “closed” before switching to
a new row. Writes can be performed irrespective of whether the row is open or not.

Writing synaptic weights In the simplest case a write requires only one operation with
opcode WRITE.

1: SYNIN weight data Wi
2: CREG.adr row address r
3: CREG.sel column set selection s
4: CREG.cmd WRITE
5: CREG.newcmd 1
6: repeat
7: b STATUS
8: until b = 0

This will write the following weights of the synapse-array:

SYNARRAY[r][f(i, s)] Wi for 0 i < 32 (2.10.6)

Reading synaptic weights For reading it is necessary to first open the row using the
START_READ operation and afterwards close it with CLOSE_ROW.

1: CREG.adr row address r
2: CREG.sel column set selection s
3: CREG.cmd START_READ
4: CREG.newcmd 1
5: repeat
6: b STATUS
7: until b = 0
8: CREG.cmd READ
9: repeat

10: b STATUS
11: until b = 0
12: Wi SYNOUT
13: CREG.cmd CLOSE_ROW
14: repeat
15: b STATUS
16: until b = 0
This will read the following weights from the synapse-array:

Wi SYNARRAY[r][f(i, s)] for 0 i < 32 (2.10.7)

Reading and writing decoder addresses Read and write operations on decoder addresses
are identical to those on weights, but use different operation codes:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 225

Operation Delay worst case

WRITE 8 cycles
START_READ 34 cycles
READ 18 cycles
CLOSE_ROW 3 cycles

Table 2.10.25: Worst case latencies for synapse array operations.

• START_RDEC replaces START_READ

• RDEC replaces READ

• WDEC replaces WRITE

Operation timings DSC is clocked with the system-clock divided by four. So for a nominal
system-clock frequency of 250 MHz, one clock cycle of DSC is 16 ns long. The interface to the
synapse array is operated at this frequency.

DSC is connected to Tag 1 of the internal bus. This bus is fully pipelined and can take
one read or write request in every cycle. The delay on this bus is 6 cycles for both the top
and bottom controller 1. A register access takes one cycle. Therefore, the total delay for
a register access is 2 · 6 + 1 cycles. For operations on the synapse array the additional delay
is given by Table 2.10.25 2. The delay can be configured by changing the timing parameters
CFGREG.*del in the configuration register.

Reading and Writing of Synapse Driver Configuration Memory

The synapse driver configuration memory is read and written by an sramCtrl module. The
memory is separated into three regions: config, predrv, and gmax. The memory can be
read and written. Due to the pipelined, non-blocking bus interface to DSC, two read requests
have to be sent in order to read a memory location. (Yes, I know this is stupid. I won’t do it
again.)

An address map of the configuration memory is shown in Figure 2.10.15.

Reading Reading synapse-driver configuration memory requires two consecutive reads on
the same address. Only the second one will return valid data. The timing of the sramCtrl
module is configured in its timing setup address section (Section 2.3.4.4).

1: a configuration memory address
2: tsyndrv duration of sramCtrl access
3: y SYNDRV[a]
4: Wait(tsyndrv)
5: y SYNDRV[a]

1Measured from port pktin on the Tag1 FIFO adapter to the control register CREG.
2The time measured is the duration during which the STATUS.slice_busy signal is asserted.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 226

31 7 0

unused config[0]
©

0x0000

unused config[1]
©

0x0001
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

unused config[222]
©

0x00de

unused config[224]

co
nf
ig

re
gi

on

8
>>>>>>>>>>><
>>>>>>>>>>>: ©

0x00df
...

unused predrv[0]
©

0x0100
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

unused predrv[223]

pr
ed
rv

re
gi

on

8
>>>>><
>>>>>: ©

0x01df
...

unused gmax[0]
©

0x0200
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

unused gmax[223]

gm
ax

re
gi

on

8
>>>>><
>>>>>: ©

0x02df
...

sramCtrl timing setup 0
©

0x0500

sramCtrl timing setup 1
©

0x0501

Figure 2.10.15: Memory map of the synapse driver configuration memory accessible through
the sramCtrl module in DSC.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 227

Bit mappings The syndriver-SRAM bits are mapped to the following syndriver control signals:

type bit name function
config bottom 0 bot:senx connect row to excitatory input of denmems

1 bot:seni connect row to inhibitory input of denmems
3:2 bot:selgm select Vgmax from global FGs
4 topin shortcut input with input from top neighbour

syndriver
5 locin select input from L1
6 en enable this synapse driver
7 enstdf enable STP

config top 0 top:senx connect row to excitatory input of denmems
1 top:seni connect row to inhibitory input of denmems
3:2 top:selgm select Vgmax from global FGs
6:4 cap select STDP capacitance (capacity = 8fF*cap)
7 dep select STP mode: 0: facilitation, 1:

depression
predrv bottom 3:0 preout0 (p0) decoder bits [5:4] for bottom left synapses

7:4 preout2 (p2) decoder bits [5:4] for bottom right synapses
predrv top 3:0 preout1 (p1) decoder bits [5:4] for top left synapses

7:4 preout3 (p3) decoder bits [5:4] for top right synapses
gmax bot 3:0 bot:Iout dac0 fraction of selected Vgmax used when row is

excitatory
7:4 bot:Iout dac1 fraction of selected Vgmax used when row is

inhibitory
gmax top 3:0 top:Iout dac0 fraction of selected Vgmax used when row is

excitatory
7:4 top:Iout dac1 fraction of selected Vgmax used when row is

inhibitory

The functionality of the short term plasticity circuit is documented in [59].

The four preout-signals are encoded from the upper two neuron address bits, na[5:4], and
the static global enable bits gen[1:0]. The mapping, depending on the preout SRAM bits,
preoutx[3:0] (or short px[3:0], with x 2 {0, . . . , 3}), is as follows (only the case preout=1 is
listed):
preout condition for preout=1
0 p0[2] = na[4] & p0[0] = na[5] & p1[0] = gen[0] & p1[2] = gen[1]
1 p1[1] = na[4] & p1[3] = na[5] & p0[1] = gen[0] & p0[3] = gen[1]
2 p2[2] = na[4] & p2[0] = na[5] & p3[0] = gen[0] & p3[2] = gen[1]
3 p3[1] = na[4] & p3[3] = na[5] & p2[1] = gen[0] & p2[3] = gen[1]

This table is interpreted as follows: a preout signal to the synpase array is active if the
logical condition stated in the respective line is true. The global enable bits gen[0:3] are
located in Reg. 2.10.5.

The global arrangement is as follows: left syndriver use databus bits 0:7, right use 8:15.
Left are on even addresses, right on odd; row zero is at the center of the chip. Due to
an mapping error the bit ordering of the syndriver data bus is swapped: left syndrivers
(even addresses) use bit 8:15 of the ocp data bus (but in reverse order), right syndrivers 0:7
respectively.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 228

Use of STDP

For the realization of STDP, DSC covers three use cases:

• Reading correlation information from the STDP circuit in the synapse.

• Resetting correlation information in the synapse.

• Automatic weight update during a network experiment.

The automatic weight update state machine iterates over the array, reads weights, evaluates
correlation information, computes new weights, and writes them back to the synapses. The
evaluation of weights is controlled by the two 4 bit evaluation configurations provided in
CFGREG.pattern0 and CFGREG.pattern1. Each of these evaluations provides a single
result bit C0 and C1. Together they are used to compute a new weight w0 for current weight
w using a look-up table LC

0C1

w
:

w0 LC
0C1

w
. (2.10.8)

Register 2.10.7: LUT (0x4100)
31 28 27 24 7 4 3 0

L01
0

L01
1

. . . L01
6

L01
7

©
0x4100

L01
8

L01
9

. . . L01
14

L01
15

©
0x4101

L10
0

L10
1

. . . L10
6

L10
7

©
0x4102

L10
8

L10
9

. . . L10
14

L10
15

©
0x4103

L11
0

L11
1

. . . L11
6

L11
7

©
0x4104

L11
8

L11
9

. . . L11
14

L11
15

©
0x4105

Register definitions The 192 bit register LUT (Register 2.10.7) contains three look-up tables
(L01, L10, L11) for the automatic weight update mechanism.

Register 2.10.8: SYNCORR (0x4400)
31 24 23 16 15 8 7 0

C0
0
. . .C0

7
C0

8
. . .C0

15
C0

16
. . .C0

23
C0

24
. . .C0

31

©
0x4400

C1
0
. . .C1

7
C1

8
. . .C1

15
C1

16
. . .C1

23
C1

24
. . .C1

31

©
0x4401

The 64 bit read-only register SYNCORR (Register 2.10.8) is a data register for the correlation
readout. It is written in read operations started by CREG.cmd = READ, for which CREG.encr
is set to 1. Bits C0

i
are produced by evaluation with configuration from code, while C1

i
are

produced using pattern 1.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 229

Register 2.10.9: SYNRST (0x4500)
31 24 23 16 15 8 7 0

R0
0
. . .R0

7
R0

8
. . .R0

15
R0

16
. . .R0

23
R0

24
. . .R0

31

©
0x4500

The 32 bit register SYNRST (Register 2.10.9) controls for which columns in a column set
the analog accumulation should be reset. The polarity is active-high.

Configuring for operation Reading and writing of synaptic weights must be correctly con-
figured (Section 2.10.4.10).

The digital configuration consists of setting registers LUT (Register 2.10.7), SYNRST (Reg-
ister 2.10.9), CFGREG (Register 2.10.5), and CREG (Register 2.10.4).

Operations

Reading correlation The SYNCORR (Register 2.10.8) register is updated with correlation
data for read operations (Section 2.10.4.10) where CREG.encr = 1, CREG.sca = 1, and
CREG.scc = 1.

Note:
Analog storage times for the accumulated correlation information in the synapse, which
are read out by this operation, are on the order of micro- to milliseconds. The user has
to assure, that the correlation read operation is executed soon enough after the spike
pairings that caused the correlation change.

Resetting correlation Correlation information in the synapse can be reset with the RST_CORR
command.

1: SYNRST reset bits Ri
2: CREG.adr row address r
3: CREG.sel column set selection s
4: CREG.without_reset 0
5: CREG.cmd RST_CORR
6: CREG.newcmd 1
7: repeat
8: b STATUS
9: until b = 0

This will reset the following synapses in the synapse-array:

Reset (SYNARRAY[r][f(i, s)]) if Ri = 1 for 0 i < 32 (2.10.9)

Automatic weight update for STDP The automatic weight update controller can be op-
erated in continuous or non-continuous mode. This is controlled by CREG.continuous

HBP_SP9_Specification 13 May 2014 (git 56b296e) 230

(Register 2.10.4). In non-continuous mode (CREG.continuous = 1) the controller iter-
ates from row CREG.adr to CREG.lastadr once. Otherwise it returns to CREG.adr after
processing the last row.

Starting automatic weight updates:
1: SYNRST reset bits Ri = 1 �i
2: CREG.adr first row address r0
3: CREG.lastadr last row address r1
4: CREG.encr 1
5: CREG.without_reset 0
6: CREG.sca 1
7: CREG.scc 1
8: CREG.sel column set selection s
9: CREG.continuous operation mode m

10: CREG.cmd AUTO
11: CREG.newcmd 1

While automatic weight updates are in progress no other access must be performed. The
STATUS.auto_busy (Register 2.10.6) register is set to 1 during automatic weight updates.
If continuous mode is used (m = 1), automatic weight updates have to be explicitly stopped:

1: CREG.continuous 0
2: repeat
3: b STATUS
4: until b = 0

2.10.5 JTAG Access

Both HICANN and FPGA provide backdoor JTAG access. One FPGA and eight HICANNs within
the according reticle are connected in a JTAG chain. Available JTAG commands and their
functionality are summarized in this section.

2.10.5.1 HICANN JTAG Access

Table 2.10.26 presents all JTAG registers in the HICANN. Registers marked with ’R’ or ’W’
(read or write) requires an amount of data shifts to get or set the internal registers. Registers
marked with ’I’ executes their function directely after IR_UPDATE (see [1]).

JTAG command JTAG
ad-
dress

Width Access Description

READID 0x00 32 bit R Returns JTAG device id =
0x14849434

LVDS_PADS_EN 0x02 1 bit W Switch on/off LVDS pads (de-
fault:ON)

LINK_CTRL 0x03 9 bit W Configuration of link protocol
(table 2.10.27)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 231

JTAG command JTAG
ad-
dress

Width Access Description

LAYER1_MODE 0x04 8 bit W Configuration of the direction
of the Layer1 buses

SYSTEM_ENABLE 0x05 1 bit W Switch on/off digital commu-
nication block (default:ON)

BIAS_CTRL 0x06 6 bit W Control reference bias block
(table 2.10.28)

SET_IBIAS 0x07 15 bit RW Control LVDS + SERDES bias
currents

START_LINK 0x08 0 bit I Trigger start of communica-
tion link

STOP_LINK 0x09 0 bit I Trigger stop of communica-
tion link

STOP_TIME_COUNT 0x0a 1 bit W Reset global system time con-
ter

READ_SYSTIME 0x0b 15 bit R Read current system time
counter

SET_2XPLS 0x0d 1 bit W Configure manual transmis-
sion of double pulse event
packets

PLL2G_CTRL 0x10 3 bit W Configure GHz PLL (table
2.10.29)

SET_TX_DATA 0x11 64 bit W Set packet content for trans-
mission

GET_RX_DATA 0x12 64 bit R Read received packet content
SET_TEST_CTRL 0x17 4 bit W Configure transmission test

modes (table 2.10.30)
START_CFG_PKG 0x18 0 bit I Trigger configuration packet

start
START_PULSE_PKG 0x19 0 bit I Trigger pulse event packet

start
READ_STATUS 0x1a 8 bit R Read current communication

link state (table 2.10.31)
SET_RESET 0x1b 0 bit I Trigger setting of communica-

tion link reset
REL_RESET 0x1c 0 bit I Trigger release of communi-

cation link reset
SAMPLE_PRELOAD 0x1e not implemented
INTEST 0x1f not implemented
EXTEST 0x20 not implemented
SET_DELAY_RX _DATA 0x21 6 bit RW Sets/Reads delay setting in

LVDS data pad

HBP_SP9_Specification 13 May 2014 (git 56b296e) 232

JTAG command JTAG
ad-
dress

Width Access Description

SET_DELAY_RX _CLK 0x22 6 bit RW Sets/Reads delay setting in
LVDS clock pad

READ_CRC_COUNT 0x27 8 bit R Read current CRC error
counter of communication
link

RESET_CRC_COUNT 0x28 0 bit I Reset current CRC error
counter of communication
link

PLL_FAR_CTRL 0x29 15 bit W Control Faraday PLL, see ta-
ble 2.10.32

ARQ_CTRL 0x30 32 bit W ARQ control bits, see table
2.10.33

ARQ_TXPCKNUM 0x31 32 bit R Total packets transmitted
ARQ_RXPCKNUM 0x32 32 bit R Total packets received
ARQ_RXDROPNUM 0x33 32 bit R
ARQ_TXTOVAL 0x34 32 bit W Clock cycles without ACK until

re-transmit of last packet
ARQ_RXTOVAL 0x35 32 bit W Clock cycles without link ac-

tivity until ACK of last packet
ARQ_TXTONUM 0x36 32 bit R Number of timeouts in ARQ

master
ARQ_RXTONUM 0x37 32 bit R Number of timeouts in ARQ

target
BYPASS 0x3f any RW JTAG standard BYPASS func-

tionality

Table 2.10.26: Detailed list of all JTAG registers in an HICANN

Bit Reset value Description
[0] 1’b1 initialization automatic mode
[1] 1’b0 initialization master mode
[2] 1’b0 enable protocol handling for configuration
[3] 1’b0 enable protocol handling for pulse events
[4] 1’b0 8b/10b coding
[5] 1’b0 use 500MHz mode
[6] 1’b1 evaluate timestamps in pulse events
[7] 1’b0 debug loopback mode
[8] 1’b1 initialization automatic link speed detect

Table 2.10.27: Detailed bit of LINK_CTRL JTAG register

HBP_SP9_Specification 13 May 2014 (git 56b296e) 233

Bit Reset value Description
[4:0] 5’h10 Digital calibration value
[5] 1’b0 Debug: Enables 100uA reference output

Table 2.10.28: Detailed bit of BIAS_CTRL JTAG register

Bit Reset value Description
[0] 1’b1 Enable VCO
[1] 1’b1 Enable 500MHz clock
[2] 1’b1 Enable 1GHz clock

Table 2.10.29: Detailed bit of PLL2G_CTRL JTAG register

Bit Reset value Description
[0] 1’b0 Access to LVDS transmission towards L2
[1] 1’b0 Access from JTAG to pulse events for L1
[2] 1’b0 Access from JTAG to configuration packets for L1
[3] 1’b0 Enables packet type filter in combination with [2:1]

Table 2.10.30: Detailed bit of SET_TEST_CTRL JTAG register

Bit Description
[0] link ready for pulse event transmission
[1] unitizialized
[2] received CRC error
[3] 500 MHz mode
[4] receiving configuration packet
[5] receiving pulse event packet
[6] link ready for configuration packet transmission
[7] received pulse event packet contained two events

Table 2.10.31: Detailed bit of READ_STATUS JTAG register

Bits Function
[0] put PLL into test mode
[1] select frequency range (1 high, 0 low)
[2] low-active power down
[8:3] ns: multiplier for frequency setting
[14:9] ms: divider for frequency setting

Table 2.10.32: Control bits for Faraday PLL. 15 valid bits need to be shifted for this register.
Frequency is input frequency ⇥ms/ns.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 234

Bit Pos. Function
0 high-active reset for Tag0 ARQ instance
1 loopback enable for Tag0 ARQ instance
16 high-active reset for Tag1 ARQ instance
17 loopback enable for Tag1 ARQ instance

Table 2.10.33: JTAG ARQ control bits. 32 bit need to be shifted for this register.

2.10.5.2 FPGA JTAG Access

JTAG command JTAG
ad-
dress

Width Access Description

IDCODE 0x0 32 bit R Returns JTAG device id =
0x1C56C007

GET_HICANNIF_ STATE 0x1 30 bit R Read systime, crc counter,
communication channel sta-
tus (table 2.10.37)

GET_HICANNIF_ RXCFG 0x2 64 bit R Read last received configura-
tion packet

GET_HICANNIF_ RXPLS 0x3 24 bit R Read last received pulse
event packet

SET_HICANNIF_ CONFG 0x4 29 bit W Configuration for HICANN link
(table 2.10.35)

SET_HICANNIF_ CTRLS 0x5 5 bit W Control of communication
links mechanisms (table
2.10.36)

SET_HICANNIF_ TXDAT 0x6 64 bit W Data for transmission
HICANN_PACKET_ GEN 0x7 26 bit RW Pattern generator control and

status
SET_HICANN_ CHANNEL 0x8 3bit W Selects active HICANN chan-

nel
BYPASS 0xf any RW JTAG standard BYPASS func-

tionality

Table 2.10.34: Detailed list of all JTAG registers in the FPGA

Bit Reset value Description
[0] 1’b0 start link
[1] 1’b0 debug loopback enable
[2] 1’b1 initialization auto mode
[3] 1’b1 initialization master mode
[4] 1’b0 evaluate timestamps in pulse events
[5] 1’b0 automatic releasetime for pulse events

HBP_SP9_Specification 13 May 2014 (git 56b296e) 235

Bit Reset value Description
[6] 1’b0 enable protocol handling for pulse events
[7] 1’b0 enable protocol handling for configuration
[15:8] 8’h0 L1 channel directions (heap memory mode)
[26:16] 11’h004 manual pre start time of pulse event
[27] 1’b0 8b/10b coding

Table 2.10.35: Detailed bit of HICANNIF_CONFG JTAG register

Bit Reset value Description
[0] 1’b0 start pulse event packet
[1] 1’b0 start configuration packet
[2] 1’b0 write routing memory data
[3] 1’b0 init channel reset mechanism
[4] 1’b0 reset CRC counter

Table 2.10.36: Detailed bit of HICANNIF_CTRLS JTAG register

Bit Description
[7:0] initialization automatic mode
[15:8] initialization master mode
[29:16] current systime counter

Table 2.10.37: Detailed bit of HICANNIF_STATE JTAG register

2.10.6 Experiment control

An experiment run is controlled from the FPGA via the different payload types defined in
section 2.10.2. Especially, experiment execution is controlled via the FPGA configuration
packet. A typical experiment run is performed by the following sequence:

1) Reset playback and trace memories (packet: FPGA Config)

2) Configure HICANN via ARQ (packet: HICANN Config)

3) Write playback pulses (packet: FPGA Playback)

4) Write HICANN configuration packets to playback memory, to be transmitted while ex-
periment is running (packet: FPGA Playback)

5) Start playback and trace memories (packet: FPGA Config)

6) Stop trace memory (packet: FPGA Config)

7) Start readout of trace memory (packet: FPGA Config)

8) Receive traced pulses (packet: FPGA trace memory)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 236

2.11 Hardware Abstraction Layer

The deep hiearchy of configurable hardware components (cf. sections 2.10.3 and 2.10.4)
and the amount of controllable parameters already suggest that hardware configuration is
complicated. This makes a clear, simple and robust abstraction layer one key component
in the NM-PM software stack. Main elements of the Hardware Abstraction Layer (HAL) are:
a robust coordinate system (cf. section 2.11.1), clear and consistent data structures repre-
senting configurable hardware entities, methods to access them (cf. section 2.11.2), and a
synthesis layer which combines all these components into a single configuration metholodogy
(cf. section 2.11.3).

2.11.1 User Coordinate System

This section has been written by Sebastian Jeltsch.
Conventional computers access memory and IO devices by mapping them into a single

linear address space. Neuromorphic hardware devices on the other hand, implement small
special purpose circuits with local memory. Using the immediate address space of the
digital logic is complicated by the fact, that event the mapping of memory location to
functionality varies across instances of the same analog circuit. Without random access
memory, components have to communicate either via digital buses or physical coupling.
The necessary connectivity is often defined by their relative orientation and position to
one another. Thus, Unlike conventional computers, programming a neuromorphic hardware
devices requires explicit knowledge about the topology. In fact, getting the connectivity right
is one of the major obstacles when setting up experiments manually on a low-level. HALbe
consistently arranges components in a hybrid-Cartesian coordinate system that reflects the
component inter-connections more naturally. The term coordinate system is used rather than
address space, because the Exemplarily, some coordinates are outlined in Figure 2.11.1.

Component indices are counted up from left to right and top to bottom, according to the
HICANN orientation shown in Figure 2.11.1. Grid coordinates also support linear addressing
by enumerating all instances in a row-first fashion. Moreover, sparse grids are supported,
because not every grid point is necessarily assigned to actual hardware e.g. synapse drivers
exist only every other switch row. Addressing invalid instances via x, y or enumeration yields
an C++ and Python exception, respectively.

Finally, coordinates implement convenient conversion functions wherever possible to de-
rive coordinates of connected components, e.g. a select switch row is connected to a synapse
driver.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 237

2.11.1.1 Implementation

The implementation is based on a ranged integer template library by the author. Any integer
instance thereof, carries its valid value range as part of the type signature. In order to
detect any violation, instances are sanitized during construction and compound assignment
operations (e.g. +=). Optionally, ranged integers can be reduced to their corresponding
built-in type at compile time to diminish any overhead for production builds. Many other
workflow components use them to implement rigorous, concise value sanitization. The
following example illustrates its use:

typedef integral_range<unsigned, 64 /*max*/, 4/*min*/> type;
type a = 0; // raises exception
type b = 4;
a =>> 1; // raises exception (a=2)

void magic_fun(integral_range<uint8_t, 7, 0> const& v);

Note, that the function declaration, not definition, clearly states its expected parameter
range. No extra documentation is necessary.

HALbe coordinates are implemented on top of the ranged integer library as individual
types. C++ inheritance simplifies implementing new coordinates. Sparse grids are imple-
mented efficiently via CRTP [18] callback functions, eliminating virtual function overhead
and enabling code inlining. Here, an actual implementation of a sanitized neuron coordinate
within a 2⇥ 2 is presented to demonstrate how simple it is.

struct NeuronOnQuad :
public GridCoordinate<NeuronOnQuad, XRanged<1, 0>, YRanged<1, 0> >

{
NeuronOnQuad() = default;
NeuronOnQuad(x_type const& x, y_type const& y) :

self_type(x, y) {}
};

x_type, y_type and self_type are defined by the base class. The base class also
provides time common grid, enumeration, serialization and hash map interfaces. The new
coordinate can be used as follows.

// ...
NeuronOnQuad a(X(1), Y(1));
NeuronOnQuad b(Enum(3)); // references same neuron via enum
NeuronOnQuad c = NeuronOnHICANN(Enum(0)).quad();
// ...

The first two examples reference the same neuron in Cartesian coordinates and enumera-
tion respectively. The third example presents a coordinate conversion, from a neuron on the
HICANN into a neuron within the 2times2 block.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 238

25
4,4

5

7 7 7

0
1

0
1

0
1

0
1

90
18
0,0

18
0,1

18
1,0

18
1,1

0
1

0
1

0
1

0
1

91
18
2,0

18
3,0

18
2,1

18
3,1

31
,3

25
4,4

6

25
4,4

7

25
4,4

8

25
5,4

5

25
5,4

6

25
5,4

7

25
5,4

8

1,2
2

3
2

1
0

7654

46 54 55
-6
1

6238 47
-5
3

39
-4
5

13
2,2

2

7,21
63

13
2,2

3

5

2
3

4

1

Figure 2.11.1: An illustration of HALbe coordinates for HICANN (30,3) (2) on reticle (7,2) (1).
Enumerations are given as plain indices and grids as combination of x, y. Item
(3) shows the mapping of DNC mergers to SpL1 repeaters. Note that merger i
is merged to SpL1 repeater 7� i. A small area including synapses, a driver and
select switches is presented at item (2). Lastly, the neuron inter-connection
topology across and within blocks of 2 ⇥ 2 neurons is illustrated at item (5).
Figure by Sebastian Jeltsch.HBP_SP9_Specification 13 May 2014 (git 56b296e) 239

2.11.2 Stateless API

Author: Eric Müller
The common configuration interface for all the user configurable hardware components is
called Hardware Abstraction Layer Backend (HALbe). This API uses the type-safe user co-
ordinate system described in section 2.11.1 and additionally defines data containers for all
user-configurable hardware entities (cf. sections 2.10.3 to 2.10.5). The interface is based
on free, stateless –from the user’s perspective– functions taking a handle that identifies the
communication channel to the corresponding hardware unit, and coordinates to identify a
unit within the hardware entity. Functions writing to the hardware additionally take a third
argument that contains the data to write; functions reading from the hardware return a
non-void data container.

In the following code listing examples for write access (i.e. a setter) and read access
(getter) are shown:

// namespace HICANN
void set_crossbar_switch_row(

Handle::HICANN& h, // communication channel
Coordinate::HLineOnHICANN const& y, // coordinate 1st part
Coordinate::Side const& s, // coordinate 2nd part
CrossbarRow const& switches // data container

);

// namespace ADC
raw_data_type get_trace(

Handle::ADC & h
);

The implementation of the API supports several backends: accessing the real NM-PM, the
simulated ESS (cf. section 2.11.4) and multiple debugging modes (e.g., to visualize low-level
configuration data, or to assess neuron behavior, cf. section 2.11.5). In case of the NM-PM
backend, the main objective is the translation between user-friendly coordinates and data
containers on the one hand and low-level hardware commands accessing hardware entities
on the other hand.

The HALbe interface does not impose a specific configuration order. To tackle this problem,
API functions are annotated with configuration states. The order of state transitions is then
checked by a FSM –called State Checking and Error Identification Framework (Scheriff)– to
identify illegal transitions (e.g., reading before resetting a hardware unit). For a detailed
description of the reset handling see section 2.3.4.1.

2.11.2.1 Real-time Access

Executing closed-loop experiments on the NM-PM requires a close interaction between Wafer
Module, FCP and Compute Node. To support this operation mode a thin software layer, called
Virtual Environment for Closed-Loop Experiments (VerCL), is provided. This API provides
methods to communicate spikes between FCP and Compute Node at low latency.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 240

From the user’s perspective, the software part of a experiment running in real-time re-
quires additional precautions to eliminate unpredictable latency sources like page faults or
call overhead. This makes it difficult to use convenience functions that are available for
batch-style experiments; typically, the user code has to operate directly in the hardware
value and time domain. During runtime, extended permissions are also needed to control
real-time behavior of the operating system environment, and the custom network hardware
(cf. section 2.8.1).

2.11.3 Low-level Stateful API

This section has been written by Christoph Koke.
StHAL is a C++ library that extends the functionality of HALbe. While HALbe is designed to be

stateless and allows a fine granular access to every part of the NM-PM, StHAL provides access
to the complete configuration and unified algorithms for common tasks. Also it handles low
level runtime information as IP address, the assignment of HICANNs to FCPs, or the assignment
of AnaRM (see chapter 2.7) to HICANNs. This makes it also a convenient tool to write low
level test programs for the hardware and for the calibration tools (see section 2.13.1). All
StHAL functions and data structures are located in the namespace sthal.

StHAL combines the data structures of HALbe to represent the configuration state of the
NM-PM. This includes also runtime data, like spikes or analog traces. These data structure
is simply a collection of the structures provided by HALbe. To simplify the usage, the
interface of StHAL is centred around the HICANN. Configurations that affect actually the
FCP are derived from the corresponding feature of the HICANN and so completely hidden.
This ensures that components are configure consistently. Where this is not possible, e.g.
for spikes, they are mapped to the corresponding HICANN. By using the HALbe coordinate
system (see section 2.11.1), it gives the user intuitive access to the configuration data via
the operator[]. The following example uses a HICANN on the first wafer and enables all
background generators:

sthal::Wafer wafer(Coordinate::Wafer(0));
sthal::HICANN & hicann = wafer[HICANNOnWafer(Enum(123))];
for(auto bg : iter_all<BackgroundGeneratorOnHICANN>)

hicann.layer1[bg].enable(true);

Using operator[] allows to expose references to internal data structures easily in the
Python bindings. The StHAL containers also support complete serialization, which is impor-
tant for large scale experiment preparation and distribution.

Since StHAL holds the complete configuration state of an experiment it can also provide
more complex configuration routines. For example, the following method ensures, that only
the selected neuron is connected to the AnaRM:

hicann.enable_aout(NeuronOnHICANN(X(0), Y(0)), AnalogOnHICANN(0));

StHAL manages the connection to the hardware and hides it almost completely from
the user. It gets the required informations to run an experiment via an instance of the

HBP_SP9_Specification 13 May 2014 (git 56b296e) 241

HardwareDatabase class. It provides an interface to gain all required runtime infor-
mations, like IPs, to setup an experiment on the hardware based on HALbe coordinates.
Connecting to the hardware is reduced to a single call:

wafer.connect(sthal::MagicHardwareDatabase());

The MagicHardwareDatabase is a placeholder for a real connectivity database that might
come in future.

To write the complete configuration to the hardware the class HICANNConfigurator can
be used. It provides a robust default configuration routine to be used by the Wafer class to
write the current configuration state completely:

sthal::HICANNConfigurator cfg;
wafer.configure(cfg);

The HICANNConfigurator takes all given constrains of the HICANN configuration into ac-
count. If required, custom configuration methods can be easily achieved by overwriting
the virtual methods of the HICANNConfigurator. The ExperimentRunner takes care
of sending and receiving spike runtime data from the NM-PM and to start and stop the ex-
periment. Its virtual methods can also be overloaded to allow custom experiment design.
The same concept is used to run the actual experiment. The following code will run an
experiment of the duration of 1ms:

sthal::ExperimentRunner runner{1e-3};
wafer.start(runner);

Futher StHAL simplifies the usage of the AnaRM software (see section 2.7.3.2). This is
implemented in the class AnalogRecoder. It locks the boards, when it is constructed and
frees it at destruction. It also automaticaly loads the calibration and returns traces in Volts.
The class is not intended to be constructed manually, but by an HICANN instance. Traces
can be recorded manually or by using the trigger of the readout board. An error will be
thrown, when trace() is called, but no data has been recorded yet. The following example
uses manually recording, in this case the record function will block until the recording has
finished:

auto recorder = hicann.analogRecorder(AnalogOnHICANN(0));
recorder.record(1.0e-2)
auto trace = recorder.trace()

The trigger of the readout board will by activated by the FPGA, when the playback memory
starts (see section 2.6.3.4). In following example neurons are stimulated and the trigger is
used to record the membrane in parallel:

std::vector<sthal::Spike> spikes;
for (size_t ii = 0; ii < 400; ++ii)
{

spikes.emplace_back(L1Address(0), ii* 3e-6);
}

HBP_SP9_Specification 13 May 2014 (git 56b296e) 242

hicann.sendSpikes(GbitLink(0), spikes);

// ... SNIP ... (L1 routing stuff)

auto recorder = hicann.analogRecorder(AnalogOnHICANN(0));
recorder.activateTrigger(1e-3);
sthal::ExperimentRunner runner{1e-3};
wafer.start(runner);
auto trace = recorder.trace()

StHAL has complete Python bindings. Its the API documentation can be found at ta-
ble 2.10.19

2.11.4 Executable System Specification - Simulation Layer

This section has been written by Bernhard Vogginger.
The ESS is a software model of the NM-PM hardware part. It contains functional models of

all relevant units of the neuromorphic circuits (chapter 2.3) and the communication modules
(chapter 2.6). The ESS is fully executable and resembles how neural experiments will be run
on the real system. It can be operated from HALbe or StHAL, so that any experiment for
the hardware can be also executed with the ESS. Being a software model, the ESS is fully
deterministic, e.g. compared to a produced wafer it does not suffer from transistor-level
variations after manufacturing. It can therefore be used as a testbench for the software
frontend to the system (chapter 2.13) or as a simulation backend for neural modelers, who
want to explore the capabilities of the NM-PM platform or prepare their models for emulation
on the real system.

2.11.4.1 Implementation

The ESS is a detailed simulation of the final NM-PM platform and has been implemented in
C++/SystemC ([73, 23, 17]). It replicates its physical counterpart in all aspects regarding
functionality and configuration space. Every module of the real hardware has its func-
tional counterpart in the virtual device, where especially the interface and communication
structures accurately correspond to the physical system. It implements all analog and mixed-
signal modules such as Adaptive Exponential Integrate-and-Fire (AdEx) neurons and dynamic
synapses (section 2.3.3.2, as well as all units responsible for on-wafer and off-wafer commu-
nication (cf. section 2.3.2, rsp. chapter 2.6). Compared to analog and Register Transfer Level
(RTL) hardware simulations, this model is tuned towards simulation speed using behavioral
models of all relevant functional components, e.g. the neuron circuits are just implemented
by the differential equations of the AdEx model. However, it is possible to replace individual
modules by more sophisticated models, all the way down to simulating single wires on the
chip.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 243

2.11.4.2 Comparison with real system

The current implementation of the ESS differs from the real hardware system in several
aspects, which are listed below:

• STDP (section 2.3.4.5) is currently not implemented in the ESS

• No distance-dependent delays on the wafer: The transmission latency of pulses in the
L1 routing network, which mainly depends on the number of L1 repeaters of the routing
path, is not considered in the ESS for efficiency reasons. Instead, an average delay value
is applied approximating this latency as well as the transmission delay in the ANNCORE.

• Access to all states: The ESS allows to trace states that are not accessible on the real
system, e.g. all state variables of the neurons and synapses for many units, and not
only the membrane potential of a selection of neurons.

• Logging of lost pulses: Pulses can get lost due to bandwidth limitations of the serial pulse
transmission in the HICANN or the off-wafer communication modules (chapter 2.6). In
the ESS these lost events are logged and counted.

• Ideal neuron and synapse models: The ESS directly implements the equations of the
underlying neural models and not the equations of the physical implementation. Hence,
hardware specifics like a limited dynamic range, leakage currents, crosstalk or thermal
noise are not considered.

• No imperfections from manufacturing: Per default, every module on the ESS works
as designed, e.g. there is no transistor-level mismatch leading to a fixed variation of
neuron or synapse parameters. However, the ESS allows to artificially impose such dis-
tortions, e.g. one can specify a fixed-pattern noise for synaptic weights. Furthermore,
one can load calibration data for neurons and synapse drivers.

Despite these differences the ESS remains a proper replica of the NM-PM hardware part
providing equal functionality while not suffering from hardware-specific constraints like
transistor-level imperfections from the manufacturing process. Offering the same config-
uration space and structure as its real counterpart, it is a perfect testbench for the software
modules of the user interface to the system (chapter 2.13).

Furthermore, the ESS builds a useful tool for neural modelers who want to run their models
on the NM-PM platform. By running ESS simulations, the modelers can analyze the effects of
many hardware-specific constraints on their models, such as limited network connectivity,
shared and discretized parameters, or activity dependent spike loss and spike time jitter,
independently from hardware imperfections or missing calibration data.

2.11.4.3 Using the ESS

For the ESS there is an implementation of the HAL for both the stateless (HALbe) and the
stateful API (StHAL). Here, we describe the use via StHAL.

The setup and execution of an ESS experiment follows the procedure for the real system
(section 2.11.3). Only two modification have to be made: First, as the hardware database

HBP_SP9_Specification 13 May 2014 (git 56b296e) 244

use a ESSHardwareDatabase, which further requires a directory path specifying the lo-
cation for temporal data of the ESS. Second, instead of the ExperimentRunner, use the
ESSRunner.

Thus, a StHAL ESS experiment essentially looks as follows:

sthal::Wafer wafer(Coordinate::Wafer(0));
// ... SNIP ... (collect wafer configuration)
std::string ess_dir_path("./ess_dir")
wafer.connect(sthal::ESSHardwareDatabase(ess_dir_path));
// ... SNIP ... (configure ESS)
sthal::ESSRunner runner{1e-3};
wafer.start(runner);

2.11.5 Hardware Simulations

Author: Eric Müller

To assess hardware-specific neuron or synapse behavior detailed analog transistor-level sim-
ulations, are essential. Due to software licensing issues analog simulations are typically only
available for chip developers. Furthermore, the simulation interfaces supplied by the analog
circuit simulators are very generic and not optimized for neuronal network modelers.

Hence, an user-friendly interface to such an analog simulation is important. The HALbe
backend for simulation of analog circuits (SimDenMem) bridges exactly this gap. Synapse
driver, synapses and neuron membrane circuit (cf. sections 2.3.3.1 to 2.3.3.3) are evaluated
by an analog simulator.

SimDenMem is a HALbe (see section 2.11.2) API implementation targeting an Inter-process
Communication (IPC)-based simulation backend. Coordinates and data containers are appro-
priately converted. For example, boolean values enabling or disabling transistors have to be
converted into analog voltage levels (e.g., VDD or 0 V) and a relevant subset (e.g., the neuron
circuit parameters) of all analog parameters has to be extracted. A client-server-based soft-
ware using IPC transfers the simulation job onto a simulation server. The simulation server
uses a proprietary analog circuit simulator to obtain results and returns the data to the IPC
client. In the last step result data is returned to the user and can now be visualized.

As long as user uses only one DenMem the experiments can be executed on both, the NM-PM
system or the HALbe backend for simulation of analog circuits (SimDenMem) backend.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 245

HBP_SP9_Specification 13 May 2014 (git 56b296e) 246

2.12 System Management Layer

Author: Eric Müller
The operation of the NM-PM system involves many resource management tasks. On front-end
side, the user issues experiment jobs, on the back-end side many hardware entities have
to be orchestrated. In particular, this includes assigning fractions of the NM-PM system to
jobs, post-job clean-up, keeping track of hardware usage, failures, user authentication/
authorization and maintaining fairness.

2.12.1 Cluster

All network components (FCPs, Power Management Units (PMUs), Compute Nodes) are lo-
cated in a single Ethernet broadcast domain. Multiple IP networks split Wafer Module/host
pairs into logical communication domains. The compute nodes boot into a network-based,
stripped-down Debian-based operating system – different kernel configuration options are
available to focus on different operation modes (e.g., closed-loop experiments or data anal-
ysis, cf. chapter 1.2). Local I/O operations are executed within an memory-backed overlay
filesystem. This allows for sharing a common file-system root between all compute nodes.
Cluster resources are managed by Simple Linux Utility for Resource Management (SLURM)
[45], monitoring is handled by Ganglia [46] and Nagios [12] or equivalent tools. Fairness be-
tween users is ensured using the built-in SLURM priority management capabilities. Multiple
I/O nodes provide cluster storage for input and output data. This data is available on all
frontend and compute nodes.

2.12.2 Hardware Resources

As a first step the hardware resources are mapped one-to-one to cluster nodes. This not
only involves Ethernet-based communication channels but also analog-readout assignments
(cf. chapter 2.7). The mapping between Wafer Module power control (e.g., enabling parts
of the wafer, monitoring power consumption, temperature and other operating paramaters)
and Compute Node is also statically mapped.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 247

2.12.3 Users

Local users (i.e. users having access to the cluster login nodes) are allowed to submit jobs
for execution on the NM-PM. Remote access is secured using X.509-based [11] certificates.
For the high-level description see section 1.4.2.

In the remote case a client-server-based software infrastructure handles user authenti-
cation/authorization and submits jobs into the same job queue as local users. The user
interface is based on the PyNN API (cf. sections 1.3.2 and 2.13.3).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 248

2.13 PyNN Frontend and Translation Li-
braries

This section describes software methods that are necessary to provide the user with a control-
lable, widly homogeneous system. Calibration of the neuromorphic computing substrate is
covered in section 2.13.1. Section 2.13.2 deals with the mapping between neuronal network
descriptions and valid hardware configurations.

2.13.1 Calibration

Due to the analog nature of the neuron circuit, unavoidable variations in the fabrication lead
to a slightly different behaviour for each DenMem. The aim of the calibration is to reduce
these neuron-to-neuron variations by extracting relationships between the input parameter
space and individual neuron behaviour. This section will give an overview over the calibration
of the NM-PM. It will also explain the methods used to deduce neuron parameters from
measured voltage traces. Finally, as an example, the calibration of the neuron resting
potential will be described in more detail.

The parameterizability of the analog components of a neuron is realized by reading analog
values from programmable floating gate memory cells, see section 2.3.3.5. Those floating
gate memory cells provide either voltages or currents, with voltage ranges from 0 V to 1.8 V
and current ranges from 0 µA to 2.5 µA. Both floating gate types are programmed via discrete
10 bit DAC values. The translation from desired voltages and currents to DAC values is one of
the tasks that is done by the calibration.

Since we are not able to directly measure parameters like time constants or conductances,
it is required to deduce these parameters from measured membrane voltage traces.

The main task of the calibration is therefore to provide a lookup from analog hardware
values to the programmable discrete floating gate parameters. In this step, the intrinsic
neuron-to-neuron variations that stem from the hardware features outlined above are mit-
igated. The calibration software can also be used to report if a neuron shows behavior
that makes it unsuitable to be used in networks, i.e. it is marked as defective. Both the
calibration and the defects are stored in a database.

The speedup of hardware time compared to biological time is taken into account by
these transformations. Required corrections due to transistor size mismatches and effects
described below are applied as well.

There are several factors in the HICANNv2 neuron circuit which lead to deviations that the

HBP_SP9_Specification 13 May 2014 (git 56b296e) 249

calibration has to correct for. The first factor affects the actual measurement of membrane
voltages, not the voltages themselves. Each neuron is connected to a readout ADC line via
an operational amplifier which has a natural offset varying from neuron to neuron. In simu-
lations, this offset was calculated to be (0.957± 11.579) mV (see fig. 2.13.1). Hence, when
measuring the same voltage for different neurons, we expect a natural standard deviation of
at least 11.579 mV over all neurons. To correct for this readout shift, we make use of the fact
that one Vreset, as a shared parameter, is applied to 128 neurons and therefor should not have
any neuron-to-neuron variation among one block. By measuring Vreset for all 128 neurons
connected to one floating gate block and taking into account that they are all connected to
the same voltage, we can extract the readout shift for each individual neuron. This is done
by taking the mean Vreset over one block as a reference and then measuring the deviation
Vshift,i of each neuron i from that mean value. Each successive voltage measurement is then
shifted back by �Vshift,i.

After a membrane voltage trace has been recorded, the desired parameter needs to be
extracted. To measure LIF-parameters, the following methods are used:
Membrane leakage potential El: Vt is set much larger than El so that the neuron does not

spike. Without any input, the membrane voltage trace is measured. The mean Vmem of this
voltage trace is taken to be the neuron resting potential.
Reset voltage Vreset: The membrane resting potential is set above the spike threshold so

that the neuron always spikes. �ref is set to a high value in order to keep the voltage at Vreset
for a longer time period. The, the voltage base line between spikes is measured, which is
given by Vreset.
Spike threshold voltage Vt: As in the Vreset measurement, El is set above Vt so that the

neuron always spikes. Then, the maximum of the voltage trace is measured, which is given
by Vt.
Membrane leakage conductance gl: Vt is set much larger than El to avoid spiking. A small,

periodic step current is injected into the neuron which leads to periodic rise and decay of
the membrane voltage. Then, an exponential function is fitted to the voltage decay to get
�m. The conductance is given by gl = C

�m
with C being the capacitance of the neuron circuit.

Synaptic reversal potentials Esynx and Esyni: All conductances except the synaptic con-
ductance are set to zero. Strong spikes with a high frequency are sent to the neuron. These
spikes cause the membrane potential to keep at the reversal potential Esyn. Esyn is then
extracted by taking the mean of the membrane voltage trace.
Synaptic time constant �syni and �synx: Vt is set much larger than El to avoid spiking.

Regulare spikes from the background generator are used to stimulate the neurons. The
spikes distance is large enough, that the PSPs will not overlap. Multiple PSPs are recorded
and a double exponential is fit to the mean of the recorded PSP. The time constants can be
obtained from the fit.

In the following, the calibration of the membrane leakage potential is exemplified. The
method described above is used for different values, called steps, of the hardware parameter
El. Figure 2.13.2 shows an example of five different voltage traces for one specific El.
The measurement is repeated several times per step and averaged over all repetitions to
compensate floating-gate variations. Results for three different steps are shown in fig. 2.13.3.
The calibration is summarized in fig. 2.13.4. This figure shows that the mean values after

HBP_SP9_Specification 13 May 2014 (git 56b296e) 250

����������	��	�
��
��������������
��	��� �����������������������

��	�
�����

���	�
�����
 �

�
�
��
�
��
�
�
�

	

�

�

�

��

��

���

��

���

 ��� !��

��
�������

��� ��� ��� ��� � �� �� �� ��

����������

��������������

� !�"�#�����������

"���
������

�#������

"�$��������

Figure 2.13.1: Result of a Monte-Carlo-Simulation of the neuron output amplifier.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 251

calibration are closer to the target values and the neuron-to-neuron variation is reduced.

2.13.2 Automated Mapping of Neural Networks to Hardware

The original mapping has been redesigned and is now known as marocco.
This section has been written by Sebastian Jeltsch.

2.13.2.1 Neuron Placement

Input: A list of available HICANN chips; Optionally, a partial or complete user defined neuron
placement.
Output: An assignment of each model neuron to a set of hardware neuron modules.
Defects: Blacklist of neurons.

The redesigned mapping process provides a simple but fast neuron placement implemen-
tation. In PyNN, network connectivity is typically established between populations. Thus,
population tend to have common sources and targets. Heuristically placing neurons within
the same population onto the same chip saves routing resources, because connections can
be realized as part of the same L1 route. This works particularly well for feed-forward net-
works. However, PopulationViews and Assemblies simplify the realization of other connection
patterns, rendering the heuristic less effective.

Additionally, users can place model neurons onto variably interconnected hardware neu-
rons, allowing configurations with higher input counts. This is a major advantage over the
former mapping, where all model neurons had to have the same neuron interconnection
topology on hardware. Currently, the implementations allows only block shaped neuron
configurations with neuron numbers that are multiples of two to simplify local routing. Con-
sequently, events can be relayed to the neuron from either synapse arrays. In practice, this
is only a minor limitation, because input counts of medium sized networks easily exceed
single neuron synapse resources. In fact, a reasonable default size was found to be eight
interconnected neurons.

Guidance

The implementation allows users to guide the neuron placement by explicitly specifying
target chips for populations. The modeler can also control the shape of neurons individually
for each population. Hence, the number of afferent synapses can be fine-tuned, such that
neurons in populations receiving lots of input are realized as larger hardware neurons. The
following code listing demonstrate how the neuron placement is interfaced from Python.

marocco = Pymarocco()
marocco.placement.setDefaultNeuronSize(4)
setup(marocco=marocco)

...
p = Population(113, IF_cond_exp)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 252

Figure 2.13.2: Membrane voltage traces for five different uncalibrated neurons. The dashed
line shows the value of El that was set for all neurons.

Figure 2.13.3: Distribution of measured Vmem before (blue) and after (green) calibration for
three different values of El (dashed lines).

Figure 2.13.4: Summary of all neurons before (left) and after (right) calibration. The lines
show mean and standard deviation over all neurons on one HICANN.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 253

targets = [HICANNGlobal(X(14), Y(20)), HICANNGlobal(X(15), Y(20))]
marocco.placement.add(p, targets, 8)

Here, a population of 113 neurons is assigned to the chips with Cartesian coordinates
(X,Y) = (14, 20) and (15, 20) (see Section 2.11.1). Each model neuron is placed to eight
hardware neurons despite the default hardware neuron size of four.

Algorithm

The algorithm distinguishes between hardware neurons that are available for placement and
those that are not. Initially, all blacklisted neurons are simply marked as not available.
Then, manually placed populations are placed to their respective hardware locations. All
occupied hardware neurons are also marked as no longer available for later assignments.
Whenever the manual placement runs out of resources because either not enough chips have
been specified for a population or too many neurons have been blacklisted, the assignment
fails and the user is informed.

In the next step, all remaining populations have to be placed. Firstly, populations are
sorted in descending order based on their input degree in the population graph. Secondly,
all available chips are sorted in ascending order base on their location (X,Y). For any two
chips at (X0,Y0) and (X1,Y1), chip 0 appears prior to chip 1 if it is closer to the center of
the wafer. If equally far apart, chip 0 appears still before chip 1 if �0 is smaller than �1 for
�i = atan2 (Xi,Yi). The resulting ordering lists available chips spiraling out from the center.
Starting with chips in the center helps to avoid boundary effects like reduced L1 resource
densities. Furthermore, the resulting placement has a convex shape, which can be beneficial
for some wafer routing implementations, see Section 2.13.2.4.

Now, populations and chips are iteratively popped from the beginning of both lists. For
each pair, as many as possible model neurons are assigned to hardware neurons. Again,
these neurons are marked as no longer available. Unassigned neurons are reinserted at
the beginning of the population list in order to be assigned in the next iteration. How many
hardware neurons are required depends on the number model neurons, the defect distribution
and the neuron interconnection size. The latter is given by a configurable default size. If
a chip provides more neurons than necessary, it is reinserted at the beginning of the chip
list and used for the next population. Even though larger populations are fragmented across
multiple chips they are guaranteed to end up nearby. This reduces the necessary routing
resources for connections targeting this population.

Moreover, the implementation can optionally limit the number of available neurons per
chip. This is particular useful for hardware neuron sizes of 4 and 8, where otherwise in-
efficient L1 usage would be the consequence as explained in Section 2.13.2.2. Less SpL1
repeaters are required in the subsequent merger routing stage to route all neurons off chip
if the number of placed model neurons is reduced to 118 and 59 respectively. Experiments
have shown that forgoing some hardware neurons is generally beneficial for the overall loss
of synapses.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 254

Figure 2.13.5: The PyHMF population graph (1) is sorted by in-degree in descending order (2).
Populations from the list are placed iteratively to hardware neurons on chips
spiraling outwards from the center of the wafer (3). This simple heuristic
keeps neurons within a population topologically close together. Moreover,
populations with lots of input are likely to end up closer to the center, which
reduces the routing resource requirements for uniformly distributed sources.

Runtime

Initially, two lists are sorted. Sorting is done in O(n) = n lgn, where n denotes the number of
elements in the list. Then, model neurons are iteratively assigned to hardware neurons. In
the worst case a single neuron is assigned per iteration. This contributes a worst case limit of
O(n) = n ·Nmax, with the number of populations n and the size Nmax of the largest population.
All contributions sum up to

O(n,m) = m lgm + n lgn + n · Nmax , (2.13.1)

where n is the number of populations and m number of chips. Which linearithmic term
dominates depends on the input size. The implementation is efficient enough to place large
numbers of model neurons onto extensive hardware setups in all cases.

2.13.2.2 Merger Routing

Input: Neuron placement.
Output: A merger tree configuration and L1 address assignment.
Defects: Blacklist of mergers and SpL1 repeaters.

After the model neurons have been placed, the first step towards connecting neurons, is
to map them onto SpL1 repeaters. The outputs of up to 59 neurons from different blocks
can be merged in order to save L1 resources. An illustration of the merger tree is found in
Figure 2.3.15. The configuration requires to set each merger to forward either its left, its
right, both or none of its inputs.

Only 59 of the theoretically 64 addresses are available. Address 0 is reserved for link
synchronization and four more addresses are required to realize absent synapses. The im-
plementation reserves all addresses of format XX00012 for this purpose.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 255

Unlike its name, the merger tree is actually not a tree. Its an overlay of 8 trees with the
SpL1 repeaters as root nodes. We can model the complete structure more easily as a directed
acyclic graph. Edges connect mergers from lower levels to mergers in higher levels. Modeling
the structure as a graph enables us to keep the algorithm generic and to cope with defect
mergers efficiently, rather than implementing the fixed topology as part of the algorithm.

Looking at the merger tree, one of the first things to notice is, that mergers are not
equally capable of merging events from different blocks. For example, the bottom most
merger connected to DNC merger 3 is the only merger capable of collecting events from all
neurons. The algorithm considers mergers in a fixed order from more to less capable in order
to find configurations which require the smallest possible number of SpL1 repeaters.

In a first trial, merger 3 is considered. A breadth-first search [68] is used to discover
reachable neuron blocks. If less than 59 neurons are placed to the chip and no defects are
present this already yields a complete, efficient and valid configuration and the algorithm
terminates. Otherwise, the trial is discarded.

In a second trial DNC mergers are considered for merging in the following order 5, 3, 1, 6,
4, 2, 7, 0. Unlike the first trial, assignments are established iteratively and configurations
are kept even if a merger cannot merge all accessible blocks, because the number of neurons
exceeds 59. For each DNC merger i, the accessibility of yet unassigned blocks is determined
by means of a breadth-first graph search. Starting from the top level merger i, as many
accessible neighboring blocks to the left and right are merged as possible. Neurons within
these blocks are therefore assigned to the corresponding SpL1 repeater and require no further
treatment. DNC mergers which cannot reach any mapped and yet unassigned neuron block
remain available for the assignment of external spike sources in the next pipeline stage.
The algorithm terminates if either no pending blocks are left or all DNC mergers have been
processed.

The implementation results in efficient configuration in terms of L1 resource utilization.
Any neuron placement is guaranteed to be be routed as long as no mergers are blacklisted.
Otherwise, some of the neurons might be unroutable. The initial trial with merger 3 is
important in order to find optimal configurations when all neurons can be mapped onto
a single SpL1 repeater. However, starting the second trial with merger 3 may yield an
unresolvable edge case, when the neurons from blocks 3 and 4 can be merged but not 5.

Finally, 6 bit L1 addresses are mapped to neurons. The assignment is in principle arbitrary,
however, using consecutive addresses to minimize the number of different MSB improves
the synapse driver assignment later on. Moreover, addresses are assigned from the highest
to the lowest address. The lower address range (0, 16] contains only 14 compared to 15
programmable addresses otherwise. Therefore, less synapse drivers are required on the
receiver side for configurations realizing 15, 31, or 47 sources per L1 connection.

Runtime

The worst case occurs when all mergers have to be considered in the second trial, which
requires constant time. Thus, the local merger routing for N chips can be established in in
linear time O(N) = N.

Furthermore, merger tree configurations for multiple chips are derived efficiently in par-
allel. No means of synchronization are required, as local resource are assigned only.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 256

2.13.2.3 Input Placement

Input: Neuron placement and List of remaining SpL1 repeaters.
Output: Mapping of spike inputs to SpL1 repeaters and L1 address assignment.
Defects: Blacklist for SpL1 repeaters.

The input placement is responsible for mapping external spike sources onto SpL1 repeaters
to inject them into the L1 network. The actual spike trains are prepared as part of the pa-
rameter transformation (see Section 2.13.2.7), because their timing depends on the speedup
of the system, which is subject to analog calibration. Note that the injecting FPGAs and
DNCs are implicitly defined by the NM-PM1 setup.

The algorithm minimizes the required L1 resources by injecting inputs close to the geo-
metric center of their target chips. Key to a fast implementation is to find suitable insertion
points efficiently. Therefore, available SpL1 repeaters are organized in a KD-tree data struc-
ture. The nanoflann C++ library provides the necessary nearest neighbor algorithms [14].

Initially, spike input populations with local targets are collected in a list and sorted in
descending order by their number of target chips. Afterwards, the ideal insertion point is
determined for each entry as the geometric center of the target chips. All SpL1 repeaters
which are not blacklisted and have not yet been designated for relaying events from neurons
are available for external inputs. A KD-tree data structure is used to organize these repeaters
and provide efficient geometric queries.

Iteratively, input populations are popped from the front of the source list. Each time, the
SpL1 repeater closest to the ideal insertion point is queried in the KD-tree. Again, up to
59 sources can be mapped to a single SpL1 repeater. If the number of source exceeds the
remaining capacity of the SpL1 repeater, as many as possible sources are assigned and the
remaining ones are reinserted at the front of the source list. In case the repeater has been
fully assigned, it is removed from the tree. The algorithm terminates, when either all inputs
have been assigned or the system runs out of available SpL1 repeaters. In the latter case,
the user is informed.

Runtime

The worst case runtime for M inputs and N chips is given by

O(N,M) = N2 + M · N . (2.13.2)

The first N2 term is contributed by the initial KD-tree construction, where the second M · N
denotes the repeated queries and deletions from the tree for all M inputs. On average, the
KD-tree access complexity is reduced to N lgN, resulting in

O(N,M) = (N + M) · lgN . (2.13.3)

Thus, the implementation perform reasonably for large networks and provides linearithmic
scaling in the average case.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 257

2.13.2.4 Wafer Routing

Input: Neuron Placement; Assignment of neurons and spike sources to SpL1 repeaters.
Output: A complete configuration of crossbar switches and repeaters; A mapping of pre-
synaptic neurons to vertical buses on chips containing post-synaptic neurons.
Defects: Blacklists for buses, repeaters and crossbar switches.

The wafer routing configures repeaters and crossbar switches to establish long-range con-
nectivity via the L1 network. Here, two implementations are presented, a simple one using
Dijkstra’s algorithm to discover shortest paths iteratively and an optimized L1 graph search
that minimizes horizontal bus allocation. Both algorithms efficiently realize detours to cope
with non-rectangular routing grids resulting from wafer boundaries, defect elements or local
congestion. In this context, a detour is simply an alernative connection, that has been routed
around obstacles along the way.

Modeling the Network Topology as a Graph

Graphs provide a natural representation of the L1 network. Topology, defects and current
resource utilization can be represented alike. The major advantage of this approach is that
algorithms can be developed more generically. They recursively discover possible routes by
searching the graph. Whenever a route is established, participating components are removed
from the graph to keep an up-to-date map of currently available resources. Decoupling the
algorithm from the network topology renders the implementations more flexible and allows
for topology explorations of future designs.

The L1 topology is modeled as a undirected graph, because buses have no preferred
direction. Events can be transmitted from left to right and right to left alike. Buses are
modeled as vertices. Crossbar switches and repeaters connect buses, hence they are modeled
as edges. Figure 2.13.6 depicts the mapping between the L1 fabric and graph components.

The corresponding dual graph, where buses are modeled by edges and vertices represent
switches and repeaters, is less suitable. This representation splits bus lanes, such that routes
can occupy only a fraction of a bus which is physically impossible.

The implementation uses the boost::graph template library [67], a popular and efficient
C++ template library shipping with many algorithms.

Common Task

Both wafer-routing implementations realize routes iteratively, but use different strategies
to discover candidates in the graph. Their commonalities are discussed in the following to
focus on their differences later on.

Route Representation A route though the L1 network is defined by its starting point at a
single SpL1 repeater, a list of interconnected buses and the vertical target buses on chips
with post-synaptic neurons. Note that the injection point on the sending side is-well defined
down to the single bus. On the receiving end, any vertical bus running alongside a target
chip can in principle be used to relay events into the synapse array. Pending routes, which

HBP_SP9_Specification 13 May 2014 (git 56b296e) 258

2
1

Figure 2.13.6: The L1 routing topology is implemented as a undirected graph. Horizontal
(1) and vertical (2) buses are represented as vertices, while repeaters and
switches connecting buses are realized as edges. Defect hardware compo-
nents, like the yellow repeater, can be left out and are therefore omitted
during the wafer routing.

have not yet been routed, are defined as a tuple of a source SpL1 repeater and a list of target
chips.

These pending routes are constructed for each source chip, by following all outgoing pro-
jections of local neurons to the target populations. Efferent neurons therein are translated
back into chips by looking up the neuron placement.

Outgoing connections from all neurons mapped to the same SpL1 repeater have to be
routed at once, as L1 resources are taken out of the graph afterwards.

Route Priority Routes are established iteratively. Pending connections that are routed
earlier have access to more resources, making their realization more likely. Thus, routing
priorities are implemented by scheduling the allocation. By default all pending routes have
the same priority. Routes with the same priority are sorted in ascending order by the distance
of the source from the center of the wafer. Otherwise, realizing secluded routes with targets
on the other end of the wafer first may congest central areas. Typically, this results in
increased synaptic losses, since neurons with high out-degree have been placed towards the
center.

Modelers can guide the wafer routing by specifying custom priorities for any projections in
PyHMF. L1 connections may realize multiple projections. The effective priority is given by
the maximum priority of any participating projection.

Parallelization Multiple pending routes compete for the same shared L1 resources. The
wafer routing therefore lacks a natural partitioning into independent subproblems, which
makes it notoriously hard to parallelize. Even if the access to individual buses is manged
by means of process synchronization, such that only a single thread can allocate a bus at a
time, competing threads can still steal buses from one-another and thus trap other threads
in unresolvable situations. Real world approaches exist for shared-memory parallelization,
but at high synchronization costs [32]. For reasons of simplicity, wafer routing is currently
carried out purely sequential.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 259

Adjacent Synapse Drivers Events on a vertical bus can be relayed to local synapse drivers
and drivers on the adjacent HICANN. In order to simplify the parallelization of the synapse
driver routing in the next pipeline step, both implementations avoid configurations where
a single vertical bus is used to inject events into both chips at the same time. Otherwise,
synchronization is required to ensure that the cumulative capacitive load on the bus does not
exceed the total limit. Dropping this confinement yields topologically valid configurations,
however capacitive limits are no longer enforced.

Greedy Iterative vs. Global Optimization Finding globally optimal solutions that minimize
the over all synaptic loss are unlikely to be found with greedy iterative approaches. How-
ever, no efficient algorithms exist to construct the optimal solution as discussed above.
Nevertheless, other approaches exist for global multi-objective optimizations, like simulated
annealing [44], genetic [31, 50] or swarm [53] algorithms. Generally, the performance of
Monte Carlo [51] approaches depends on the efficient generation of candidate solutions and
evaluation thereof. Both conditions are not met for the wafer routing, e.g., evaluating the
synaptic loss as optimization target requires to carry trough the subsequent two pipeline
stages for each candidate solution.

The iterative algorithms implement corrections to attenuate their greediness and leave
important resources in foresight to connections routed later in the process, e.g., horizontal
buses with pending SpL1 repeaters are avoided. Allocating these buses makes it otherwise
impossible to insert their events into the network, rendering them inevitably lost. Further
corrections are outlined alongside the implementations.

Iterative Shortest Path Routing

Intuitively, the routing problem can be approached using available and efficient shortest
path algorithms after modelling the L1 topology as a graph. A good starting point is Dijkstra’s
algorithm [20]. Modern implementations find the shortest path between one bus and any
other L1 bus in O(E,V) = |E|+ |V | log |V | [28], where E is the set of switches and repeaters and
V the set of buses. Here, the stock implementation provided by the boost::graph library
is used. Note that the problem size decreases over time, as resources are taken out of the
graph from iteration to iteration.

Moreover, Dijkstra’s algorithm is generic enough to establish simple multi-wafer connec-
tions in the future. At the time of thesis submission, a ready hardware implementation of
the multi-wafer network has not yet been available.

Graph searches are invoked iteratively for all pending routes according to Section 2.13.2.4.
In each iteration, all outgoing connections from a single SpL1 source are routed. Dijkstra’s
algorithm discovers the shortest paths to any other bus in the graph. The distance between
two buses is given by the sum over all weighted edges along the path, thus crossbars and
repeaters. This can be used to flexibly model hardware characteristics as explained further
below. Shorter paths are discovered earlier in the process due to the greediness of the
algorithm. Consequently, the first reachable vertical bus on one of the target chips yields
the shortest possible connection to this chip.

Whenever, a connection to one of the pending targets has been found, the actual path is
checked to make sure it meets the L1 capacitive constraints. Possible violations are multiple

HBP_SP9_Specification 13 May 2014 (git 56b296e) 260

switches set per bus on the same HICANN to establish chip local detours to e.g., go from
one horizontal bus to another on the same chip. The capacitive limit cannot modeled by
weighted edges. Instead, backtracking is used to detect and omit these configurations.
The candidate is traced from the target to the source bus. Whenever a crossbar switch is
encountered, it is checked whether other switches in this crossbar have been used already.
If so, the candidate is discarded and the current graph search continued. Otherwise, when
the source is reached successfully, all utilized crossbars and buses are both, memorized and
allocated. Furthermore, the target chip is removed from the list of pending targets and
Dijkstra’s algorithm is continued.

The search ends either if all target chips have been successfully routed, no further buses
can be reached or the current path exceeds a configurable length limit. The latter avoids
routes of last resort, whenever detours across the whole wafer are the only possible option
left. When realized, these connections would consume large amounts of L1 resources, which
might better be used to realize other routes. The maximum length can be specified as
multiples of the L1 distance between source and the furthest target chip.

The algorithm ultimately terminates when all pending routes have been processed.
Figure 2.13.7 exemplarily illustrates a routing problem that has been solved via the iter-

ative shortest path routing. Notably, the algorithm can solve concave routing problems and
therefore reach the chip at item (4).

Figure 2.13.7: Routing problem solved via iterative shortest path routing. The source chip (1)
of the route is highlighted in dark and its targets light grey. Defect chips (2) are
left out. Following Dijkstra’s algorithm the routing searches for shortest path
to each target. Depending on edge weights and current allocations nearby
chips might be discovered first on different paths, resulting in non-optimal
solutions (3). However, targets are reached whenever possible, including the
chip at (4), which has been missed by the horizontal growth algorithm in
Figure 2.13.8.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 261

Modeling Hardware Characteristics The length of any path established by Dijkstra’s algo-
rithm is measured as the sum over all weighted edges along the way, thus it can be used to
model hardware characteristics.

These weights are configurable by the modeler to customize the routing. Currently, three
different types of edges are distinguished for connections to vertical buses, to horizontal
buses and to buses with mapped SpL1 repeaters. By default, the former two are equally
set to one. The latter are expensive and therefore set to 104, such that Dijkstra’s algorithm
avoids these buses if other options exist. They become a matter of last resort and are skipped
completely if the effective length exceeds the limit. Weights are calculated on-the-fly to
emulate directed edges on the undirected graph, safe memory and implement the congestion
control as explained below.

Congestion Control Always, picking the shortest possible path to construct routes yields
a greedy approach. In fact, Dijkstra’s algorithm itself is greedy, it always continues with
the shortest unvisited edge and produces optimal results. This is different for resource
allocations, where instances are exclusive and iteratively taken away. An optimal routing
considers all routes at once and produces a configuration that minimize the overall synaptic
loss.

Here, greediness is attenuated by scaling edge weights according to the current bus uti-
lization. Thus, paths through congested areas appear effectively longer. The total weight
wtotal(h, i) for any edge connecting to a horizontal bus (i = 0) or vertical bus (i = 1) on chip h
is given by

wtotal(h, i) = wstatic(i) + � · �(h, i) . (2.13.4)

Where wstatic(i) models the static characteristics of the hardware, as explained above, and
�(h, i) denotes the number of allocated buses for chip h and orientation i. The constant �
is a scaling factor to control the relative amplitude of the static and dynamic weights. The
default is � = 1

10.

Shortcomings The iterative shortest path approach tends to allocate more resources than
necessary. Constructing Minimum Rectilinear Steiner Trees (MRSTs) rather than combining
shortest paths would minimize the number of allocated resource per iteration, however it is a
Non-deterministic Polynomial-times (NPs) complete problem [43, 30]. Moreover, most MRSTs
heuristics require a fixed vertex set [41], whereas pending routes only specify target chips
rather than actual target buses. It has been found experimentally, that the routing is mostly
limited by horizontal bus utilization. In consequence, the following iterative horizontal
growth algorithm has been specifically designed to minimize the horizontal bus allocations.

Runtime In the worst case, the whole graph has to be searched from each source to find
every target. Such a behaviour is expected for unstructured random networks, where any
two HICANN chips have to be connected. The number of source SpL1 repeater is proportional
to the number of neurons N in the model description. The algorithmic complexity is there-
fore bound by N times the iterative invocation of Dijkstra’s algorithm, which has a runtime
complexity of O(E,V) = |V | log |V | + |E| according to the boost documentation [66]. Where

HBP_SP9_Specification 13 May 2014 (git 56b296e) 262

V is the set of buses and E the set of switches and repeaters. The backtracking is typically
fast and uses internally constant time lookups. It contributes a multiplicative worst case
complexity of |V |. This results in a overall complexity of

O(N,E,V) = N · |V | · (log |V | + |E|) . (2.13.5)

At first glance, the complexity scales linearly in the number of neurons N. However, the
hardware extend which is proportional to E and V has to be chosen sufficiently large to
host all neurons. For fixed hardware setups, like a single wafer, V and E are bound by the
L1 network and the implementation actually scales linearly. For multi-wafer routings, a
hierarchical approach can be employed to route individual wafers first and then establish
inter-wafer connectivity.

This is only a worst case assessment, sparse network models are typically routed much
faster.

Iterative Horizontal Growth Routing

The iterative horizontal growth algorithm is the second wafer-routing implementation. It is
optimal in terms of horizontal bus utilization. Similar to the backbone algorithm described
in [27] only N+1 horizontal buses are required if leftmost and rightmost HICANN are horizon-
tally N chips apart. This algorithm however, does not depend on a single horizontal backbone,
which renders the approach suitable for defects, congested areas and non-rectangular routing
grids.

Routes grow horizontally until either the outer most chip has been reached or the horizontal
continuation of the path is blocked. In the latter case, a vertical detour is established to
continue the horizontal growth in another HICANN row. Furthermore, the algorithm is aware
of SpL1 utilization and avoids using horizontal buses that are required for route realizations
later on. This helps to find globally more optimal solutions. Figure 2.13.8 shows a routing
problem solved by horizontal growth. Note that the algorithm does not change directions as
the connection grows, therefore concave neuron placements cannot be routed.

Like the previous shortest path algorithm, the horizontal growth algorithm is invoked itera-
tively for all SpL1 sources according to Section 2.13.2.4. The algorithm itself is implemented
recursively. For each pending route, first the horizontal extent Xright�Xleft is determined for
the left and right most target chips located at Xleft and Xright, respectively. Starting from the
horizontal bus at the source SpL1 repeater, the route grows left and right until the outermost
extends Xleft and Xright are reached or no more suitable detours can be found.

In each recursion, outgoing edges from the current vertex are examined to find the sub-
sequent horizontal bus on the adjacent chip towards the direction of growth. If the corre-
sponding bus is found and no SpL1 inputs are assigned, the recursion continues, otherwise a
vertical detour needs to be established. Several reasons can lead to this bus not being found,
like prior allocation, blacklisting or it simply does not exist at the wafer boundary.

In case of a detour, all vertically reachable buses on the current chip are considered.
The best possible option is determined by walking vertically for each option until the wafer
boundaries on top and bottom are reached or the path is blocked. Then, individually count
the number of horizontally reachable target chips in the direction of growth for every cross-

HBP_SP9_Specification 13 May 2014 (git 56b296e) 263

Figure 2.13.8: The same routing problem as in Figure 2.13.7 is solved by means of the iterative
horizontal growth algorithm. The source chip (1) of the route is depicted
in dark, while requested targets are colored in light grey. Defects (2) are
vertically detoured to continue growth in another HICANN row (3). The target
chip at (4) is unreachable, because the algorithm keeps growing in a single
direction.

bar switch along the way. Consistently, buses with mapped SpL1 repeaters are skipped.
Furthermore, the evaluation does not take any detouring into account. The option that
yields the maximum number of reachable targets, if any, is chosen to establish the detour
accordingly. Subsequently, the growth continues in the HICANN row accessed by the detour.

Whenever a chip is reached, which is in the same column as any of the targets, a vertical
connection is established. Again, all vertical buses reachable via local crossbar switches are
considered. The best option is picked based on a score. For each option, the score is initially
set to zero and a vertical walk is started, both upwards and downwards. When a target chip
is encountered, the score is increment by two if less than 12 other routes yet project on the
same set of synapse drivers and otherwise by one. In principle there are 16 vertical buses
that target the same 14 drivers. The scoring has proven itself useful to reduce the number
of competing routes.

The horizontal growth terminates when either all targets have been reached or no more
viable detours can be found.

The wafer routing terminates after all pending routes have been processed.

Runtime In the worst case, connections have to be established from any chip to any other
and detours have to be found for each horizontal recursion. The number of iterations is
proportional to the number of SpL1 sources which in turn is proportional to the number of
neurons N in the model. The horizontal growth itself scales linearly with the number of
buses in the system |V |. Detouring requires to consider a limited number of vertical options

HBP_SP9_Specification 13 May 2014 (git 56b296e) 264

and to count the horizontally accessible targets. During the evaluation, none of the buses is
considered twice, thus limiting its complexity by another factor of |V |. The total complexity
can then be expressed as

O(N,V) = N · |V |2 . (2.13.6)

Here, V is limited by the area of actively used chips on the wafer and cannot grow beyond a
single wafer. If neurons are placed all over the wafer, V is maximized and implementation
scales linearly with the size of the model network.

Evaluation

In most cases, the iterative horizontal growth performs better. It has been specifically
designed to cope with the shortcomings of the shortest path approach by reducing the
horizontal buses allocations.

Though, the shortest path approach might still be useful for inter-wafer routing and in
situations where discovery towards a single direction is not enough, like concave routing
areas.

2.13.2.5 Synapse Driver Routing

Input: An assignment of pre-synaptic neurons to vertical buses for each target chip.
Output: An assignment of vertical L1 buses to synapse drivers.
Defects: Blacklist of synapse drivers

In the previous step, the wafer routing has been established. Now, events passing by chips
with local targets have to be relayed into the synapse array. For each vertical bus there are
14 reachable drivers. However, 15 other vertical buses on each chip compete for the same
resources. Moreover, drivers can mirror their inputs to the adjacent top and bottom drivers
to map larger fractions of the address space and implement more synapses per input. Buses
running on either side of the chip can only be accessed by drivers on the respective side,
therefore the synapse driver assignments on both sides can be optimized individually.

For experiments with small input counts per chip, multiple suitable configurations exist
that equally realize all pending connections. For larger experiments with high input counts on
the other hand, drivers are the limiting resource. Finding optimized assignments is important
to avoid inhomogeneous synaptic losses. Locally unrouted connections result in all afferent
synapses from the source being lost and the corresponding L1 resources might have been
occupied in vain.

A simpler variant of the problem, where vertical buses are connectible to arbitrary drivers,
is algorithmically a Knapsack optimization problem, which is known to be NP-hard [30]. The
actual problem is even more complex. Incoming routes can relay events only via a subset of
synapse drivers due to the select switch sparseness. Furthermore, any synapse driver can be
blacklisted or the connection to neighbors disrupted.

Finally, capacitive limits restrain the amount of inter-connectible drivers. Exceeding limits
results in unreliable event delivery.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 265

Counting Model Synapses and Required Synapse Drivers

As a starting point for the synapse driver routing optimization, the theoretical number of
drivers required to realize all connection is calculated per incoming connection. This number
depends on: the mapping of afferent neurons to the 6 bit address space, model projection
properties and actual connectivity between pre and post-synaptic neurons. The address
space can be mapped efficiently to synapse rows as well as columns with odd and even
index according to the two stage decoding scheme. Different Short-term plasticity (STP)
parameters on the other hand are more expensive and require dedicated synapse drivers.

The access granularity of synapses urges to count the number of necessary half synapse
rows first. A half synapse row is defined as all synapses within one row receiving the same
strobe signal. For any route r all incoming connections within the same connection bin
b = (te/i, 2 MSB) can be realized via the same half synapse row. Where, b bins incoming
connections from sources with the same 2 MSB address bits and the same synapse type te/i
(either excitatory or inhibitory). The number of necessary half synapse rows L for bin b,
route r, efferent neuron j and STP parameter set PSTP is given by

Lr(j,b,PSTP) =

&
1

2wj

X

i2b
Nr(i, j,PSTP)

'
. (2.13.7)

On the right hand side, Nr(i, j,PSTP) denotes the number of synapses between afferent neuron
i and efferent neuron j using the same instance of STP parameters. The number of synapses
that share the same configuration is achieved by summing over all sources within b. Dividing
this by two times the physical width wj of the target hardware neuron j and rounding it to
the ceiling results in the number of necessary half synapse rows Lr(j,b,PSTP).

Every synapse driver has access to four half synapse rows. Thus, the number of synapse
drivers per STP parameter set is given by the sum over all bins b of the maximum number
of half rows required for any of the target neurons j. Subsequently, the results has to be
divided by four and rounded to the ceiling. To finally get to the number of actually necessary
drivers Dr we have to sum over all STP parameter sets as they can only be implemented per
driver.

Dr =
X

PSTP

&
1

4

X

b

max
j

Lr(j,b,PSTP)

'
. (2.13.8)

If Dr drivers are allocated for r, theoretically all synapses can be realized. However, the
calculation can neither include blacklisted drivers nor synapses, because they have not yet
been assigned. Consequently, some synapses might still get lost in the subsequent synapse
array routing. To circumvent the issue for low input counts, additional synapse drivers can
be requested. Moreover, Dr can become larger than capacitive limits allow. Then, synapses
are inevitably lost.

Note that using a wide variety of different STP parameters has an immediate impact on
the number of drivers and ultimately the loss of model synapses. Thus, merging similar STP
parameter sets for projections targeting the same neurons is recommended.

Finally, the total number of synapses, represented by route r, is determined to prioritize

HBP_SP9_Specification 13 May 2014 (git 56b296e) 266

those, which contribute many synapses. The synapses are counted according to

Nr =
X

j,b,PSTP

X

i2b
Nr(i, j,PSTP) . (2.13.9)

Iterative Best Fit

The iterative best fit algorithm is similar to the synapse driver routing presented in [27]. The
drivers are iteratively assigned to pending connections in in a first-fit decreasing fashion.
This heuristic is known to yield close to optimal results for bin packing problems [21]. In case
the overall amount of necessary drivers per chip exceeds the number of available ones, the
problem can no longer be approximated as bin packing. Thus, the driver requirement needs
to be rescaled to fit the topology. Otherwise, allocating drivers in a first-fit fashion might
not leave drivers for routes later on.

Assignments can not necessarily allocated side by side due to the select switch sparseness
fragmenting the driver banks. Consequently, connections may get lost even though the total
claim is equal or less than the number of drivers.

Compared to [27], the implementation works on the up-to-date hardware topology. Fur-
thermore, only the necessary number of drivers or the capacitive allowed amount are assigned
rather than all available driver to ensure reliable communication. In a final step, gaps in the
synapse driver routing left by the bin packing are filled, as far possible, with connections
ruled out during in the initial normalization stage.

Normalization In cases, where the overall number of required synapse drivers exceeds the
number of mappable drivers per chip, the requirements have to be scaled down in order
to approximate the problem as bin packing. Afterwards, we can use the first-fit decreasing
heuristic to derive optimized solutions.

The normalization is carried out independently for the left and right side of the chip.
Initially, the numbers of required drivers are collected for all incoming routes r on all 256
connectible vertical buses. Note that half of which are on the adjacent HICANN chip. If the
sum D =
P

r min (Dr,Dmax) exceeds 112 minus blacklisted drivers, the subsequent rescaling
is used. Here, Dr refers to the number of necessary drivers for route r and Dmax to the
capacitively tolerable number of synapse drivers. The normalization is carried out according
to

D0
r

=

®
0 if Dr = 0
max(1,min(Dr,Dmax, bA·Nr/Ntotalc)) else ,

(2.13.10)

with the number of synapses Nr represented by route r, the total number of model synapses
Ntotal to be realized on the local chip and the number of available synapse drivers on the
current side A, which is 112 if no drivers have been blacklisted.

After the normalization, it is possible that K =
P

r D
0
r

is still larger than A due to the
maximum function in Equation (2.13.10). Then D0

r
are iteratively decremented in descending

order of �r = D0
r
�A · Nr/Ntotal until K = A, but only if �r > 0. Note that routes r that contribute

only a few synapses might end up with D0
r

= 0.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 267

Alternatively, it might happen that K is less than A after the normalization, mainly for two
reasons. Either Dmax times the number of routes is less than A or when routes contribute
only a few synapses but still require many drivers due to e.g., different STP parameter sets.
In the latter case, the assignments are increased in the same order as before for all �r < 0
until either K = A or all pending routes r have either min (Dr,Dmax) drivers.

Driver Assignment Initially, all routes are ordered in a list according to their normalized
requirements D0

r
from many to few. Then two arrays with 56 entries each are initialized to

represent the synapse driver banks, where entry j represents the jth driver in the top and
bottom half respectively. Each entry marks a driver as either available or taken. In the
beginning, all drivers, except those in the blacklist, are marked as available.

Then the actual iterative assignment starts. In each iteration, the front most route r is
popped from the list. The algorithm considers all possible assignment options in order to find
the best insertion point. For each vertical bus up to 14 reachable drivers exist. Furthermore,
an assignment of n drivers can be shifted around the insertion point p. The drivers are
connectible as long as p 2 [x, x + n).

First, all 14 options are checked whether they provide D0
r

available adjacent synapse
drivers. If more than one candidate exists, the first in the smallest gap of available drivers is
chosen in order to minimize fragmentation. Moreover, the assignment is shifted such that the
distance between the current assignment and the closest assignment is minimized, leaving
the smallest possible gap. Otherwise, if no location with a sufficient amount of resources
exists, the location with the most remaining resources is chosen. In cases where none of the
candidates has resources left anymore, the connections cannot be realized and the synapses
are marked as lost. Each assigned driver is further marked as taken in the array and is no
longer available. The iteration terminates, when the route list runs empty.

Afterwards, routes that have been dropped during normalization, because D0
r

has been
reduced to 0, are scheduled for insertion. Firstly, these routes are sorted by their original
driver requirement Dr in descending order. Then, the same algorithm sketched above is used
to assign synapse drivers for these remaining routes. The algorithm terminates after the
assignment finishes.

Simulated Annealing

missing

2.13.2.6 Synapse Array Routing

Input: Synapse driver routing for each chip.
Output: A mapping between the address space of incoming events to synapse rows and an
assignment of model to hardware synapses.
Defects: Blacklist of synapses.

The synapse array routing completes the network configuration. First, pre-synaptic neurons
are assigned to half synapse rows and model synapses are assigned to hardware synapses
afterwards.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 268

Synapse Row Assignment

The first step establishes synapse driver configurations in order to assign sources to synapse
rows. Synapses are selectively listening on events according to the 2 MSB decoder config-
uration at the synapse driver. Therefore, 16 sources can share half the synapses in a row.
Moreover, synapses that implement STP have to be assigned to appropriate synapse drivers.
However, support for STP is not yet implemented at this pipeline stage.

The implementation assigns half synapse rows according to the relative amount of sharable
model synapses to minimize the synaptic loss. Therefore, we recall the binning b = (te/i, 2 MSB)
previously introduced for the synapse driver routing (see Section 2.13.2.5). A bin contains
all sources with the same 2 MSB address bits and the same synapse type te/i, which is either
excitatory or inhibitory. Synapses falling into the same bin can be realized by a shared half
synapse row.

Note that the number of assignable half synapse rows per driver depends on the implemen-
tation size of the target neurons. For small configurations with no horizontally interconnected
neuron circuits only two of four half synapse rows can be assigned. Furthermore, if the hor-
izontal neuron extend is odd, the number of synapses for strobe signal A and B as well as
C and D is different and depends on the offset of the hardware neurons on the chip. Even
though the mapping supports variably sized neurons, it is recommended to use neuron sizes
that are multiples of 4, thus ensuring even horizontal neuron extends. Otherwise, additional
synapses can be lost during the following assignment.

Synapse Assignment

In a second step, model synapses are assigned to hardware paragons in the order they appear
in the model description. Meaning that synapses of efferent neurons with a lower id have
higher static priority and are more likely to be realized. The order does not influence the
number of lost synapses, only which synapses are lost.

Initially, all synapse weights are set to zero and all decoders are programmed to 00012 as
explained in Section 2.13.2.2. Therefore, leakage conductance onto the neuron membrane
is minimized for weights that are not actually in use.

Afterwards, the connections are iterated in a target index first manner. Therefore, as soon
as the system runs out of synapses for a source-target combination all synapses from sources
within the same bin b can be marked as lost.

Moreover, a lookup table is used to find the next free hardware synapse for b efficiently
in constant time. After each assignment the corresponding row and column entry has to be
updated. First, the column index is increased by two until the column index no references
a neuron circuit not part of the same model neuron. Then the row index is increased to
point to the next half synapse row assigned to b and the column index is reset to the left
most synapse in the new row. If no more free rows exist, the synapses as well as all other
remaining synapses within b are marked as lost.

The actual translation of model conductances into digital weights is described in Sec-
tion 2.13.2.7.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 269

Runtime

The implementation scales linearly with the number of local synapses. All synapses have to
be processed, either realized or not, in order to track the synaptic loss. The weight lookup
ensures that each hardware synapse is handled only once and available synapses are found
efficiently in constant time. Again, only chip local resources assigned, thus synapse array
routing is carried out in parallel for multiple chips.

2.13.2.7 Parameter Transformation

Input: Neuron placement, synapse mapping and calibration data; Calibration data and lim-
ited parameter ranges.
Output: Digital and analog parameter configurations hardware neurons and synapses.
Defects: None

The final step in setting up the hardware is to specify all remaining analog and digital
parameters. Some are set to defaults to realize a reasonable regime for the chip to work.
Others have to be chosen to resemble the model as closely as possible. The actual parame-
ter transformation is not part of the mapping framework, it has been factored out into the
calibtic calibration framework. Thus, other workflow components can use the transforma-
tions and calibration and data alike, e.g., StHAL (see Section 2.11.3) uses calibtic to correct
recordings of analog voltage traces.

Parameters are transformed in two steps. Firstly, they are scaled from model into hardware
domain. Afterwards, a circuit specific correction is applied, which is referred to as calibra-
tion. The scaling from model into hardware domain as well as the following correction are
both implemented within the calibtic framework. Here, the basic scalings of voltages, time,
conductances and currents are presented, though they have mostly been described in [64].
The generation of calibration data is beyond the scope of this thesis. It is discussed in more
detail in [64].

Calibration Framework

The calibtic frameworks is an extensible C++ library that provides storage agnostic access to
calibration data. calibtic has been established as part of this thesis. At the time of writing, it
has been used to implement the Analog-to-Digital Converter (ADC) analog readout calibration
as well as a redesigned calibration for HICANN analog parameters.

calibtics biggest advantage is that it stores the transformation rule alongside the actual
data. Consequently, transformations can be changed or updated as needed, whereas old data
sets remain consistent and applicable without adding new code paths. Furthermore, calibtic
is used for data acquisition and the application of calibrations alike. Python interfaces
are provided for the former to integrate well with the StHAL and HALbe based calibration
routines. Together, this is a major improvement over former approaches. Previously mak-
ing a small change on the acquisition side could render existing data recording useless or
application thereof inconsistent.

Moreover, PyHMF has been integrated with calibtic, allowing to conveniently transform
model parameters sets into hardware floating-gate values.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 270

Finally, a dynamic plug-in system adds flexible storage options. At the time of thesis
submision, storage backends existed for XML, JSON and mongoDB. The latter two are realized
by means of the generic mongoDB boost::serialization archive written by the author.

Scaling of Individual Parameters

The first step of parameter transformation maps the model parameter range linearly onto
parameters accessible on hardware. For example, the voltage range for the Adaptive Ex-
ponential Integrate-and-Fire (AdEx) model is typically in the range of 0 mV to -80 mV. The
hardware, on the other hand, works with voltages from 0 V to 1.8 V. Moreover, small intrinsic
capacitances C and conductances g lead to shorter time constant � = C

g . The dynamics of the

system therefore evolve 103 to 105 times faster than the biological prototype.

Time and Time Constants Following the definition of the speedup factor �acc, times and
time constants are linearly scaled according to

�model = �scaled · �acc . (2.13.11)

Note, the effective speedup can be controlled and is subject to calibration. As mentioned
before, the system is designed to allow acceleration factors within the range of 103 and 105.
Currently, the default factor for scaling as well as calibration is set to 104.

Voltage Ranges Voltages are transformed linearly from mV in the model to Volts in the
hardware domain, according to

vscaled = �v · vmodel + vshift . (2.13.12)

Here, �v is a linear scaling factor and vshift an offset, that can be used to shift voltage
ranges relative to one another. Most model dynamics depend on voltage differences, thus
eliminating a common shift. However, voltage parameters can be shifted in relative to the
shared Vreset parameter. The parameters �v and vshift can be chosen freely to map a given
dynamic range. By default, �v is set to 10 and vshift to 1200 to map the biological range of
[�120, 0]mV to [0, 1.2]V in hardware.

The voltage transformation applies for all voltages including reversal potential El, Ee, Ei,
the reset potential Vreset, the spike initiation voltage Vthresh and the spike detection voltage
Vspike. One exception is the slope factor �T which is only scaled but not shifted.

Membrane Capacitance On hardware, two configurable membrane capacitances are avail-
able, 2.16 pF and 0.16 pF, to support a wider range of possible speedup factors. Typically,
the larger capacitance is chosen except for high speedup factors of around 105. The total
membrane capacitance for interconnected neurons is the sum over all individual membrane
capacitances, following

Cm =
NX

i
·Cm,i , (2.13.13)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 271

where N is the number of connected neuron circuits and Cm,i the individual capacitances.
In principle, any combination of capacitances is possible, however, at the time of thesis
submission, no calibration existed for interconnected neurons.

Conductances The time constant for the leakage dynamics of the neuron �m is controlled
via the conductance gleak as follows

�m =
Cm

gleak
. (2.13.14)

The effective membrane capacitance Cm has been introduced above. This equation can be
rephrased according to Equation (2.13.11) as

gleak,scaled =
Cm,scaled

�m,model
· �acc (2.13.15)

=
Cm,scaled

Cm,model
· �acc · gleak,model . (2.13.16)

With the total hardware and model membrane capacitance Cm,scaled and model Cm,model,
respectively. The acceleration factor �acc, the model membrane time constant �m,model and
model leakage conductance gleak,model.

This transformation for leakage conductances identically applies for any other conduc-
tance, like synaptic efficacies and the adaption coupling parameter a. Generally, leaving us
with

gscaled =
Cscaled

Cmodel
· �acc · gmodel (2.13.17)

for arbitrary conductances.

Currents Currents are transformed according to Ohm’s law using the previous transforma-
tions for voltages and conductances

Im = g · U =
Cscaled

Cmodel
· �acc · �v . (2.13.18)

With model current Im, leakage g and voltage U. This transformation applies for e.g., the
AdEx adaption current b and input currents.

Shared Parameter Scaling

The transformation of parameters shared by multiple circuits require special considerations.

Neurons Neurons share a common Vreset, which is in fact the only shared AdEx model param-
eter. All other analog neuron parameters be set and calibrated individually for each neuron.
The other voltages are therefore shifted by vshift in Equation (2.13.12) to restore the voltage
difference �V for the other voltages and consequently preserve the model dynamics.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 272

In principle, there are 4 different shared Vreset voltage sources. These values are assigned
to neurons with odd and even index in the top and bottom synapse array. Typically, four or
more neurons are interconnected, spanning all instances of Vreset. Then, only a single value
can be used.

Synapses Synaptic input currents are implemented via conductance-based synapses on hard-
ware. Conductances are scaled according to Equation (2.13.17), where the ratio of Cscaled/Cmodel

depends on the neuron interconnection size. The effective strength of a synaptic conduc-
tance in hardware is given by

gsyn(i, j) = gmax(j) · gdigital(i, j) . (2.13.19)

Where gsyn(i, j) is the conductance of the ith synapse in the jth column. It is the product
of a driver-wise conductance gmax(j) and an individual 4 bit digital weight gdigital(i, j). The
shared parameter gmax can be chosen from 4 configurable values. Ideally, gmax maximizes
the dynamic range for all synapses operated by a single driver. Experiments including Spike
Timing Dependent Plasticity (STDP) might choose gmax such that the maximum row-wise
model conductance corresponds to a digital weight of 8. Synapses can subsequently be
potentiated upon learning. However, gmax is currently set to a fixed default value, as no
calibration exists and the synaptic input circuits saturates early.

After choosing gmax, the digital weights are set such that the resulting conductance resem-
bles the scaled model conductance as closely as possible. Weights have a 4 bit resolution,
thus only 16 discrete conductances are accessible. In order to minimize average distortion,
weights are clipped stochastically. For a target conductance gscaled, the closest two acces-
sible conductances ga above and gb below are picked from the list of 16 possible values
via branch and bound. Then, gb is picked with a probability of p = (gscaled�ga)/(gb�ga) and ga
otherwise.

Spike and Current Sources

For spike sources two things have to be done. Firstly, spike trains have to be generated
for actual actual spike sources. Secondly, address 0 events have to be merged into each L1
connections to ensure reliable communication.

PyNN spike sources, like SpikeSourceArray and SpikeSourcePoisson, are implemented via
FPGA spike playback over the L2 network. Source addresses have been established during
the previous input routing. Therefore spike trains can be generated by using the respective
address and translating spike times according to Equation (2.13.11). For spike source arrays
the spike times are simply provided by the model description. For poisson spike source with
rate � a corresponding train has to be constructed according to [34]. Therefore, time is
discretized into small intervals �t = 1 ms. For each interval, a uniformly distributed random
number x between 0 and 1 is generated. Whenever x < � · �t, a spike occurs in the interval.

Moreover, a small but fixed offset is added to each spike time, which controls the onset
of the actual experiment. Currently, the offset is set to a few nanoseconds to allow the L1
resources to synchronize reliably.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 273

Address 0 Events from the chip-local background generators are merged into the output
of neuron sources to ensure reliable transmission over L1. Generally, the background event
generators are used for link synchronization only and not for actual experiments. External
inputs are augmented with additional address 0 events.

Current Sources on HICANN can implement periodic step currents of length T = 1024⇥ �t
Model currents are translated according to Equation (2.13.18). However, only a single current
per chip can be used, thus using the first in the model description.

Calibration

After the parameters have been scaled into the appropriate hardware range, a calibration
is applied to account for individual circuit variations. calibtic allows to implement arbitrary
corrections for parameters, which are typically small compared to scaling. For more details
on the actual calibration and corrections see [64].

Runtime

The parameter transformation is straight forward and does not involve any complex algo-
rithms. Most HICANN parameters are determined in constant time, rendering the implemen-
tation suitable for large networks. Furthermore, parameters are set for multiple chips in
parallel.

In practice, spike generation can be rather time consuming, even though the implementa-
tions scales linearly with the duration of the train.

2.13.3 PyNN.hardware.nmpm

Author: Eric Müller
PyNN is a simulator-independent API for specifying neuronal network models. Neurons and
connections can be grouped into higher-level constructs, statistical measures can be used to
describe parameters. The NM-PM software stack implements this API and fits into the list of
supported PyNN simulators backends.

A simple network with a Poisson spike source projecting to a pair of IF_curr_alpha
neurons (cf. [57]):

from numpy import random, add
import pyNN.SIMULATOR as sim

sim.setup(timestep=0.1, min_delay=0.2, max_delay=1.0)

cell_params = {
’tau_refrac’: 2.0,
’v_thresh’: [-50.0, -48.0],
’tau_syn_E’: 2.0,
’tau_syn_I’: 2.0

HBP_SP9_Specification 13 May 2014 (git 56b296e) 274

}

output_pop= sim.Population(2, IF_curr_alpha(**cell_params))

tstop = 1000.0
rate = 100.0
number = int(2*tstop*rate/1000.0)
random.seed(26278342)
spike_times = add.accumulate(

random.exponential(1000.0/rate, size=number))

input_pop = sim.Population(1,
SpikeSourceArray(spike_times=spike_times))

projection = sim.Projection(input_pop,
output_pop,
sim.AllToAllConnector(),
sim.StaticSynapse(weight=1.0)

)

input_pop.record(’spikes’)
output_pop.record((’spikes’, ’v’))

sim.run(tstop)

output_pop.write_data(’output.dat’,
annotations={’script_name’: __file__})

sim.end()

The PyNN.hardware.nmpm uses the client-server approach to split the software stack into
the PyNN interface implementation and the backend-specific part. On the user side, the
client implements the PyNN API and uses an IPC mechanism to trigger experiment execution
and retrival of experiment data. Additionally to the PyNN functionality, the IPC layer provides
user authorization and authentication.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 275

HBP_SP9_Specification 13 May 2014 (git 56b296e) 276

Part 3

Neuromorphic Computing with
Many-core Emulation of Brain Models

HBP_SP9_Specification 13 May 2014 (git 56b296e) 277

HBP_SP9_Specification 13 May 2014 (git 56b296e) 278

3.1 Multi-core Platform: NM-MC

The Neuromorphic Multi-Core Platforms (NM-MC1, NM-MC2) provide cheap, reliable, and
readily available platforms on which to perform experiments for the Human Brain Project.

Currently it is envisaged that these experiments fall into two broad areas: those support-
ing the neuromorphic approach to brain modelling, i.e. reduced cortical circuits using point
neurons, and neurorobotics experiment; and those exploring features used in the Simulation
Platform, i.e. virtual environments, whose performance can be explored before the Simula-
tion Platform is ready. The flexibilty of the digital approach to neuromorphics means that if
other suitable experiments are required, then this is just a matter of re-programming stock
microprocessors.

The Neuromorphic Multi-Core Platform will leverage prior investment by the UK Engineering
and Physical Science Research Council (EPSRC) in SpiNNaker technology to provide a half
million core machine suitable for brain simulation. The basis of the system is a novel 18
core chip. This component can be incorporated into larger systems because it has built-in
inter-chip communications.

The full 500,000 core machine has a total memory capacity of 4Tbytes, and at most six
hundred 100Mbit ethernet connections. It is envisaged that this data will not be directly
loaded or written back to backing store. Instead, a description of the data will be loaded,
which is then expanded on the NM-MC1 system using the full 500,000 cores to perform this
expansion.

For check-pointing purposes we currently envisage writing back deltas on the original
data-sets. This approach is subject to change, should alternatives present themselves.

The SpiNNaker Group at Manchester have been holding successful SpiNNaker Workshops,
and this task will now continue in part funded by the HBP grant. So far there have been three
Workshops with twenty attendees per workshop, and a fourth is to be held in April 2014.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 279

3.1.1 Physical Architecture

Physical machines used to deploy Platform, locations, etc.
The NM-MC1 system uses the SpiNNaker chip, which is now in production.

Various configurations are possible:

Single node board

Although this has not been developed in Manchester, it is an interesting Neurorobotics plat-
form, developed by Jörg Conradt at TU Munchen:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 280

Four node board

This consists of a four SpiNNaker chips and has been developed by in Manchester for use
in collaboration with the Robotics group at Plymouth University. It can be used in an iCUB
robot.

Over thirty of these boards are on loan to various groups around the world including many
partners within the Human Brain Project.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 281

Forty-eight node board

This is the basis of all large systems. It consumes a maximum of 90W and has FPGA links for
connection to other boards. It is configured as an assymetric hexagon, and can thus be tiled
easily in groups of three with full toroidal connectivity.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 282

3.1.2 Software

The main part of the software stack consists of two parts:

Host Machine Software There are two main components required here:

PACMAN: Placing and Routing Management This consists of the software which takes
a PyNN program and splits the overall task into up to 500,000 small sub-tasks each
of which is to run on an individual core of the platform. The precise limit of the
splitting is determined by the physical hardware available.

Data Extraction When the simulation has completed, this component is responsible for
polling the target machine to find the computed data which the user has indicated
is of interest.

This part of the software is written in python.

Target Machine Software This consists of a set of libraries and other components which
support the simulation task.

It is split into three parts:

Loading This part of the software is conccerned with loading the model and its param-
eters.

Simulating This part of the task is concerned with the execution of the simulation.
There is some possible overlap with the next part.

Data Extraction This component is concerned with taking the computed data off of
the machine and passing it back to the Host Machine Software.

This part of the software is written in ‘C’.

In addition there is a requirement for debugging, and system monitoring and management;
both for the system admintrators and the end-users.

It is envisaged that virtual environment software will be produced by the Simulation sub-
project, and that job-control software will be provided by SP9, Task 3.

Progress with the support software for NM-MC1 is not best described by features, but
instead on the scale of the systems supported. This is because as the size of the system
increases we expect algorithms and data structures which have proved perfectly satisfactory
thus far will prove to require re-working as the system size increases.

We therefore envisage the following scales and the months on which they will be delivered.

SpiNNware-103 A system which supports any single board system. The largest board has
48 nodes or chips, and can therefore accept a system with up to 864 processor cores
(⇠ 1000 = 103).

Expected Delivery: 2nd quarter 2014.

SpiNNware-104 A system which supports any single subrack system. A subrack can hold
up to 24 boards, and can therefore accept a system with up to 20736 processor cores
(⇠ 10000 = 104).

Expected Delivery: 4th quarter 2014.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 283

SpiNNware-105 A system which supports any single cabinet system. A cabinet can hold up
to 5 subracks, and can therefore accept a system with up to 103680 processor cores
(⇠ 100000 = 105).

Expected Delivery: 2nd quarter 2015.

SpiNNware-106 A system which supports any multi-cabinet system. In theory there might
be up to ten cabinets, and can therefore accept a system with up to 1036800 processor
cores (⇠ 1000000 = 106).

Expected Delivery: 4th quarter 2015.

In conjunction with the software development, and indeed a prequisite to proper perfor-
mance testing will be the existence of a hardware test bed.

We therefore envisage the following scales and the months on which they will be delivered:

SpiNNaker-103 A system consisting of a single 48 node board.

Delivered: 2nd quarter 2013.

SpiNNaker-104 A system consisting of a single subrack.

Expected Delivery: 2nd quarter 2014.

SpiNNaker-105 A system consisting of a single cabinet.

Expected Delivery: 1st quarter 2015.

SpiNNaker-106 A system consisting of up to ten cabinets.

Expected Delivery: 3rd quarter 2015.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 284

HBP_SP9_Specification 13 May 2014 (git 56b296e) 285

HBP_SP9_Specification 13 May 2014 (git 56b296e) 286

3.2 SpiNNaker Chip Datasheet

HBP_SP9_Specification 13 May 2014 (git 56b296e) 287

SpiNNaker - a chip multiprocessor for neural network simulation.
Datasheet

Features

• 18 ARM968 processors, each with:

– 64 Kbytes of tightly-coupled data memory;

– 32 Kbytes of tightly-coupled instruction memory;

– DMA controller;

– communications controller;

– vectored interrupt controller;

– low-power ‘wait for interrupt’ mode.

• Multicast communications router

– 6 self-timed inter-chip bidirectional links;

– 1,024 associative routing entries.

• Interface to 128Mbyte (nominal) Mobile DDR SDRAM

– over 1 Gbyte/s sustained block transfer rate;

– optionally incorporated within the same multi-chip package.

• Ethernet interface for host connection

• Fault-tolerant architecture

– defect detection, isolation, and function migration.

• Boot, test and debug interfaces.

Introduction

SpiNNaker is a chip multiprocessor designed specifically for the real-time simulation of large-
scale spiking neural networks. Each chip (along with its associated SDRAM chip) forms one
node in a scalable parallel system, connected to the other nodes through self-timed links.

The processing power is provided through the multiple ARM cores on each chip. In the
standard model, each ARM models multiple neurons, with each neuron being a coupled pair
of differential equations modelled in continuous ‘real’ time. Neurons communicate through
atomic ‘spike’ events, and these are communicated as discrete packets through the on- and
inter-chip communications fabric. The packet contains a routing key that is defined at its
source and is used to implement multicast routing through an associative router in each chip.

One processor on each SpiNNaker chip will perform system management functions; the
communications fabric supports point-to-point packets to enable co-ordinated system man-
agement across local regions and across the entire system, and nearest-neighbour packets
are used for system flood-fill boot operations and for chip debug. In addition, fixed-route

HBP_SP9_Specification 13 May 2014 (git 56b296e) 288

packets carry 64 bits of debug information back to particular nodes for transmission to the
host computer.

Background

SpiNNaker was designed at the University of Manchester within an EPSRC-funded project in
collaboration with the University of Southampton, ARM Limited and Silistix Limited. Sub-
sequent development took place within a second EPSRC-funded project which added the
universities of Cambridge and Sheffield to the collaboration. The work would not have been
possible without EPSRC funding, and the support of the EPSRC and the industrial partners is
gratefully acknowledged.

Intellectual Property rights

All rights to the SpiNNaker design are the property of the University of Manchester with the
exception of those rights that accrue to the project partners in accordance with the contract
terms.

Disclaimer

The details in this datasheet are presented in good faith but no liability can be accepted for
errors or inaccuracies. The design of a complex chip multiprocessor is a research activity
where there are many uncertainties to be faced, and there is no guarantee that a SpiNNaker
system will perform in accordance with the specifications presented here. The APT group
in the School of Computer Science at the University of Manchester was responsible for all of
the architectural and logic design of the SpiNNaker chip, with the exception of synthesiz-
able components supplied by ARM Limited and interconnect components supplied by Silistix
Limited. All design verification was also carried out by the APT group. As such the industrial
project partners bear no responsibility for the correct functioning of the device.

Error notification and feedback

Please email details of any errors, omissions, or suggestions for improvement to:
steve.furber@manchester.ac.uk.

Change history

version date changes

2.00 21/4/10 Full SpiNNaker chip initial version
2.01 19/10/10 Change CPU clocks, add package details, minor corrections.
2.02 8/12/10 Detail corrections and enhancements

HBP_SP9_Specification 13 May 2014 (git 56b296e) 289

3.2.1 Chip Organization

3.2.1.1 Block Diagram

The primary functional components of SpiNNaker are illustrated in the figure below.

(Input) (Output)Comms NoCComms NoC

Proc3...

2of7

Enc

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

EvenClk EvenClk OddClk EvenClk OddClk

Proc0 Proc1 Proc2 Proc16Proc15

System NoC

MemClk

JTAG

Debug

10MHz

Router
control

Decode

Packet Routing Output

Engine Select

OddClk

PL340 SDRAM I/F
Ctlr

SystemWatch−
dogRAM

System

ROM

System Ethernet

Ether MII

1Gbit DDR SDRAM

I/O Port
Reset Test

Proc17

POR

APB Slave

AHB Master

EvenClk

AHB Slave

OddClk

RtrClk
SysClk

AHB Slave

AXI MasterAXI Master

Packet Router

AHB Slave

Clock

PLL

AHB SlaveAHB Slave

System AHB

AXI MasterAXI MasterAXI MasterAXI Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlrCommCtlr

Input

Links

Output

Links

RtrClk

MemClk
AXI Slave

AHB Slave

Each chip contains 18 identical processing subsystems. At start-up, following self-test,
one of the processors is nominated as the Monitor Processor and thereafter performs system
management tasks. The other processors are responsible for modelling one or more neuron
fascicles - a fascicle being a group of neurons with associated inputs and outputs (although
some processors may be reserved as spares for fault-tolerance purposes).

The Router is responsible for routing neural event packets both between the on-chip
processors and from and to other SpiNNaker chips. The Tx and Rx interface components
are used to extend the on- chip communications NoC to other SpiNNaker chips. Inputs from
the various on- and off-chip sources are assembled into a single serial stream which is then
passed to the Router.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 290

Various resources are accessible from the processor systems via the System NoC. Each of
the processors has access to the shared off-chip (but possibly in the same package) SDRAM,
and various system components also connect through the System NoC in order that, whichever
processor is Monitor Processor, it will have access to these components.

The sharing of the SDRAM is an implementation convenience rather than a functional
requirement, although it may facilitate function migration in support of fault-tolerant oper-
ation.

3.2.1.2 System-on-Chip hierarchy

The SpiNNaker chip is viewed as having the following structural hierarchy, which is reflected
throughout the organisation of this datasheet:

• ARM968 processor subsystem

– the ARM968, with its tightly-coupled instruction and data memories

– Timer/counter and interrupt controller

– DMA controller, including System NoC interface

– Communications controller, including Communications NoC interface

• Communications NoC

– Router, including multicast, point-to-point, nearest-neighbour, fixed-route, de-
fault and emer- gency routing functions

– 6 bidirectional inter-chip links

– communications NoC arbiter and fabric

• System NoC

– SDRAM interface

– System Controller

– Router configuration registers

– Ethernet MII interface

– Boot ROM

– System RAM

• Boot, test and debug

– central controller for ARM968 JTAG functions

– an off-chip serial boot ROM can be used if required

HBP_SP9_Specification 13 May 2014 (git 56b296e) 291

3.2.1.3 Register description convention

Registers are 32-bits (1 word) and are usually displayed in this datasheet as shown below:
012345678910111213141516171819202122232425262728293031

E M I Pre S O

reset: 0 0 1 0 0 0 0

• The grey-shaded areas of the register are unused. They will generally read as 0,
and should be written as 0 for maximum compatibility with any future functionality
extensions.

• Reset values, where defined, are shown against a red shaded background.

Certain registers in the System Controller have protection against corruption by errant
code:

012345678910111213141516171819202122232425262728293031

� 0x5EC R A MPID

reset: 0 1 1 1 1 1 1

• Here any attempt to write the register must include the security code 0x5EC in the top
12 bits of the data word. If the security code is not present the write will have no
effect.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 292

3.2.2 System architecture

SpiNNaker is designed to form (with its associated SDRAM chip) a node of a massively parallel
system. The system architecture is illustrated below:

1,2 2,2

2,1

2,0

1,10,1

0,0 1,0

0,2

Chip
SpiNNaker

SDRAM

HBP_SP9_Specification 13 May 2014 (git 56b296e) 293

3.2.2.1 Routing

The nodes are arranged in a triangular mesh with bidirectional links to 6 neighbours. The sys-
tem supports multicast packets (to carry neural event information, routed by the associative
Multicast Router), point-to-point packets (to carry system management and control infor-
mation, routed by table look-up), nearest-neighbour packets (to support boot-time flood-fill
and chip debug) and fixed-route packets (to convey application debug data back to the host
computer).

Emergency routing

In the event of a link failing or congesting, traffic that would normally use that link is
redirected in hardware around two adjacent links that form a triangle with the failed link.
This “emergency routing” is intended to be temporary, and the operating system will identify
a more permanent resolution of the problem. The local Monitor Processor is informed of uses
of emergency routing.

Deadlock avoidance

The communications system has potential deadlock scenarios because of the possibility of
circular dependencies between links. The policy used here to prevent deadlocks occurring
is:

• no Router can ever be prevented from issuing its output.

The mechanisms used to ensure this are:

• outputs have sufficient buffering and capacity detection so that the Router knows
whether or not an output has the capacity to accept a packet;

• emergency routing is used, where possible, to avoid overloading a blocked output;

• where emergency routing fails (because, for example, the alternative output is also
blocked) the packet is ‘dropped’ to a Router register, and the Monitor Processor in-
formed;

The expectation is that the communications fabric will be lightly-loaded so that blocked
links are very rare. Where the operating system detects that this is not the case it will take
measures to correct the problem by modifying routing tables or migrating functionality.

Errant packet trap

Packets that get mis-routed could continue in the system for ever, following cyclic paths. To
prevent this all (apart from nearest-neighbour) packets are time stamped and a coarse global
time phase signal is used to trap old packets. To minimize overhead the time stamp is 2 bits,
cycling 00! 01! 11! 10, and when the packet is two time phases old (time sent XOR time
now = 0b11) it is dropped and an error flagged to the local Monitor Processor. The length of
a time phase can be adapted dynamically to the state of the system; normally, timed-out
packets should be very rare so the time phase can be conservatively long to minimise the risk
of packets being dropped due to congestion.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 294

3.2.2.2 Time references

A slow (nominally 32kHz) global reference clock is distributed throughout the system and
is available to each processor via its DMA controller (which performs clock edge detection)
and vectored interrupt controller. Software may use this to generate the local time phase
information. Each processor also has a timer/counter driven from the local processor clock
which can be used to support time reference signals, for example a 1ms interrupt could be
used to generate the time input to the real-time neural models.

3.2.2.3 System-level address spaces

The system incorporates different levels of component that must be enumerated:

• Each Node (where a Node is a SpiNNaker chip plus SDRAM) must have a unique, fixed
address which is used as the destination ID for a point-to-point packet, and the addresses
must be organised logically for algorithmic routing to function efficiently.

• Processors will be addressed relative to their host Node address, but this mapping will
not be fixed as an individual Processor’s role can change over time. Point-to-point
packets addressed to a Node will be delivered to the local Monitor Processor, whichever
Processor is serving that function. Internal to a Node there is hard-wired addressing of
each Processor for system diagnosis purposes, but this mapping will generally be hidden
outside the Node.

• The neuron address space is purely a software issue and is discussed in ‘Application
notes’ on page 95.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 295

3.2.3 ARM968 processing subsystem

SpiNNaker incorporates 18 ARM968 processing subsystems which provide the computational
capability of the device. Each of these subsystems is capable of generating and processing
neural events communicated via the Communications NoC and, alternatively, of fulfilling the
role of Monitor Processor.

3.2.3.1 Features

• a synthesized ARM968 module with:

• an ARM9TDMI processor;

• 32 Kbyte tightly-coupled instruction memory;

• 64 Kbyte tightly-coupled data memory;

• JTAG debug access.

• a local AHB with:

• communications controller connected to Communications NoC;

• DMA controller and interface to the System NoC;

• timer/counter and interrupt controller.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 296

3.2.3.2 ARM968 subsystem organisation

3.2.3.3 Memory Map

The memory map of the ARM968 spans a number of devices and buses. The tightly-coupled
memories are directly connected to the processor and accessible at the processor clock
speed. All other parts of the memory map are visible via the AHB master interface, which
runs at the full processor clock rate. This gives direct access to the registers of the DMA
controller, communications controller and the timer/interrupt controller. In addition, a path
is available through the DMA controller onto the System NoC which provides processor access
to all memory resources on the System NoC. The memory map is defined as follows:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 297

// ARM968 local memories
#define ITCM_START_ADDRESS 0x00000000 // instruction memory
#define DTCM_START_ADDRESS 0x00400000 // data memory

// Local peripherals - unbuffered write
#define COMM_CTL_START_ADDRESS_U 0x10000000 // Communications Controller
#define CTR_TIM_START_ADDRESS_U 0x11000000 // Counter-Timer
#define VIC_START_ADDRESS_U 0x1f000000 // vectored interrupt controller

// Local peripherals - buffered write
#define COMM_CTL_START_ADDRESS_B 0x20000000 // Communications Controller
#define CTR_TIM_START_ADDRESS_B 0x21000000 // Counter-Timer
#define VIC_START_ADDRESS_B 0x2f000000 // vectored interrupt controller

// DMA controller
#define DMA_CTL_START_ADDRESS_U 0x30000000 // DMA controller - unbuffered
#define DMA_CTL_START_ADDRESS_B 0x40000000 // DMA controller - buffered

// Unallocated; causes bus error 0x50000000 - 0x5fffffff

// SDRAM
#define SDRAM_START_ADDRESS_U 0x60000000 // SDRAM - buffered
#define SDRAM_START_ADDRESS_B 0x70000000 // SDRAM - unbuffered

// Unallocated; causes bus error 0x80000000 - 0xdfffffff

// System NoC peripherals - buffered write
#define PL340_APB_START_ADDRESS_B 0xe0000000 // PL340 APB port
#define RTR_CONFIG_START_ADDRESS_B 0xe1000000 // Router configuration
#define SYS_CTL_START_ADDRESS_B 0xe2000000 // System Controller
#define WATCHDOG_START_ADDRESS_B 0xe3000000 // Watchdog Timer
#define ETH_CTL_START_ADDRESS_B 0xe4000000 // Ethernet Controller
#define SYS_RAM_START_ADDRESS_B 0xe5000000 // System RAM
#define SYS_ROM_START_ADDRESS_B 0xe6000000 // System ROM

// Unallocated; causes bus error 0xe7000000 - 0xefffffff

// System NoC peripherals - unbuffered write
#define PL340_ APB_START_ADDRESS_U 0xf0000000 // PL340 APB port
#define RTR_CONFIG_START_ADDRESS_U 0xf1000000 // Router configuration
#define SYS_CTL_START_ADDRESS_U 0xf2000000 // System Controller
#define WATCHDOG_START_ADDRESS_U 0xf3000000 // Watchdog Timer
#define ETH_CTL_START_ADDRESS_U 0xf4000000 // Ethernet Controller
#define SYS_RAM_START_ADDRESS_U 0xf5000000 // System RAM
#define SYS_ROM_START_ADDRESS_U 0xf6000000 // System ROM

// Unallocated; causes bus error 0xf7000000 - 0xfeffffff

// Boot area and VIC
#define BOOT_START_ADDRESS 0xff000000 // Boot area

#define HI_VECTORS 0xffff0000 // high vectors (for boot)

#define VIC_START_ADDRESS_H 0xfffff000 // vectored interrupt controller

HBP_SP9_Specification 13 May 2014 (git 56b296e) 298

The areas shown against a yellow background are accessible only by their local ARM968
processor, not by a DMA controller nor by Nearest Neighbour packets via the Router (though of
course the DMA controller can see the ITCM and DTCM areas through its second port, as these
are the source/destination for DMA transfers). The DMA controller and Nearest Neighbour
packets see the System RAM repeated across the bottom 16Mbytes of the address space from
0x00000000 to 0x00ffffff; the remainder of the yellow areas give undefined results and should
not be addressed.

The ARM968 is configured to use high vectors after reset (to use the vectors in the Boot
area), but then switched to low vectors once the ITCM is enabled and initialised.

The vectored interrupt controller (VIC) has to be at 0xfffff000 to enable efficient access
to its vector registers.

All other peripherals start at a base address that can be formed with a single MOV imme-
diate instruction.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 299

3.2.4 ARM 968

The ARM968 (with its associated tightly-coupled instruction and data memories) forms the
core processing resource in SpiNNaker.

3.2.4.1 Features

• ARM9TDMI processor supporting the ARMv5TE architecture.

• 32 Kbyte tightly-coupled instruction memory (I-RAM).

• 64 Kbyte tightly-coupled data memory (D-RAM).

• AHB interface to external system.

• JTAG-controlled debug access.

• support for Thumb and signal processing instructions.

• low-power halt and wait for interrupt function.

3.2.4.2 Organization

See ARM DDI 0311C – the ARM968E-S datasheet.

3.2.4.3 Fault-tolerance

Fault insertion

• ARM9TDMI can be disabled.

• Software can corrupt I-RAM and D-RAM to model soft errors. Fault detection

• A chip-wide watchdog timer catches runaway software.

• Self-test routines, run at start-up and during normal operation, can detect faults. Fault
isolation

• The ARM968 unit can be disabled from the System Controller.

• Defective locations in the I-RAM and D-RAM can be mapped out of use by software.
Reconfiguration

• Software will avoid using defective I-RAM and D-RAM locations.

• Functionality will migrate to an alternative Processor in the case of permanent faults
that go beyond the failure of one or two memory locations.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 300

3.2.5 Vectored interrupt controller

Each processor node on an SpiNNaker chip has a vectored interrupt controller (VIC) that is
used to enable and disable interrupts from various sources, and to wake the processor from
sleep mode when required. The interrupt controller provides centralised management of
IRQ and FIQ sources, and offers an efficient indication of the active sources for IRQ vectoring
purposes.

The VIC is the ARM PL190, described in ARM DDI 0181E.

3.2.5.1 Features

• manages the various interrupt sources to each local processor.

• individual interrupt enables.

• routing to FIQ and/or IRQ,

• there will normally be only one FIQ source: e.g. CC Rx ready, or a specific packet-type
received.

• a central interrupt status view.

• a vector to the respective IRQ handler.

• programmable IRQ priority.

• interrupt sources:

• Communication Controller flow-control interrupts;

• DMA complete/error/timeout;

• Timer 1 and 2 interrupts;

• interrupt from another processor on the chip (usually the Monitor processor), set via a
register in the System Controller;

• packet-error interrupt from the Router;

• system fault interrupt;

• Ethernet controller;

• off-chip signals;

• 32kHz slow system clock;

• software interrupt, for downgrading FIQ to IRQ.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 301

3.2.5.2 Register summary

Base address: 0x2f000000 (buffered write), 0x1f000000 (unbuffered write), 0xfffff000
(high).

User registers

The following registers allow normal user programming of the VIC:

Name Offset R/W Function

r0: VICirqStatus 0x00 R IRQ status register
r1: VICfiqStatus 0x04 R FIQ status register
r2: VICrawInt 0x08 R raw interrupt status register
r3: VICintSel 0x0C R/W interrupt select register
r4: VICintEnable 0x10 R/W interrupt enable register
r5: VICintEnClear 0x14 W interrupt enable clear register
r6: VICsoftInt 0x18 R/W soft interrupt register
r7: VICsoftIntClear 0x1C W soft interrupt clear register
r8: VICprotection 0x20 R/W protection register
r9: VICvectAddr 0x30 R/W vector address register
r10: VICdefVectAddr 0x34 R/W default vector address register
VICvectAddr[15:0] 0x100-13c R/W vector address registers
VICvectCtrl[15:0] 0x200-23c R/W vector control registers

ID registers

In addition, there are test ID registers that will not normally be of interest to the programmer:

Name Offset R/W Function

VICPeriphID0-3 0xFE0-C R Timer peripheral ID byte registers
VICPCID0-3 0xFF0-C R Timer Prime Cell ID byte registers

See the VIC Technical Reference Manual ARM DDI 0181E, for further details of the ID
registers.

3.2.5.3 Register details

r0: IRQ status

012345678910111213141516171819202122232425262728293031

IRQ status

0 0

This read-only register yields the set of active IRQ requests (after masking).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 302

r1: FIQ status

012345678910111213141516171819202122232425262728293031

FIQ status

0 0

This read-only register yields the set of active FIQ requests (after masking).

r2: raw interrupt status

012345678910111213141516171819202122232425262728293031

interrupt request status

This read-only register yields the set of active input interrupt requests (before any mask-
ing).

r3: interrupt select

012345678910111213141516171819202122232425262728293031

interrupt select

0 0

This register selects for each of the 32 interrupt inputs whether it gets sent to IRQ (0) or
FIQ (1). The reset state is not specified (though is probably ‘0’?); all interrupts are disabled
by r4 at reset.

r4: interrupt enable register

012345678910111213141516171819202122232425262728293031

interrupt enables

0 0

This register disables (0) or enables (1) each of the 32 interrupt inputs. Writing a ‘1’ sets
the corresponding bit in r4; writing a ‘0’ has no effect. Interrupts are all disabled at reset.

r5: interrupt enable clear

012345678910111213141516171819202122232425262728293031

interrupt enable clear

This write-only register selectively clears interrupt enable bits in r4. A ‘1’ clears the
corresponding bit in r4; a ‘0’ has no effect.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 303

r6: soft interrupt register

012345678910111213141516171819202122232425262728293031

soft interrupt register

0 0

This register enables software to force interrupt inputs to appear high (before masking).
A ‘1’ written to any bit location will force the corresponding interrupt input to be active;
writing a ‘0’ has no effect. The reset state for these bits is unspecified, though probably ‘0’?

r7: soft interrupt register clear

012345678910111213141516171819202122232425262728293031

soft interrupt enable clear

This write-only register selectively clears soft interrupt bits in r6. A ‘1’ clears the corre-
sponding bit in r6; a ‘0’ has no effect.

r8: protection
012345678910111213141516171819202122232425262728293031

P

reset: 0

If the P bit is set VIC registers can only be accessed in a privileged mode; if it is clear then
User- mode code can access the registers.

r9: vector address

012345678910111213141516171819202122232425262728293031

vector address

This register contains the address of the currently active interrupt service routine (ISR).
It must be read at the start of the ISR, and written at the end of the ISR to signal that
the priority logic should update to the next priority interrupt. Its state following reset is
undefined.

r10: default vector address

012345678910111213141516171819202122232425262728293031

default vector address

The default vector address is used by the 16 interrupts that are not vectored. Its state
following reset is undefined.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 304

vector address [15:0]

012345678910111213141516171819202122232425262728293031

vector address

The vector address is the address of the ISR of the selected interrupt source. Their state
following reset is undefined.

vector control [15:0]

012345678910111213141516171819202122232425262728293031

E Source

reset: 0 0 0 0 0 0

The interrupt source is selected by bits[4:0], which choose one of the 32 interrupt inputs.
The interrupt can be enabled (E = 1) or disabled (E = 0). It is disabled following reset. The
highest priority interrupt uses vector address [0] at offset 0x100 and vector control [0] at
offset 0x200, and then successively reduced priority is given to vector addresses [1], [2], . . .
and vector controls [1], [2], . . . at successively higher offset addresses.

3.2.5.4 Interrupt sources

19 of the 32 interrupt sources are local to the processor (and are coloured yellow in the
table below) and 13 are from chip-wide sources (which will normally be enabled only in the
Monitor Processor).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 305

Name Function
0 Watchdog Watchdog timer interrupt
1 Software int used only for local software interrupt generation
2 Comms Rx the debug communications receiver interrupt
3 Comms Tx the debug communications transmitter interrupt
4 Timer 1 Local counter/timer interrupt 1
5 Timer 2 Local counter/timer interrupt 2
6 CC Rx ready Local comms controller packet received
7 CC Rx parity error Local comms controller received packet parity error
8 CC Rx framing error Local comms controller received packet framing error
9 CC Tx full Local comms controller transmit buffer full
10 CC Tx overflow Local comms controller transmit buffer overflow
11 CC Tx empty Local comms controller transmit buffer empty
12 DMA done Local DMA controller transfer complete
13 DMA error Local DMA controller error
14 DMA timeout Local DMA controller transfer timed out
15 Router diagnostics Router diagnostic counter event has occurred
16 Router dump Router packet dumped - indicates failed delivery
17 Router error Router error - packet parity, framing, or time stamp error
18 Sys Ctl int System Controller interrupt bit set for this processor
19 Ethernet Tx Ethernet transmit frame interrupt
20 Ethernet Rx Ethernet receive frame interrupt
21 Ethernet PHY Ethernet PHY/external interrupt
22 Slow Timer System-wide slow (nominally 32 KHz) timer interrupt
23 CC Tx not full Local comms controller can accept new Tx packet
24 CC MC Rx int Local comms controller multicast packet received
25 CC P2P Rx int Local comms controller point-to-point packet received
26 CC NN Rx int Local comms controller nearest neighbour packet received
27 CC FR Rx int Local comms controller fixed route packet received
28 Int[0] External interrupt request 0
29 Int[1] External interrupt request 1
30 GPIO[8] Signal on GPIO[8]
31 GPIO[9] Signal on GPIO[9]

3.2.5.5 Fault-tolerance

Fault insertion

It is fairly easy to mess up vector locations, and to fake interrupt sources.

Fault detection

A failed vector location effectively causes a jump to a random location; this would be messy!

HBP_SP9_Specification 13 May 2014 (git 56b296e) 306

Fault isolation

Failed vector locations can be removed from service.

Reconfiguration

A failed vector location can be removed from service (provided there are enough vector
locations available without it). Alternatively, the entire vector system could be shut down
and interrupts run by software inspection of the IRQ and FIQ status registers.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 307

3.2.6 Counter/timer

Each processor node on a SpiNNaker chip has a counter/timer.
The counter/timers use the standard AMBA peripheral device described on page 4-24 of the

AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003. The peripheral
has been modified only in that the APB interface of the original has been replaced by an AHB
interface for direct connection to the ARM968 AHB bus.

3.2.6.1 Features

• the counter/timer unit provides two independent counters, for example for:

– millisecond interrupts for real-time dynamics.

• free-running and periodic counting modes:

– automatic reload for precise periodic timing;

– one-shot and wrapping count modes.

• the counter clock (which runs at the processor clock frequency) may be pre-scaled by
dividing by 1, 16 or 256.

3.2.6.2 Register summary

Base address: 0x21000000 (buffered write), 0x11000000 (unbuffered write).

User registers

The following registers allow normal user programming of the counter/timers:

Name Offset R/W Function

r0: Timer1load 0x00 R/W Load value for Timer 1
r1: Timer1value 0x04 R Current value of Timer 1
r2: Timer1Ctl 0x08 R/W Timer 1 control
r3: Timer1IntClr 0x0C W Timer 1 interrupt clear
r4: Timer1RIS 0x10 R Timer 1 raw interrupt status
r5: Timer1MIS 0x14 R Timer 1 masked interrupt status
r6: Timer1BGload 0x18 R/W Background load value for Timer 1
r8: Timer2load 0x20 R/W Load value for Timer 2
r9: Timer2value 0x24 R Current value of Timer 2
r10: Timer2Ctl 0x28 R/W Timer 2control
r11: Timer2IntClr 0x2C W Timer 2interrupt clear
r12: Timer2RIS 0x30 R Timer 2raw interrupt status
r13: Timer2MIS 0x34 R Timer 2masked interrupt status
r14: Timer2BGload 0x38 R/W Background load value for Timer 2

HBP_SP9_Specification 13 May 2014 (git 56b296e) 308

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the
programmer:

Name Offset R/W Function

TimerITCR 0xF00 R/W Timer integration test control register
TimerITOP 0xF04 W Timer integration test output set register
TimerPeriphID0-3 0xFE0-C R Timer peripheral ID byte registers
TimerPCID0-3 0xFF0-C R Timer Prime Cell ID byte registers

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for further
details of the test and ID registers.

3.2.6.3 Register details

As both timers have the same register layout they can both be described as follows (X = 1 or 2):

r0/8: Timer X load value

012345678910111213141516171819202122232425262728293031

Load value for TimerX

0 0

When written, the 32-bit value is loaded immediately into the counter, which then counts
down from the loaded value. The background load value (r6/14) is an alternative view of
this register which is loaded into the counter only when the counter next reaches zero.

r1/9: Current value of Timer X

012345678910111213141516171819202122232425262728293031

TimerX current count

1 1

This read-only register yields the current count value for Timer X.

r2/10: Timer X control

012345678910111213141516171819202122232425262728293031

E M I Pre S O

reset: 0 0 1 0 0 0 0

The shaded fields should be written as zero and are undefined on read. The functions of
the remaining fields are described in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 309

Name bits R/W Function

E: Enable 7 R/W enable counter/timer (1 = enabled)
M: Mode 6 R/W 0 = free-running; 1 = periodic
I: Int enable 5 R/W enable interrupt (1 = enabled)
Pre: TimerPre 3:2 R/W divide input clock by 1 (00), 16 (01), 256 (10)
S: Timer size 1 R/W 0 = 16 bit, 1 = 32 bit
O: One shot 0 R/W 0 = wrapping mode; 1 = one shot

r3/11: Timer X interrupt clear
012345678910111213141516171819202122232425262728293031

Any write to this address will clear the interrupt request.

rr4/12: Timer X raw interrupt status
012345678910111213141516171819202122232425262728293031

R

reset: 0

Bit zero yields the raw (unmasked) interrupt request status of this counter/timer.

r5/13: Timer X masked interrupt status
012345678910111213141516171819202122232425262728293031

M

reset: 0

Bit zero yields the masked interrupt status of this counter/timer.

r6/14: Timer X background load value

012345678910111213141516171819202122232425262728293031

Background load value for TimerX

0 0

The 32-bit value written to this register will be loaded into the counter when it next counts
down to zero. Reading this register will yield the same value as reading register 0/8.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 310

3.2.6.4 Fault-tolerance

Fault insertion

Disabling a counter (by clearing the E bit in its control register) will cause it to fail in its
function.

Fault detection

Use the second counter/timer with a longer period to check the calibration of the first?

Fault isolation

Disable the counter/timer with the E bit in the control register; disable its interrupt output;
disable the interrupt in the interrupt controller.

Reconfiguration

If one counter fails then a system that requires only one counter can use the other one.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 311

3.2.7 DMA controller

Each ARM968 processing subsystem includes a DMA controller. The DMA controller is primarily
used for transferring inter-neural connection data from the SDRAM in large blocks in response
to an input event arriving at a fascicle processor, and for returning updated connection data
during learning. In addition, the DMA controller can transfer data to/from other targets on
the System NoC such as the System RAM and Boot ROM.

As a secondary function the DMA controller incorporates a ‘Bridge’ across which its host
ARM968 has direct read and write access to System NoC devices, including the SDRAM. The
ARM968 can use the Bridge whether or not DMA transfers are active.

3.2.7.1 Features

• DMA engine supporting parallel operations:

– DMA transfers;

– direct pass-through requests from the ARM968;

– dual buffers supporting simultaneous direct and DMA transfers.

• Support for CRC error control in transferred blocks.

• Interrupt-driven or polled DMA completion notification:

– DMA complete interrupt signal;

– various DMA error interrupt signals;

– DMA time-out interrupt signal.

• Parameterisable buffer sizes.

• Direct and DMA request queueing.

3.2.7.2 Using the DMA controller

There are 2 types of requests for DMA controller services. DMA transfers are initiated by
writing to control registers in the controller, executed in the background, and signal an
interrupt when complete. Bridge transfers occur when the ARM initiates a request directly
to the needed device or service. The DMA controller fulfills these requests transparently, the
host processor retaining full control of the transfer. Invisible to the user, the controller may
buffer the data from write requests for more efficient bus management. If an error occurs
on such a buffered write the DMA controller can signal an error interrupt.

The controller acts as a Bridge between the AHB bus on the ARM AHB slave interface and the
AXI interface on the system NoC, performing the required address and control resequencing
(stripping addresses from non-first beats of a burst), data flow management and request
arbitration. The arbiter prioritises requests in the following order:

1) Bridge reads,

2) Bridge writes,

HBP_SP9_Specification 13 May 2014 (git 56b296e) 312

3) DMA burst requests.

No request can gain access to the AXI interface until any active burst transaction on the
interface has completed. Read requests while a DMA transfer is in progress require special
handling. The read must wait until any active request has completed, and therefore a Bridge
read could stall the processor and AHB slave bus for many cycles. In addition, if buffered
writes exist, potential data coherency conflicts exist. The recommended procedure is for the
ARM processor to interrogate the WB active (A) bit in the DMA Status register (STAT) before
requesting a Bridge read.

To initiate a DMA transfer, the ARM must write to the following registers in the DMA
controller: System Address (ADRS), TCM Address (ADRT), and Description (DESC). The order
of writing of the first two register operations is not important, but the Description write must
be the last as it commits the DMA transfer. The processor may also optionally write the CRC
and Global Control (GCTL) registers to set up additional parameters. The expected model,
however, is that these registers are updated infrequently, perhaps only once after power-up.
The processor may read from any register at any time. The processor may have a maximum
of 2 submitted DMA requests of which only one will be active. When the transfer queue is
empty (as indicated by the Q bit in the Status (STAT) register), the processor may queue
another request.

Accesses to DMA Controller registers are restricted to programs running on the ARM968 in
privileged (i.e. non-user) modes. Attempts to access these registers in user mode will result
in a bus error.

An attempt to write register r1 to r3 when the queue is full will result in a bus error.

Any access (read or write) to a non-existent register will result in a bus error.

Non-word-aligned addresses and byte and half-word accesses will result in a bus error.

3.2.7.3 Register summary

Base address: 0x40000000 (buffered write), 0x30000000 (unbuffered write).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 313

Name bits R/W Function
r0: unused 0x00
r1: ADRS 0x04 R/W DMA address on the system interface
r2: ADRT 0x08 R/W DMA address on the TCM interface
r3: DESC 0x0C R/W DMA transfer description
r4: CTRL 0x10 R/W Control DMA transfer
r5: STAT 0x14 R Status of DMA and other transfers
r6: GCTL 0x18 R/W Control of the DMA device
r7: CRCC 0x1C R CRC value calculated by CRC block
r8: CRCR 0x20 R CRC value in received block
r9: TMTV 0x24 R/W Timeout value
r10: StatsCtl 0x28 R/W Statistics counters control
r16-23: Stats0-7 0x40-5C R Statistics counters
r64: unused 0x100
r65: AD2S 0x104 R Active system address
r66: AD2T 0x108 R Active TCM address
r67: DES2 0x10C R Active transfer description
r96-r127 0x180-1FC R/W CRC polynomial matrix

3.2.7.4 Register details

r0: unused

r1: ADRS - System Address.

012345678910111213141516171819202122232425262728293031

System Address 00

0 0

The 32-bit start byte address on the system interface. Note that a read is considered a
data movement from a source on the system bus to a destination on the TCM bus. DMA
transfers are word-aligned, so bits[1:0] are fixed at zero.

r2: ADRT - TCM Address.

012345678910111213141516171819202122232425262728293031

TCM Address 00

0 0

The 32-bit start address on the TCM interface.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 314

r3: DESC - DMA transfer description.

012345678910111213141516171819202122232425262728293031

Transfer ID P W burst C D Length 00

0 0

The function of these fields is described in the table below:

Name bits R/W Function

Transfer ID 31:26 R/W software defined transfer ID
P: Privilege 25 R/W DMA transfer mode is user (0) or privileged (1)
W: Width 24 R/W transfer width is word (0) or double-word (1)
Burst 23:21 R/W burst length = 2B ⇥Width, B = 0 . . . 4 (i.e max 16)
C: CRC 20 R/W check (read) or generate (write) CRC
D: Direction 19 R/W read from (0) or write to (1) system bus
Length 16:2 R/W length of the DMA transfer, in words

The TCM as currently implemented has a size of 64Kbytes (for the data TCM). A DMA
transfer must of necessity either take as a source or a destination the TCM, justifying this
restriction. DMA transfers are word-aligned, so bits[1:0] are fixed at zero.

The Burst length defines the unit of transfer (in words or double-words, depending on W)
across the System NoC. Longer bursts will in general make more efficient use of the available
SDRAM bandwidth.

Note that the Length excludes the 32-bit CRC word, if CRC is used.
Writing to this register automatically commits a transfer as defined by the values in r1-r3.

r4: CTRL - Control Register

012345678910111213141516171819202122232425262728293031

W T D R A U

reset: 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

W: clear WB Int 5 R/W clear Write Buffer interrupt request
T: clear Timeout Int 4 R/W clear Timeout interrupt request
D: clear Done Int 3 R/W clear Done interrupt request
R: Restart 2 R/W resume transfer (clears DMA errors)
A: Abort 1 R/W end current transfer and discard data
U: Uncommit 0 R/W setting this bit uncommits a queued transfer

HBP_SP9_Specification 13 May 2014 (git 56b296e) 315

These bits can only be set to 1 by the user, they cannot be reset. Writing a 0 has no effect.
They will clear automatically once they have taken effect, which will be at the next safe
opportunity, typically between transfer bursts.

r5: STAT - Status Register.

012345678910111213141516171819202122232425262728293031

processorID Condition Codes A F Q P T

hardwired proc ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

processor ID 31:24 R hardwired processor ID identifies CPU on chip
Condition Codes 20:10 R DMA condition codes
A: WB active 4 R write buffer is not empty
F: WB full 3 R write buffer is full
Q: Queue full 2 R DMA transfer is queued - registers are full
P: Paused 1 R DMA transfer is PAUSED
T: Transferring 0 R DMA transfer in progress

The condition codes are defined as follows:

Name bits R/W Function

Write buff error 20 R a buffered write transfer has failed
TBD 19:18 R not yet allocated
Soft reset 17 R a soft reset of the DMA controller has happened
User abort 16 R the user has aborted the transfer (via r4)
AXI error 15 R the AXI interface has signalled a transfer error
TCM error 14 R the TCM AHB interface has signalled an error
CRC error 13 R the calculated and received CRCs differ
Timeout 12 R a burst transfer has not completed in time
2nd transfer done 11 R 2nd DMA transfer has completed without error
Transfer done 10 R a DMA transfer has completed without error

When a DMA error occurs the corresponding condition code flag is set, the DMA engine is
PAUSED (bit[1]) and the current transfer is terminated. A queued transfer remains in the
queue but is not started. A new transfer can be committed if the queue is empty, but it
will not start until the DMA controller is brought out of PAUSE. AD2S, AD2T and DES2 (r65-67)
contain information about the failed transfer and can be used to diagnose the problem. A
restart command (r4 bit[2]) is required to bring the DMA controller out of PAUSE. This will

HBP_SP9_Specification 13 May 2014 (git 56b296e) 316

clear the error codes [16:13] and restart DMA operation. The terminated transfer must be
restarted explicitly by software if this is required.

A soft reset will set bit[17], clear the transfer queue and take the DMA controller into the
IDLE state. The DMA controller is not PAUSED, and new transfers can be committed and start
immediately. A restart command (r4 bit[2]) is required to clear the soft reset flag [17] -
starting a new transfer does NOT clear it.

Timeout [12] and Write Buffer error [20] have explicit clears in CTRL.
The two transfer done bits [11:10] count up through the sequence 00 ! 01 ! 11 as DMA

transfers complete, and count down through the reverse sequence when a 1 is written to
CTRL[3]. As a result of this coding, Transfer Done [10] can be read as indicating that at
least one DMA transfer has completed, and a second completed transfer can be handled by
inspecting bit[11] in software or left to be handled by a subsequent Transfer Done interrupt.

r6: GCTL - Global Control

012345678910111213141516171819202122232425262728293031

T Interrupt enables B

0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function

T: Timer 31 R/W system-wide slow timer status and clear
Interrupt enables 20:10 R/W respective interrupt enables for the r5 conditions
B: Bridge buffer 0 R/W enable Bridge write buffer

The DMA controller passes four interrupt request lines to the VIC:

• dmac_done: the logical OR of GCTL[11:10] and STAT[11:10]

• dmac_timeout: GCTL[12] and STAT[12]

• dmac_error: the logical OR of GCTL[20:13] and STAT[20:13]

• system-wide slow (nominally 32 KHz) timer interrupt

Note that write buffer errors and timeout errors do NOT stop the DMA engine nor the transfer
in progress.

The system-wide slow timer is a clock signal that sets bit[31] on every rising edge, thereby
raising an interrupt request to the VIC, and is cleared by writing a 0 to bit[31]. Writing a 1
to bit[31] has no effect.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 317

r7: CRCC - Calculated CRC

012345678910111213141516171819202122232425262728293031

CRC_value (calculated)

0 0

This is the 32-bit CRC value calculated by the DMA CRC unit.

r8: CRCC - Received CRC

012345678910111213141516171819202122232425262728293031

CRC_value (received)

0 0

This is the 32-bit CRC value read in the block of data loaded by a DMA transfer.

r9: TMTV - Timeout value

012345678910111213141516171819202122232425262728293031

V 00000

reset: 0 0 0 0 0 0 0 0 0 0

This is a 10-bit counter value used to determine when the DMA controller should timeout on
an attempted transfer burst. The count units are clock cycles. When TMTV = 0 the timeout
counter is disabled. Note that a timeout will not stop the transfer.

r10: StatsCtl - Statistics counters control

012345678910111213141516171819202122232425262728293031

C E

reset: 0 0

E, bit[0], enables the statistics counters (r16-23).
Writing ‘1’ to C, bit[1], zeroes the statistics counters. Writing a ‘0’ has no effect. Bit[1]

always reads ‘0’.

r16-23: Stats0-7 - Statistics counters

012345678910111213141516171819202122232425262728293031

Count0-7

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HBP_SP9_Specification 13 May 2014 (git 56b296e) 318

These eight 16-bit counter registers record statistics relating to the latency of DMA tran-
sations across the System NoC. Count0 records the number of transactions that complete
in 0-127 clock cycles, Count1 128-255 clock cycles, and so on up to Count7 which counts
transactions that complete in 896+ clock cycles.

The counters are enabled and cleared via r10.

r65-67: Active DMA transfer registers

These registers are not directly written. They reflect the state of the active DMA transfer,
with AD2S and AD2T holding the respective System and TCM addresses to be used in the
next burst of the transfer, and DES2 holding the description of the transfer in progress (the
remaining length, ID, burst size, and direction).

r96-127: CRC polynomial matrix

012345678910111213141516171819202122232425262728293031

CRC_polynomial row[31:0]

The CRC hardware is highly programmable and can be used in a number of ways to detect,
and possibly correct, errors in blocks of data transferred by the DMA controller between the
ARM968 DTCM and the off-chip SDRAM.

For example, to use the Ethernet 32-bit CRC with polynomial 0x04C11DB7, the following
32 hexadecimal values should be programmed into r96-127:

FB808B20, 7DC04590, BEE022C8, 5F701164, 2FB808B2, 97DC0459, B06E890C, 58374486,
AC1BA243, AD8D5A01, AD462620, 56A31310, 2B518988, 95A8C4C4, CAD46262, 656A3131,
493593B8, 249AC9DC, 924D64EE, C926B277, 9F13D21B, B409622D, 21843A36, 90C21D1B,
33E185AD, 627049F6, 313824FB, E31C995D, 8A0EC78E, C50763C7, 19033AC3, F7011641.

The CRC unit is configurable to use a different 32-bit polynomial, a different polynomial
length, and a different data word length. For example, it can be configured to compute
CRC16 separately for each half-word of the data stream. A Matlab program can be used to
determine the appropriate polynomial matrix values.

3.2.7.5 Fault-tolerance

Fault insertion

Software can introduce errors in data blocks in SDRAM which should be trapped by the CRC
hardware.

Fault detection

The CRC unit can detect errors in the data transferred by the DMA controller. The DMA
controller will time-out if a transaction takes too long.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 319

Fault isolation

The DMA Controller is mission-critical to the local processing subsystem, so if it fails the
subsystem should be disabled and isolated.

Reconfiguration

The local processing subsystem is shut down and its functions migrated to another subsystem
on this or another chip. It should be possible to recover all of the subsystem state and to
migrate it, via the SDRAM, to a functional alternative.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 320

3.2.8 Communications controller

Each processor node on SpiNNaker includes a communications controller which is responsible
for generating and receiving packets to and from the communications network.

3.2.8.1 Features

• Support for 4 packet types:

– multicast (MC) neural event packets routed by a key provided at the source;

– point-to-point (P2P) packets routed by destination address;

– nearest-neighbour (NN) packets routed by arrival port;

– fixed-route (FR) packets routed by the contents of a register.

• Packets are either 40 or 72 bits long. The longer packets carry a 32-bit payload.

• 2-bit time stamp (used by Routers to trap errant packets).

• Parity (to detect some corrupt packets).

3.2.8.2 Packet formats

Neural event multicast (MC) packets (type 0)

Neural event packets include a control byte and a 32-bit routing key inserted by the source.
In addition they may include an optional 32-bit payload:

8 bits 32 bits 32 bits

control routing key optional payload

The 8-bit control field includes packet type (bits[7:6] = 00 for multicast packets), emer-
gency routing and time stamp information, a payload indicator, and error detection (parity)
information:

7 6 5 4 3 2 1 0

0 0 seq code time stamp payload parity

Point-to-point (P2P) packets (type 1)

Point-to-point packets include 16-bit source and destination chip IDs, plus a control byte and
an optional 32-bit payload:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 321

8 bits 16 bits 16 bits 32 bits

control source ID destination ID optional payload

Here the 8-bit control field includes packet type (bits[7 : 6] = 01 for P2P packets), a
sequence code, time stamp, a payload indicator and error detection (parity) information:

7 6 5 4 3 2 1 0

0 1 seq code time stamp payload parity

Nearest-neighbour (NN) packets (type 2)

Nearest-neighbour packets include a 32-bit address or operation field, plus a control byte
and an optional 32-bit payload:

8 bits 32 bits 32 bits

control address/operation optional payload

Here the 8-bit control field includes packet type (bits[7 : 6] = 10 for NN packets), a
‘peek/poke’ or ‘normal’ type indicator (T), routing information, a payload indicator and
error detection (parity) information:

7 6 5 4 3 2 1 0

1 0 T route payload parity

Fixed-Route (FR) packets (type 3)

Fixed-route packets include a 32-bit payload field, plus a control byte and an optional 32-bit
payload extension:

8 bits 32 bits 32 bits

control payload optional payload extension

Here the 8-bit control field includes packet type (bits[7 : 6] = 11 for FR packets), emer-
gency routing and time stamp information, a payload indicator, and error detection (parity)
information:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 322

7 6 5 4 3 2 1 0

1 1
emergency

routing
time stamp payload parity

3.2.8.3 Control byte summary

The various fields in the control bytes of the different packet types are summarised below:

Field Name bits Function

parity 0 parity of complete packet (including payload when
used)

payload 1 data payload (1) or no data payload (0)
time stamp 3:2 phase marker indicating time packet was launched
seq code 5:4 P2P only: sequence code, software defined
emergency routing 5:4 MC & FR: used to control routing around a failed link
route 4:2 NN only: information for the Router
T: NN packet type 5 NN only: packet type - normal (0) or peek/poke (1)
packet type 7:6 = 00 for MC; = 01 for P2P; = 10 for NN; = 11 for FR

Parity

The complete packet (including the data payload where used) will have odd parity.

data

Indicates whether the packet has a 32-bit data payload (= 1) or not (= 0).

time stamp

The system has a global time phase that cycles through 00 ! 01 ! 11 ! 10 ! 00. Global
synchronisation must be accurate to within one time phase (the duration of which is pro-
grammable and may be dynamically variable). A packet is launched with a time stamp equal
to the current time phase, and if a Router finds a packet that is two time phases old (time
now XOR time launched = 11) it will drop it to the local Monitor Processor. The time stamp
is inserted by the local Router if the route field in SAR (see ‘Register details’ on page 33) is
111, which is the normal case, so the Communication Controller need do nothing here. If
SAR holds a different value in the route field the time stamp from TCR is used.

seq code

P2P packets may use these bits (under software control) to indicate the sequence of data
payloads, or for other purposes.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 323

emergency routing

MC & FR packets use these bits to control emergency routing around a failed or congested
link:

• 00! normal packet;

• 01 ! the packet has been redirected by the previous Router through an emergency
route along with a normal copy of the packet. The receiving Router should treat this
as a combined normal plus emergency packet.

• 10 ! the packet has been redirected by the previous Router through an emergency
route which would not be used for a normal packet.

• 11! this emergency packet is reverting to its normal route.

route

These bits are set at packet launch to the values defined in the control register. They enable
a packet to be directed to a particular neighbour (0 - 5), broadcast to all or a subset (as
defined in the Router r33 ‘NN broadcast’ bits - see ‘r33: fixed-route packet routing’ on page
49) of neighbours (6), or to the local Monitor Processor (7).

T (NN packet type)

This bit specifies whether an NN packet is ‘normal’, so that it is delivered to the Monitor
Processor on the neighbouring chip(s), or ‘peek/poke’, so that performs a read or write
access to the neighbouring chip’s System NoC resource.

packet type

These bits indicate whether the packet is a multicast (00), point-to-point (01), nearest-
neighbour (10) or fixed-route (11) packet.

3.2.8.4 Debug access to neighbouring devices

The ‘peek’ and ‘poke’ mechanism gives access to the System NoC address space on any
neighbouring device without processor intervention on that chip. To read a word, include
its address in a ‘peek/poke’ nearest neighbour packet output (i.e. with the T bit set). Only
word addresses are permitted. The absence of a payload indicates that a read (‘peek’) is
required. This would normally be done by a Monitor Processor although, in principle, any
processor can output his packet.

The target device performs the appropriate access and returns a response on the corre-
sponding link input. This is delivered to the processor designated as Monitor Processor in the
local router. The response is a ‘normal’ NN packet which carries the requested word as pay-
load. The address field is also returned for identification purposes with the least significant
bit set to indicate a response. Bit 1 of the address will also be set if the access caused a
bus error. Writing (‘poke’) is similar; including a payload in the outgoing packet causes that

HBP_SP9_Specification 13 May 2014 (git 56b296e) 324

word to be written. A payload-less response packet is returned which will indicate the error
status.

3.2.8.5 Register summary

Base address: 0x20000000 (buffered write), 0x10000000 (unbuffered write).

Name Offset R/W Function
r0: TCR (Tx control) 0x00 R/W Controls packet transmission
r1: TDR (Tx data) 0x04 W 32-bit data for transmission
r2: TKR (Tx key) 0x08 W Send MC key/P2P dest ID & seq code
r3: RSR (Rx status) 0x0C R/W Indicates packet reception status
r4: RDR (Rx data) 0x10 R 32-bit received data
r5: RKR (Rx key) 0x14 R Received MC key/P2P source ID & seq code
r6: SAR (Source addr) 0x18 R/W P2P source address
r7: TSTR (test) 0x1C R/W Used for test purposes

A packet will contain a data payload if r1 is written before r2; this can be performed using
an ARM STM instruction.

3.2.8.6 Register details

r0: TCR - transmit control

012345678910111213141516171819202122232425262728293031

E F O N control byte

1 0 0 1 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
E: empty 31 R Tx buffer empty
F: full 30 R/W Tx buffer full (sticky)
O: overrun 29 R/W Tx buffer overrun (sticky)
N: not full 28 R Tx buffer not full, so it is safe to send a packet
control byte 23:16 W control byte of next sent packet

The parity field in the control byte will be replaced by an automatically-generated value
when the packet is launched, and the sequence field will be replaced by the value in TKR.
The time stamp (where applicable) will be inserted by the local Router if the route field in
SAR is 111, otherwise the value here will be used.

The transmit buffer full and not full controls are expected to be used, by polling or
interrupt, to prevent buffer overrun. Tx buffer full is sticky and, once set, will remain set
until 0 is written to bit 30. Transmit buffer overrun indicates packet loss and will remain set
until explicitly cleared by writing 0 to bit 29.

E, F, O and N reflect the levels on the Tx interrupt signals sent to the interrupt controller.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 325

r1: TDR - transmit data payload

012345678910111213141516171819202122232425262728293031

32-bit data payload for sending with next packet

If data is written into TDR before a send key or dest ID is written into TKR, the packet
initiated by writing to TKR will include the contents of TDR as its data payload. If no data
is written into TDR before a send key or dest ID is written into TKR the packet will carry no
data payload.

r2: TKR - send MC key or P2P dest ID & sequence code

Writing to TKR causes a packet to be issued (with a data payload if TDR was written pre-
viously). If bits[23:22] of the control register in TCR are 00 the Communication Controller
is set to send multicast packets and a 32-bit routing key should be written into TKR. The
32-bit routing key is used by the associative multicast Routers to deliver the packet to the
appropriate destination(s).

012345678910111213141516171819202122232425262728293031

32-bit multicast routing key

If bits[23:22] of the control register are 01 the Communication Controller is set to send
point-to- point packets and the value written into TKR should include the 16-bit address of
the destination chip in bits[15:0] and a sequence code in bits[17:16]. (See ‘seq code’ on
page 32.)

012345678910111213141516171819202122232425262728293031

sq 16-bit destination ID

If bits[23:22] of the control register are 10 the Communication Controller is set to send
nearest neighbour packets and the 32-bit NN address/operation field should be written in
TKR.

If bits[23:22] of the control register are 11 the Communications Controller is set to send
fixed-route packets and the value written into TKR is a 32-bit payload, possibly augmented
by a further 32 bits in TDR if this was written previously.

r3: RSR - receive status

012345678910111213141516171819202122232425262728293031

R T A E Route control byte F N P M

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 326

Name bits R/W Function
R: received 31 R Rx packet received
T: parity 30 R/W Rx packet parity error (sticky)
A: framing error 29 R/W Rx packet framing error (sticky)
E: error-free 28 R Rx packet received without error
Route 26:24 R Rx route field from packet
Control byte 23:16 R Control byte of last Rx packet
F: FR packet 3 R error-free fixed-route packet received
N: NN packet 2 R error-free nearest-neighbour packet received
P: P2P packet 1 R error-free point-to-point packet received
M: MC packet 0 R error-free multicast packet received

Any packet that is received will set R, which will remain set until RKR has been read. A
packet that is received with a parity and/or framing error also sets T and/or A. These bits
remain set until explicitly reset by writing 0 to bit 30 or bit 29 respectively.

R, T, A, M, P, N & F reflect the levels on the Rx interrupt signals sent to the interrupt
controller.

Note that these status bits will have a one-cycle latency before becoming valid so, for
example, checking R one cycle after reading RKR will return 1, the old value.

r4: RDR - received data

012345678910111213141516171819202122232425262728293031

32-bit received data payload

If a received packet carries a data payload the payload will be delivered here and will
remain valid until r5 is read.

r5: RKR - received MC key or P2P source ID & sequence code

A received packet will deliver its MC routing key, NN address or P2P source ID and sequence
code to RKR. For an MC or NN packet this will be the exact value that the sender placed into
its TKR for transmission; for a P2P packet the sequence number will be that placed by the
sender into its TKR, and the 16-bit source ID will be that in the sender’s SAR. The register is
read sensitive - once read it will change as soon as the next packet arrives.

r6: SAR - source address and route

012345678910111213141516171819202122232425262728293031

Route p2p source ID

reset: 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 327

Name bits R/W Function
Route 26:24 W Set ‘fake’ route in packet
P2P source ID 15:0 W 16-bit chip source ID for P2P packets

The P2P source ID is expected to be configured once at start-up.
The route field allows a packet to be sent by a processor to the router which appears to

have come from one of the external links. Normally this field will be set to 7 (0b111) but can
be set to a link number in the range 0 to 5 to achieve this.

r7: TSTR - test

Setting bit 0 of this register makes all registers read/write for test purposes. Clearing bit 0
restricts write access to those register bits marked as read-only in this datasheet. All register
bits may be read at any time. Bit 0 is cleared by reset.

3.2.8.7 Fault-tolerance

Fault insertion

Software can cause the Communications Controller to misbehave in several ways including
inserting dodgy routing keys, source IDs, destination IDs.

Fault detection

Parity of received packet; received packet framing error; transmit buffer overrun.

Fault isolation

The Communications Controller is mission-critical to the local processing subsystem, so if it
fails the subsystem should be disabled and isolated.

Reconfiguration

The local processing subsystem is shut down and its functions migrated to another subsystem
on this or another chip. It should be possible to recover all of the subsystem state and to
migrate it, via the SDRAM, to a functional alternative.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 328

3.2.9 Communications NoC

The Communications NoC carries packets between the processors on the same or different
chips. It plays a central role in the system architecture. Its connectivity to the other
components is shown the the chip block diagram in ‘Chip organization’ on page 5.

3.2.9.1 Features

• On- and inter-chip links

• Router which handles multicast, point-to-point, nearest neighbour and fixed-route
packets.

• Arbiter to merge all sources into a sequential packet stream into the Router.

• Individual links can be reset to clear blockages and deadlocks.

3.2.9.2 Input structure

The input structure is a tree Arbiter which merges the various sources of packets into a
single stream. Its structure is illustrated below. The numbers indicate source tagging of the
packets.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 329

3.2.9.3 Output structure

The Router produces separate outputs to all on-chip processor nodes and to the off-chip
links, so the output connectivity is a set of individual self-timed links.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 330

3.2.10 Router

The Router is responsible for routing all packets that arrive at its input to one or more of its
outputs. It is responsible for routing multicast neural event packets, which it does through
an associative multicast router subsystem, point-to-point packets (for which it uses a look-up
table), nearest- neighbour packets (using a simple algorithmic process), fixed-route packet
routing (defined in a register), default routing (when a multicast packet does not match any
entry in the multicast router) and emergency routing (when an output link is blocked due to
congestion or hardware failure).

Various error conditions are identified and handled by the Router, for example packet parity
errors, time-out, and output link failure.

3.2.10.1 Features

• 1,024 programmable associative multicast (MC) routing entries.

– associative routing based on source ‘key’;

– with flexible ‘don’t care’ masking;

• look-up table routing of point-to-point (P2P) packets.

• routing of nearest-neighbour (NN) and fixed-route (FR) packets.

• support for 40- and 72-bit packets.

• default routing of unmatched multicast packets.

• automatic ‘emergency’ re-routing around failed links.

– programmable wait time before emergency routing and before dropping packet.

• pipelined implementation to route 1 packet per cycle (peak).

– back-pressure flow control;

– power-saving pipeline control.

• failure detection and handling:

– packet parity error;

– time-expired packet;

– output link failure;

– packet framing (wrong length) error.

3.2.10.2 Description

Packets arrive from other nodes via the link receiver interfaces and from internal processor
nodes and are presented to the router one-at-a-time. The Arbiter is responsible for deter-
mining the order of presentation of the packets, but as each packet is handled independently

HBP_SP9_Specification 13 May 2014 (git 56b296e) 331

the order is unimportant (though it is desirable for packets following the same route to stay
in order).

Each multicast packet contains an identifier that is used by the Router to determine which
of the outputs the packet is sent to. These outputs may include any subset of the output links,
where the packet may be sent via the respective link transmitter interface, and/or any subset
of the internal processor nodes, where the packet is sent to the respective Communications
Controller.

For the neural network application the identifier can be simply a number that uniquely
identifies the source of the packet – the neuron that generated the packet by firing. This is
‘source address routing’. In this case the packet need contain only this identifier, as a neural
spike is an ‘event’ where the only information is that the neuron has fired. The Router then
functions simply as a look- up table where for each identifier it looks up a routing word,
where each routing word contains 1 bit for each destination (each link transmitter interface
and each local processor) to indicate whether or not the packet should be passed to that
destination.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 332

3.2.10.3 Internal organization

The internal organization of the Router is illustrated in the figure below.

Packets are passed as complete 40- or 72-bit units from the Arbiter, together with the iden-
tity of the Rx interface that the packet arrived through (for nearest-neighbour, emergency
and default routing). The first stage of processing here is to identify errors. The second stage
passes the packet to the appropriate routing engines – the multicast (MC) router is activated
only if the packet is error-free and of multicast or fixed-route type, the point-to-point (P2P)
handles point-to-point packets while the NN router handles nearest-neighbour packets and
also deals with default and error routing. The output of the router stage is a vector of
destinations to which the packet should be relayed. The third stage is the emergency routing
mechanism for handling failed or congested links, which it detects using ‘full’ signals fed

HBP_SP9_Specification 13 May 2014 (git 56b296e) 333

back from the individual destination output buffers.

3.2.10.4 Multicast (MC) router

The MC router uses the routing key in the MC packet to determine how to route the packet.
The router has 1,024 look-up entries, each of which has a mask, a key value, and an output
vector. The packet’s routing key is compared with each entry in the MC router. For each
entry it is first ANDed with the mask, then compared with the entry’s key. If it matches, the
entry’s output vector is used to determine where the packet is sent; it can be sent to any
subset (including all) of the local processors and the output links.

Thus, to programme an MC entry three writes are required: to the key, its mask and the
corresponding vector. A mask of FFFFFFFF ensures all the key bits are used; if any mask bits
are ’0’ the corresponding key bits should also be ’0’, otherwise the entry will not match.
This can be exploited to ensure that unused entries are invalid. The effect of the various
combinations of bit values in the mask[] and key[] regions is summarized in the table below:

key[] mask[] Function
0 0 don’t care - bit matches
1 0 bit misses - entry invalidated
0 1 match 0
1 1 match 1

Thus a particular entry [i] will match only if:

• wherever a bit in the mask[i] word is 1, the corresponding bit in the MC packet routing
word is the same as the corresponding bit in the key[i] word, AND

• wherever a bit in the mask[i] word is 0, the corresponding bit in the key[i] word is also
0.

Note that the MC Router CAM is not initialised at reset. Before the Router is enabled all
CAM entries must be initialised by software. Unused mask[] entries should be initialised to
0000000, and unused key[] entries should be initialised to FFFFFFFF. This invalidates every
bit in the word, ensuring that the word will miss even in the presence of minor component
failures.

The matching is perfomed in a parallel ternary associative memory, with a RAM used to
store the output vectors. The associative memory can be set up so that more than one
entry matches an incoming routing key; in this case the matching entry at the lowest address
determines the output vector to be used. Multiple simultaneous matches can also be used
to improve test efficiency.

If no entry matches an MC packet’s routing key then default routing is employed - the
packet is sent to the output link opposite the input link through which it arrived. Packets
from local processors cannot be default-routed; the router table must have a valid entry for
every locally-sourced packet.

The MC output vector assignment is detailed in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 334

MC vector entry Output port Direction
bit[0] Tx0 East
bit[1] Tx1 North-East
bit[2] Tx2 North
bit[3] Tx3 West
bit[4] Tx4 South-West
bit[5] Tx5 South
bit[6] Processor 0 Local
bit[7] Processor 1 Local
.

bit[23] Processor 17 Local

If any of the multicast packet’s output links are blocked the packet is stalled for a time
‘wait1’ (see ‘r0: Router control register’ on page 44). When that time expires any blocked
external outputs (i.e. links 0-5) will attempt to divert to the next lower number link, modulo
6 (see section 10.9 on page 42) and retry for a further period, ‘wait2’. If two potential
outputs become unblocked at the same time the original choice is preferred.

A packet which is diverted is typed as specified in ‘emergency routing’ on page 32. If a
packet of such a type is received the router will attempt to output it as a ‘reverting’ packet
to the output with the next lower number to the input on which it was received. If this
should also be a normal packet then conventional multicast routing also takes place.

The routing tables should not be set up so that a packet paths cross each other. If the
packet is programmed to do this then it is not possible to differentiate between an intended
and a reverting packet; the ‘reverting’ designation takes priority.

A received reverting packet is routed normally if it is recognised by the router, otherwise
it is ‘default’ routed to the link numbered two greater (mod 6) than the input link.

fixed-route (FR) packets

The FR router uses the same mechanism as the MC router although the packets do not have a
key field. Instead, all packets of this type are routed to the same output vector, as specified
in r33. Emergency routing is handled identically to MC packets.

This mechanism is intended to facilitate monitoring and debugging by routing data towards
a point which connects with a host system.

3.2.10.5 The point-to-point (P2P) router

The P2P router uses the 16-bit destination ID in a point-to-point packet to determine which
output the packet should be routed to. There is a 3-bit entry for each of the 64K destination
IDs. Each 3-bit entry is decoded to determine whether the packet is delivered to the local
Monitor Processor or one of the six output links, or dropped, as detailed in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 335

P2P table entry Output port Direction
000 Tx0 East
001 Tx1 North-East
010 Tx2 North
011 Tx3 West
100 Tx4 South-West
101 Tx5 South
110 none (drop packet) none
111 Monitor Processor Local

The 3-bit entries are packed into an 8K entry x 24-bit SRAM lookup table. The 24-bit words
hold entries 0, 8, 16, ... in bits [2:0], 1, 9, 17, . . . in bits [5:3], etc.

3.2.10.6 The nearest-neighbour (NN) router

Nearest-neighbour packets are used to initialise the system and to perform run-time flood-fill
and debug functions. The routing function here is to send ‘normal’ NN packets that arrive
from outside the node (i.e. via an Rx link) to the monitor processor and to send NN packets
that are generated internally to the appropriate output (Tx) link(s). This is to support a
flood-fill load process.

In addition, the ‘peek/poke’ form of NN packet can be used by neighbouring systems to
access System NoC resources. Here an NN poke ‘write’ packet (which is a peek/poke type with
a 32-bit payload) is used to write the 32-bit data defined in the payload to a 32-bit address
defined in the address/operation field. An NN peek ‘read’ packet (which is a peek/poke type
without a 32-bit payload) uses the 32-bit address defined in the address/operation field to
read from the System NoC and returns the result (as a ‘normal’ NN packet) to the neighbour
that issued the original packet using the Rx link ID to identify that source. This ‘peek/poke’
access to a neighbouring chip’s principal resources can be used to investigate a non-functional
chip, to re-assign the Monitor Processor from outside, and generally to get good visibility into
a chip for test and debug purposes.

As the peek/poke NN packets convey only 32-bit data payloads the bottom 2 bits of the
address should always be zero. All peek/poke NN packets return a response to the sender,
with bit 0 of the address set to 1. Bit 1 will also be set to 1 if there was a bus error at the
target. Peeks return a 32-bit data payload; pokes return without a payload. default and
error routing In addition, the NN router performs default and error routing functions.

3.2.10.7 Time phase handling

The Router maintains a 2-bit time phase signal that is used to delete packets that are out-of
date. The time phase logic operates as follows:

• locally-generated packets will have the current time phase inserted (where appropri-
ate);

• a packet arriving from off-chip will have its time phase checked, and if it is two phases
old it will be deleted (dropped, and copied to the Error registers).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 336

3.2.10.8 Packet error handler

The packet error handler is a routing engine that simply flags the packet for dropping to the
Error registers if it detects any of the following:

• a packet parity error;

• a packet that is two time phases old;

• a packet that is the wrong length.

The Monitor Processor can be interrupted to deal with packets dropped with errors.

3.2.10.9 Emergency routing

If a link fails (temporarily, due to congestion, or permanently, due to component failure)
action will be taken at two levels:

• The blocked link will be detected in hardware and subsequent packets rerouted via
the other two sides of a triangle of which the suspect link was an edge, being initially
re-routed via the link which is rotated one link clockwise from the blocked link (so if
link Tx0 fails, link Tx5 is used, etc).

• The Monitor Processor will be informed. It can track the problem using a diagnostic
counter:

– if the problem was due to transient congestion, it will note the congestion but do
nothing further;

– if the problem was due to recurring congestion, it will negotiate and establish a
new route for some of the traffic using this link;

– if the problem appears permanent, it will establish new routes for all of the traffic
using this link.

The hardware support for these processes include:

– default routing processes in adjacent nodes that are invoked by flagging the packet
as an emergency type;

– mechanisms to inform the Monitor Processor of the problem;

– means of inducing the various types of fault for testing purposes.

Emergency rerouting around the triangle requires additional emergency packet
types for MC and FR packets. P2P packets will find their own way to their destina-
tion following emergency routing.

3.2.10.10 Register summary

Base address: 0xe1000000 (buffered write), 0xf1000000 (unbuffered write).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 337

Name Offset R/W Function
r0: control 0x00 R/W Router control register
r1: status 0x04 R Router status
r2: error header 0x08 R error packet control byte and flags
r3: error routing 0x0C R error packet routing word
r4: error payload 0x10 R error packet data payload
r5: error status 0x14 R error packet status
r6: dump header 0x18 R dumped packet control byte and flags
r7: dump routing 0x1C R dumped packet routing word
r8: dump payload 0x20 R dumped packet data payload
r9: dump outputs 0x24 R dumped packet intended destinations
r10: dump status 0x28 R dumped packet status
r11: diag enables 0x2C R/W diagnostic counter enables
r12: timing ctr ctl 0x30 R/W timing counter controls
r13: cycle ctr 0x34 R counts Router clock cycles
r14: busy cyc ctr 0x38 R counts emergency router active cycles
r15: no wt pkt ctr 0x3C R counts packets that do not wait to be issued
r16-31: dly hist 0x40-7C R packet delay histogram counters
r32: diversion 0x80 R/W divert default packets
r33: FR route 0x84 R/W fixed-route packet routing vector
rFN: diag filter 0x200-23C R/W diagnostic count filters (N = 0-15)
rCN: diag count 0x300-33C R/W diagnostic counters (N = 0-15)
rT1: test register 0xF00 R hardware test register 1
rT2: test key 0xF04 R/W hardware test register 2 - CAM input test key
route[1023:0] 0x4000 R/W MC Router routing word values
key[1023:0] 0x8000 W MC Router key values
mask[1023:0] 0xC000 W MC Router mask values
P2P[8191:0] 0x10000 R/W P2P Router routing entries (8 3-bit entries/word)

3.2.10.11 Register details

r0: Router control register

012345678910111213141516171819202122232425262728293031

wait2[7:0] wait1[7:0] W MP[4:0] TP P F T D E R

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The functions of these fields are described in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 338

Name bits R/W Function
wait2[7:0] 31:24 R/W wait time before dropping packet
wait1[7:0] 23:16 R/W wait time before emergency routing
W 15 W re-initialise wait counters
MP[4:0] 12:8 R/W Monitor Processor ID number
TP 7:6 R/W time phase (c.f. packet time stamps)
P 5 R/W enable count of packet parity errors
F 4 R/W enable count of packet framing errors
T 3 R/W enable count of packet time stamp errors
D 2 R/W enable dump packet interrupt
E 1 R/W enable error packet interrupt
R 0 R/W enable packet routing

The wait times (defined by wait1[] and wait2[]) are stored in a floating point format to give a
wide range of values with high accuracy at low values combined with simple implementation
using a binary pre-scaler and a loadable counter. Each 8-bit field is divided into a 4-bit
mantissa M[3:0] = wait[3:0] and a 4-bit exponent E[3:0] = wait[7:4]. The wait time in clock
cycles is then given by:

wait = (M + 16� 24�E).2E for E 4;
wait = (M + 16).2E for E > 4;

Note that wait[7:0] = 0x00 gives a wait time of zero, and the wait time increases monotoni-
cally with wait[7:0]; wait[7:0] = 0xFF is a special case and gives an infinite wait time - wait
forever.

There is a small semantic difference between wait1[7:0] and wait2[7:0]:

• wait1[7:0] defines the number of cycles the Router will re-try after the first failed cycle
before attempting emergency routing; wait1[] = 0 will attempt normal routing once
and then try emer- gency routing.

• wait2[7:0] is the number of cycles during which emergency routing will be attempted
before the packet is dumped; wait2[] = 0 therefore effectively disables emergency
routing.

If r0 is written when one of the wait counters is running, writing a 1 to W (bit[15]) will
cause the active counter to restart from the new value written to it. This enables the
Monitor Processor to clear a deadlocked ‘wait forever’ condition. If 0 is written to W the
active counter will not restart but will use the new wait time value the next time it is
invoked.

Note that the Router is enabled after reset. This is so that a neighbouring chip can peek
and poke a chip that fails after reset using NN packets, to diagnose and possibly fix the cause
of failure.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 339

r1: Router status

All Router interrupt request sources are visible here, as is the current status of the emergency
routing system.

012345678910111213141516171819202122232425262728293031

I E D ER B ctr[15:0]

The functions of these fields are described in the table below:

Name bits R/W Function
I: interrupt active 31 R combined Router interrupt request
E: error int 30 R error packet interrupt active
D: dump int 29 R dump packet interrupt active
ER[1:0] 25:24 R Router output stage status (empty, full but unblocked,

blocked in wait1, blocked in wait2)
B 16 R busy - active packet(s) in Router pipeline
ctr[15:0] 15:0 R diagnostic counter interrupt active

The Router generates three interrupt request outputs that are handled by the VIC on each
processor: diagnostic counter event interrupt, dump interrupt and error interrupt. These
correspond to the OR of ctr[15:0], D and E respectively. The interrupt requests are cleared
by reading their respective status registers: r5, r10 and r2N.

r2: error header

A packet which contains an error is copied to r2-5. Once a packet has been copied (indicated
by bit[31] of r5 being set) any further error packet is ignored, except that it can update the
sticky bits in r5 (and errors of the types specified in r0 are counted in r5).

012345678910111213141516171819202122232425262728293031

P F T Route control byte TP

0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
P: parity 29 R packet parity error
F: framing error 28 R packet framing error
T: TP error 27 R packet time stamp error
Route 26:24 R Rx route field of error packet
Control byte 23:16 R control byte of error packet
TP: time phase 7:6 R time phase when packet received

HBP_SP9_Specification 13 May 2014 (git 56b296e) 340

r3: error routing word

012345678910111213141516171819202122232425262728293031

32-bit routing word

r4: error data payload

012345678910111213141516171819202122232425262728293031

32-bit data payload

r5: error status

This register counts error packets, including time stamp, framing and parity errors as enabled
by r0[5:3]. The Monitor Processor resets r5[31:27] and the error count by reading its contents.

012345678910111213141516171819202122232425262728293031

E V P F T error count

0 0

The functions of these fields are described in the table below:

Name bits R/W Function
E: error 31 R error packet detected
V: overflow 30 R more than one error packet detected
P: parity 29 R packet parity error (sticky)
F: framing error 28 R packet framing error (sticky)
T: TP error 27 R packet time stamp error (sticky)
error count 15:0 R 16-bit saturating error count

r6: dump header

A packet which is dumped because it cannot be routed to its destination is copied to r6-10.
Once a packet has been dumped (indicated by bit[31] of r10 being set) any further packet
that is dumped is ignored, except that it can update the sticky bits in r10 (and can be counted
by a diagnostic counter).

012345678910111213141516171819202122232425262728293031

Route control byte TP

reset: 1 1 1 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 341

Name bits R/W Function
Route 26:24 R Rx route field of dumped packet
Control byte 23:16 R control byte of dumped packet
TP: time phase 7:6 R time phase when packet dumped

r7: dump routing word

012345678910111213141516171819202122232425262728293031

32-bit routing word

r8: dump data payload

012345678910111213141516171819202122232425262728293031

32-bit data payload

r9: dump outputs

012345678910111213141516171819202122232425262728293031

FPE[17:0] LE[5:0]

The functions of these fields are described in the table below:

Name bits R/W Function
FPE[17:0] 23:6 R Fascicle Processor link error caused dump
LE[5:0] 5:0 R Tx link transmit error caused packet dump

r10: dump status

The Monitor Processor resets r10 by reading its contents.
012345678910111213141516171819202122232425262728293031

D V FPE[17:0] LE[5:0]

0 0

The functions of these fields are described in the table below:

Name bits R/W Function
D: dumped 31 R packet dumped
V: overflow 30 R more than one packet dumped
FPE[17:0] 23:6 R Fascicle Proc link error caused dump (sticky)
LE[5:0] 5:0 R Tx link error caused dump (sticky)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 342

r11: diagnostic counter enable/reset

This register provides a single control point for the 16 diagnostic counters, enabling them to
count events over a precisely controlled time period.

012345678910111213141516171819202122232425262728293031

reset[15:0] enable[15:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
reset[31:16] 31:16 R write a 1 to reset diagnostic counter15. . . 0
enable[15:0] 15:0 R enable diagnostic counter 15. . . 0

Writing a 0 to reset[15:0] has no effect. Writing a 1 clears the respective counter.

r12: timing counter controls

This register controls the cycle counters in registers r13, r14 & r15, and in the delay histogram
registers r16-r31.

012345678910111213141516171819202122232425262728293031

T S R H E C

reset: 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
T 18 W reset histogram
S 17 W reset emergency router active cycle counter
R 16 W reset cycle counter
H 2 R/W enable histogram
E 1 R/W enable emergency router active cycle counter
C 0 R/W enable cycle counter

Writing a 0 to R, S or T has no effect. Writing a 1 clears the respective counter.

r13: cycle count

012345678910111213141516171819202122232425262728293031

32-bit non-saturating cycle counter

0 0

r13, when enabled by r12, simply counts the number of Router clock cycles.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 343

r14: emergency router active cycle count

012345678910111213141516171819202122232425262728293031

32-bit non-saturating emergency router active cycle counter

0 0

r14, when enabled by r12, counts the number of cycles for which the emergency router is
actively seeking a route for a packet. This equals the number of packets plus the number of
stall cycles.

r15: unblocked packet count

012345678910111213141516171819202122232425262728293031

32-bit non-saturating unblocked packet counter

0 0

r15, when enabled by r12, counts the number of packets which pass through undelayed by
congested output links.

r16-31: packet delay histogram

012345678910111213141516171819202122232425262728293031

32-bit non-saturating packet delay counter

0 0

r16-r31, when enabled by r12, count the number of times a packet is delayed due to link
congestion, each register counting delays within a range of clock cycles. r15 counts the zero
delay component of the histogram. These counters use the same pre-scaling as wait1 in r0,
so the histogram effectively records the value in the wait mantissa at the time the congestion
resolves.

r32: diversion

This register allows default-routed MC packets to be redirected in the case when their default
path is unavailable, for example as a result of a complete node failure.

012345678910111213141516171819202122232425262728293031

L5 L4 L4 L2 L1 L0

reset: 0 0 0 0 0 0 0 0 0 0 0 0

The 2-bit L0 field can be set to 00 for normal behaviour of packets default routed from
link 0, to x1 to divert those packets to the local Monitor Processor, or to 10 to destroy the

HBP_SP9_Specification 13 May 2014 (git 56b296e) 344

packets. L1 likewise controls default routed packets that arrive through link 1, etc.

r33: fixed-route packet routing

012345678910111213141516171819202122232425262728293031

NN broadcast FR output vector

1 1 1 1 1 1 0

r33 routes fixed-route (type 3) packets to off-chip links and local processors in exactly the
same way, with the same bit allocation, as an MC output vector as described in section 10.4
on page 39.

In addition, the ‘NN broadcast’ bits[31:26] define which links an NN broadcast packet is
sent through. A 1 indicates an active link, and bit[26] is for link 0, bit[27] link 1, etc.

rFN: diagnostic filter control

The Router has 16 diagnostic counters (N = 0..F) each of which counts packets passing
through the Router filtered on packet characteristics defined here. A packet is counted if it
has characteristics that match with a ‘1’ in each of the 6 fields. Setting all bits [24:10, 7:0]
to ‘1’ will count all packets.

A diagnostic counter may (optionally) generate an interrupt on each count. The C bit[29]
is a sticky bit set when a counter event occurs and is cleared whenever this register is read.

012345678910111213141516171819202122232425262728293031

I E C Dest Loc PL Def M ER Type

0 0

The functions of these fields are described in the table below:

Name bits R/W Function
I 31 R counter interrupt active: I = E AND C
E 30 R/W enable interrupt on counter event
C 29 R counter event has occurred (sticky)
Dest 24:16 R/W packet dest (Tx link[5:0], MP, local ¬MP, dump)
Loc 15:14 R/W local [x1]/non-local[1x] packet source
PL 13:12 R/W packets with [x1]/without [1x] payload
Def 11:10 R/W default [x1]/non-default [1x] routed packets
M 8 R/W Emergency Routing mode
ER 7:4 R/W Emergency Routing field = 3, 2, 1 or 0
Type 3:0 R/W packet type: fr, nn, p2p, mc

If M (bit[8]) = 0 the Emergency Routing field matches that of the incoming packet, before
any local Emergency Routing, so this can be used to count packets that have been Emergency
Routed by a previous Router but not those that are Emergency Routed here.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 345

If M = 1 the Emergency Routing field is matched against outgoing packets to destinations
selected in the Dest field. If any outgoing packet to a selected destination matches the ER
field the diagnostic count will be incremented. (Note that packets to internal destinations
cannot be emergency routed and so have ER = 0.)

rCN: diagnostic counters

012345678910111213141516171819202122232425262728293031

32-bit count value

0 0

Each of these counters can be used to count selected types of packets under the control
of the corresponding rFN. The counter can have any value written to it, and will increment
from that value when respective events occur. If an event occurs as the counter is being
written it will not be counted. To avoid missing an event it is better to avoid writing the
counter; instead, read it at the start of a time period and subtract this value from the value
read at the end of the period to get a count of the number of events during the period.

rT1: hardware test register 1

This register is used only for hardware test purposes, and has no useful functions for the
application programmer.

012345678910111213141516171819202122232425262728293031

entry M

The functions of these fields are described in the table below:

Name bits R/W Function
M 0 R MC router associative look-up ‘miss’ output
entry 10:1 R MC router associative look-up entry address

The input key used for the associative look-up whenever this register is read is in register
T2.

rT2: hardware test register 2

012345678910111213141516171819202122232425262728293031

32-bit key

0 0

This register holds the key presented to the association input of the multicast router when
register T1 is read.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 346

3.2.10.12 Fault-tolerance

The Communications Router has some internal fault-tolerance capacity, in particular it is
possible to map out a failed multicast router entry. This is a useful mechanism as the
multicast router dominates the silicon area of the Communications Router.

There is also capacity to cope with external failures. Emergency routing will attempt to
bypass a faulty or blocked link. In the event of a node (or larger) failure this will not be
sufficient. In order to tolerate a chip failure several expedients can be employed on a local
basis:

• P2P packets can be routed around the obstruction;

• MC packets with a router entry can be redirected appropriately.

In most cases, default MC packets cannot sensibly be trapped by adding table entries
due to their (almost) infinite variety. To allow rerouting, these packets can be dropped to
the Monitor Processor on a link-by-link basis using the diversion register. In principle they
can then be routed around the obstruction as P2P payloads before being resurrected at the
opposite side.

Should the Monitor Processor become overwhelmed, it is also possible to use the diversion
register to eliminate these packets in the Router; this prevents them blocking the Router
pipeline whilst waiting for a timeout and thus delaying viable traffic.

Fault detection

• packet parity errors.

• packet time-phase errors.

• packet unroutable errors (e.g. a locally-sourced multicast packet which doesn’t match
any entry in the multicast router).

• wrong packet length.

Fault isolation

• a multicast router entry can be disabled if it fails - see initialisation guidance above.

Reconfiguration

• since all multicast router entries are identical the function of any entry can be relocated
to a spare entry.

• if a router becomes full a global reallocation of resources can move functionality to a
different router.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 347

3.2.10.13 Test

Production test

The ternary CAM used in the multicast router has access for parallel testing, so a processor
can write a value to all locations and see if an input with 1 bit flipped results in a hit or a
miss. The CAM is not directly readable - attempts to read this space will result in bus errors
- and must be tested by association. To do this a key must first be written into register
rT2. A subsequent read of register rT1 will then indicate if that key has associated with any
CAM entries. If it has not then rT1h0i will be set and the other bits of this register will be
undefined; if one or more of the entries are matched then the one at the lowest address in
the CAM will be indicated in the ’entry’ field.

All RAMs have read-write access for test purposes.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 348

3.2.11 Inter-chip transmit and receive interfaces

Inter-chip communication is implemented by extending the Communications NoC from chip
to chip. In order to sustain throughput, there is a protocol conversion at each chip boundary
from standard CHAIN 3-of-6 return-to-zero to 2-of-7 non-return-to-zero. The interfaces
include logic to minimise the risk of a protocol deadlock caused by glitches on the inter-chip
wires.

3.2.11.1 Features

• transmit (Tx) interface:

– converts on-chip 3-of-6 RTZ symbol into off-chip 2-of-7 NRZ symbol;

– disable control input;

– reset input.

• receive (Rx) interface:

– converts off-chip 2-of-7 NRZ symbol into on-chip 3-of-6 RTZ symbol;

– disable control input;

– reset input.

3.2.11.2 Programmer view

The only programmer-accessible features implemented in these interfaces are software reset
and a disable control, both accessed via the System Controller. In normal operation these
interfaces provide transparent connectivity between the routing network on one chip and
those on its neighbours.

3.2.11.3 Fault-tolerance

The fault inducing, detecting and resetting functions are controlled from the System Con-
troller (see ‘System Controller’ on page 66). The interfaces are ‘glitch hardened’ to greatly
reduce the probability of a link deadlock arising as a result of a glitch on one of the inter-chip
wires. Such a glitch may introduce packet errors, which will be detected and handled else-
where, but it is very unlikely to cause deadlock. It is expected that the link reset function
will not be required often.

Fault insertion

• an input controlled by the System Controller causes the interface to deadlock (by
disabling it).

Fault detection

• Monitor Processors should regularly test link functionality.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 349

Fault isolation

• the interface can be disabled to isolate the chip-to-chip link. This input from the
System Controller is also used to create a fault.

Reconfiguration

• the link interface can be reset by the System Controller to attempt recovery from a
fault.

• the link interface can be isolated and an alternative route used.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 350

3.2.12 System NoC

The System NoC has a primary function of connecting the ARM968 processors to the SDRAM
interface. It is also used to connect the processors to system control and test functions, and
for a variety of other purposes.

3.2.12.1 Features

• supports full bandwidth block transfers between the SDRAM and the ARM968 processors.

• the Router is an additional initiator for system debug purposes.

• can be reset (in subsections) to clear deadlocks.

• multiple targets:

– SDRAM interface - ARM PL340

– System RAM

– System ROM

– Ethernet interface

– System Controller

– Watchdog Timer.

– Router configuration registers

HBP_SP9_Specification 13 May 2014 (git 56b296e) 351

3.2.12.2 Organisation

CPU0 CPU1

AXI M AXI M

AXI S APB3 S AHB S

AHB S−>M

AHB M

AHB

SysCtl Watchdog

AXI M

APB3AXI 64

32

SM

Router

PL340

SS

AHB S

EthernetSysROMSysRAM

AHB

AHB

CPU2−17

router_clkeven_node_clk odd_node_clk

memory_clk

System NoC

AHB 32

32

32

32

64AXIAXI 64 AXI 64

system_clk

even_node_clk odd_node_clk

HBP_SP9_Specification 13 May 2014 (git 56b296e) 352

3.2.13 SDRAM interface

The SDRAM interface connects the System NoC to an off-chip SDRAM device. It is the ARM
PL340, described in ARM document DDI 0331D.

3.2.13.1 Features

• control for external Mobile DDR SDRAM memory device

• memory request queue

• out of order request sequencing to maximise memory throughput

• AXI interface to System NoC

• delay-locked loop (DLL) to realign SDRAM data strobes with the input data streams

3.2.13.2 Register summary

Base address: 0xe0000000 (buffered write), 0xf0000000 (unbuffered write).

User registers

The following registers allow normal user programming of the PL340 SDRAM interface:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 353

Name Offset R/W Function
r0: status 0x00 R memory controller status
r1: command 0x04 W PL340 command
r2: direct 0x08 W direct command
r3: mem_cfg 0x0C R/W memory configuration
r4: refresh_prd 0x10 R/W refresh period
r5: CAS_latency 0x14 R/W CAS latency
r6: t_dqss 0x18 R/W write to DQS time
r7: t_mrd 0x1C R/W mode register command time
r8: t_ras 0x20 R/W RAS to precharge delay
r9: t_rc 0x24 R/W active bank x to active bank x delay
r10: t_rcd 0x28 R/W RAS to CAS minimum delay
r11: t_rfc 0x2C R/W auto-refresh command time
r12: t_rp 0x30 R/W precharge to RAS delay
r13: t_rrd 0x34 R/W active bank x to active bank y delay
r14: t_wr 0x38 R/W write to precharge delay
r15: t_wtr 0x3C R/W write to read delay
r16: t_xp 0x40 R/W exit power-down command time
r17: t_xsr 0x44 R/W exit self-refresh command time
r18: t_esr 0x48 R/W self-refresh command time
id_n_cfg 0x100 R/W QoS settings
chip_n_cfg 0x200 R/W external memory device configuration
user_status 0x300 R DLL test and status inputs
user_config0 0x304 W DLL test and control outputs
user_config1 0x308 W DLL fine-tune control

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the
programmer:

Name Offset R/W Function
int_cfg 0xE00 R/W integration configuration register
int_inputs 0xE04 R integration inputs register
int_outputs 0xE08 W integration outputs register
periph_id_n 0xFE0-C R PL340 peripheral ID byte registers
pcell_id_n 0xFF0-C R PL340 Prime Cell ID byte registers

See ARM document DDI 0331D for further details of the test registers.

Restrictions on when registers may be modified

Normally the PL340 registers will be initialised during system start-up and then left alone.
Restrictions on when the registers may be safely modified are detailed in the PL340 datasheet,
ARM doccument DDI 0331D.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 354

The DLL test and control outputs and the DLL fine-tune control registers should only be
written to when the PL340 is quiescent and no processor is issuing an SDRAM access or has
one pending.

3.2.13.3 Register details

r0: memory controller status

012345678910111213141516171819202122232425262728293031

M B C D W S

The functions of these fields are described in the table below:

Name bits R/W Function
M: monitors 11:10 R Number of exclusive access monitors (0, 1, 2, 4)
B: banks 9 R Fixed at 1’b01 = 4 banks on a chip
C: chips 8:7 R Number of different chip selects (1, 2, 3, 4)
D: DDR 6:4 R DDR type: 3b’011 = Mobile DDR
W: width 3:2 R Width of external memory: 2’b01 = 32 bits
S: status 1:0 R Config, ready, paused, low-power

r1: memory controller command

012345678910111213141516171819202122232425262728293031

cmd

The function of this field is described in the table below:

Name bits R/W Function
cmd: command 2:0 W Go, sleep, wake-up, pause, config, active_pause

r2: direct command

012345678910111213141516171819202122232425262728293031

chip cmd bank addr

This register is used to pass a command directly to a memory device attached to the PL340.
The functions of these fields are described in the table below:

Name bits R/W Function
chip 21:20 W chip number
cmd 19:18 W command passed to memory device
bank 17:16 W bank passed to memory device
addr[13:0] 13:0 W address passed to memory device

HBP_SP9_Specification 13 May 2014 (git 56b296e) 355

r3: memory configuration

012345678910111213141516171819202122232425262728293031

act QoS burst C P pwr_down A row col

reset: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

The function of this field is described in the table below:

Name bits R/W Function
act 22:21 R/W active chips: number for refresh generation
QoS 20:18 R/W selects the 4-bit QoS field from the AXI ARID
burst 17:15 R/W burst length (1, 2, 4, 8, 16)
C 14 R/W stop memory clock when no access
P 13 R/W auto-power-down memory when inactive
pwr_down 12:7 R/W # memory cycles before auto-power-down
A 6 R/W position of auto-pre-charge bit (10/8)
row 5:3 R/W number of row address bits (11-16)
col 2:0 R/W number of column address bits (8-12)

r4: refresh period

012345678910111213141516171819202122232425262728293031

refresh period

reset: 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0

The function of this field is described in the table below:

Name bits R/W Function
refresh period 14:0 R/W memory refresh period in memory clock cycles

r5: CAS latency

012345678910111213141516171819202122232425262728293031

cas_lat H

reset: 0 1 1 0

The functions of these fields are described in the table below:

Name bits R/W Function
cas_lat 3:1 R/W CAS latency in memory clock cycles
H 0 R/W CAS half cycle - must be set to 1’b0

HBP_SP9_Specification 13 May 2014 (git 56b296e) 356

r6: t_dqss

012345678910111213141516171819202122232425262728293031

tdqss

reset: 0 1

The function of this field is described in the table below:

Name bits R/W Function
tdqss 1:0 R/W write to DQS in memory clock cycles

r7: t_mrd

012345678910111213141516171819202122232425262728293031

t_mrd

reset: 0 0 0 0 0 1 0

The function of this field is described in the table below:

Name bits R/W Function
t_mrd 6:0 R/W mode reg cmnd time in memory clock cycles

r8: t_ras

012345678910111213141516171819202122232425262728293031

t_ras

reset: 0 1 1 1

The function of this field is described in the table below:

Name bits R/W Function
t_ras 3:0 R/W RAS to precharge time in memory clock cycles

r9: t_rc

012345678910111213141516171819202122232425262728293031

t_rc

reset: 0 1 1 1

The function of this field is described in the table below:

Name bits R/W Function
t_rc 3:0 R/W Bank x to bank x delay in memory clock cycles

HBP_SP9_Specification 13 May 2014 (git 56b296e) 357

r10: t_rcd

012345678910111213141516171819202122232425262728293031

sched t_rcd

reset: 0 1 1 1 0 1

The functions of these fields are described in the table below:

Name bits R/W Function
t_rcd 2:0 R/W RAS to CAS min delay in memory clock cycles
sched 5:3 R/W RAS to CAS min delay in aclk cycles �3

r11: t_rfc

012345678910111213141516171819202122232425262728293031

sched t_rfc

reset: 1 0 0 0 0 1 0 0 1 0

The functions of these fields are described in the table below:

Name bits R/W Function
sched 9:5 R/W Auto-refresh cmnd time in aclk cycles �3
t_rfc 4:0 R/W Auto-refresh cmnd time in memory clock cycles

r12: t_rp

012345678910111213141516171819202122232425262728293031

sched t_rp

reset: 0 1 1 1 0 1

The functions of these fields are described in the table below:

Name bits R/W Function
sched 5:3 R/W Precharge to RAS delay in aclk cycles �3
t_rp 2:0 R/W Precharge to RAS delay in memory clock cycles

r13: t_rrd

012345678910111213141516171819202122232425262728293031

t_rrd

reset: 0 0 1 0

The function of this field is described in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 358

Name bits R/W Function
t_rrd 3:0 R/W Bank x to bank y delay in memory clock cycles

r14: t_wr

012345678910111213141516171819202122232425262728293031

t_wr

reset: 0 1 1

The function of this field is described in the table below:
Name bits R/W Function
t_wr 2:0 R/W Write to precharge dly in memory clock cycles

r15: t_wtr

012345678910111213141516171819202122232425262728293031

t_wtr

reset: 0 1 0

The function of this field is described in the table below:
Name bits R/W Function
t_wtr 2:0 R/W Write to read delay in memory clock cycles

r16: t_xp

012345678910111213141516171819202122232425262728293031

t_xp

reset: 0 0 0 0 0 0 0 1

The function of this field is described in the table below:
Name bits R/W Function
t_xp 7:0 R/W Exit pwr-dn cmnd time in memory clock cycles

r17: t_xsr

012345678910111213141516171819202122232425262728293031

t_xsr

reset: 0 0 0 0 0 1 0 1

The function of this field is described in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 359

Name bits R/W Function
t_xsr 7:0 R/W Exit self-rfsh cmnd time in mem clock cycles

r18: t_esr

012345678910111213141516171819202122232425262728293031

t_esr

reset: 0 0 0 1 0 1 0 0

The function of this field is described in the table below:

Name bits R/W Function
t_esr 7:0 R/W Self-refresh cmnd time in memory clock cycles

id_n_cfg

012345678910111213141516171819202122232425262728293031

QoS_max N E

reset: 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
QoS_max 9:2 R/W maximum QoS
N 1 R/W minimum QoS
E 0 R/W QoS enable

chip_n_cfg

012345678910111213141516171819202122232425262728293031

B match mask

reset: 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

There is one of these registers for each external chip that is supported. The functions of
these fields are described in the table below:

Name bits R/W Function
B 16 R/W bank-rol-column/row-bank-column
match 15:8 R/W address match
mask 7:0 R/W address mask

HBP_SP9_Specification 13 May 2014 (git 56b296e) 360

3.2.13.4 The delay-locked loop (DLL)

The SDRAM interface incorporates a delay-locked loop which, though outside the PL340, is
controlled via the PL340 user status and configuration registers.

The general organisation of the DLL is shown below:

The basic operation is that a reference clock, CK, running at twice the SDRAM clock (i.e.
nominally 333 MHz for a 166 MHz SDRAM), is passed through a master delay line and the
output, DCK, inverted and compared with the original clock. A phase comparator drives an
asynchronous finite state machine (AFSM) that in turn drives an up/down bar code counter
to line these two signals up. The SDRAM data strobes, DQS0-3, are passed through matched
delay lines to line up with the middle of the data valid period. Software can fine-tune the
individual strobe timings.

There is a 6th, spare, delay line, that can be used if any of the five primary delay lines
fails.

user_status: DLL test and status inputs

012345678910111213141516171819202122232425262728293031

L M R K I D C3 S3 C2 S2 C1 S1 C0 S0 Meter

reset: 0

HBP_SP9_Specification 13 May 2014 (git 56b296e) 361

The function of these fields is described in the table below:

Name bits R/W Function
L, M, R 22:20 R 3-phase bar-code control output
K: locKed 18 R Phase comparator is locked
I: Incing 17 R Phase comparator is increasing delay
D: Decing 16 R Phase comparator is reducing delay
C0, C1, C2, C3 9,11,13,15 R Clock faster than strobe 0-3
S0, S1, S2, S3 8,10,12,14 R Strobe 0-3 faster than Clock
Meter 6:0 R Current position of bar-code output

user_config0: DLL test and control outputs

012345678910111213141516171819202122232425262728293031

E TL L M R T5 ID I D S5 S4 S3 S2 S1 S0

reset: 0

The function of these fields is described in the table below:

Name bits R/W Function
E: Enable 24 W Enable DLL (0 = reset DLL)
TL: Test_LMR 23 W Enable forcing of L, M, R
L, M, R 22:20 W Force 3-phase bar-code control inputs
T5: Test_5 19 W Substitute delay line 5 for 4 for testing
ID: Test_ID 18 W Enable forcing of Incing and Decing
I: Test_Incing 17 W Force Incing (if ID = 1)
D: Test_Decing 16 W Force Decing (if ID = 1)
S0-S5 11:0 W Input selects for the 6 delay lines {def, alt, 0, 1}

The default inputs for the 6 delay lines selected by S0-S5 are Tune_2 (master); Tune_0
(DQS0); Tune_1 (DQS1); Tune_3 (DQS2); Tune_4 (DQS3) as shown in the figure above.

The alternative inputs for the 6 delay lines are: Tune_3 (master); Tune_1 (DQS0); Tune_2
(DQS1); Tune_4 (DQS2); Tune_5 (DQS3).

user_config1: DLL fine-tune control

012345678910111213141516171819202122232425262728293031

Tune_5 Tune_4 Tune_3 Tune_2 Tune_1 Tune_0

reset: 0

The function of these fields is described in the table below:

Name bits R/W Function
Tune0 . . . 5 23:0 W Fine tuning control on delay lines 0 . . . 5

HBP_SP9_Specification 13 May 2014 (git 56b296e) 362

3.2.13.5 Fault-tolerance

Fault insertion

The DLL can be driven by software into pretty much any defective state.

Fault detection

The DLL delay lines can be tested for stuck-at faults and relative timing accuracy.

Fault isolation

A defective or out-or-spec delay line can be isolated.

Reconfiguration

A defective or out-or-spec delay line can be isolated and replaced by using the spare delay
line.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 363

3.2.14 System Controller

The System Controller incorpora tes a number of functions for system start-up, fault-
tolerance testing (invoking, detecting and resetting faults), general performance monitoring,
etc.

3.2.14.1 Features

• ‘Arbiter’ read-sensitive register bit to determine Monitor Processor ID at start-up.

• 32 test-and-set registers for general software use, e.g. to enforce mutually exclusive
access to critical data structures.

• individual interrupt, reset and enable controls and ‘processor OK’ status bits for each
processor.

• sundry parallel IO and test and control registers.

• PLL and clock management registers.

3.2.14.2 Register summary

Base address: 0xe2000000 (buffered write), 0xf2000000 (unbuffered write).

These registers may only be accessed by a processor executing in a privileged mode; any
attempt to access the System Controller from user-mode code will return a bus error. Only
aligned word accesses are supported - misaligned word or byte or half-word accesses will
return a bus error.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 364

Name Offset R/W Function
r0: Chip ID 0x00 R Chip ID register (hardwired)
r1: CPU disable 0x04 R/W Each bit disables a processor
r2: Set CPU IRQ 0x08 R/W Writing a 1 sets a processor’s interrupt line
r3: Clr CPU IRQ 0x0C R/W Writing a 1 clears a processor’s interrupt line
r4: Set CPU OK 0x10 R/W Writing a 1 sets a CPU OK bit
r5: Clr CPU OK 0x14 R/W Writing a 1 clears a CPU OK bit
r6: CPU Rst Lv 0x18 R/W Level control of CPU resets
r7: Node Rst Lv 0x1C R/W Level control of CPU node resets
r8: Sbsys Rst Lv 0x20 R/W Level control of subsystem resets
r9: CPU Rst Pu 0x24 R/W Pulse control of CPU resets
r10: Node Rst Pu 0x28 R/W Pulse control of CPU node resets
r11: Sbsys Rst Pu 0x2C R/W Pulse control of subsystem resets
r12: Reset Code 0x30 R Indicates cause of last chip reset
r13: Monitor ID 0x34 R/W ID of Monitor Processor
r14: Misc control 0x38 R/W Miscellaneous control bits
r15: GPIO pull u/d 0x3C R/W General-purpose IO pull up/down enable
r16: I/O port 0x40 R/W I/O pin output register
r17: I/O direction 0x44 R/W External I/O pin is input (1) or output (0)
r18: Set IO 0x48 R/W Writing a 1 sets IO register bit
r19: Clear IO 0x4C R/W Writing a 1 clears IO register bit
r20: PLL1 0x50 R/W PLL1 frequency control
r21: PLL2 0x54 R/W PLL2 frequency control
r22: Set flags 0x58 R/W Set flags register
r23: Reset flags 0x5C R/W Reset flags register
r24: Clk Mux Ctl 0x60 R/W Clock multiplexer controls
r25: CPU sleep 0x64 R CPU sleep (awaiting interrupt) status
r26-28 0x68-70 R/W Temperature sensor registers [2:0]
r32-63: Arbiter 0x80-FC R Read sensitive semaphores to determine MP
r64-95: Test&Set 0x100-17C R Test & Set registers for general software use
r96-127: Test&Clr 0x180-1FC R Test & Clear registers for general software use
r128: Link disable 0x200 R/W Disables for Tx and Rx link interfaces

3.2.14.3 Register details

r0: Chip ID

012345678910111213141516171819202122232425262728293031

device version Year # CPUs

0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0

This register is configured at chip design time to hold a unique ID for the chip type. The
device code is 591 in BCD. The version will increment with each design variant. Year holds
the last two digits of the year of first fabrication, in BCD. The bottom byte holds the number

HBP_SP9_Specification 13 May 2014 (git 56b296e) 365

of CPUs on the chip.
The test chip ID is 0x59100902. The full chip ID is 0x59111012.

r1: CPU disable

012345678910111213141516171819202122232425262728293031

� 0x5EC ProcDis[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will disable processor[n], stalling any attempted access
to its local AHB and thereby preventing it from accessing any external resource. Writing a
0 will enable it. For a write to be effective it must include a security code in bits [31:20]:
0x5ECXXXXX.

To ensure the processor is disabled in a low-power state it should be disabled and then reset
via r9.Reading from this register returns the current status of all of the processor disable
lines.

r2: Set CPU interrupt request

012345678910111213141516171819202122232425262728293031

� 0x5EC SetInt[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will set an interrupt request to processor[n], which can
be enabled/ disabled and routed to IRQ or FIQ by that processor’s local Vectored Interrupt
Controller (VIC - see page 12). Writing a 0 has no effect. For a write to be effective it must
include a security code in bits [31:20]: 0x5ECXXXXX. Reading from this register returns the
current status of all of the processor interrupt lines.

r3: Clear CPU interrupt request

012345678910111213141516171819202122232425262728293031

� 0x5EC ClrInt[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will clear an interrupt request to processor[n]. Writing
a 0 has no effect. For a write to be effective it must include a security code in bits [31:20]:
0x5ECXXXXX. Reading from this register returns the current status of all of the processor
interrupt lines.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 366

r4: Set CPU OK

012345678910111213141516171819202122232425262728293031

SetOK[31:0]

0 0

Writing a 1 to bit[n] (n = 0. . . 31) will set that bit, indicating that processor[n] is believed
to be functional. Writing a 0 has no effect. Reading from this register returns the current
status of all of the processor OK bits. Any bits that do not correspond to a processor number
can be used for any purpose - the functions of this register are entirely defined by software.

In normal use a processor will set its own bit after performing some functional self-testing.
The Monitor Processor will read the register after the start-up phase to establish which
processors are functional, and assign them tasks accordingly. The MP may attempt to restart
faulty processors by resetting them via r6-11, or it may take them off-line by disabling their
clocks via r1.

r5: Clear CPU OK

012345678910111213141516171819202122232425262728293031

ClrOK[31:0]

0 0

Writing a 1 to bit[n] (n = 0. . . 31) will clear that bit, indicating that processor[n] is not
confirmed as functional or has detected a fault. Writing a 0 has no effect. Reading from this
register returns the current status of all of the processor OK bits.

r6: CPU node soft reset - level

012345678910111213141516171819202122232425262728293031

� 0x5EC LSreset[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will set a level on the reset input of processor[n] which
is ORed with the corresponding output of the pulse reset generator, r9. For a write to be
effective it must include a security code in bits [31:20]: 0x5ECXXXXX. Reading from this
register returns the current status of this register, that is the level before the OR with the
pulse reset output.

This is a soft reset which resets the ARM9 processor core, thereby restarting its execution at
the reset vector, and resets the Communication and DMA Controllers once active transactions
have completed.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 367

r7: CPU node hard reset - level

012345678910111213141516171819202122232425262728293031

� 0x5EC LHreset[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will set a level on the reset input of processor node[n]
which is ORed with the corresponding output of the pulse reset generator, r10. For a write
to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX. Reading from
this register returns the current status of this register, that is the level before the OR with
the pulse reset output.

This is a hard reset which resets the entire ARM968 processor node, including the peripheral
hardware components in that node.

r8: Subsystem reset - level

012345678910111213141516171819202122232425262728293031

� 0x5EC LSSreset[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Writing a 1 to bit[n] (n = 0. . . 17) will set a level on the reset input of a subsystem. For
a write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX. Reading
from this register returns the current status of this register, that is the level before the OR
with the pulse reset output.

The assignment of these bits to subsystems is given in the following table:

LSSreset Reset target
0 Router
1 PL340 SDRAM controller
2 System NoC
3 Communications NoC

4-9 Tx link 0-5
10-15 Rx link 0-5

16 System AHB & Clock Gen (pulse reset only)
17 Entire chip (pulse reset only)

18-19 unassigned

r9: CPU node soft reset - pulse

012345678910111213141516171819202122232425262728293031

� 0x5EC PSreset[17:0]

HBP_SP9_Specification 13 May 2014 (git 56b296e) 368

Writing a 1 to bit[n] (n = 0. . . 17) will generate a pulse (of 256 System Controller clock
cycles) on the reset input of processor[n], which is ORed with the corresponding output of
the reset level register r6. For a write to be effective it must include a security code in bits
[31:20]: 0x5ECXXXXX. Reading from this register returns the current status of the reset lines
after the OR with the level reset output.

The reset function is as described for r6.

r10: CPU node hard reset - pulse

012345678910111213141516171819202122232425262728293031

� 0x5EC PHreset[17:0]

Writing a 1 to bit[n] (n = 0. . . 17) will generate a pulse (256 clock cycles long) on the
reset input of processor node[n], which is ORed with the corresponding output of the reset
level register r7. For a write to be effective it must include a security code in bits [31:20]:
0x5ECXXXXX. Reading from this register returns the current status of the reset lines after the
OR with the level reset output.

The reset function is as described for r7.

r11: Subsystem reset - pulse

012345678910111213141516171819202122232425262728293031

� 0x5EC PSSreset[17:0]

Writing a 1 to bit[n] (n = 0. . . 17) will generate a pulse (256 clock cycles long) on the reset
input of a subsystem. For a write to be effective it must include a security code in bits
[31:20]: 0x5ECXXXXX. Reading from this register returns the current status of the reset lines
after the OR with the level reset output.

The assignment of these bits to subsystems is the same as that described for r8.

r12: Reset code

012345678910111213141516171819202122232425262728293031

RC

These bits return a code indicating the last active reset source. The reset sources are
given in the following table:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 369

RC[2:0] Reset source Hard/soft reset actionbits
000 POR - Power-on reset hard, everything
001 WDR - Watchdog reset hard, all but MPID[4:0] in r13
010 UR - User reset hard, all but MPID[4:0] in r13 & B in r14
011 REC - Reset entire chip (r11 bit 17) hard, all but MPID[4:0] in r13 & B in r14
100 WDI - Watchdog interrupt soft, only Monitor Processor if R = 1 in

r13

The Power-on reset RC[2:0] = 000 hard resets everything, including setting MPID[4:0] =
11111 in r13 and B = 0 in r14.

WDR, UR and REC (RC[2:0] = 001, 010 or 011) do not reset MPID[4:0] in r13, which retains
its value through the reset, thereby preventing the old Monitor Processor from competing to
be Monitor Processor after the reset.

UR and REC (RC[2:0] = 010 or 011) do not reset B in r14, which will retain its value through
the reset, thereby allowing booting from RAM.

The Watchdog interrupt RC[2:0] = 100 only soft resets the Monitor Processor (with a 256
cycle pulse), and then only if this is enabled in r13.

r13: Monitor ID

This register holds the ID of the processor which has been chosen as the Monitor Processor,
together with associated control bits.

Software must set the MPID value in the Router Control Register, which the Router uses to
route P2P and NN packets to the Monitor Processor, to match MPID[4:0].

MPID[4:0] is initialised by power-on reset to an invalid value which does not refer to any
processor. Other forms of reset do not change MPID[4:0]. It is set to the ID of the processor
that wins the competition at start-up by reading its respective register r32 to r63 first.

012345678910111213141516171819202122232425262728293031

� 0x5EC R A MPID

reset: 0 1 1 1 1 1 1

The functions of these fields are described in the table below:

Name bits R/W Function
R 16 R/W Reset Monitor Processor on Watchdog interrupt
A 8 R/W Write 1 to set MP arbitration bit (see r32-63)
MPID[4:0] 4:0 R/W Monitor Processor ID

The ‘R’ bit causes the Watchdog interrupt signal to cause a soft reset of processor[MPID],
which will override any interrupt masking by the Monitor Processor. In any case, this interrupt
is available at all processor VICs and can therefore be enabled locally as an IRQ or FIQ source.

Reading bit[8] returns the current value of the MP arbitration bit (see r32-63).
For a write to r13 to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 370

r14: Misc control

This register supports general chip control.
012345678910111213141516171819202122232425262728293031

R D C E T J B

reset: 0 0 0 0 0 0 0

The function of these fields is described in the table below:

Name bits R/W Function
R 20 R read value on JTAG_RTCK pin
D 19 R read value on JTAG_TDO pin
C 18 R read value on Clk32 pin
E 17 R read value on Ethermux pin
T 16 R read value on Test pin
J 15 R/W select on-chip (1) or off-chip (0) control of JTAG pins
B 0 R/W map System ROM (0) or RAM (1) to Boot area

The JTAG port is controllable by software using r14 and r16. Bit[15] of r14 selects this
option when high. When selected, the GPIO bits in r16 control the JTAG inputs: GPIO[27:24]
drive JTAG_NTRST, JTAG_TMS, JTAG_TDI and JTAG_TCK respectively, and the JTAG outputs
JTAG_TDO and JTAG_RTCK are readable via r14 as above.

When JTAG is being driven externally, reading the r14 bits[20:19] and r16 bits[27:24] returns
the state of the JTAG pins.

B is reset by power-on reset (POR) and watchdog reset (WDR).

r15: GPIO pull up/down control

012345678910111213141516171819202122232425262728293031

IO port pull up/down enable

1 1

The functions of these bit fields are described in the table below:

bits R/W Function
31:29 R/W GPIO[31:29] - on-package SDRAM control - pull-down
28:24 R/W Unused
23:20 R/W GPIO[23:20] & MII TxD port pull-down
19:16 R/W GPIO[19:16] & MII RxD port pull-up
15:0 R/W GPIO[15:0] pull-down

HBP_SP9_Specification 13 May 2014 (git 56b296e) 371

r16: IO port

012345678910111213141516171819202122232425262728293031

IO port data

0 0

This register holds a 32-bit value, most bits of which may be driven out through pins when
the corresponding bit in r17 is 0. When read, the values in this register are returned. The
number of physical IO pins available depends on whether or not the Ethernet interface is
in use. The external EtherMux input, if driven high, enables the Ethernet Tx_D[3:0] and
Rx_D[3:0] onto the pins used for IO[23:16]. If EtherMux is low these pins are available for
general-purpose IO use.

The functions of these bit fields are described in the table below:

bits R/W Function
31:29 R/W On-package SDRAM control

28 R/W Unused
27:24 R/W Can drive the JTAG interface
23:20 R/W IO pins or MII TxD
19:16 R/W IO pins or MII RxD
15:0 R/W IO pins

Note: GPIO[15:14] can be configured to access the spare delay line in the DLL under the
control of the external Test pin. If Test = 1 then spare_DLL_input = GPIO[14] and GPIO[15] =
spare_DLL_output; if Test = 0 GPIO[15:14] connect to the System Controller GPIO pins.

r17: IO direction

012345678910111213141516171819202122232425262728293031

IO port direction

1 1

This register determines whether each IO port bit is an input (1) or an output (0). Setting
a bit to an input does not invalidate the corresponding bit in r16 - that value will be held in
r16 until explicitly changed by a write to r16. When read, this register returns the value last
written.

r18: Set IO

012345678910111213141516171819202122232425262728293031

SetIO

0 0

HBP_SP9_Specification 13 May 2014 (git 56b296e) 372

Writing a 1 sets the corresponding bit in r16. Writing a 0 has no effect.
Reading this register returns the values on the IO pins (if present).

r18: Clear IO

012345678910111213141516171819202122232425262728293031

ClearIO

0 0

Writing a 1 clears the corresponding bit in r16. Writing a 0 has no effect. Reading this
register returns the values on the IO pins (if present).

r20: PLL1 control, and register 21: PLL2 control

012345678910111213141516171819202122232425262728293031

T P FR MS[5:0] NS[5:0]

reset: 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0

The function of these fields is described in the table below:

Name bits R/W Function
T 24 R/W test (=0 for normal operation)
P 18 R/W Power UP
FR[1:0] 17:16 R/W frequency range (25-50, 50-100, 100-200, 200-400 MHz)
MS[5:0] 13:8 R/W output clock divider
NS[5:0] 5:0 R/W input clock multiplier

The PLL output clock frequency, with a 10 MHz input clock, is given by 10⇥ NS/MS. Thus
setting NS[5:0] = 010100 [=20] and MS[5:0] = 000001 [=1] will give 200 MHz.

r22: Set flags

012345678910111213141516171819202122232425262728293031

32-bit flags register

0 0

Writing a 1 to any bit position sets the corresponding bit in the flags register. Writing a 0
has no effect. Reading returns the value of the flags register.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 373

r23: Reset flags

012345678910111213141516171819202122232425262728293031

32-bit flags register

0 0

Writing a 1 to any bit position sets the corresponding bit in the flags register. Writing a 0
has no effect. Reading returns the value of the flags register.

r24: Clock multiplexer control

The clock generator circuits are organised as shown below:

/1/2/3/4

clk_in

Fref

Fref

(eg 10MHz)

Inv

system_clk

memory_clk

router_clk

/1/2/3/4

/1/2/3/4

/1/2/3/4

/1/2/3/4
CkOut

Tcko

PLL1_xxx[]

PLL2_xxx[]

Div by 4

PLL2

PLL1

Cin

Cin

proc_node_clk_A

proc_node_clk_B

proc_node_clk_B_sel

memory_clk_sel

router_clk_sel

proc_node_clk_A_sel

pll2_clk

pll1_clk

clk_in_4

clk_in

SpiNNaker2 Clock Module

Tcki

CkOut

Tcko

Tcki

2

3

proc_node_clk_A_div

memory_clk_div

proc_node_clk_B_inv proc_node_clk_B_div

router_clk_div

system_clk_div

0

1

system_clk_sel

HBP_SP9_Specification 13 May 2014 (git 56b296e) 374

012345678910111213141516171819202122232425262728293031

V Sdiv Sys Rdiv Rtr Mdiv Mem Bdiv Pb Adiv Pa

0 0

The functions of these fields are described in the table below:

Name bits R/W Function
V 31 R/W invert CPU clock B
Sdiv[1:0] 23:22 R/W divide System AHB clock by Sdiv + 1(= 1� 4)
Sys[1:0] 21:20 R/W clock selector for System AHB components
Rdiv[1:0] 18:17 R/W divide Router clock by Rdiv + 1(= 1� 4)
Rtr[1:0] 16:15 R/W clock selector for Router
Mdiv[1:0] 13:12 R/W divide SDRAM clock by Mdiv + 1(= 1� 4)
Mem[1:0] 11:10 R/W clock selector for SDRAM
Bdiv[1:0] 8:7 R/W divide CPU clock B by Bdiv + 1(= 1� 4)
Pb[1:0] 6:5 R/W clock selector for B CPUs (0 3 5 6 9 10 12 15 17)
Adiv[1:0] 3:2 R/W divide CPU clock A by Adiv + 1(= 1� 4)
Pa[1:0] 1:0 R/W clock selector for A CPUs (1 2 4 7 8 11 13 14 16)

All clock selectors choose from the same clock sources:

Sel[1:0] Clock source
00 external 10MHz clock input
01 PLL1
10 PLL2
11 external 10MHz clock divided by 4

Clock switching is safe at any time once the PLLs have locked, which takes a defined time
(maximum 80�s for the PLLs) after they have been configured.

r25: CPU sleep status

012345678910111213141516171819202122232425262728293031

CPUwfi[17:0]

Each bit in this register indicates the state of the respective ARM968 STANDBYWFI (stand-by
wait for interrupt) signal, which is active when the CPU is in its low-power sleep mode.

r26-28: Temperature sensor registers

There are three independent temperature sensors on the chip, each with its own control and
sensor read-out register. The three sensors use different sensor mechanisms to enable the

HBP_SP9_Specification 13 May 2014 (git 56b296e) 375

temperature to be corrected for process and voltage variations.
012345678910111213141516171819202122232425262728293031

S F temperature

0 0

The functions of these fields are described in the table below:

Name bits R/W Function
S 31 R/W start temperature measurement
F 24 R temperature measurement finished
temperature 23:0 R temperature sensor reading

Setting S to 1 starts the temperature measurement process. When F reads as 1 the sensor
reading is complete, and bits[23:0] may be read. Clearing S stops the sensing and clears F.

r32-63: Monitor Processor arbitration

012345678910111213141516171819202122232425262728293031

A

1 0

The same single-bit value ‘A’ appears in all registers r32 to r63.
‘A’ is set by a reset event (with RC[1:0] = 000, 001, 010 or 011 in r12) and can also be set

by software via r13 bit[8]. A processor which has passed its self-test may read this register
at address offset 0x80 + 4*N, where N is the processor’s number. If A is set when the read
takes place and N is not equal to the current value in r13 (the Monitor Processor ID register),
0x80000000 is returned, N is placed in r13, and A is cleared.

If A is clear when the read takes place, or N equals the current value in r13, then the value
0x00000000 is returned and A and r13 are unchanged.

r64-95: Test and Set

012345678910111213141516171819202122232425262728293031

X

0 0

A unique single-bit value ‘X’ appears in each register r64 to r95. Reading each register
returns 0x00000000 or 0x80000000 depending on whether its respective bit was clear or set
prior to the read, and as a side-effect the bit is set by the read. Together with r96 to
r127, these registers provide support for mutual exclusion primitives for inter- processor
communication and shared data structures, compensating for the lack of support for locked
ARM ‘swap’ instructions into the System RAM.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 376

r96-127: Test and Clear

012345678910111213141516171819202122232425262728293031

X

0 0

The same unique single-bit value ‘X’ appears in each register r96 to r127 as appears in r64
to r95 respectively. Reading each register returns 0x00000000 or 0x80000000 depending on
whether its respective bit was clear or set prior to the read, and as a side-effect the bit is
cleared by the read.

r128: Tx and Rx link disable

012345678910111213141516171819202122232425262728293031

� 0x5EC R TxDisable RxDisable

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0

For a write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX.
The functions of these fields are described in the table below:

Name bits R/W Function
R 16 R/W Router parity control
TxDisable[5:0] 13:8 R/W disables the corresponding link transmitter
RxDisable[5:0] 5:0 R/W disables the corresponding link receiver

HBP_SP9_Specification 13 May 2014 (git 56b296e) 377

3.2.15 Ethernet MII interface

The SpiNNaker system connects to a host machine via Ethernet links. Each SpiNNaker chip
includes an Ethernet MII interface, although only a few of the chips are expected to use this
interface. These chips will require an external PHY. The interface hardware operates at the
frame level. All higher-level protocols will be implemented in software running on the local
monitor processor.

3.2.15.1 Features

• support for full-duplex 10 and 100 Mbit/s Ethernet via off-chip PHY

• outgoing 1.5Kbyte frame buffer, for one maximum-size frame

– outgoing frame control, CRC generation and inter-frame gap insertion

• incoming 3Kbyte frame buffer, for two maximum-size frames

– incoming frame descriptor buffer, for up to 48 frame descriptors

– incoming frame control with length and CRC check

– support for unicast (with programmable MAC address), multicast, broadcast and
promiscuous frame capture

– receive error filter

• internal loop-back for test purposes

• general-purpose IO for PHY management (SMI) and PHY reset

• interrupt sources for frame-received, frame-transmitted and PHY (external) interrupt

[The implementation does not provide support for half-duplex operation (as required by a
CSMA/ CD MAC algorithm), jumbo or VLAN frames.]

3.2.15.2 Using the Ethernet MII interface

The Ethernet driver software must observe a number of sequence dependencies in initialising
the PHY and setting-up the MAC address before the Ethernet interface is ready for use.

Details of these issues are documented in “SpiNNaker AHB-MII module” by Brendan Lynskey.
The latest version of this is v003, February 2008.

3.2.15.3 Register summary

Base address: 0xe4000000 (buffered write), 0xf4000000 (unbuffered write).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 378

User registers

The following registers allow normal user programming of the Ethernet interface:

Name Offset R/W Function
Tx frame buffer 0x0000 W Transmit frame RAM area
Rx frame buffer 0x4000 R Receive frame RAM area
Rx desc RAM 0x8000 R Receive descriptor RAM area
r0: Gen command 0xC000 R/W General command
r1: Gen status 0xC004 R General status
r2: Tx length 0xC008 R/W Transmit frame length
r3: Tx command 0xC00C W Transmit command
r4: Rx command 0xC010 W Receive command
r5: MAC addr ls 0xC014 R/W MAC address low bytes
r6: MAC addr hs 0xC018 R/W MAC address high bytes
r7: PHY control 0xC01C R/W PHY control
r8: Interrupt clear 0xC020 W Interrupt clear
r9: Rx buf rd ptr 0xC024 R Receive frame buffer read pointer
r10: Rx buf wr ptr 0xC028 R Receive frame buffer write pointer
r11: Rx dsc rd ptr 0xC02C R Receive descriptor read pointer
r12: Rx dsc wr ptr 0xC030 R Receive descriptor write pointer

Test registers

In addition, there are test registers that will not normally be of interest to the programmer:

Name Offset R/W Function
r13: Rx Sys state 0xC034 R Receive system FSM state (debug & test use)
r14: Tx MII state 0xC038 R Transmit MII FSM state (debug & test use)
r15: PeriphID 0xC03C R Peripheral ID (debug & test use)

See “SpiNNaker AHB-MII module” by Brendan Lynskey version 003, February 2008 for further
details of the test registers.

3.2.15.4 Register details

r0: General command register

012345678910111213141516171819202122232425262728293031

H D V P B M U F L R T

reset: 0 0 0 0 1 1 1 1 0 0 0

The functions of these fields are described in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 379

Name bits R/W Function
H 10 R/W Disable hardware byte reordering
D 9 R/W Reset receive dropped frame count (in r1)
V 8 R/W Receive VLAN enable
P 7 R/W Receive promiscuous packets enable
B 6 R/W Receive broadcast packets enable
M 5 R/W Receive multicast packets enable
U 4 R/W Receive unicast packets enable
F 3 R/W Receive error filter enable
L 2 R/W Loopback enable
R 1 R/W Receive system enable
T 0 R/W Transmit system enable

r1: General status register

012345678910111213141516171819202122232425262728293031

RxDFC[15:0] RxUC[5:0] T

0 0

Name bits R/W Function
RxDFC[15:0] 31:16 R Receive dropped frame count
RxUC[5:0] 7:1 R Received unread frame count
T 0 R Transmit MII interface active

r2: Transmit frame length

012345678910111213141516171819202122232425262728293031

TxL[10:0]

reset: 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function
TxL[10:0] 10:0 R/W Length of transmit frame (60 - 1514 bytes)

r3: Transmit command register

012345678910111213141516171819202122232425262728293031

Any write to register 3 causes the transmission of a frame.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 380

r4: Receive command register

012345678910111213141516171819202122232425262728293031

Any write to register 4 indicates that the current receive frame has been processed and
decrements the received unread frame count in register 1.

r6: MAC address high bytes

012345678910111213141516171819202122232425262728293031

MAC5[7:0] MAC6[7:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
MAC5[7:0] 15:8 R/W MAC address byte 5
MAC4[7:0] 7:0 R/W MAC address byte 4

r7: PHY control

012345678910111213141516171819202122232425262728293031

Q C E O I R

reset: 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
Q 5 R/W PHY IRQn invert disable
C 4 R/W SMI clock (active rising)
E 3 R/W SMI data output enable
O 2 R/W SMI data output
I 1 R SMI data input
R 0 R/W PHY reset (active low)

r8: Interrupt clear

012345678910111213141516171819202122232425262728293031

R T

The functions of these fields are described in the table below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 381

Name bits R/W Function
R 4 W Clear receive interrupt request
T 0 W Clear transmit interrupt request

Writing a 1 to bit [0] if this register clears a pending transmit frame interrupts. Writing a
1 to bit [4] clears a pending receive frame interrupt. There is no requirement to write a 0 to
these bits other than in order to prevent unintentional interrupt clearance.

r9: Receive frame buffer read pointer

012345678910111213141516171819202122232425262728293031

V RFBRP[11:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
V 12 R Rollover bit - toggles on address wrap-around
RFBRP[11:0] 11:0 R Receive frame buffer read pointer

r10: Receive frame buffer write pointer

012345678910111213141516171819202122232425262728293031

V RFBWP[11:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
V 12 R Rollover bit - toggles on address wrap-around
RFBWP[11:0] 11:0 R Receive frame buffer write pointer

r11: Receive descriptor read pointer

012345678910111213141516171819202122232425262728293031

V RDBP[5:0]

reset: 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
V 6 R Rollover bit - toggles on address wrap-around
RFBP[5:0] 5:0 R Receive descriptor read pointer

HBP_SP9_Specification 13 May 2014 (git 56b296e) 382

r12: Receive descriptor write pointer

012345678910111213141516171819202122232425262728293031

V RDWP[5:0]

reset: 0 0 0 0 0 0 0

The functions of these fields are described in the table below:

Name bits R/W Function
V 6 R Rollover bit - toggles on address wrap-around
RFWP[5:0] 5:0 R Receive descriptor write pointer

3.2.15.5 Fault-tolerance

The Ethernet interface will only be used on a small number of nodes; most nodes are insen-
sitive to faults in its functionality as they will not attempt to use it.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 383

3.2.16 Watchdog timer

The watchdog timer is an ARM PrimeCell component (ARM part SP805, documented in ARM DDI
0270B) that is responsible for applying a system reset when a failure condition is detected.
Normally, the Monitor Processor will be responsible for resetting the watchdog periodically to
indicate that all is well. If the Monitor Processor should crash, or fail to reset the watchdog
during a pre-determined period of time, the watchdog will trigger.

3.2.16.1 Features

• generates an interrupt request after a programmable time period;

• causes a chip-level reset if the Monitor Processor does not respond to an interrupt
request within a subsequent time period of the same length.

3.2.16.2 Register summary

Base address: 0xe3000000 (buffered write), 0xf3000000 (unbuffered write).

User registers

The following registers allow normal user programming of the Watchdog timer:

Name Offset R/W Function
r0: WdogLoad 0x00 R/W Count load register
r1: WdogValue 0x04 R Current count value
r2: WdogControl 0x08 R/W Control register
r3: WdogIntClr 0x0C W Interrupt clear register
r4: WdogRIS 0x10 R Raw interrupt status register
r5: WdogMIS 0x14 R Masked interrupt status register
r6: WdogLock 0xC00 R/W Lock register

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the
programmer:

Name Offset R/W Function
WdogITCR 0xF00 R/W Watchdog integration test control register
WdogITOP 0xF04 W Watchdog integration test output set register
WdogPeriphID0-3 0xFE0-C R Watchdog peripheral ID byte registers
WdogPCID0-3 0xFF0-C R Watchdog Prime Cell ID byte registers

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for further
details of the test and ID registers.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 384

3.2.16.3 Register details

r0: Load

012345678910111213141516171819202122232425262728293031

Wdog load

1 1

This read-write register contains the value the from which the counter is to decrement.
When this register is written to, the count immediately restarts from the new value. The
minimum value is 1.

r1: Count

012345678910111213141516171819202122232425262728293031

Wdog count

1 1

This read-only register contains the current value of the decrementing counter. The first
time the counter decrements to zero the Watchdog raises an interrupt. If the interrupt is
still active the second time the counter decrements to zero the reset output is activated.

r2: Control

012345678910111213141516171819202122232425262728293031

E I

reset: 0 0

The functions of these fields are described in the table below:
Name Offset R/W Function
E 1 R/W Enable the Watchdog reset output (1)
I 0 R/W Enable Watchdog counter and interrupt (1)

Once the Watchdog has been initialised both enables should be set to ‘1’ for normal
watchdog operation.

r3: Interrupt clear

012345678910111213141516171819202122232425262728293031

A write of any value to this register clears the watchdog interrupt and reloads the counter
from r1.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 385

r4: Raw interrupt status

012345678910111213141516171819202122232425262728293031

R

reset: 0

The function of this field is described in the table below:

Name Offset R/W Function
R 0 R Raw (unmasked) watchdog interrupt

r5: Masked interrupt status

012345678910111213141516171819202122232425262728293031

R

reset: 0

The function of this field is described in the table below:

Name Offset R/W Function
W 0 R Watchdog interrupt output

r6: Lock

012345678910111213141516171819202122232425262728293031

Key L

reset: 0

The functions of these fields are described in the table below:

Name Offset R/W Function
Key 31:0 W Write 0x1ACCE551 to enable writes
L 0 R Write access enabled (0) or disabled (1)

A read from this register returns only the bottom bit, indicating whether writes to other
registers are enabled (0) or disabled (1). A write of 0x1ACCE551 enables write access to the
other registers; a write of any other value disables write access to the other registers. Note
that the ‘Key’ field is 32 bits and includes bit 0.

The lock function is available to ensure that the watchdog will not be reset by errant
programs.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 386

3.2.17 System RAM

The System RAM is an additional 32 Kbyte block of on-chip RAM used primarily by the Monitor
Processor to enhance its program and data memory resources as it will be running more
complex (though less time-critical) algorithms than the fascicle processors.

As the choice of Monitor Processor is made at start-up (and may change during run-time
for fault- tolerance purposes) the System RAM is made available to whichever processor is
Monitor Processor via the System NoC. Accesses by the Monitor Processor to the System RAM
are non- blocking as far as SDRAM accesses by the fascicle processors are concerned.

The System RAM may also be used by the fascicle processors to communicate with the
Monitor Processor and with each other, should the need arise.

3.2.17.1 Features

• 32 Kbytes of SRAM, available via the System NoC.

• can be used as source of boot code.

3.2.17.2 Address location

Base address: 0xe5000000 (buffered write), 0xf5000000 (unbuffered write). Can also
appear at the Boot area at 0xff000000 if the ‘Boot area switch’ is set in the System
Controller.

3.2.17.3 Fault-tolerance

Fault insertion

• It is straightforward to corrupt the contents of the System RAM to model a soft error –
any processor can do this. It is not clear how this would be detected.

Fault detection

• The Monitor Processor may perform a System RAM test at start-up, and periodically
thereafter.

• It is not clear how soft errors can be detected without some sort of parity or ECC
system.

Fault isolation

• Faulty words in the System SRAM can be mapped out of use.

Reconfiguration

• For hard failure of a single bit, avoid using the word containing the failed bit.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 387

• If the System RAM fails completely the only option is to use the SDRAM instead, which
will probably result in compromised performance for the fascicle processors due to
loss of SDRAM bandwidth. An option then would be to relocate some of the fascicle
processors’ workload to another chip.

3.2.17.4 Test

Production test

• run standard memory test patterns from one of the processing subsystems.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 388

3.2.18 Boot ROM

3.2.18.1 Features

• a small (32Kbyte) on-chip ROM to provide minimal support for:

• initial self-test, and Monitor Processor selection

• Router initialisation for bootstrapping

• system boot.

The Test chip Boot ROM also supports the loading of code from an external SPI ROM using
the GPIO[5:2] pins as an SPI interface.

3.2.18.2 Address location

Base address: 0xf6000000 and, after a hard reset and unless the ‘Boot area switch’ is
set in the Sytem Controller, in the Boot area at 0xff000000.

3.2.18.3 Fault-tolerance

Fault insertion

Switch the ‘Boot area switch’ to remove the Boot ROM from the reset location.

Fault detection

If the Boot ROM fails the boot process will also fail, which will be detected at start-up.

Fault isolation

Switching the Boot ROM out of the boot area should render it harmless.

Reconfiguration

When the Boot ROM is switched out of the boot area the System RAM is switched into the
boot area. A neighbour ‘nurse’ chip can initialise the System RAM with the boot code and
retry initialisation.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 389

3.2.19 JTAG

The JTAG IEEE 1149.1 system on the SpiNNaker chip provides access only to the ARM968 pro-
cessors for software debug purposes. There is no provision for scan access to the SpiNNaker
pins or other on-chip features.

3.2.19.1 Features

• standard ARM debug access to all 18 ARM968 processors

• device ID codes of 0x05968477

3.2.19.2 Organisation

The organisation of the ARM968 JTAG access is as shown below:

The ARM968 CPUs synchronize TCK to their respective local clocks, which may be different,
so the ARM interface has an addition clock return signal, RTCK, which indicates when a
transition on TCK has been recognised. TCK may then make a further transition. The RTCK
signal allows TCK to be operated at the maximum safe frequency.

TCK and RTCK should obey a standard handshake protocol, so TCK may only rise when RTCK
is low, and TCK may only fall when RTCK is high.

All of the processors are in series on the data scan path (TDI to TDO), with CPU0 coming
before CPU1, etc. All processor TAP controllers have JTAG-standard bypass registers to
support more efficient access to the other processor.

3.2.19.3 Operation

The JTAG interface supports direct connection of the ARM software development tools to the
SpiNNaker test chip, giving those tools standard access to the ARM processors, their local
memories, and all system functions visible from those processors.

It is expected that the JTAG interface will be used only with suitable JTAG-aware tools,
for hardware debugging (if necessary) and software debugging as required.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 390

3.2.20 Input and Output signals

The SpiNNaker chip has the following IO, power and ground pins. All IO is assumed to operate
at 1.8V with CMOS logic levels; the SDRAM interface is 1.8V LVCMOS. All other IOs are non-
critical, though output delay affects link throughput.

3.2.20.1 Key

The ‘Drive’ column in the tables uses the following notation:

Direction Drive Meaning
output NmA maximum drive current N mA
output A/B slow/fast slew rate
input S Schmitt trigger input
input D/U pull down/up resistor incorporated

3.2.20.2 SDRAM interface

Signal Type Drive Function #
DQ[31:0] IO 8mA B Data 1-32
A[13:0] O 4mA B Address 33-46
CK, CK# O 8mA B True and inverse clock 47, 48
CKE O 4mA B Clock enable 49
CS#[1:0] O 4mA B Chip selects 50, 51
RAS# O 4mA B Row address strobe 52
CAS# O 4mA B Column address strobe 53
WE# O 4mA B Write enable 54
DM[3:0] O 8mA B Data mask 55-58
BA[1:0] O 4mA B Bank address 59, 60
DQS[3:0] IO 8mA DB Data strobe 61-64
Vdd_18[23, 13:0] 1.8V Power for SDRAM pins 65-79
Vss_18[23, 13:0] Gnd Ground for SDRAM pins 80-94

When the package incorporates an internal SDRAM die, all of the above signal pins apart
from CS#[1] will be connected to it. They may or may not also be connected to package
balls. CS#[1] connects only to a package ball.

3.2.20.3 JTAG

Signal Type Drive Function #
nTRST I SU Test reset (active low) 95
TCK I SD Test clock 96
RTCK O 4mA A Return test clock 97
TMS I SU Test mode select 98
TDI I SU Test data in 99
TDO O 4mA A Test data out 100

HBP_SP9_Specification 13 May 2014 (git 56b296e) 391

3.2.20.4 Ethernet MII

Signal Type Drive Function #
EtherMux I SD select Ethernet or GPIO[23:16] 101
RX_CLK I SD Receive clock 102
RX_D[3:0] IO 4mA A SU Receive data/GPIO[19:16] 103-106
RX_DV I SD Receive data valid 107
RX_ERR I SD Receive data error 108
TX_CLK O 4mA A Transmit clock 109
TX_D[3:0] IO 4mA A SD Transmit data/GPIO[23:20] 110-113
TX_EN O 4mA A Transmit data valid 114
TX_ERR O 4mA A Force transmit data error 115
MDC O 4mA A Management interface clock 116
MDIO IO 4mA A Management interface data 117
PHY_RSTn O 4mA A PHY reset (optional) 118
PHY_IRQn I SD PHY interrupt (optional) 119
Vdd_18[15] 1.8V Power for Ethernet MII pins 120
Vss_18[15] Gnd Ground for Ethernet MII pins 121

3.2.20.5 Communication links

HBP_SP9_Specification 13 May 2014 (git 56b296e) 392

Signal Type Drive Function #
L0in[6:0] I SD link 0 2-of-7 input code 122-128
L0inA O 12mA B link 0 input acknowledge 129
L0out[6:0] O 12mA B link 0 2-of-7 output code 130-136
L0outA I SD link 0 output acknowledge 137
L1in[6:0] I SD link 1 2-of-7 input code 138-144
L1inA O 12mA B link 1 input acknowledge 145
L1out[6:0] O 12mA B link 1 2-of-7 output code 146-152
L1outA I SD link 1 output acknowledge 153
L2in[6:0] I SD link 2 2-of-7 input code 154-160
L2inA O 12mA B link 2 input acknowledge 161
L2out[6:0] O 12mA B link 2 2-of-7 output code 162-168
L2outA I SD link 2 output acknowledge 169
L3in[6:0] I SD link 3 2-of-7 input code 170-176
L3inA O 12mA B link 3 input acknowledge 177
L3out[6:0] O 12mA B link 3 2-of-7 output code 178-184
L3outA I SD link 3 output acknowledge 185
L4in[6:0] I SD link 4 2-of-7 input code 186-192
L4inA O 12mA B link 4 input acknowledge 193
L4out[6:0] O 12mA B link 4 2-of-7 output code 194-200
L4outA I SD link 4 output acknowledge 201
L5in[6:0] I SD link 5 2-of-7 input code 202-208
L5inA O 12mA B link 5 input acknowledge 209
L5out[6:0] O 12mA B link 5 2-of-7 output code 210-216
L5outA I SD link 5 output acknowledge 217
Vdd_18[22:21,17:14] 1.8V Power for link pins 218-223
Vss_18[22:21,17:14] Gnd Ground for link pins 224-229

3.2.20.6 Miscellaneous

HBP_SP9_Specification 13 May 2014 (git 56b296e) 393

Signal Type Drive Function #
GPIO[15:0] IO 4mA A SD General-purpose IO 230-245
PORIn I SD Power-on reset 246
ResetIn I SD Chip reset 247
Test I SD Chip test mode 248
Clk10MIn I S Main input clock - 10MHz 249
nClk10MOut O 4mA A Daisy-chain 10MHz clock out 250
Clk32kIn I S Slow (global) 32kHz clock 251
Vdd_18[18:17] 1.8V Power for miscellaneous pins 252-253
Vss_18[18:17] Gnd Ground for misc. pins 254-255
Vdd_12[13:0] 1.2V Power for core logic 256-269
Vss_12[13:0] Gnd Ground for core logic 270-283
Vdd_PLL[3:0] 1.2V Power for PLLs 284-287
Vss_PLL[3:0] Gnd Ground for PLLs 288-291
Tres I analogue Temp. sensor analogue input 292
Int[1:0] I SD Exteernal interrupt requests 293-294

3.2.20.7 Internal SDRAM interface

Signal Type Drive Function #
GPIO[31] IO 4mA A SD Connects to SDRAM TQ 293
GPIO[30] IO 4mA A SD SDRAM DPD input 294
GPIO[29] IO 4mA A SD Bond to Vdd 295

3.2.20.8 Internal SDRAM power & ground

In addition to the signal pins that connect the internal SDRAM to the SpiNNaker chip, the
SDRAM also requires 1.8V Vdd and ground connections - 30 in total.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 394

3.2.21 Packaging

The SpiNNaker chip is packaged in a 300LBGA package with 1mm ball pitch. The allocation
of signals to balls is as shown below:

Link 4

GPIO

PLL Power

Link 1Link 0Link 5

SDRAM

Link 3

Misc

GPIO

PLL Power

Link 2

MII

JTAG

Top view

V

U

T

S

P

N

M

L

K

J

H

G

F

E

D

C

B

A

54321 6 7 8 9 10 11 12 13 14 15 16 17 18

DQ14 VSS[31] GPIO[10]

A2 VSS[27]

A10 VSS[0] VDD18[25] VDD18[26] VDD18[27] POR Reset VSS_PLL[3]

CK# CK CS1# VDD12[0] VDD12[1] VDD12[2] NC TRES VDD_PLL[2]VDD_PLL[3]

A13 A0 A11 A9 VSS[3] VSS[4] VDD12[5] VDD12[6] GPIO[7] GPIO[6]

A7 A5 A3 VDD18[11] VDD18[12] VSS[19] VSS[20] VSS[21] GPIO[3] GPIO[2] VSS_PLL[1]

CAS# WE# CKE VSS[6] VSS[7] VSS[8] VDD18[22] VDD18[24] GPIO[1] VDD_PLL[1]

DQ16 DQ17 VSS[10] VSS[11] VSS[12] VSS[18] VDD18[18] VDD18[19] VDD18[20] VDD18[21] L2in[0] L2in[1] L2in[2]

DQ18 DQ19 DQ20 DQ21 VSS[13] VSS[14] VSS[15] VSS[16] VDD12[4] VDD18[14] VDD18[15] VDD18[16] VDD18[17] NC L2in[4] L2in[5]

DM3 DQS3 L5outA L5in[3] L0outA L1out[3] L1outA L1in[3] NC L2out[0] L2out[1]

DQ24 L5out[3] L5out[6] L5in[2] L0out[6] L0in[2] L1out[2] L1in[2] L1in[6] L2out[3] L2out[4]

DQ29 L5out[2] L5out[5] L5in[1] L5in[5] L0out[1] L0out[5] L0in[1] L0in[5] L1in[1] L2out[5]

DQ30 DQ31 L5out[0] L5out[1] L5out[4] L5in[0] L5in[4] L0out[0] L0out[4] L0in[0] L0in[4] L1in[0] L1in[4] Int[1] L2outA

DQ0 DQ1 L4in[0] L4in[1] L4in[4] L4out[0] L4out[4] L3in[0] L3out[0] L3out[4] MDIO

DQ2 DQ3 DQ4 L4in[2] L4in[5] L4out[1] L4out[5] L3in[1] L3in[5] L3out[1]

L3in[4] TX_D[3] TX_CLK RX_D[3] RX_D[1] RX_D[0] RX_CLK

TDORTCKRX_D[2]RX_DVTX_D[0]TX_ENPHY_RSTL3out[5]

TCKTMSTDIRX_ERRTX_D[1]TX_ERRPHY_IRQL3out[6]L3out[2]L3in[6]L3in[2]L4out[6]L4out[2]L4in[6]L4in[3]DQ7DQ6DQ5

DQS0 DM0 DQ8 DQ9 L4inA L4out[3] L4outA L3in[3] L3inA L3out[3] L3outA EtherMux MDC TX_D[2] NC nTRST GPIO[15] GPIO[14]

GPIO[11]GPIO[12]GPIO[13]NCVSS[35]VSS[34]VSS[33]VSS[32]VDD12[8]VSS[36]VDD18[3]VDD18[2]

VDD18[6] VDD18[7] VSS[37] VDD12[9] VSS[28] VSS[29] VSS[30] NC GPIO[9] GPIO[8]

TestClk10MInnClk10MOutClk32kInVSS[26]VSS[25]

VSS_PLL[2]

VSS[22] VSS[23] VSS[24]

GPIO[4]GPIO[5]VDD12[7]

VSS_PLL[0]

VDD_PLL[0]GPIO[0]VDD18[23]

VDD18[9]VDD18[8]A4BA0

A8 A12 VSS[1]

CS#

VSS[5]

VDD18[13]A1

RAS#

DM2 DQS2 VSS[9] VDD12[3]

L5inA

L5in[6]DQ26DQ25

DQ23DQ22

VSS[17]

L0in[3]

L0out[2] L0in[6]

L0inAL0out[3] L2inA

L1out[6] L2out[2]

Int[0]L1in[5]

L1inA

L1out[5]

L1out[4]L1out[0]

L1out[1]DQ27 DQ28

VSS[2]

VDD18[10]

DQ11DQ10

DQ15 DQS1

DQ12 DQ13

DM1

VDD18[1]

VDD18[5]VDD18[4]

VDD18[0]

BA1

L2in[3]

L2in[6]

A6

L2out[6]

Figure 3.2.1: SpiNNaker 300LBGA Packaging

It is expected that a 128Mbyte Mobile DDR SDRAM will normally be incorporated into the
package with the SpiNNaker chip, using wire-bonded Multi-Chip Package (MCP) assembly.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 395

3.2.22 Application notes

3.2.22.1 Firefly synchronization

The local time phase, used for errant packet trapping, can be maintained across the system
by a combination of local slightly randomized timers and local phase-locking using nearest-
neighbour communication.

Time phase accuracy

If the system time phase is F and the skew is K (that is, all parts of the system transition
from one phase to its successor within a time K), then a packet has at least F�K to reach its
destination and will be killed after at most 2F + K. Thus, if we want to allow for a maximum
packet transit time of F � K = T and can achieve a minimum phase skew of K, then T and K
are both system constants and we should choose F = T + K. The longest packet life is then
2T + 3K.

3.2.22.2 Neuron address space

Neurons ocuppy an address space that identifies each Neuron uniquely within the domain
of its multicast routing path (where this domain must include alternative links that may be
taken during emergency routing). Where these domains do not overlap it is possible to reuse
the same address, though this must be done with considerable care. Neuron addresses can
be assigned arbitrarily; this can be exploited to optimize Router utilization (e.g. by giving
Neurons with the same routing requirements related addresses so that they can be routed by
the same Router entries).

HBP_SP9_Specification 13 May 2014 (git 56b296e) 396

3.3 SpiNNaker Software Datasheet

HBP_SP9_Specification 13 May 2014 (git 56b296e) 397

Background

SpiNNaker was designed at the University of Manchester within an EPSRC-funded project in
collaboration with the University of Southampton, ARM Limited and Silistix Limited. Sub-
sequent development took place within a second EPSRC-funded project which added the
universities of Cambridge and Sheffield to the collaboration. The work would not have been
possible without EPSRC funding, and the support of the EPSRC and the industrial partners is
gratefully acknowledged.

Intellectual Property rights

All rights to the SpiNNaker design and its associated software are the property of the Univer-
sity of Manchester with the exception of those rights that accrue to the project partners in
accordance with the contract terms.

Disclaimer

The details in this design document are presented in good faith but no liability can be
accepted for errors or inaccuracies. The design of a complex chip multiprocessor and its
associated software is a research activity where there are many uncertainties to be faced,
and there is no guarantee that a SpiNNaker system will perform in accordance with the
specifications presented here.

The APT group in the School of Computer Science at the University of Manchester was
responsible for all of the architectural and logic design of the SpiNNaker chip, with the ex-
ception of synthesizable components supplied by ARM Limited and interconnect components
supplied by Silistix Limited. All design verification was also carried out by the APT group. As
such the industrial project partners bear no responsibility for the correct functioning of the
device.

Error notification and feedback

Please email details of any errors, omissions, or suggestions for improvement to Steve Furber
<steve.furber@manchester.ac.uk>

3.3.1 Run-time software

The SpiNNaker run-time software involves four different devices:

• The Host, used for application I/O and monitoring.

• Root Monitors (Monitor Processors with direct Ethernet access), used as Monitor Proces-
sors and, additionally, to communicate with the host over Ethernet.

• Monitor Processors, used for system-wide inter-processor communication, application
support and system monitoring.

• Application Processors (APs), used to run applications.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 398

3.3.1.1 Run-time software stack

Figure 3.3.1 illustrates the run-time software stack in the four devices. The stack is formed by
three basic layers with well-defined interfaces between them: Application and monitoring,
Run-time support and Hardware device drivers. The two interfaces are the Application
Programming Interface (API) and the Hardware Programming Interface (HPI).

To support applications, each of the devices runs a run-time kernel (RTK). The kernel
supports the following:

• Application control - the ability to start application execution or terminate gracefully.

• Resources - the ability to use the chip hardware/peripherals in an abstracted way.
For example, starting a 1ms timer, setting an entry in the multicast routing table or
installing a handler to deal with packet arrival.

• Communication - applications may want to get information either to other APs or to
the outside world, for example, Tube-like output or writing files on a host machine.

• Monitoring and debugging - a host running some form of debugger may want to inspect
a running application.

These services are available to the applications through the API, described in Section 3.3.2

3.3.1.2 Inter-processor communication

Processor Virtualisation

Each SpiNNaker chip has an address in a SpiNNaker network once a point-to-point (P2P)
configuration has been set up during the system boot phase. Each core on the chip has an
address - the core ID, which is hardwired. For practical purposes, however, this is not very
useful as, viewed from outside, there is no knowledge of which core is the Monitor and which
cores are non-functional.

Following the selection of the Monitor Processor, it allocates each working core a “virtual
core number”. Number zero is assigned to the Monitor Processor (MP) and numbers one
onwards to the Application Processors (APs). The major advantage of this is that the core
number of the Monitor is always known.

Addressing SpiNNaker Nodes

As SpiNNaker chips are usually connected together in a two-dimensional grid, it’s convenient
to address them by their (X,Y) coordinate in the grid. This is the basis for the P2P addressing.,
using a 256 x 256 grid (only partially filled!) where the P2P address is 256� X + Y.

Processors on each chip can be addressed using their virtual number as described above,
so any processor in a SpiNNaker network can be addressed by the triplet < X,Y,P > (where
P is the virtual core number). It’s unlikely that the number of cores on a chip will exceed 256
in the near future so three bytes is enough to specify < X,Y,P >. This triplet is the basis for
a datagram protocol described below to allow SpiNNaker nodes to communicate.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 399

E
th

e
rn

e
t

L
in

u
x

H
o
st

 R
T

S

A
P

I

C
o
m

m
sN

o
C

S
ys

te
m

 R
A

M

D
ri
ve

rs
D

e
vi

ce

S
D

P

D
ri
ve

rs
D

e
vi

ce

S
D

P

M
o
n
ito

r
R

T
S

A
p
p
l.

P
ro

g
.
In

te
rf

a
ce

 (
A

P
I)

H
o
st

M
o
n
ito

r

S
ys

te
m

 R
A

M
H

W

A
p
p
lic

a
tio

n

D
a
ta

C
o
d
e

P
ro

t.
 (

S
D

P
)

D
a
ta

g
ra

m
S

p
iN

N
a
ke

r

A
p
p
lic

a
tio

n
 P

ro
ce

ss
o
r

R
u
n
−

T
im

e
 S

ys
te

m
 (

R
T

S
)

A
p
p
lic

a
tio

n
 P

ro
c

T
C

P
/U

D
P

M
o
n
ito

r
R

T
S

C
o
m

m
sN

o
C

E
th

e
rn

e
tD

ri
ve

rs
D

e
vi

ce

S
D

P

R
o
o
t
m

o
n
ito

r

A
P

I

H
P

I
H

P
I

A
P

I

Application

Monitoring Application

Application

Monitoring Application

S
ys

te
m

M
o
n
ito

ri
n
g

Application

Monitoring Application

S
ys

te
m

M
o
n
ito

ri
n
g

M
o
n
ito

ri
n
g

S
ys

te
m

ApplicationMonitoring

H
W

 P
ro

g
.
In

te
rf

a
ce

 (
H

P
I)

Figure 3.3.1: SpiNNaker run-time software stack.HBP_SP9_Specification 13 May 2014 (git 56b296e) 400

SpiNNaker Datagram Protocol (SDP)

SDP is an unreliable datagram protocol (similar to Internet UDP). An SDP datagram (or packet)
contains some addressing information and an arbitrary amount of data (the size of which
is limited by the implementation - currently using 256+16 or 272 bytes). The addressing
information consists of 8 bytes. There are two 3-byte triplets as above which specify the
source and destination addresses and also a Tag byte and a Flag byte.

The Tag byte allows an SDP packet to be associated with a full Internet address (IP & Port)
so that SDP can support communication between any SpiNNaker core and any IP-connected
host. The Flag byte is used for a variety of nefarious things which most users won’t want to
mess with!

There is also a length associated with each SDP packet and a checksum and these are
carried in a variety of ways depending on the underlying transport mechanism.

The current implementation of SDP transport layers for SpiNNaker use both P2P packets
(for communication between arbitrary chips/cores) and NN packets. The latter allows com-
munication with neighbouring chips if P2P addressing is not set up. SDP can also be carried
over Internet UDP and this is the basis for the various bootloaders and debug mechanisms
that are currently in use. SDP packets are passed between cores on the same chip by the use
of shared memory (e.g., System RAM).

Software support for communication

The Monitor run-time kernel supports inter-processor communication. It receives SDP packets
either from other SpiNNaker chips via P2P or NN, the Internet via the Ethernet interface or
other cores on the same chip via shared memory. A (software) router is used to send SDP
packets to their destination. Those chips which have an Ethernet interface maintain “IPTag”
tables to route SDP packets to arbitrary IP addresses based on the Tag byte in the SDP header.

The APs do not perform the SDP packet routing as it’s not needed. All cores are able to
receive and respond to commands sent to them via SDP. In most cases it will be a host sending
commands but, in principle, any core can send commands to any other.

The set of commands provided includes reading and writing memory, and causing the core
to start execution at any address. This is enough to get arbitrary applications loaded onto
any core and start them running.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 401

3.3.1.3 Runtime memory map

Figure 3.3.2 shows the Application Processors run-time memory map.

unallocated

0x00000000

0x00008000

0x00400000

0x00410000

0x00800000

0x00000000

0x80000000

0xe5000000

0xe6000000

ITCM

ITCM
aliased

DTCM

aliased
DTCM

local peripherals

unallocated

system peripherals

system RAM

ROM

kernel data

kernel stacks

static variables

0x−tbdtbd−

0x−tbdtbd−

0x−tbdtbd−

0x−tbdtbd−

SDRAM

SDRAM

0x680000000x78000000

0x600000000x70000000

0xe20000000xf2000000

0xf5000000

0xf6000000

expansion

unbuffered
access

buffered
access

application heap

application stack

application code

kernel code

access causes an error

access causes an error

Figure 3.3.2: SpiNNaker run-time memory map.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 402

3.3.2 Application programming interface (API)

3.3.2.1 Event-driven programming model

The SpiNNaker Programming Model (PM) is a simple, event-driven model. Applications do not
control execution flow, they can only indicate the functions, referred to as callbacks, to be
executed when specific events occur, such as the arrival of a packet, the completion of a
Direct Memory Access (DMA) transfer or the lapse of a periodic time interval. An Application
Run-time Kernel (ARK) controls the flow of execution and schedules/dispatches application
callback functions when appropriate.

!

di
sp

at
ch

er

sc
he

du
le

r

control flow

data flow

C
B

 q
ue

ue
s

Dispatcher
thread

Scheduler
thread

pr
ee

m
in

en
t

ca
llb

ac
kFiq

thread

!

!

Figure 3.3.3: SpiNNaker event-driven programming framework.

Fig. 3.3.3 shows the basic architecture of the event-driven framework. Application devel-
opers write callback routines that are associated with events of interest and register them
at a certain priority with the kernel. When the corresponding event occurs the scheduler
either executes the callback immediately and atomically (in the case of a non-queueable
callback) or places it into a scheduling queue at a position according to its priority (in case of
a queueable callback). When control is returned to the dispatcher (following the completion
of a callback) the highest-priority queueable callback is executed. Queueable callbacks do
not necessarily execute atomically: they may be pre-empted by non-queueable callbacks if a

HBP_SP9_Specification 13 May 2014 (git 56b296e) 403

corresponding event occurs during their execution. The dispatcher goes to sleep (low-power
consumption state) if the pending callback queues are empty and will be awakened by an
event. Application developers can designate one non-queueable callback as the preeminent
callback, which has the highest priority and can pre-empt other non-queueable callbacks as
well as all queueable ones.

The preeminent callback is associated with a FIQ interrupt while other non-queueable call-
backs are associated with IRQ interrupts. The API provides different functions to disable inter-
rupts: spin1_irq_disable disables IRQs, spin1_fiq_disable disables FIQs while spin1_int_disable
disables both FIQs and IRQs. The use of spin1_fiq_disable may lead to priority inversion.

Design considerations

• Non-queueable callbacks are available as a method of pre-empting long running tasks
with short, high priority tasks. The allocation of application tasks to non-queueable
callbacks must be carefully considered. The selection of the preeminent callback can
be particularly important. Long-running operations should not be executed in non-
queueable callbacks for fear of starving queueable callbacks.

• Queueable callbacks may require critical sections (i.e., sections that are completed
atomically) to prevent pre-emption during access to shared resources. Critical sections
may be achieved by disabling interrupts before accessing the shared resource and re-
enabling them afterwards. Applications are executed in a privileged mode to allow
the callback programmer to insert these critical sections. This approach has the risk
that it allows the programmer to modify peripherals –such as the system controller–
unchecked.

• Non-queueable callbacks may also require critical sections, as they can be pre-empted
by the preeminent callback.

• Events –usually triggered by interrupts– have priority determined by the programming
of the Vectored Interrupt Controller (VIC). This allows priority to be determined when
multiple events corresponding to different non-queueable callbacks occur concurrently.
It also affects the order in which queueable callbacks of the same priority are queued.

3.3.2.2 Programming interface

The following sections introduce the events and functions supported by the API.

Events

The SpiNNaker PM is event-driven: all computation follows from some event. The following
events are available to the application:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 404

event trigger

MC packet received reception of a multicast packet
DMA transfer done successful completion of a DMA transfer
Timer tick passage of specified period of time
SDP packet received reception of a SpiNNaker Datagram Protocol packet
User event software-triggered interrupt

In addition, errors can also generate events:

— events not yet supported —

event trigger

MCP parity error multicast packet received with wrong parity
MCP framing error wrongly framed multicast packet received
DMA transfer error unsuccessful completion of a DMA transfer
DMA transfer timeout DMA transfer is taking too long

Each of these events is handled by a kernel routine which may schedule or execute an
application callback, if one is registered by the application.

Callback arguments

Callbacks are functions with two unsigned integer arguments (which may be NULL) and no
return value. The arguments may be cast into the appropriate types by the callback. The
arguments provided to callbacks (where ‘none’ denotes a superfluous argument) by each
event are:

event first argument second argument

MC packet received uint key uint payload
DMA transfer done uint transfer_ID uint tag
Timer tick uint simulation_time uint none
SDP packet received uint *mailbox uint destination_port
User event uint arg0 uint arg1

Pre-defined constants

logic value value keyword

true (0 == 0) TRUE
false (0 != 0) FALSE

function result value keyword

failure 0 FAILURE
success 1 SUCCESS

HBP_SP9_Specification 13 May 2014 (git 56b296e) 405

transfer direction value keyword

read (system to TCM) 0 DMA_READ
write (TCM to system) 1 DMA_WRITE

packet payload value keyword

no payload 0 NO_PAYLOAD
payload present 1 WITH_PAYLOAD

event value keyword

MC packet received 0 MC_PACKET_RECEIVED
DMA transfer done 1 DMA_TRANSFER_DONE
Timer tick 2 TIMER_TICK
SDP packet received 3 SDP_PACKET_RX
User event 4 USER_EVENT

Pre-defined types

type value size

uint unsigned int 32 bits
ushort unsigned short 16 bits
uchar unsigned char 8 bits
callback_t void (*callback_t) (uint, uint) 32 bits
sdp_msg_t struct (see below) 292 bytes
diagnostics_t struct (see below) 44 bytes

SDP message structure

HBP_SP9_Specification 13 May 2014 (git 56b296e) 406

typedef struct sdp_msg // SDP message (=292 bytes)
{
struct sdp_msg *next; // Next in free l i s t
ushort length; // length
ushort checksum; // checksum (i f used)

// sdp_hdr_t

uchar flags ; // SDP flag byte
uchar tag; // SDP IPtag
uchar dest_port; // SDP destination port
uchar srce_port; // SDP source port
ushort dest_addr; // SDP destination address
ushort srce_addr; // SDP source address

// cmd_hdr_t (optional)

ushort cmd_rc; // Command/Return Code
ushort seq; // Sequence number
uint arg1; // Arg 1
uint arg2; // Arg 2
uint arg3; // Arg 3

// user data (optional)

uchar data[SDP_BUF_SIZE]; // User data (256 bytes)

uint _PAD; // Private padding
} sdp_msg_t;

diagnostics variable structure

typedef struct
{
uint exit_code; // simulation exit code
uint warnings; // warnings type bit map
uint total_mc_packets; // total routed MC packets during simulation
uint dumped_mc_packets; // total dumped MC packets by the router
uint discarded_mc_packets; // total discarded MC packets by API
uint dma_transfers; // total DMA transfers requested
uint dma_bursts; // total DMA bursts completed
uint dma_queue_full; // dma queue full count
uint task_queue_full; // task queue full count
uint tx_packet_queue_full; // transmitter packet queue full count
uint writeBack_errors; // write�back buffer errror count

} diagnostics_t;

HBP_SP9_Specification 13 May 2014 (git 56b296e) 407

Pre-declared variables

variable type function

leadAp uchar TRUE if appointed chip-wise application leader
diagnostics diagnostics_t returns diagnostic information (if turned on in compilation)

Kernel services

The kernel provides a number of services to the application programmer:

Simulation control functions

Start simulation

function arguments description

uint spin1_start void no arguments

returns: EXIT_CODE (0 = NO ERRORS)

notes: • transfers control from the application to the ARK.
• use spin1_kill to indicate a non-zero EXIT_CODE.

Stop simulation

function arguments description

void spin1_stop void no arguments

returns: no return value

notes: • transfers control from the ARK back to the application.

Stop simulation and report error

function arguments description

void spin1_kill uint error error code to report

returns: no return value

notes: • transfers control from the ARK back to the application.
• The argument is used as the return value for spin1_start.

Set the timer tick period

function arguments description

void spin1_set_timer_tick uint period timer tick period (in microseconds)

returns: no return value

HBP_SP9_Specification 13 May 2014 (git 56b296e) 408

Request simulation time

function arguments description

uint spin1_get_simulation_time void no arguments

returns: timer ticks since the start of simulation.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 409

DEPRECATED! Indicate which cores are involved in the simulation

function arguments description

void spin1_set_core_map uint chips number of chips
uint * core_map bit map array of cores

returns: no return value

notes: • sets the map of the cores that need to synchronise to start the simulation.
• the numbers of chips & cores default to 1, thus no synchronisation is attempted.

Core Map Examples

HBP_SP9_Specification 13 May 2014 (git 56b296e) 410

// chips are identified using Cartesian coordinates.
// Note that the core map is a uni�dimensional array but
// describes a bi�dimensional array of chips in x�major format
// i .e. , the order is (0, 0), (0, 1), ... , (1, 0), (1, 1), ...

// 2 x 2 core map on SpiNN�2, SpiNN�3 and SpiNN�4 boards � 2 cores on each chip
uint const NUMBER_OF_CHIPS = 4; // virtual 2 x 2 array of chips
uint core_map[NUMBER_OF_CHIPS] =
{

0x6, 0x6, // (0, 0), (0, 1)
0x6, 0x6 // (1, 0), (1, 1)

};

// "hexagonal" 8 x 8 core map on SpiNN�4 board � 16 cores on each chip
uint const NUMBER_OF_CHIPS = 64; // virtual 8 x 8 array of chips
uint core_map[NUMBER_OF_CHIPS] =
{

0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0, 0, 0, 0,
0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0, 0, 0,
0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0, 0,
0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0,
0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe ,
0, 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe ,
0, 0, 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe ,
0, 0, 0, 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe

};

// "notched" 5 x 5 core map on SpiNN�4 board � variable number of cores
uint const NUMBER_OF_CHIPS = 64; // virtual 8 x 8 array of chips
uint core_map[NUMBER_OF_CHIPS] =
{

6, 6, 2, 2, O, 0, 0, 0,
6, 6, 2, 2, 2, 0, 0, 0,
6, 6, 2, 2, 2, 0, 0, 0,
2, 2, 6, 2, 2, 0, 0, 0,
2, 2, 2, 2, 2, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0

};

// NOTE: core maps with "holes " may not synchronise in the current version.
// INCORRECT 8 x 8 core map on SpiNN�4 board � 7 cores on each chip
uint const NUMBER_OF_CHIPS = 64; // virtual 8 x 8 array of chips
uint core_map[NUMBER_OF_CHIPS] =
{

0xfe, 0xfe, 0xfe, 0xfe, 0, 0, 0, 0,
0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0, 0, 0,
O, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0, 0,
0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0,
0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe,
0, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe,
0, 0, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe,
0, 0, 0, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe

};

HBP_SP9_Specification 13 May 2014 (git 56b296e) 411

Indicate which cores are involved in the simulation

function arguments description

void spin1_application_core_map uint xchips map x dimension
uint xchips map y dimension
uint * core_map bit map array of cores

returns: no return value

notes: • sets the map of the cores that need to synchronise to start the simulation.
• the numbers of chips & cores default to 1, thus no synchronisation is attempted.

Core Map Examples

HBP_SP9_Specification 13 May 2014 (git 56b296e) 412

// chips are identified using Cartesian coordinates.

// 2 x 2 core map on SpiNN�2, SpiNN�3 and SpiNN�4 boards � 2 cores on each chip
uint const NUMBER_OF_XCHIPS = 2; // virtual 2 x 2 array of chips
uint const NUMBER_OF_YCHIPS = 2;
uint core_map[NUMBER_OF_XCHIPS][NUMBER_OF_YCHIPS] =
{

{0x6, 0x6} , // (0, 0), (0, 1)
{0x6, 0x6} // (1, 0), (1, 1)

};

// "hexagonal" 8 x 8 core map on SpiNN�4 board � 16 cores on each chip
uint const NUMBER_OF_XCHIPS = 8; // virtual 8 x 8 array of chips
uint const NUMBER_OF_YCHIPS = 8;
uint core_map[NUMBER_OF_XCHIPS][NUMBER_OF_YCHIPS] =
{

{0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0, 0, 0, 0},
{0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0, 0, 0},
{0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0, 0},
{0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0},
{0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe} ,
{0, 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe} ,
{0, 0, 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe} ,
{0, 0, 0, 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe , 0x1fffe}

};

// "notched" 4 x 5 core map on SpiNN�4 board � variable number of cores
uint const NUMBER_OF_XCHIPS = 4; // virtual 4 x 5 array of chips
uint const NUMBER_OF_XCHIPS = 5;
uint core_map[NUMBER_OF_XCHIPS][NUMBER_OF_YCHIPS] =
{

{6, 6, 2, 2, O} ,
{6, 6, 2, 2, 2},
{6, 6, 2, 2, 2},
{2, 2, 2, 2, 2}

};

// NOTE: core maps with "holes " may not synchronise in the current version.
// INCORRECT 6 x 7 core map on SpiNN�4 board � 7 cores on each chip
uint const NUMBER_OF_XCHIPS = 6; // virtual 6 x 7 array of chips
uint const NUMBER_OF_YCHIPS = 7;
uint core_map[NUMBER_OF_XCHIPS][NUMBER_OF_YCHIPS] =
{

{0xfe, 0xfe, 0xfe, 0xfe, 0, 0, 0},
{0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0, 0},
{O, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0},
{0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe} ,
{0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe} ,
{0, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe}

};

HBP_SP9_Specification 13 May 2014 (git 56b296e) 413

Event management functions

Register callback to be executed when event_id occurs

function arguments description

void spin1_callback_on uint event_id event that triggers callback
callback_t callback callback function pointer
uint priority priority <0 denotes preeminent

priority 0 denotes non-queueable
priorities >0 denote queueable

returns: no return value

notes: • a callback registration overrides any previous ones for the same event.
• only one callback can be registered as preeminent.
• a second preeminent registration is demoted to non-queueable.

Deregister callback from event_id

function arguments description

void spin1_callback_off uint event_id event that triggers callback

returns: no return value

Schedule a callback for execution with given priority

function arguments description

uint spin1_schedule_callback callback_t callback callback function pointer
uint arg0 callback argument
uint arg1 callback argument
uint priority callback priority

returns: SUCCESS (=1) / FAILURE (=0)

notes: • this function allows the application to schedule a callback without an event.
• priority <= 0 must not be used (unpredictable results).
• function arguments are not validated.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 414

Trigger a user event

function arguments description

uint spin1_trigger_user_event uint arg0 callback argument
uint arg1 callback argument

returns: SUCCESS (=1) / FAILURE (=0)

notes: • FAILURE indicates a trigger attempt before a previous one has been serviced.
• arg0 and arg1 will be passed as arguments to the registered callback.
• function arguments are not validated.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 415

Data transfer functions

Request a DMA transfer

function arguments description

uint spin1_dma_transfer uint tag for application use
void *system_address address in system NoC
void *tcm_address address in TCM
uint direction DMA_READ / DMA_WRITE
uint length transfer length (in bytes)

returns: unique transfer identification number (TID)

notes: • completion of the transfer generates a DMA transfer done event.
• a registered callback can use TID and tag to identify the completed request.
• DMA transfers are completed in the order in which they are requested.
• TID = FAILURE (= 0) indicates failure to schedule the transfer.
• function arguments are not validated.
• may cause DMA error or DMA timeout events.

Copy a block of memory

function arguments description

void spin1_memcpy void *dst destination address
void const *src source address
uint len transfer length (in bytes)

returns: no return value

notes: • function arguments are not validated.
• may cause a data abort.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 416

Communications functions

Send a multicast packet

function arguments description

uint spin1_send_mc_packet uint key packet key
uint data packet payload
uint load 1 = payload present / 0 = no payload

returns: SUCCESS (=1) / FAILURE (=0)

Flush software outgoing multicast packet queue

function arguments description

uint spin1_flush_tx_packet_queue void no arguments

returns: SUCCESS (=1) / FAILURE (=0)

notes: • queued packets are thrown away (not sent).

Flush software incoming multicast packet queue

function arguments description

uint spin1_flush_rx_packet_queue void no arguments

returns: SUCCESS (=1) / FAILURE (=0)

notes: • queued packets are thrown away.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 417

SpiNNaker Datagram Protocol (SDP)

Send an SDP message

function arguments description

uint spin1_send_sdp_msg sdp_msg_t * msg pointer to message
uint timeout transmission timeout

returns: SUCCESS (=1) / FAILURE (=0)

Request a free SDP message container

function arguments description

sdp_msg_t * spin1_msg_get void no arguments

returns: pointer to message (NULL if unsuccessful)

Free an SDP message container

function arguments description

void spin1_msg_free sdp_msg_t *msg pointer to message

returns: no return value

HBP_SP9_Specification 13 May 2014 (git 56b296e) 418

Critical section support functions

Disable IRQ interrupts

function arguments description

uint spin1_irq_disable void no arguments

returns: contents of CPSR before interrupt flags altered.

Disable FIQ interrupts

function arguments description

uint spin1_fiq_disable void no arguments

returns: contents of CPSR before interrupt flags altered.

Disable ALL interrupts

function arguments description

uint spin1_int_disable void no arguments

returns: contents of CPSR before interrupt flags altered.

Restore core mode and interrupt state

function arguments description

void spin1_mode_restore uint status CPSR state to be restored

returns: no return value.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 419

System resources access functions

Get core ID

function arguments description

uint spin1_get_core_id void no arguments

returns: core ID in bits [4:0].

Get chip ID

function arguments description

uint spin1_get_chip_id void no arguments

returns: chip ID in bits [15:0].

notes: • chip ID contains x coordinate in bits [15:8], y coordinate in bits [7:0].

Get ID

function arguments description

uint spin1_get_id void no arguments

returns: chip ID in bits [20:5] / core ID in bits [4:0].

Control state of board LEDs

function arguments description

void spin1_led_control uint p new state for board LEDs

returns: no return value.

notes: • the number of LEDs and their colour varies according to board version.
• to turn LEDs 0 and 1 on: spin1_led_control (LED_ON (0) + LED_ON (1))
• to invert LED 2: spin1_led_control (LED_INV (2))
• to turn LED 0 off: spin1_led_control (LED_OFF (0))

Set up a multicast routing table entry

function arguments description

uint spin1_set_mc_table_entry uint entry table entry
uint key entry routing key field
uint mask entry mask field
uint route entry route field

returns: SUCCESS (=1) / FAILURE (=0).

notes: • see SpiNNaker datasheet for details of the MC table operation.
• entries 0 to 999 are available to the application.
• routing keys with bit[15] = 1 and bit[10] = 0 are reserved.
• function arguments are not validated.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 420

Memory allocation

Allocate a new block of DTCM

function arguments description

void * spin1_malloc uint bytes size of the memory block in bytes

returns: pointer to the new memory block.

notes: • memory blocks are word-aligned.
• memory is allocated in DTCM.
• there is no support for freeing a memory block.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 421

Miscellaneous

Wait for a given time

function arguments description

void spin1_delay_us uint time wait time (in microseconds)

returns: no return value

notes: • the function busy waits for the given time (in microseconds).
• prevents any queueable callbacks from executing (use with care).

Generate a 32-bit pseudo-random number

function arguments description

void spin1_rand void no arguments

returns: 32-bit pseudo-random number

notes: • Function based on example function in:
• "Programming Techniques", ARM document ARM DUI 0021A.
• Uses a 33-bit shift register with exclusive-or feedback taps at bits 33 and 20.

Provide a seed to the pseudo-random number generator

function arguments description

void spin1_srand uint seed 32-bit seed

returns: no return value

HBP_SP9_Specification 13 May 2014 (git 56b296e) 422

Application Programme Structure

In general, an application programme contains three basic sections:

• Application Functions: General application functions to support the callbacks.

• Application Callbacks: Functions to be associated with run-time events.

• Application Main Function: Variable initialisation, callback registration and transfer
of control to main loop.

The structure of a simple application programme is shown on the next page. Many details
are left out for brevity.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 423

// declare application types and variables
neuron_state state[1000];
spike_bin bins[1000][16];
. . .

/* ��� */
/* ����������������������� application functions ����������������������� */
/* ��� */
void izhikevich_update(neuron_state *state){

. . .
spin1_send_mc_packet(key, 0, NO_PAYLOAD);
. . .

}

syn_row_addr lookup_synapse_row(neuron_key key)
{

. . .
}

void bin_spike(neuron_key key, axn_delay delay, syn_weigth weight)
{

. . .
}

/* ��� */
/* ����������������������� application callbacks ����������������������� */
/* ��� */
void update_neurons()
{

. . .
i f (spin1_get_simulation_time() > 1000) // simulation time in " ticks "

spin1_stop();
else

for (i =0; i < 1000; i++) izhikevich_update(state[i]);
. . .

}

void process_spike(uint key, uint payload)
{

. . .
row_addr = lookup_synapses(key);
tid = spin1_dma_transfer(tag, row_addr, syn_buffer, READ, row_len);
. . .

}

void schedule_spike()
{

. . .
bin_spike(key, delay, weight);
. . .

}

/* ��� */
/* �������������������������� application main������������������������� */
/* ��� */
void c_main()
{

// init ial ise variables and timer tick
. . .
spin1_set_timer_tick(1000); // timer tick period in microseconds
. . .
// register callbacks
spin1_callback_on(TIMER_TICK, update_neurons, 1);

HBP_SP9_Specification 13 May 2014 (git 56b296e) 424

spin1_callback_on(MC_PACKET_RECEIVED, process_spike, 0);
spin1_callback_on(DMA_TRANSFER_DONE, schedule_spike, 0);
. . .
// transfer control to the run�time kernel
spin1_start ();
// control returns here on execution of spin1_stop()

}

3.3.3 Neural net simulation frameworks

3.3.3.1 Spiking Neural net simulation framework

SpiNNaker applications are event-driven (figure 3.3.4) in that all computational tasks follow
from events in hardware. Neuron states are computed in discrete timesteps initiated in
each processor by a local periodic timer event. At each timestep processors evaluate the
membrane potentials of all of their neurons given prior synaptic inputs and deliver a packet
to the router for each neuron that spikes. Spike packets are routed to all processors that
model neurons efferent to the spiking neuron. Receipt raises a packet event that prompts
the efferent processor to retrieve the appropriate synaptic weights from off-chip RAM using
a background Direct Memory Access transfer. The processor is then free to perform other
computations during the DMA transfer and is notified of its completion by a DMA done event
that prompts calculation of the sizes of synaptic inputs to subsequent membrane potential
evaluations.

update
neurons

trigger
DMA

buffer
packet

packet
event

DMA
event

timer
event

update
synapses

incoming packet buffer
(spiking neuron IDs)

DMA transfer results
(synaptic data copy)

synaptic inputs

control flow

data flow

(if DMA event not impending)

Figure 3.3.4: Events and corresponding tasks in a typical neural simulation.

Each SpiNNaker processor executes an instance of the Application Run-Time Kernel (ARK)
which is responsible for providing computational resources to the tasks arising from events.
The ARK has two threads of execution (figure 3.3.5) that share processor time: following
events, control of the processor is given to the scheduler thread that queues tasks; upon
its completion, the scheduler returns control to the dispatcher thread that dequeues tasks
and executes them. In terms of figure 3.3.4, for example, a timer event schedules a neuron
update task that is dispatched upon returning from the event.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 425

di
sp

at
ch

er

n

sc
he

du
le

r

C
B

 q
ue

ue
s

!
Dispatcher

thread

Scheduler
thread

control flow

data flow

Figure 3.3.5: Control and data flow between the scheduler and dispatcher threads.

Tasks have priorities that dictate the order in which they are executed by the dispatcher.
The scheduler places each task at the end of the queue corresponding to its priority and
the dispatcher continually executes tasks from the highest-priority non-empty queue. To
facilitate immediate execution, priority zero tasks are non-queueable and are executed by
the scheduler directly, precluding any further scheduling or dispatching until the task is
complete.

The SpiNNaker Application Programming Interface (API) allows a user to specify the tasks
that are executed following an event. The user writes callback functions in C that encode
the desired task and then registers them with the scheduler against a given event. The
following example lists callbacks to compute the Izhikevich equations on the timer event, to
buffer packets and kickstart DMA transfers on a packet event and to start subsequent DMA
transfers (conditional on receipt of further packets) and process synaptic inputs on the DMA
done event. In the main function the timer, packet and DMA done callbacks are registered.

int main() {
// Call hardware and simulation configuration functions
...
// Register callbacks and run simulation
callback_on(PACKET_EVENT, packet_callback, PRIORITY_1);
callback_on(DMA_DONE_EVENT, dma_done_callback, PRIORITY_2);
callback_on(TIMER_EVENT, timer_callback_0, PRIORITY_3);
start(800);

}

void feed_dma_pipeline() {
// Start engine if idle and transfers pending
if(!dma_busy() && !dma_queue_empty()) {
void *source = lookup_synapses(packet_queue_get());

HBP_SP9_Specification 13 May 2014 (git 56b296e) 426

dma_transfer(..., source, ...);
}

}

void buffer_post_synaptic_potentials(synapse_row_t *synapse_row) {
for(uint i = 0; i < synapse_row_length; i++) {
// Get neuron ID, connection delay and weight for each synapse
...
// Store synaptic inputs
neuron[neuron_id].epsp[connection_delay] += synaptic_weight;

}
}

void dma_done_callback(uint synapse_row, uint unused) {
// Restart DMA engine if transfers pending
feed_dma_pipeline();
// Deliver synaptic inputs to neurons
buffer_post_synaptic_potentials((synapse_row_t *) synapse_row);

}

void packet_callback(uint key, uint payload) {
// Queue DMA transfer and start engine if idle
packet_queue_put(key);
feed_dma_pipeline();

}

void timer_callback_0(uint time, uint null) {
for(int i = 0; i < num_neurons; i++) {
uint current = neuron[i].epsp[time];
// Compute neuron state given input and deliver spikes.
// See Jin et al. "Efficient modelling of spiking neural networks"
...
if(neuron[i].v > THRESHOLD){
send_mc_packet(neuron[i].id);

}
}

}

HBP_SP9_Specification 13 May 2014 (git 56b296e) 427

3.3.3.2 MLP simulation framework

The Mulitilayer Perceptron (MLP) is a type of non-spiking computational neural network
model. An MLP network arranges neurons in layers, each layer having no (or little) internal
connectivity but usually strongly connected to other layers. Neurons themselves perform a
simple, abstract operation:

Oj = Tj(
X

i
Oiwij)

where Tj(x) is a range-limited nonlinear transfer function, the most common being the
sigmoid:

1

1 + e�kx

Indices i and j refer to the sending “presynaptic" neuron and the receiving “postsynaptic"
neuron respectively. Such networks use a supervised learing method to adapt their weights
(the wij terms; overwhelmingly the most popular is the backpropagation algorithm:

�wij = ��jOi (3.3.1)

�j =

(
(Cj � Oj)

dTj
dSj

if j is an output layer
dTj
dSj

P
k �jwjk if j is not an output layer

(3.3.2)

Here Sj refers to the neuron’s summation:
P

i Oiwij and � is a constant, called the learning
rate. Cj is the intended output of a neuron; what the neuron “should" have output if the
network had been fully trained.

To promote an efficient on-chip mapping, the MLP implementation splits the processing of
a neuron into 3 stages, each a separate process optimally residing on a separate core. These
stages are:

Weight: This performs the input synaptic multiplication: Oiwij.

Sum: This performs the summation of synaptic inputs:
P

i Oiwij.

Threshold: This computes the output nonlinearity: Tj(Sj).

A fourth processing stage: Input, performs 2 roles: in the forward direction it supplies
inputs to the network; in the backward direction, it computes the output errors (the Cj �Oj
terms above).

Weight processors each contain a square submatrix of inputs to a block of neurons in 2
layers: MIxJy = mij |inx:in(x+1);jny:jn(y+1). The complete architecture is a bidirectional compute-
and-forward algorithm:fig. 3.3.6 For the test chip the architecture of necessity combines
parts of the processing onto the same core: Weight and Sum processes lie on one, while
Input and Threshold lie on the other.

The MLP is designed to implement the Lens simulator on SpiNNaker. For the current version,
the implementation supports a limited subset of Lens constructs. In particular, it supports
the following objects and parameters:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 428

Figure 3.3.6: MLP network mapping.

object supported properties

Algorithm Steepest, Momentum, DougsMomentum
Net Standard, Continuous
Group Input, Output, Bias; STANDARD_CRIT; BIASED;

WRITE_OUTPUTS
Input Dot_Product, Product; IN_INTEGR, IN_NORM, IN_NOISE,

IN_DERIV_NOISE
Output Linear, Logistic, Ternary, Tanh, Exponential; HARD_CLAMP;

OUT_INTEGR, OUT_NOISE, OUT_DERIV_NOISE, OUT_CROPPED
Error Sum_Squared, Cross_Entropy, Divergence
Time TimeIntervals, TicksPerInterval, HistoryLength
Training NumUpdates, BatchSize, Criterion, TrainGroupCrit, Test-

GroupCrit, GroupCritRequired, MinCritBatches, LearningRate,
WeightDecay

Simulation Gain, TernaryShift, RandMean, RandRange, NoiseRange

Processing under the MLP model remains event-driven. In its basic form each processor
in the MLP responds to a single hardware event (packet-received) and schedules software-
generated events to complete processing. The packet-received event performs only 2 tasks:
1) it places the packet into an internal service queue; 2) it schedules a deferred event to
dequeue and process the packet. The dequeue software event, having retrieved the packet,
peforms the address decode and data processing required, as per each stage.

Each subcomponent of the output vector for a given processor may depend on the arrival
of a different set of inputs. Thus there can be several output computations awaiting a given

HBP_SP9_Specification 13 May 2014 (git 56b296e) 429

input packet.

3.3.4 Neural net simulation development route

Figure 3.3.7: SpiNNaker neural net simulation development route.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 430

3.3.4.1 pyNN.spiNNaker

PyNN is a standard description language for simulating networks of spiking neurons written in
Python. The script is written accordingly to PyNN API and can be executed on the supported
software/hardware simulator.

It aims to support modelling at a high-level of abstraction: Populations of neurons and
Projections between them.
Objects in PyNN include:

• Population: is a group of neurons which share the same model and parameters (eg.
Izhikevich Regular Spiking neurons), even if some model dependent initialization values
can be randomized.

• Projection: represents the connections between two Populations. Describes the type
of Connector (All To All, One To One, Random, From List), the target synapse and
the connection parameters (weight and delay). It is possible to associate plasticity
mechanism to Projections.

• Input Sources: they are divided into Spike Sources and Current Sources. Spike Sources
are “dummy” neuron populations that produce spikes accordingly to a probability dis-
tribution function. Current sources inject currents into the target neurons which vary
arbitrarily with time.

• Recorder: represent the selection of observables that will be saved eg. spikes, state
variables.

The pyNN.spiNNaker module will compile the PyNN script into a list of populations, pro-
jections and associated plasticity algorithms, configure inputs and observables.

A Population object can be constructed in PyNN as

constructor arguments description

Population uint population_id a unique identifier for a Population
uint size Number of neurons in the Population
cell_type Neural Model (cell_type in PyNN). It corre-

sponds to the neural application.
dict parameters Parameters for the neurons in the Population.

returns: PyNN Population object
Adds a Population to the netlist

notes: • Assemblies in PyNN are formed by adding two or more Populations together.
They don’t need to be explicitly modeled by the pyNN.spiNNaker module since it
will reason at a Population level.
• PopulationViews are PyNN objects used to define and operate on subsets of
Population objects. In order to deal with them properly the pyNN.spiNNaker
plugin will divide them into two distinct Populations.
• The compiler will select the appropriate parsing accordingly to the neural model
application selected.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 431

http://www.neuralensemble.org/trac/PyNN/wiki/API-0.6

A Projection object can be represented as:

constructor arguments description

Projection uint projection_id a unique identifier for a Projection
uint presynaptic_population_id identifies the presynaptic Popula-

tion
uint postsynaptic_population_id identifies the postsynaptic Popula-

tion
string target target synapse/receptor/effector

of the Projection (eg. excitatory,
NMDA)

connector_type describes the connection pattern
between two Populations (see next
section)

dict parameters Parameters for the Projection.
Standard parameters are weight
and delay

dict plasticity Parameters for the Plasticity Algo-
rithm(s) associated with the projec-
tion.

returns: PyNN Projection object
Adds a Projection to the netlist

notes: • The target will be translated into an ID that will help the application to select
the right branch upon a DMA complete. It will then need to be written in the
synaptic word in SDRAM
• Plasticity Algorithm is a dictionary containing the parameters for the Plasticity
algorithm. The dictionary will have a standard entry type helping the partitioner
and the compiler to identify and correctly position the population and compute
plasticity data structures

Connectors describe the connectivity pattern between two Populations and can be differ-
entiated in:

constructor arguments description

OneToOne weights a value or a random process to initialize
weights

delays a value or a random process to initialize
delays

bool allow_self_connections allows a neuron to connect to another
neuron with the same local ID (eg. neu-
rons 0 of both source and destination)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 432

notes: connects the first neuron of the presynaptic Population to the first neuron of the
postsynaptic Population and so on. If the source and destination population don’t
have the same number of neurons exceeding connections will be discarded

constructor arguments description

AllToAll weights a value or a random process to initialize
weights

delays a value or a random process to initialize
delays

bool allow_self_connections allows a neuron to connect to another
neuron with the same local ID (eg. neu-
rons 0 of both source and destination)

notes: connects all the neurons of the presynaptic Population to all the neurons of the
Postsynaptic Population

constructor arguments description

FixedProbability weights a value or a random process to initialize
weights

delays a value or a random process to initialize
delays

bool allow_self_connections allows a neuron to connect to another
neuron with the same local ID (eg. neu-
rons 0 of both source and destination)

float p probability of a neuron in the presynap-
tic Population to connect to a neuron in
the postsynaptic Population

notes: connects all the neurons of the source Population every neuron of the postsynaptic
Population with probability p

constructor arguments description

FromList list a python list containing the connection specified one by
one

notes: takes an explicit list of connections in the format source_id, target_id,
params. The source and target id will be represented relatively to the Population
and the list will be contained in the Parameters section p

Current Sources can be thought as:

• fixed currents known a priori: In this case a table describing the changes in time of
current amplitude for every input neurons must be generated and loaded

• dynamic currents arbitrarily varying with time: a state variable representing the input
current for the neuron is changed

HBP_SP9_Specification 13 May 2014 (git 56b296e) 433

notes: • currents can vary upon receival of an event (MC packet with particular target,
Message from Host)
• Static current table can be loaded in the monitor/dedicated processor and have
a process that leads to the change of the state variable in the target neuron/core
• In any case the partitioner/compiler needs to know which neurons can receive
input currents in order to link the relative portion of application code

Spike Sources will be considered neural population of a particular type (SpikeSource). The
partitioner and the compiler will then create only the connection structures while they will
skip the neural data themselves. Spikes can be produced by:

• Random Process: in this case parameters for the process (eg. rate) must be passed to
the component generating the spikes

• List: in this case the list needs to be created, parsed and compiled to the appropriate
spike generator component

• Dynamic Source (eg. Silicon Retina): spikes will be injected to a link by an external
source

TBD: how are spikes generated? Process on the host machine? Monitor (or dedicated)
process on chip?

Recorders will enable logging options for the selected Populations. Log can either occur
in SDRAM or can be streamed to the Ethernet TBD. Recorders can also be used to send spikes
out of the Ethernet link. Will be defined as:

• Population: target Population

• Variable: the variable to log (u, v, i)

• Destination: Ethernet or SDRAM

The Population/Projection abstraction let the system deal with aggregated groups rather
than with single neurons and can therefore be used as an efficient representation in the
mapping and compiling binary phases as well.

TBD: The output format for this section can be an exchange file or python structures to
be passed to the next stage, the partitioner. I suggest using a sqlite DB to store the
configuration between different software layers, and be able to update retrieve
information with standard SQL language. In this way information can be spread
across all software components (mapping, compiling, managing input/output, vi-
sualising) and represented in a standard, easy to consult and efficient way.

3.3.4.2 PyNN API functions list

Contents PyNN API version 0.7

HBP_SP9_Specification 13 May 2014 (git 56b296e) 434

PyNNAPIversion0.7

3.3.4.3 Simulation setup and control

setup(timestep=0.1, min_delay=0.1, max_delay=10.0, **extra_params)
end(compatible_output=True)
run(simtime)
reset() To be implemented
get_time_step() To be implemented
get_current_time() To be implemented
get_min_delay() To be implemented
get_max_delay(): To be implemented

3.3.4.4 Object-oriented interface for creating and recording networks

Population
__add__(self, other)
__getitem__(self, index)
__init__(self, size, cellclass, cellparams=None, structure=None, . . .
describe(self, template=’population_default.txt’, engine=’default’)
get(self, parameter_name, gather=False)
getSpikes(self, gather=True, compatible_output=True): Implemented as a standalone script

using SDRAM/network output
get_v(self, gather=True, compatible_output=True): Implemented as a standalone script
id_to_index(self, id)
inject(self, current_source): To be implemented as an SDP message passing from the host

machine and the application framework
printSpikes(self, file, gather=True, compatible_output=True): Implemented as a stan-

dalone script using SDRAM/network output
print_v(self, file, gather=True, compatible_output=True): : Implemented as a standalone

script using SDRAM/network output
randomInit(self, rand_distr)
record(self, to_file=True): Implemented as record(self, save_to=True) where save_to de-

fines if the data needs to be saved in SDRAM or sent through the ethernet (deprecated)
record_v(self, to_file=True): Implemented as record(self, save_to=True) where save_to

defines if the data needs to be saved in SDRAM or sent through the ethernet (deprecated)
save_positions(self, file): To be implemented
set(self, param, val=None)

3.3.4.5 PopulationView

To be implemented, TBD how treat overlapping PopulationView

3.3.4.6 Assembly

Partially implemented at a PyNN level. __add__(self, other)
__getitem__(self, index)
__iadd__(self, other): To be implemented

HBP_SP9_Specification 13 May 2014 (git 56b296e) 435

http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setuptimestep0.1min_delay0.1max_delay10.0extra_params
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#endcompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#runsimtime
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#reset
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_time_step
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_current_time
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_min_delay
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_max_delay
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Population
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__add__selfother
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__getitem__selfindex
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfsizecellclasscellparamsNonestructureNonelabelNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplatepopulation_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getselfparameter_namegatherFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getSpikesselfgatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_vselfgatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#id_to_indexselfid
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#injectselfcurrent_source
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#printSpikesselffilegatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#print_vselffilegatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#randomInitselfrand_distr
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#recordselfto_fileTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#record_vselfto_fileTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#save_positionsselffile
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setselfparamvalNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__add__selfother2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__getitem__selfindex2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__iadd__selfother

__init__(self, *populations, **kwargs)
__iter__(self)
__len__(self)
describe(self, template=’assembly_default.txt’, engine=’default’)
get_gsyn(self, gather=True, compatible_output=True)
Classes for defining spatial structure Imported from PyNN
Classes for defining spatial structure

3.3.4.7 Object-oriented interface for connecting populations of neurons

Projection
__getitem__(self, i)
__init__(self, presynaptic_population, postsynaptic_population, method, . . .
getDelays(self, format=’list’, gather=True): To be implemented
getSynapseDynamics(self, parameter_name, format=’list’, gather=True): To be imple-

mented
getWeights(self, format=’list’, gather=True): To be implemented
printWeights(self, file, format=’list’, gather=True): To be implemented
randomizeDelays(self, rand_distr): To be implemented (it is possible to define random

weights/delays passing a RandomObject to the Projection constructor
randomizeSynapseDynamics(self, param, rand_distr): To be implemented
randomizeWeights(self, rand_distr): To be implemented (it is possible to define random

weights/delays passing a RandomObject to the Projection constructor
saveConnections(self, file, gather=True, compatible_output=True): To be implemented
setDelays(self, d)
setSynapseDynamics(self, param, value): To be implemented (it is possible to set them

when the Projection is created)
setWeights(self, w): To be implemented (it is possible to set them when the Projection is

created)
size(self, gather=True): Partially implemented

AllToAllConnector
__init__(self, allow_self_connections=True, weights=0.0, delays=None, . . .

OneToOneConnector
__init__(self, weights=0.0, delays=None, space=<pyNN.space.Space object . . .

FixedProbabilityConnector
__init__(self, p_connect, allow_self_connections=True, weights=0.0, . . .

DistanceDependentProbabilityConnector: Translated as a FromList Connector
__init__(self, d_expression, allow_self_connections=True, weights=0.0, . . .

FromListConnector
__init__(self, conn_list, safe=True, verbose=False)

FromFileConnector
__init__(self, file, distributed=False, safe=True, verbose=False)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 436

http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfpopulationskwargs
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__iter__self2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__len__self2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplateassembly_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#get_gsynselfgatherTruecompatible_outputTrue2
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Classesfordefiningspatialstructure
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Classesfordefiningspatialstructure
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Projection
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__getitem__selfi
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfpresynaptic_populationpostsynaptic_populationmethodsourceNonetargetNonesynapse_dynamicsNonelabelNonerngNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getDelaysselfformatlistgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getSynapseDynamicsselfparameter_nameformatlistgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#getWeightsselfformatlistgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#printWeightsselffileformatlistgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#randomizeDelaysselfrand_distr
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#randomizeSynapseDynamicsselfparamrand_distr
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#randomizeWeightsselfrand_distr
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#saveConnectionsselffilegatherTruecompatible_outputTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setDelaysselfd
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setSynapseDynamicsselfparamvalue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#setWeightsselfw
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#sizeselfgatherTrue
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#AllToAllConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfallow_self_connectionsTrueweights0.0delaysNonespacepyNN.space.Spaceobjectat0x62749f0safeTrueverboseFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#OneToOneConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfweights0.0delaysNonespacepyNN.space.Spaceobjectat0x17d30e50safeTrueverboseFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#FixedProbabilityConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfp_connectallow_self_connectionsTrueweights0.0delaysNonespacepyNN.space.Spaceobjectat0x5912970safeTrueverboseFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#DistanceDependentProbabilityConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfd_expressionallow_self_connectionsTrueweights0.0delaysNonespacepyNN.space.Spaceobjectat0x58ae570safeTrueverboseFalsen_connectionsNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#FromListConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfconn_listsafeTrueverboseFalse
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#FromFileConnector
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selffiledistributedFalsesafeTrueverboseFalse

3.3.4.8 Procedural interface for creating, connecting and recording networks

Not implemented as this is the low level Api.

3.3.4.9 Neural Models

Standard Models: IF_curr_exp: 16 and 32 bit
IF_cond_exp: 32 bit
EIF_cond_exp_isfa_ista: Under implementation
SpikeSourcePoisson: Implemented, it generates spikes according to a Poisson process that

is extracted from a uniformly distributed random variable.
SpikeSourceArray: Implemented so that a set of spikes is loaded on the SpiNNaker system

and then parsed at simulation time, and the spikes are distributed according to the loaded
pattern.

__init__(self, parameters)
Non Standard Models:

• IZK_curr_exp: an implementation of the Izhikevich neuron with 2 first order kinetic
synaptic types

• NEF_input: Translates values to Population spike trains using the Neural Engineering
Framework

• NEF_output: Translates Population spike trains to values using the Neural Engineering
Framework

• SpikeSink: Gathers spikes and outputs them through the ethernet

• Dummy: population used for profiling

• SpikeSource: Receive spike packets from the host and propagates them in the neural
network. It needs a standalone program on the host machine sending spike packets.
The software on the host side has been called “SpikeServer”.

3.3.4.10 Specification of synaptic plasticity

SynapseDynamics
__init__(self, fast=None, slow=None)
describe(self, template=’synapsedynamics_default.txt’, engine=’default’)

STDPMechanism
__init__(self, timing_dependence=None, weight_dependence=None, . . . describe(self,

template=’stdpmechanism_default.txt’, engine=’default’)
AdditiveWeightDependence
__init__(self, w_min=0.0, w_max=1.0, A_plus=0.01, A_minus=0.01)
SpikePairRule
__init__(self, tau_plus=20.0, tau_minus=20.0)
FullWindow
__init__(self, tau_plus=20.0, tau_minus=20.0)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 437

http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Proceduralinterfaceforcreatingconnectingandrecordingnetworks
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#IF_curr_exp
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#IF_cond_exp
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#EIF_cond_exp_isfa_ista
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#SpikeSourcePoisson
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#SpikeSourceArray
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfparameters9
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#SynapseDynamics
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selffastNoneslowNone
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplatesynapsedynamics_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#STDPMechanism
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selftiming_dependenceNoneweight_dependenceNonevoltage_dependenceNonedendritic_delay_fraction1.0
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplatestdpmechanism_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#describeselftemplatestdpmechanism_default.txtenginedefault
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#AdditiveWeightDependence
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selfw_min0.0w_max1.0A_plus0.01A_minus0.01
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#SpikePairRule
http://neuralensemble.org/trac/PyNN/wiki/API-0.7#__init__selftau_plus20.0tau_minus20.0

TimeToSpike
__init__(self, L_parameter=-65, tau_plus=20.0, tau_minus=20.0)

SpiNNaker implements three learning rules:

1) Standard STDP rule, that can be instantiated using the class FullWindow. For details
refer to the article “Implementing Spike-Timing-Dependent Plasticity on SpiNNaker
Neuromorphic Hardware" by Xin Jin, Alexander Rast, Francesco Galluppi, Sergio Davies
and Steve Furber

2) Spike-pair STDP, also known as nearest-neughbour STDP, that can be instantiated using
the class SpikePairRule. The implementation is similar to the standard STDP rule, but
the synaptic weight update is limited to the nearest pair of spikes.

3) STDP with Time-To-Spike forecast, that can be instantiated using the class TimeToSpike.
This learning rule is suitable only for Izhikevich neurons. For details of the learning
rule and its implementation refer to the article "A forecast-based STDP rule suitable for
neuromorphic implementation" by Sergio Davies, Alexander Rast, Francesco Galluppi
and Steve Furber

3.3.4.11 Current Injection

Current injection To be implemented via SDP message passing between the host and the
application framework

Example

PyNN example script to run a multichip synfire chain model on the SpiNNaker test board.
A synfire chain (synchronous firing chain) is a feed-forward network of neurons with multiple

layers or pools. In a synfire chain, neural impulses propagate synchronously back and forth
from layer to layer. Each neuron in one layer feeds excitatory connections to neurons in the
next, while each neuron in the receiving layer is excited by neurons in the previous layer.
(http://en.wikipedia.org/wiki/Synfire_chain)

This scripts allocates pool_number layers on each chip, up to 4 chips and 512 neurons per
chip.
#!/usr/bin/python

Imports the pyNN.spiNNaker module
from pyNN.spiNNaker import *

Defines the synfire chain model.
pool_size = 256 # Numbers of neurons in a pool
pool_number = 8 # Total numbers of pools

runtime = 1000 # Time of the simulation

fwd_weights = 7 # Feed forward weights
bck_weights = �0.1 # Inhibitory feedback

setting up the PyNN environment

HBP_SP9_Specification 13 May 2014 (git 56b296e) 438

http://neuralensemble.org/trac/PyNN/wiki/API-0.7#Currentinjection

setup(timestep=1.0, min_delay = 1.0, max_delay = 16.0,
spiNNChipAddr=’spinn�1’ # IP address of the spiNNaker board
)

print "Total number of pools across system: " , pool_number

Defines neural parameters for the population
cell_params = { ’tau_m’ : 32,

’v_init ’ : �85,
’v_rest ’ : �75,
’v_reset’ : �75,
’v_thresh’ : �55,
’tau_syn_E’ : 5,
’tau_syn_I ’ : 2,
’tau_refrac’ : 10,
}

Neural Populations creation

populations = [] # List containing all the populations in the model

Loop creating the populations � each population models a pool in the synfire chain
for i in range(pool_number): # Total number of pools in the system

populations.append(Population(pool_size , # Neurons per population
IF_curr_exp, # PyNN Standard Neuron Model.
cell_params, # Neuron parameters
label=’pool_%d’ % i) # Label for the population

)
populations[i].record()

Connections creation
connections = [] # List containing all the connections in the model

Loop generating the feedforward connections. Pool N will be connected to pool N+1
for i in range(pool_number�1): # Cycling all populations in the model

connections.append(Projection
(populations[i] , # Presynaptic population
populations[i +1], # Postsynaptic population

OneTo One will connect the first neuron in the presynaptic population
to the first neuron in the postsynaptic population

OneToOneConnector(weights=fwd_weights, delays=delayDistr) ,
Target synapse type � IF_curr_exp supports two differents current bins. one for
excitatory synapses and one for inhibitory synapses with two different time constants

target=’excitatory ’ ,
label=’pool_%d�pool_%d’ % (i , i +1) # Connection label
)

)

Last population connected to first population
shows how to build inhibitory connections
connections.append(Projection(populations[pool_number�1],

populations[0] ,
OneToOneConnector(weights=bck_weights*0.1, delays=1),
target=’ inhibitory ’ ,
label=’close_loop’
)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 439

)

Injecting currents in the first pool � setting up the input waveform
current_source = StepCurrentSource([0 , 50, 1000], # Time

[0, 1, 0]) # Amplitude
Injecting in the first pool
current_source. inject_into(populations[0])

run(runtime) # Simulation time

end() # And that’s all folks !

The script above builds a spiking neural network composed by 8 pools of 256 neurons each
connected in a feed-forward way, where every nth neuron of each population is connected
to the nth neuron in the next population. It records spikes from every population. The first
population is injected with a step current.

Such a network can be represented with the structures defined above as:

Populations
id size cell_type parameters label
0 256 IF_curr_exp {’tau_m’ : 32,’v_init’ : -85, ’v_rest’ : -75, ..} pool_0
1 256 IF_curr_exp {’tau_m’ : 32,’v_init’ : -85, ’v_rest’ : -75, ..} pool_1
2 256 IF_curr_exp {’tau_m’ : 32,’v_init’ : -85, ’v_rest’ : -75, ..} pool_2
3 256 IF_curr_exp {’tau_m’ : 32,’v_init’ : -85, ’v_rest’ : -75, ..} pool_3
4 256 IF_curr_exp {’tau_m’ : 32,’v_init’ : -85, ’v_rest’ : -75, ..} pool_4
5 256 IF_curr_exp {’tau_m’ : 32,’v_init’ : -85, ’v_rest’ : -75, ..} pool_5
6 256 IF_curr_exp {’tau_m’ : 32,’v_init’ : -85, ’v_rest’ : -75, ..} pool_6
7 256 IF_curr_exp {’tau_m’ : 32,’v_init’ : -85, ’v_rest’ : -75, ..} pool_7

Projections
ID source dest target parameters plasticity label
0 0 1 excitatory {weights=7, delays=1} none pool_0-pool_1
1 1 2 excitatory {weights=7, delays=1} none pool_1-pool_2
2 2 3 excitatory {weights=7, delays=1} none pool_2-pool_3
3 3 4 excitatory {weights=7, delays=1} none pool_3-pool_4
4 4 5 excitatory {weights=7, delays=1} none pool_4-pool_5
5 5 6 excitatory {weights=7, delays=1} none pool_5-pool_6
6 6 7 excitatory {weights=7, delays=1} none pool_6-pool_7
7 7 0 inhibitory {weights=7, delays=-0.01} none pool_7-pool_0

HBP_SP9_Specification 13 May 2014 (git 56b296e) 440

Recorders
ID population_id observable save_to
0 0 spikes SDRAM
1 1 spikes SDRAM
2 2 spikes SDRAM
3 3 spikes SDRAM
4 4 spikes SDRAM
5 5 spikes SDRAM
6 6 spikes SDRAM
7 7 spikes SDRAM

Currents
id population_id parameters
0 0 (’type’:’list, ’times’:’[0, 50, 1000]’, ’amplitudes’:’[0, 1, 0]’

HBP_SP9_Specification 13 May 2014 (git 56b296e) 441

Figure 3.3.8: PyNN/SpiNNaker interface structure.

3.3.5 Damson development route

3.3.5.1 Damson program compilation

A Damson program for SpiNNaker consists of a single source file containing code for a number
of nodes. Each node maps to a single application processor in SpiNNaker. When the compiler
(damsonc) is run on a Damson program, the output is a number of object files (in ELF format)
where each object file contains the code of a single node in the source.

3.3.5.2 Damson code components

The object files refer to a set of routines in a Damson library known as “damsonlib”. This
provides arithmetic functions (multiply and divide) for the fixed point data type used by
Damson as well as formatted output routines. A jump table is appended to the code of
each node so that calls can be made into damsonlib from the code for each node. The
code to be loaded onto each processor consists of the node code with jump table, a copy
of damsonlib and also a separate runtime system which implements low-level SpiNNaker
specific operations such as timers and packet transmission. The runtime system is currently
implemented specifically for Damson but will be merged with the standard SpiNNaker API in
due course.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 442

3.3.5.3 Mapping code to SpiNNaker processors

The Damson compiler also produces a file which details the mapping between the code for
each node and the object file containing it. This file also provides a packet communication
map which indicates to which other nodes a given node sends packets. This latter information
is needed to allow Damson nodes to be allocated to specific application processors in a
SpiNNaker system and to allow generation of the multicast routing tables to route packets
correctly. In due course the PACMAN program will be used to perform this function. For now,
the routing tables are generated by hand. This limits the scale of Damson demonstration
programs somewhat!

3.3.5.4 Runtime system

The Damson runtime system currently provides a set of support routines and interrupt han-
dlers. A timer interrupt may be started by a Damson node at a specified clock rate. A “packet
received” interrupt handler routes packets to a specific handler at a node depending on the
source node of the packet.

3.3.5.5 Damson development flow

In the diagram below the box marked “Object Code” is the set of ELF object files produced
by “damsonc”. The box marked “Netlist” is the map file produced by the compiler. The
netlist and a description of the target SpiNNaker system are fed to PACMAN (Partitioning and
Configuration Manager) which generates a set of multicast routing tables (one per SpiNNaker
chip) and also a driver file used by the code linking stage to build the image(s) to be loaded.
The object files are fed to the linker where they are combined with the runtime system
(based around the SpiNNaker API) to make the code images for loading.

3.3.6 PACMAN: partition and configuration manager

3.3.6.1 Introduction

The function of PACMAN - the Partitioning And Configuration MANager, is to transform the high-
level representation from PyNN, Lens or DAMSON into a physical on-chip implementation: the
instruction and data binaries the boot process loads in order to configure the system.

Example of network representation in PACMAN, showing two different mappings of a neural
network model on the SpiNNaker system. The network consists of 5 populations intercon-
nected in a random way. PACMAN is set to map the model by fitting up to 100 neurons in
each application core. Two different mapping cases are presented: top) a single population
of 150 neurons fits in 1 and 1/2 cores; bottom) two populations of 50 neurons can fit in a
single core.

PACMAN is based on a Database that holds three representations of the neural network
(fig.3.3.10):

• Model Level: the network as specified in the high-level language (PyNN, Damson, LENS
etc.)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 443

Figure 3.3.9: PACMAN internal structureHBP_SP9_Specification 13 May 2014 (git 56b296e) 444

Figure 3.3.10: Example of network representation in PACMAN

• PACMAN Level: the network is partitioned in Pre_ Populations that can be fit into a sin-
gle computing core. Projections, probes and inputs are split accordingly. Pre_Populations
that can be fit into a core a grouped together

• System Level: a map linking groups of Pre_Populations with a particular core (identified
by its coordinates) in the system

Such translations enable the network to be mapped and deployed on the SpiNNaker system,
by generating the binaries needed to configure the simulation components and topology.

In FPGA language, it may be considered similar to a configuration bitstream generator.
Because of the large and highly associative nature of the data structures, it is essential that
algorithms for PACMAN must be a) incremental, b) of linear (or at the very most NlogN)
complexity in the number of neurons.

PACMAN itself (fig.3.3.9) is divided in 4 different steps:

• Splitting, responsible for splitting neural populations which won’t fit in a single core
(because of memory or comutational complexity limitations) into Pre_Populations that
will fit in a core (like a neural “place" operation)

• Grouping, responsible of collating Pre_Populations which can be run using the same
application code in order to fit more of them onto a single core. Those first two steps
define the Partitioner

• Mapping, responsible of performing virtual-to-physical translation and allocate groups
to cores

HBP_SP9_Specification 13 May 2014 (git 56b296e) 445

• Object file generation, which creates the actual data binaries from the partitioned
and mapped network.

PACMAN works internally on an SQL database. Fig. 3.3.11 shows the schema for the
database. As PACMAN is invoked the Network Specification schema has already been pop-
ulated by the spiNNaker.pyNN, Lens’s SpiNNaker.tcl or DAMSON plugin as described in the
relative sections.

An example of network representation in PACMAN, showing two different mappings of a
neural network model on the SpiNNaker system is presented in figure. The network consists
of 5 populations interconnected in a random way. Each population receives connections from
other populations (including self connections - not showed in figure for simplicity) PACMAN is
set to map the model by fitting up to 100 neurons in each application core:

• (top) if populations are too big to fit in a single core (150 neurons per population, top
portion of the figure) they are split in 2 Pre_Populations of 100+50 neurons. Projections
and other network elements are split accordingly. The resulting model maps to 8 cores
in the SpiNNaker system

• (bottom) if populations are small enough to be fit a sub-portion of a single core (50
neurons per population, bottom portion of the figure) they are grouped in the same
core, up to the maximum number of neurons. Projections and other network elements
are grouped accordingly. The resulting model maps to 3 cores in the SpiNNaker system

Note: PyNN and Lens use different terminology to refer to associated blocks of neurons
(Populations and Groups, respectively) and connections (Projections and Blocks,
respectively). In addition a “neuron" in Lens goes under the name of Unit and a
“synapse" under the name of Link. To avoid confusion we use the PyNN terminology
throughout; the equivalent Lens names may be substituted in the appropriate
places for an MLP network generation.

3.3.6.2 Splitting

During the Partitioning phase Populations that span more than one core will be divided into
Pre_Populations that can be allocated into single cores. In order to do this the system needs
to know:

• the maximum number of neurons that can be fitted in one single core. This information
is stored in the max_neuron_per_fasc field of the cell_type table of the Model Library
schema

After having split Populations into Pre_Populations Projections need to be exploded into
Pre_Projections as well. A Pre_Projection is a Projection between 2 Pre_Populations.

The output of the Partitioner will be stored in the Pre_populations and Pre_projections
tables which have the following structure:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 446

M
OD

EL
LIB

RA
RY

PA
RT
ITI
ON

ER
+M

AP
PE
R

cu
rre
nt
s

PK
id pa
ra
m
et
er
s

FK
1

po
pu
lat
ion

_id
sta

rt_
id

en
d_
id

m
ap

PK
id pr
oc
es
so
r_
id

FK
1

pr
oc
es
so
r_
gr
ou
p_
id

pr
oje

cti
on
s

PK
id

FK
2

pr
es
yn
ap
tic
_p
op
ula

tio
n_
id

siz
e

FK
4

m
et
ho
d

FK
1

po
sts
yn
ap
tic
_p
op
ula

tio
n_
id

lab
el

pa
ra
m
et
er
s

FK
3

pla
sti
cit
y_
ins
ta
nt
iat
ion

_id
ta
rg
et

pla
sti
cit
y_
ins
ta
nt
iat
ion

PK
id pa
ra
m
et
er
s

pla
sti
cit
y_
m
et
ho
ds

PK
id

FK
1

pla
sti
cit
y_
ins
ta
nt
iat
ion

_id
FK
2

m
et
ho
d_
ty
pe

m
et
ho
d_
na
m
e

ce
ll_
ins
ta
nt
iat
ion

PK
id pa
ra
m
et
er
s

pla
sti
cit
y_
m
od
els

PK
id m
od
el_

na
m
e

ce
ll_
m
et
ho
ds

PK
id

FK
1

ce
ll_
ins
ta
nt
iat
ion

_id
FK
2

m
et
ho
d_
ty
pe

m
et
ho
d_
na
m
e

pla
sti
cit
y_
pa
ra
m
et
er
s

PK
id

FK
1

m
od
el_

id
pa
ra
m
_n
am

e

ce
ll_
pa
ra
m
et
er
s

PK
id po
sit
ion

FK
1

m
od
el_

id
pa
ra
m
_n
am

e
typ

e
tra
ns
lat
ion

po
pu
lat
ion

s
PK

id lab
el

FK
1

ce
ll_
ins
ta
nt
iat
ion

_id
siz
e

co
ns
tra
int
s

pr
ob
es

PK
id

FK
1

po
pu
lat
ion

_id
va
ria
ble

sa
ve
_t
o

ce
ll_
typ

es
PK

id m
ax
_n
eu
ro
n_
pe
r_
fas
c

na
m
e

pr
oc
es
so
rs

PK
id sta

tu
s

is_
et
h

is_
m
on
ito
r

p x y

co
nn
ec
to
r_
typ

es
PK

id na
m
e

as
se
m
bli
es

PK
as
se
m
bly

_id

as
se
m
bly

_la
be
l

as
se
m
bly

_a
sso

cia
tio
ns

PK
id

FK
1

as
se
m
bly

_id
m
em

be
r_
id

typ
e

rn
g

PK
id typ

e
se
ed

sy
na
ps
e_
typ

es
PK

id sy
na
ps
e_
na
m
e

sy
na
ps
e_
fla
g

FK
1

ce
ll_
ty
pe
_id

tra
ns
lat
ion

ra
nd
om

_d
ist
rib
ut
ion

PK
id lab

el
pa
ra
m
et
er
s

FK
1

rn
g_
id

dis
tri
bu
tio
n

CO
NN

EC
TO
RL

EG
EN
D

0o
r1

to
0o

rm
or
e

0o
r1

to
1o

rm
or
e

1t
o0

or
m
or
e

1t
o1

or
m
or
e

pa
rt_
po
pu
lat
ion

s
PK

id

FK
1

po
pu
lat
ion

_id
siz
e

of
fse
t

pr
oc
es
so
r_
gr
ou
p_
id

sta
rt_
id

en
d_
id

m
as
k

po
pu
lat
ion

_o
rd
er
_id

loo
ku
p_
m
as
k

fla
gs

pa
rt_
pr
ob
es

PK
id

FK
2

pa
rt_
po
pu
lat
ion

_id
FK
1

pr
ob
e_
id

va
ria
ble

sa
ve
_t
o

pa
rt_
cu
rre
nt
s

PK
id pa
ra
m
et
er
s

FK
1

cu
rre

nt
_id

FK
2

pa
rt_
po
pu
lat
ion

_id
sta

rt_
id

en
d_
id

pa
rt_
pr
oje

cti
on
s

PK
id

FK
4

pr
oje

cti
on
_id

FK
3

pr
es
yn
ap
tic
_p
ar
t_
po
pu
lat
ion

_id
FK
2

po
sts
yn
ap
tic
_p
ar
t_
po
pu
lat
ion

_id
siz
e

m
et
ho
d

pa
ra
m
et
er
s

FK
1

pla
sti
cit
y_
ins
ta
nt
iat
ion

_id
ta
rg
et

sd
ra
m
_a
dd
re
ss

sy
na
pt
ic_
ro
w_

len
gt
h

op
tio
ns

PK
id na
m
e

va
lue

Figure 3.3.11: Database structure: model library and network specification

HBP_SP9_Specification 13 May 2014 (git 56b296e) 447

Pre_populations
Field type description

id (PRIMARY KEY) INTEGER ID defining a Pre_Population
population_id (FOREIGN
KEY: populations.id)

INTEGER ID defining the source Population

cell_ids TEXT a slice object containing the subset of the Pop-
ulation cell ids mapped by the Pre_Population

start_id INTEGER the core-relative starting id for the
Pre_Population in the core

end_id INTEGER the core-relative ending id for the
Pre_Population in the core

mask INTEGER mask defining Population and Neuron ID in the
routing key

population_order_id INTEGER order of the Pre_Population in the core

notes: group_id will be used during the Grouping phase. population_order_id, start_id,
end_id and mask are using for Population-based routing. Pre_Populations need to
be ordered decreasingly according to their size

HBP_SP9_Specification 13 May 2014 (git 56b296e) 448

Pre_populations
Field type description

id (PRIMARY KEY) INTEGER ID defining a Pre_Projection
presynaptic_population_id
(FOREIGN KEY:
Pre_populations.id)

INTEGER ID defining the presynaptic Pre_Population in
the Pre_Projection

postsynaptic_population_id
(FOREIGN KEY:
Pre_populations.id)

INTEGER ID defining the postsynaptic Pre_Population in
the Pre_Projection

method (FOREIGN KEY: con-
nector_types.id)

INTEGER ID referring to the connector type between the
2 Pre_Populations

size INTEGER number of single connections (neuron to neu-
ron) in the Pre_Projection

source INTEGER string specifying which attribute of the presy-
naptic cell signals action potentials

target (FOREIGN KEY: TBD) INTEGER ID referring to which synapse on the postsynap-
tic cell to connect to

parameters TEXT a string containing a Dictionary of parameters
(eg. weights, delays)

plasticity_instantiation_id
(FOREIGN KEY: plastic-
ity_instantiation_id)

INTEGER ID defining the type of plasticity algorithm and
its parameters for the Pre_Projection

label TEXT human readable label for Pre_Projection

notes: The Pre_Projection table has the same structure of the Projection ta-
ble, but presynaptic_population_id and postsynaptic_population_id refer to
Pre_Populations rather than Populations. source is done for compatibility with
PyNN

Implementation

partitioner/splitter.py
The process is set up by calling the following functions:

• split_populations: splits Populations accordingly to the maximum number of neurons
for that model

• split_projections: splits Projections accordingly to Pre_populations. recalculates off-
sets for ids (FromListConnector)

• split_probes: splits Probes accordingly to Pre_populations

They all take as input an instantiation of the db. An example on how to run the splitter is
reported below:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 449

import sys
print "Loading DB: " , sys.argv[1]
db = load_db(sys.argv[1]) # imports the DB passed as argv[1]
db.clean_part_db() # cleans the part_* tables
split_populations(db)
split_projections(db)
split_probes(db)

3.3.6.3 Grouping

The Grouping stage needs to know information about the system and the model in order to
translate the one to the other. At the model level the partitioner needs to know information
passed either by the pyNN.spiNNaker plugin, or Lens’ SpiNNaker.tcl script, in particular:

• Number of Pre_Populations, number of neurons in each Pre_Populations, neuron type

• Number and type of Projections

• Number and type of Inputs and Recorders

• Number of types and associated parameters for neurons, projections, and recorders

At the system level the partitioner needs to know

• Number of neurons that can be modelled in a single core for a specific neuron type-
/application. This includes parameters from synaptic and plasticity model as well (eg.
all neuron which share core-wise parameters as STDP tables can be put together in the
same core)

• How neurons and other complex model objects are assembled, i.e. what component
functions and parameters must be built into them.

• Obey constraints on the maximum number of neurons per core for a given application

• Only place Populations with the same (composite) neural type on the same core

• Only Populations with the same mapping constraint can be grouped together

The output from the Grouping stage will write its output in the group_id field of the
Pre_populations table, grouping different populations in the same group.

Implementation

The Grouper joins homogeneous Pre_populations together up to the maximum number of
neurons for that model

The process is set up by calling the following functions:

• get_groups: Retrieves all the Populations that can be grouped together. Such Popula-
tions are homogeneous for neural model and plasticity instantiations. outputs a list of
lists where each element is a list of groupable Populations

HBP_SP9_Specification 13 May 2014 (git 56b296e) 450

• grouper: groups populations accordingly to the maximum number of neurons for that
neural model

• update_core_offsets: sets the core offset for that Population (position of the Population
in the group)

They all take as input the instantiation DB.
db = load_db(sys.argv[1]) # imports the DB
groups = get_groups(db)
grouper(db, groups)
update_core_offsets(db)
mapper(db)
create_core_list(db)

Grouping criteria can be defined in SQL language. In this case 2 queries need to be de-
signed, accordingly to the grouping criteria defined. The first query (get_grouping_rules
in dao.py) extracts the possible combination of criteria. For instance if we have the
three criteria before mentioned (group populations with same neural model, plasticity
instantiation and mapping constraint)

3.3.6.4 Mapper

This information can be passed to the Mapper stage along with model-specific data provided
by the high-level generation tool, which has now all the information needed to locally
generate each portion of the network.

The Mapper task is to assign groups, as organized by the grouper, to a specific core.
Available cores are listed in the Model Library and they are dynamically used by the mapper.
Information needed by the Mapper are:

• Size and health of the system: number of chip/cores available for neural simulation
and their geometry

• Constraints relative to spike/current input/output (eg. neurons that send output must
be on Ethernet attached chip)

• User and System constraints that affect e.g. model geometry or allowable activity rates

Mapping constraint are associated to Populations in the DB, and they define a range of
chip/cores where the Population should be matched. This information can be set by a user
with a custom function, or by a network analysis tool as networkx.

The Mapper will first process groups that have mapping constraints trying to satisfy them,
then allocating all the non-constrained groups. If mapping constraints are inconsistent an
Exception will be raised.

Output from the Mapper is a hierarchical physical description of the entire network (which
will be in a series of tables as below). This in turn passes to an Object File generator
(which for the moment will reside on the Host but could eventually be migrated to an on-
SpiNNaker implementation) which flattens the network and generates the (flattened) actual
data binaries.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 451

Processor ID X Y P Type ID Number of Neurons Start ID
0 0 0 0 1 512 0
1 0 0 1 2 512 0
2 1 0 0 3 512 0

Projection ID Type ID
Number of
Synapses Start ID X Y

SDRAM Off-
set

0 1 256 0 0 0 0x0
1 1 256 256 0 0 0x40C
2 2 1024 0 0 0x80C
3 3 512 0 1 0 0x0

Model ID Model
1 IF_curr_exp
2 IF_curr_exp_stdp
3 IZK_curr_exp_stdp

The Mapper will link the Pre_populations table with the processor table through the asso-
ciation table map so defined:

map
Field type description

processor_id (FOREIGN KEY:
processor.id)

INTEGER ID defining a physical core in the system

group_id (FOREIGN KEY:
Pre_populations.group_id)

INTEGER ID defining the group to be mapped to the cor-
responding core

processor
Field type description

processor_id (PRIMARY KEY:
processor.id)

INTEGER ID defining a physical core in the system

x INTEGER X coordinate for the chip containing the proces-
sor

y INTEGER Y coordinate for the chip containing the proces-
sor

p INTEGER Virtual ID for the core in the chip
status TEXT Health status for the processor
is_eth BOOL Identifies a root chip if True
is_monitor BOOL Identifies a monitor processor if True

HBP_SP9_Specification 13 May 2014 (git 56b296e) 452

Implementation

Mapping constraints are defined in the constraint field in the Populations table. They can be
used to associate a Population to a specific range/value of chip id and core id.

Information in here can be written by any network analysis tool or manually defined by the
user (eg. using the function set_mapping_constraint in the pyNN.spiNNaker module).

The Mapper dynamically retrieves the available cores list from the Model Library DB and
tries to allocate groups with constraints first, then all the other groups, consuming available
processors until groups are all allocated or there is no more space to allocate the group due
to a map inconsistency.

3.3.6.5 Object File Generator

At this point the hierarchical description still contains abstract objects rather than single
neurons. The mapper organises this information is organized so that binary file generation
can be performed locally by target processor, evaluating the table produced by the mapper
core by core.

TBD: The compilation process described here will occur on the host machine for the first
version of the software, but the design ensures that it will be easily portable to
the the SpiNNaker system so that file generation can occur on-chip.

Neural data compilation for a particular core will include these steps:

• Retrieve all the Populations associated with the core

• Load any necessary model configuration files (which describe how to build complex
neural or synaptic models).

• Assemble the model files into an executable and create neural data structures in DTCM

• Build the application, linking the neural/synapse model type with extra information
needed (eg. preconfigured lookup tables for STDP) and switches (eg. for logging)

• Generating the routing table files for each chip

• Build the connectivity information in SDRAM and routing look-up tables (second level
of routing)

TBD: One way to define model configuration files for non-standard models (in PyNN) uses
Translation XML or a translation table in the DB. We envisage a separate application,
the Model Builder, that in future will allow automated generation of Translations
for new models. The Mapper links the cell_type and the translation in one single
configuration file.

The table for translating is defined as follows:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 453

cell_parameters
Field type description

id (PRIMARY KEY) INTEGER ID defining a cell parameter
model_id (FOREIGN KEY:
cell_type.id)

INTEGER ID defining the cell_type to which the parame-
ter belongs

param_name TEXT Name for the parameter
type TEXT Variable type/dimension (short, int, uint etc.)
translation TEXT Translation for the parameter (eg.

toInt(multiply(x,p1))), written in a form
that can be evaluated by the Object file
generator.

position INTEGER Position of the parameter in the compiled data
structure

For the translation field specific operators have been developed to ensure the compatibility
with all the possible type of input which may be provided (see following section). A number
of operators have been defined for the basic functions:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 454

Translation operators
Operator Description

add (a,b) The operator adds the operands a and b, if they are num-
bers, or adds each element of the list a to the correspon-
dent element of list b, if a and b are lists. If a is a number
and b is a list (or vice-versa) then a is added to each ele-
ment of the list b (or vice-versa).

subtract (a,b) The operator subtracts the operands a and b (a�b), if they
are numbers, or subtracts each element of the list b from
the correspondent element of list a (a[n]� b[n]), if a and
b are lists. If a is a number and b is a list (or vice-versa)
then the operation is performed using the same number as
one of the operands and each of the element of the list as
the second operand.

multiply (a,b) The operator multiplies the operands a and b, if they are
numbers, or multiplies each element of the list a with the
correspondent element of list b, if a and b are lists. If a is
a number and b is a list (or vice-versa) then a is multiplied
to each element of the list b (or vice-versa).

divide (a,b) The operator divides the operands a and b (a/b), if they
are numbers, or divides each element of the list a by the
correspondent element of list b (a[n]/b[n]), if a and b are
lists. If a is a number and b is a list (or vice-versa) then
the operation is performed using the same number as one
of the operands and each of the element of the list as the
second operand.

power (a,b) The operator computes the power ab, if a and b are num-
bers, or computes the power of each element of the list a
by the correspondent element of list b (a[n]b[n]), if a and
b are lists. If a is a number and b is a list (or vice-versa)
then the operation is performed using the same number as
one of the operands and each of the element of the list as
the second operand.

exponential (a) The operator computes the operation exp(a) if a is a num-
ber, or exp(a[n]) if a is a list of numbers

toInt (a) The operator returns the integer part of a, if it is a number,
or, if a is a list, it returns the integer part of each element
of the list

3.3.6.6 Neural Data Structure generation

The neural data structure writer cycles all mapped processor and generates the data struc-
tures for each of them. It outputs a different file for each core, containing all the data

HBP_SP9_Specification 13 May 2014 (git 56b296e) 455

structures for the neuron modelled by that processor. Neural data structures are compiled
as it follows:

header (1x fi le)
� uint runtime
� unit max_synaptic_row_length
� unit max_delay
� uint num_pops
� uint total_neurons
� uint size_neuron_data
� uint reserved2 (NULL)
� uint reserved3 (NULL)

population metadata (1x population)
� uint pop_id
� uint flags
� uint pop_size (number of neurons in the population)
� uint size_of_neuron (size of a single neuron)
� uint reserved1 (NULL)
� uint reserved2 (NULL)
� uint reserved3 (NULL)

neural structures (1x neuron)
... l i s t of parameters ...

The neural structures are computed by retrieving the translation from the cell_params
table in the Model Library. This table also contains the position of the parameter in the
neural structure and its size. Parameters can be defined as single values, random distribution
or arrays explicitly defining the parameter value for each neuron.

3.3.6.7 Automatic Run Script generation

Pacman generates an automatic run script that is used to load the data in the right chip/-
core/memory location. Doing so, it also selects which executables are to be loaded in each
of the cores. In particular, it may need to select executables featuring plasticity behaviour
to be loaded in specific cores. To be able to discern between executables with or without
plasticity, different file names have been used, with this categorization:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 456

Executable names
Name Description

lif(.aplx) Binary featuring leaky integrate-and-fire neuron without
learning capabilities

lif_stdp(.aplx) Binary featuring leaky integrate-and-fire neuron and stan-
dard STDP rule

lif_stdp_sp(.aplx) Binary featuring leaky integrate-and-fire neuron and
spike-pair STDP rule

lif_cond(.aplx) Binary featuring leaky integrate-and-fire conductance-
based neuron without learning capabilities

lif_cond_stdp(.aplx) Binary featuring leaky integrate-and-fire conductance-
based neuron and standard STDP rule

lif_cond_stdp_sp(.aplx) Binary featuring leaky integrate-and-fire conductance-
based neuron and spike-pair STDP rule

izhikevich(.aplx) Binary featuring Izhikevich neuron without learning ca-
pabilities

izhikevich_stdp(.aplx) Binary featuring Izhikevich neuron and standard STDP rule
izhikevich_stdp_sp(.aplx) Binary featuring Izhikevich neuron and spike-pair STDP

rule
izhikevich_tts(.aplx) Binary featuring Izhikevich neuron and STDP with Time-

To-Spike forecast rule

The name of the executables (without the ”.aplx“ extension) is also the name of the target
of the makefile to generate the correspondent binary file.

3.3.6.8 MLP PACMAN

A modification of the original PACMAN design handles the configuration of MLP networks from
Lens scripts. The modification retains support for spiking models while adding functionality
for the MLP. This requires some architectural changes.

Design Considerations

1) Conformity with PACMAN design principles. In the main, this means instantiation based
on a Population/Projection model, not flattening the description internally until the
final data-file generation step, and using the PACMAN database to hold the internal
representation of the network. It also means using plug-in modules to implement
necessary model-specific functionality that could not be placed in the main PACMAN
tools without sacrificing commonality.

2) Separation of the basic "machinery" from the model-specific data. The code that
generates the data structures and mapping is kept independent from the model data
itself. As much as possible, functions and interfaces are designed to take parameters
which specify the type of model being instantiated and its data structures.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 457

3) Avoidance of methods that embed global knowledge about the model into the code.
It is known, in some cases, how the MLP, or for that matter spiking networks, will be
implemented in terms of the details of the mapping. This could either be coded im-
plicitly, in the generation algorithms, or explicitly, through parameter settings. Where
possible the MLP PACMAN extension uses the latter method (sometimes using helper
functions that themselves are parameters.)

4) Maximal re-use of existing PACMAN facilities. The implementation uses existing PACMAN
code unless a change is absolutely necessary for some form of support.

Revised schema

In order to provide the structures necessary to map and route the MLP model, and also in
order to make the database more coherent, the MLP PACMAN implementation extends the
schema with several new tables:

scenarios Added to permit a representation of Lens ExampleSets. A scenario is considered
an ExampleSet; this feature could also be used in spiking models to specify a particular
group of stimuli representing a complete real-time environment

stimuli Added to permit a representation of Lens Examples. A single example is a stimulus;
likewise in spiking models this could be used to represent a multiple-input stimulus
with common temporal parameters.

routes Represents a complete path from a source processor to a target processor. This is
required in Lens because the same population may have multiple routes with different
keys (e.g. for forward/backprop)

routing_entries Represents a single routing entry in a given chip. Both this and the routes
table makes the PACMAN system more coherent, in that the Router now writes to the
DB rather than only to an internal variable. (Thus after routing the routes can be
inspected, queried, etc, and changes could potentially be made) Various other tables
have had fields added or removed to support the MLP. Fig 3.3.12 shows the updated
schema.

The components

The PACMAN MLP extension consists of the following components (fig. 3.3.13):

1) Front-end translator: An entirely new component that implements the interface to
Lens. It is written in TCL.

2) MLP preprocessor plug-in: A new PACMAN component that transforms the input model
in the database, prior to its being passed to the splitter. Its main function is to split
groups into Weight, Sum, and Threshold populations.

3) pacman_objs: A new, object-oriented interface to PACMAN. This permits object-style
interface to the database.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 458

Figure 3.3.12: Updated PACMAN database schema for Lens support

HBP_SP9_Specification 13 May 2014 (git 56b296e) 459

4) Splitter: An existing PACMAN component. The Splitter has been slightly modified to
handle arbitrary population splits.

5) MLP premapper plugin: A new PACMAN component that performs a preprocess prior to
mapping, to constrain locations of processors.

6) Mapper: An existing PACMAN component. The Mapper has been modified to support
relative as well as absolute constraints, e.g. it is possible to specify that a given
population be mapped onto a core on the same chip as another, or at a fixed chip
displacement, rather than requiring an absolute chip address.

7) Router: An existing PACMAN component, heavily modified. The original Router was part
of the Binary File Generator and strongly relied on an expected population mapping for
spiking networks. The new version dispenses with this coupling, allows for arbitrary
key/mask mappings to population numbers, and extends the database schema to store
routing information.

8) Binary File Generator: An existing PACMAN component, completely rewritten. The
new Binary File Generator takes a template which specifies how to build a given data
binary from fields in the database, and then builds the necessary binary. Although the
Router has been moved into a separate module, the generator continues to handle the
generation of the physical routing tables.

Front-end translator

This component contains a parser for Lens scripts and a tcl interceptor for the PACMAN
commands. The parser - a pair of auxiliary utilities, LensScan.tcl and LensParse.tcl generated
by Ylex and Yeti respecfively, accepts the fully-substituted original command as pre-processed
by tcl. The interceptor - MLP_PACMAN.tcl passes commands to the translator after they have
been fully substituted by tcl. Only PACMAN-relevant commands are passed to the translator;
the remainder are passed back to the containing namespace (either Lens or the main tcl
namespace, depending upon the execution context). MLP_PACMAN.tcl contains tcl functions
for the commands returned by the parser which then interface to the PACMAN database.
The following commands are currently supported. (Also see Lens documentation for more on
command syntax)

HBP_SP9_Specification 13 May 2014 (git 56b296e) 460

Figure 3.3.13: PACMAN Architecture including MLP extensions

HBP_SP9_Specification 13 May 2014 (git 56b296e) 461

Front-end translator
Command args (required/

optional)
description

addNet name intervals ticks
type groupList

Add a network. A groupList per Lens may in-
stantiate groups as well.

addGroup name size groupType Add a group (population). groupTypes per Lens
specify an extensive range of possible types.

setTime intervals ticks history
dtfixed

Sets Lens time parameters

connectGroups sources intermediates
targets connectortype
strength mean range
linktype bidirectional

Add a connection (projection). Following Lens
standards a linked chain may be created in
one command between sources, any number of
intervening populations in intermediates, and
final targets.

randWeights group unit mean range
type

Initialises weight randomisations. Parameters
allow various subsets of weights to be ran-
domised with various parameters

train num_updates report
algorithm setOnly

Configures training. If setOnly is applied the
network will NOT be set to run automatically
after being built.

test num_examples noreset Configures testing (runs the test set). The re-
turn option is not supported.

seed seed Seeds random number generators.
setObject name value Sets any Lens-configurable object. Supports

the various flavours of Lens object references.

MLP Preprocessor

This is a PACMAN preprocessor for MLP networks, that transforms the top-level Lens rep-
resentation into an internal representation suitable for splitting and mapping. It performs
2 main tasks: 1) splitting populations into weight, sum and threshold subpopulations, cre-
ating the necessary intermediate projections in both the forward and backward direction,
and 2) computing source and target populations for the Splitter when projections are split.
The preprocessor creates one-to-one connections in the forward and backward direction be-
tween the weight, sum, and threshold subpopulations in a population, creates a backward
connection from weights to sums of the population’s source groups (the sources of its for-
ward projections) in the backpropagation direction, and generates forward and backward
sync connections from weights to thresholds (fig. 3.3.14). No weight part population in the
forward direction, and thus no sum population in the backward, will be assigned a subrange
of the thresholds that corresponds to multiple populations. (It is possible, for example, for
a given population to be connected to several populations in previous layers. This would
result in the created Weight population having several different projections. However, the
preprocessor ensures that the split will create part populations whose projections are asso-

HBP_SP9_Specification 13 May 2014 (git 56b296e) 462

ciated with a specific population at both the presynaptic and postsynaptic terminals.) The
preprocessor contains the following externally-visible functions:

MLP preprocessor
Command args (required/

optional)
description

split_pop_function None Reads the database and splits popula-
tions into Weight, Sum, and Threshold
populations.

set_wt_max_units population Compute the maximum dimensionality
of a Weight population. The function
generates square matrices of forward
and backward indices.

set_sum_max_units population Compute the maximum size of a Sum
population. For most cases this will be
large - considerably larger than the di-
mensionality of any other population.

set_threshold_max_units population Compute the maximum size of a
Threshold population.

get_post_wt_part_pops db projection
presynaptic
populations

Identify a subset of the eligible post-
synaptic part_populations to be used
to connect to the available presynap-
tic populations of a given projection.
This function computes the backpropa-
gation indices for weight units as well
as selecting the weight part popula-
tions to use for a given projection.

get_pre_input_subrange db projection
postsynaptic
population

Computes the source part_populations
for a given target part_population in a
projection.

The MLP preprocessor splits groups into Weight, Sum, and Threshold populations. It then
expands the projections into forward and backward projections, adding sync projections as
well. When the Splitter divides this pre-processed network, it will ensure that any given
part_population projects to only one given associated part_population in any direction

pacman_objs

PACMAN_objs.py adds a standard object interface to the SQLite db, so that the major tables,
queries, etc. can be manipulated as objects with defined access and modification methods.
It contains the following objects:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 463

Figure 3.3.14: Mapping of the MLP preprocessor

HBP_SP9_Specification 13 May 2014 (git 56b296e) 464

pacman_objs
Object initialiser args

(required/ optional/
**multiple args)

description

_db path db_file Top-level object to represent a database. Ini-
tialises basic data access using SQLite.

db_obj db id **fields A single object, corresponding to a single query
or table row. A db_obj can accept an arbitrary
field specification for the row.

db_query db rows qclass
expression **args

A query view, essentially a list of db_objs with
usual iterator and access protocols. qclass
gives the class of the row object. expres-
sion identifies the query, which can either be
a function (e.g. standard functions in dao.py)
or a literal SQL expression. args accepts any
number of parameters for expression. Inherits
from _db.

<table object> db id <field list> Each PACMAN table has a convenience object
by its own name. It takes initialisation parame-
ters which are the fields of the object. Inherits
from db_obj.

db_obj supports the following methods:

db_obj
Method args (required/

optional/ **multiple args)
description

copy obj Create a copy of the object. If obj is specified, the
function will copy the specified object rather than
the instance referenced. Typically the obj argument
would only be specified if this was being called as
an unbound method.

insert obj Inserts the object into the database. The obj argu-
ment, here as in other functions, operates similarly
to that in the copy method.

delete None Removes the object from the database.
update obj Updates the fields in the database object. The func-

tion assumes that the current values of the object
specify the update values.

get id Retrieve the object from the database whose id is
given. Usually this will be called as an unbound
method.

and db_query supports the following methods:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 465

db_query
Method args (required/

optional/ **multiple args)
description

append obj Merges two db_queries, creating a joint list. The
object types must match.

insert query Runs a bulk-update insert query. Inserts all the rows
specified by the insert query into the database. If
no query is specified the function inserts all the rows
present in the current query instance.

get qclass expression **args Runs the query specified by expression with param-
eters args in order to generate rows, with class
qclass. This is the main method of db_query

Splitter

The Splitter reuses, as much as possible, the existing Splitter from the first PACMAN version.
The major change is the addition of a case to test for split sources and split targets in
projections, so that e.g. weight part populations, which must be associated with a specific
source population as well as target population, are properly split. The Splitter detects these
restrictions in the constraints field of the Populations table.

MLP Premapper

MLP_premap is a simple PACMAN plugin, that allows for chip-relative constraints. This is
necessary for Weight and Sum part_populations, which need to be placed on the same chip,
within a population, but which chip it is does not need to be specified. The plugin extends
the constraint syntax with a ’rel’ dictionary entry that permits the chip/core values to be
specified by population id rather than by physical core location.

Mapper

Like the Splitter, the Mapper reuses as much as possible extant PACMAN code. Note that
in the MLP implementation at present, there is no Grouper; one might be implemented at
a later date to collect weight part populations with contiguous indices in both directions,
and likewise Sum units, but for the moment it was felt this is an unnecessary refinement
applicable only for certain probably fairly exotic situations. The obvious change in the
Mapper is the addition of a test for relative constraints, with appropriate mapping logic. It
will be noted that such a modification is quite general and not limited to MLP-style networks;
any network may contain a relative chip constraint which the Mapper can then handle. As
implemented, the Mapper handles absolute (chip-specific) constraints first, then relative
constraints, then any unconstrained Populations and Projections.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 466

Router

Binary File Generator

This consists of 2 main components, the Data Structure Creator and the ybug File Writer. The
ybug File Writer follows the pattern of reuse of existing components. The Data Structure Cre-
ator is a completely rewritten component. A general object interface, binary_file_objs.py,
provides a model-independent engine for the generation of binary files. This reads a config-
uration file that provides the data generation specification for a given model - in this case
for the MLP. Each specification may have up to 5 sections: model_global, chip_common,
core_common, element_specific, and component_specific, each of which gives the specifi-
cation for data blocks at the indicated scope. It is expected that element_specific structures
will be laid out in arrays within a core’s DTCM, while component_specific structures will
be arrays of structures within SDRAM. The specification file should also provide a path to
a function file that contains the functions needed to generate a given data object from a
given series of PACMAN database rows. data_structure_creator itself contains the generator
functions for each of the sections (e.g. gen_chip_common()) that read the specification file,
interrogate the database, and then generate the packed data structures.

3.3.7 Coding guidelines

SpiNNaker software is written in C, ARM assembly and Python. Style guidelines are suggested
here to help make code easily readable and therefore, hopefully, more easily maintainable.
Except where noted these guidelines are soft and should be broken where it is sensible to do
so, especially where the reason given for each style point does not apply.

3.3.7.1 All languages

Comments: A Robodoc comment (see section 3.3.8) should be written documenting the
purpose of each file and function. Further comments within functions may be useful to
describe certain complex operations. Comments must be kept up to date.

Identifiers: File, function and variable name should be written in lower case with words
separated by underscores to make it easy to recall or guess items in the namespace.
Descriptive (potentially verbose) identifiers should be used to make their purpose clear.

Indentation: Code should be indented with 4 spaces per indentation level. Tabs and spaces
must never be mixed as this quickly makes code completely unreadable when viewed
in different editors.

Line length: TODO discuss...?

3.3.7.2 C

Consistency: Styles for C-like languages vary widely so consistency within a function, file
and project (in that order of importance) may be the best approach to maintaining

HBP_SP9_Specification 13 May 2014 (git 56b296e) 467

readability. When writing or modifying code, read a little of the existing program to
get an idea of the style before beginning.

Compilation: Makefile rules should include both the .c and all #included .h files for each
target. Also, .h files must not #include other .h files. This ensures correct recom-
pilation behaviour on calling make.

Example: An example of code in the Application Programming Interface is provided:
uint dma_transfer(uint tag, void *system_address,

void *tcm_address, uint direction, uint length)
{

uint cpsr = irq_disable();
uint id = 0;

if((dma_queue.end + 1) % DMA_QUEUE_SIZE != dma_queue.start)
{

id = dma_id++;

dma_queue.queue[dma_queue.end].id = id;
dma_queue.queue[dma_queue.end].tag = tag;
...

}

...
}

3.3.7.3 ARM assembly

Comments: Assembly code should be commented in detail, in some cases with one comment
per line in addition to the required Robodoc comments to help readers follow the code.
It can also be useful to regularly summarise the content of each working register.

Commenting-out: When commenting out lines of code, do so with a comment characters
immediately preceding the instruction rather than at the start of the line. For example:

;;This is clear:
ADD r0, r1, r2
;;SUB r3, r4, r5
MUL r0, r1, r2

;; This isn’t clear:
ADD r0, r1, r2

;; SUB r3, r4, r5
MUL r0, r1, r2

Please use two semicolons for Robodoc’s sake.

Indentation: Two indentations before opcodes leaves room for labels. One indentation
between opcodes and operands leaves enough room for long instructions. It is often
easier to read the code when opcodes and operands line up. An example:

label ADD r0, r1, r2
STMFDNE sp!, {r4-r9}

HBP_SP9_Specification 13 May 2014 (git 56b296e) 468

MULEQ r0, r1, r2

3.3.7.4 Python

General: Code should adhere to the Python style guide which is intended to make the
language consistently readable. Note that some style (such as indentation practice)
is enforced by the interpreter but the guide is otherwise flexible. See http://www.
python.org/dev/peps/pep-0008/.

3.3.8 Documentation guidelines

Every file should include an information header formatted for Robodoc. Moreover, where
appropriate, each function, class, or section of code should be documented using a template
that Robodoc can convert in documentation.

Each programming language has its own format for comments so here we define an header
format different for each programming language used in this project. However in all the
documentation headers there are several keywords in use with the syntax $keywords$ (words
between $ signs). These keywords are substituted by the svn repository with the appropriate
value.

3.3.8.1 C / C++

The following templates are for C/C++ source code and header files

File header documentation template

/* ***a* filename.extension/filename
*
* SUMMARY
* abstract
*
* AUTHOR
* author � email
*
* DETAILS
* Created on : creation date
* Version : $Revision: 1226 $
* Last modified on : $Date: 2011�07�01 11:27:06 +0100 (Fri , 01 Jul 2011) $
* Last modified by : $Author: plana $
* $Id: docguide.tex 1226 2011�07�01 10:27:06Z plana $
* $HeadURL: https://solem.cs.man.ac.uk/svn/spinnSoft_design_doc/docguide.tex $
*
* COPYRIGHT
* Copyright (c) The University of Manchester, 2010�2011. All rights reserved.
* SpiNNaker Project
* Advanced Processor Technologies Group
* School of Computer Science
*
* * * * * * */

The substitutions operated by the svn repository are of the type described in the table:

HBP_SP9_Specification 13 May 2014 (git 56b296e) 469

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

$Revision$ $Revision: 1097 $
$Date$ $Date: 2011-06-02 15:37:34 +0100 (Thu, 02 Jun 2011) $
$Author$ $Author: plana $
Id $Id: docguide.tex 1097 2011-06-02 14:37:34Z plana $
$HeadURL$ $HeadURL: file:///home/amu4/spinnaker/svn/spinnSoft_design_doc/docguide.tex $

Function documentation template

The following header should be used to describe each of the C/C++ functions:
/* *** f * filename/functionName
*
* SUMMARY
* abstract
*
* SYNOPSIS
* function prototype
*
* INPUTS
* parameter: description
*
* OUTPUTS
* value
*
* SOURCE
*/

FUNCTION CODE

/*
* * * * * * */

“FUNCTION CODE” indicates where the function should be written. Doing so, the code will
appear also in the documentation generated automatically by Robodoc, with the links to
other functions.

Structure documentation template

/* *** s * filename/structureName
*
* SUMMARY
* abstract
*
* FIELDS
* variable: description
*
* SOURCE
*/

STRUCTURE CODE

/*
* * * * * * */

“STRUCTURE CODE” indicates where the function should be written.

3.3.8.2 Assembly language

The following templates are for assembly language source code files

HBP_SP9_Specification 13 May 2014 (git 56b296e) 470

File header documentation template

; ; * * * *a* filename.extension/filename
;;*
;;* SUMMARY
;;* abstract
;;*
;;* AUTHOR
;;* author � email
;;*
;;* DETAILS
;;* Created on : creation date
;;* Version : $Revision: 1226 $
;;* Last modified on : $Date: 2011�07�01 11:27:06 +0100 (Fri , 01 Jul 2011) $
;;* Last modified by : $Author: plana $
;;* $Id: docguide.tex 1226 2011�07�01 10:27:06Z plana $
;;* $HeadURL: https://solem.cs.man.ac.uk/svn/spinnSoft_design_doc/docguide.tex $
;;*
;;* COPYRIGHT
;;* Copyright (c) The University of Manchester, 2010�2011. All rights reserved.
;;* SpiNNaker Project
;;* Advanced Processor Technologies Group
;;* School of Computer Science
;;*
; ; * * * * * * *

The substitutions operated by the svn repository are of the type described in the table:

$Revision$ $Revision: 1097 $
$Date$ $Date: 2011-06-02 15:37:34 +0100 (Thu, 02 Jun 2011) $
$Author$ $Author: plana $
Id $Id: docguide.tex 1097 2011-06-02 14:37:34Z plana $
$HeadURL$ $HeadURL: file:///home/amu4/spinnaker/svn/spinnSoft_design_doc/docguide.tex $

Function documentation template

The following header should be used to describe each of the assembler routines:

;; * * * * f * filename.extension/functionName
;;*
;;* SUMMARY
;;* abstract
;;*
;;* SYNOPSIS
;;* function prototype
;;*
;;* INPUTS
;;* register: description
;;*
;;* OUTPUTS
;;* register: value
;;*
;;* SOURCE
;;*

FUNCTION CODE

;;*
; ; * * * * * * *

HBP_SP9_Specification 13 May 2014 (git 56b296e) 471

“FUNCTION CODE” indicates where the function should be written. Doing so, the code
will appear also in the documentation generated automatically by Robodoc, with the links to
other functions.

3.3.8.3 Robodoc configuration file

Robodoc is an automated documentation generator. It needs some information on how
to interpret appropiately the source files to extract the relevant documentation. These
information are passed to Robodoc through the configuration file “robodoc.rc” which must
reside in the root folder of the project. The output will be stored in the “doc” folder. The
following configuration file allows Robodoc to interpret both the C/C++ files and assembler
files. However, since there is a usage clash for semicolon in C/C++ and assembler source
code, assembler code must use for comments a double semicolon “;;” to start.
#robodoc.rc
#
items:

NAME
FUNCTION
SUMMARY
SYNOPSIS
INPUTS
OUTPUTS
AUTHOR
COPYRIGHT
SOURCE
SEE ALSO
NOTES
TODO

item order:
NAME
FUNCTION
SUMMARY
SYNOPSIS
INPUTS
OUTPUTS
AUTHOR
COPYRIGHT
SOURCE
SEE ALSO
NOTES
TODO

source items:
SOURCE

options:
��src ./
��doc ./doc
��html
��multidoc
��index
��tabsize 4
��toc
��syntaxcolors
��nogeneratedwith
��documenttitle "SpiNNaker � documentation"
��source_line_numbers
��nosort

headertypes:
a "Summary" robo_summary

HBP_SP9_Specification 13 May 2014 (git 56b296e) 472

ignore fi les :
.svn
*. txt
*~

accept fi les :
*.c
*.h
*. s

header markers:
/****
; ; * * * *

remark markers:
*
;;*

end markers:

; ; * * * *

remark begin markers:
/*

remark end markers:
*/

source line comments:
//
;;

keywords:
i f
else
do
while
for
return
void
unsigned
short
int
uint
const
char
#define
#if
#elif
#endif

HBP_SP9_Specification 13 May 2014 (git 56b296e) 473

HBP_SP9_Specification 13 May 2014 (git 56b296e) 474

Part 4

Benchmarks

HBP_SP9_Specification 13 May 2014 (git 56b296e) 475

HBP_SP9_Specification 13 May 2014 (git 56b296e) 476

4.1 Overall goals

Benchmarking of neuromorphic hardware puts numbers on performance to allow measuring
progress and comparing different designs. This is useful both for the developers of the
Neuromorphic Computing Platform and for potential users.

Specifically, benchmarks define a set of reference tasks aiming at a direct comparison
of different neuromorphic (and non-neuromorphic) hardware systems. The benchmarks are
coming with a set of quality measures. It is left to to user to decide whether specific measures
are relevant for the particular application in mind.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 477

HBP_SP9_Specification 13 May 2014 (git 56b296e) 478

4.2 Quality criteria for neuromorphic
benchmark tests

Once benchmark tasks are defined, it is essential to have quality criteria that can be used
to evaluate the performance. In traditional computing, the number of floating point opera-
tions per second (FLOPS) in performing a standard set of tasks was established as a quality
criterium for high performance computers. This well know benchmarking procedure led to
the establishment of the TOP500 list of supercomputers which, although often criticized, is
recognized by computer manufacturers and their customers. During recent years, energy
consumption of computing became a major concern. This led to the establishment of of the
TOP GREEN500 list which uses a FLOPS per Watt (or FLOP per Joule) metric.

The following list of quality criteria are proposed for neuromorphic systems:

• Energie usage for a fundamental operation;

• Computational resource usage (neurons, synapses, transistors;

• Silicon area or volume;

• Execution time for specific task

• Number or events/ spikes processed per second

• Time configure / upload a network

• Precision of the solution compared to a software code

• Trial-to-trial reproducibility of the result

• Robustness against hardware mismatch

The quality criteria need to be related to benchmark tasks.

4.2.1 What units should be benchmarked?

With regard to neuromorphic hardware, it was realized that benchmarking of neuromor-
phic circuits needs to target different components and levels, from individual neurons and
synapses, to simple and more complex networks and multi-network architectures.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 479

The most ambitious benchmarking scenarios approach definitions of real scientific chal-
lenges like the ten listed by Stanislas Dehaene during his plenary talk at the HBP kickoff
meeting.

The numbers that come out from the benchmarking can concern:

• how biomimetic components are (“neuronicity”, “synapticity”);

• how brain-like its network architecture is;

• what functions it can perform;

• and at what level of performance in terms of solution of the task, speed, and energy
expenditure.

Also we could compare state variables’ time courses with software simulation, also for
performance level, for instance number of correctly retrieved patterns in a simple storage
capacity measurement, the number of correctly classified items in a classification task, or
the progress of learning in a reinforcement type of task.

It is important to match the model properties to what it will be used for. In many cases a
simple or reduced model may be sufficient to replicate biological and dynamic phenomena
as well as task performance. But sometimes there is a need for a high degree of detail in the
neuron and synapse models to capture phenomena seed in experiments. Thus, a hardware
that is unable to reproduce the latter might still be very useful for other purposes. So it is not
at all necessary to “pass” all the benchmarks discussed below. The benchmark suite should
rather be seen as a way to quantitatively characterize the capabilities of the hardware.

The method will to a large extent be to compare output from hardware runs with the cor-
responding simulations using software. To the extent that the hardware typically implements
some kind of mathematical neuron and synapse models, this is quite straight forward. On
the other hand, digital hardware implementations may use lower precision computation and
analog hardware has intrinsic noise which may or may not be of a similar nature as in the
biological system. Therefore, it may occasionally be motivated to compare the hardware
directly with data from the relevant biological components and systems.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 480

4.3 Use cases

4.3.1 Tracking the performance of a neuromorphic computing
system over time

Primary actor Alice, a neuromorphic system developer.

Description Over time, as new versions of the neuromorphic hardware and associated soft-
ware are developed, Alice wishes to determine how the new versions affect the performance
of the system, according to several measures, including throughput (how many jobs of a given
complexity can be run on the system in a given time), power consumption, and accuracy (how
closely the output of the neuromorphic systems matches the expected behaviour.)

Success scenario

1) Alice selects a number of tasks from a library of benchmark tasks.

2) For each task, she runs a job on the Neuromorphic Computing Platform, with careful
instrumentation of the time required for different stages and of any discrepancies or
errors produced.

3) She compares the numerical measures she obtains to previous runs of the same bench-
marks.

4.3.2 Determining whether the Neuromorphic Computing Platform
is suitable for a specific task

Primary actor Boris, a computational neuroscientist.

Description Boris has a model that runs on the HPC Platform, and which he would like
to run an adapted version of the model on the Neuromorphic Computing Platform. Before
taking the time to adapt the model, Boris wants to be sure that the adaptation is likely to be
successful.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 481

Success scenario

1) Boris searches the library of benchmark tasks to find the benchmarks that have features
in common with his model.

2) By examining the records of previous runs of these benchmarks, he determines that
the expected discrepancies between hardware and numerical simulations are unlikely
to affect the qualitative behaviour of his model.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 482

4.4 Functional requirements

1) The benchmark library/database shall contain benchmarks to examine:

a) the behaviour of individual neurons;

b) post-synaptic responses of individual synapses;

c) effects of tranmission delays, and discrepancies between the nominal (requested)
and actual distribution of delays;

d) the accuracy and correctness of synaptic plasticity implementations;

e) microcircuit behaviour;

f) the capabilities of the system as a whole.

2) Each benchmark task shall produce one or more numerical measures.

3) Such measures may include:

a) how closely the neuromorphic system matches the results of numerical simulations;

b) how well the neuromorphic system performs a certain computational task;

c) how long the neuromorphic system takes to complete a certain task;

d) how closely a given model can be mapped to the neuromorphic circuits;

e) how large is the impact of discrepancies between numerical and neuromorphic
models;

f) the energy expenditure required to complete a certain task.

4) except where physical access to the hardware is absolutely required, all benchmarks
shall be automatable, able to run without direct user intervention.

5) the results of benchmark runs shall be stored in a database so as to allow comparisons
across benchmark tasks and across time.

6) for each run of the benchmarks, the exact state of the system (software and hardware
versions) shall be recorded.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 483

HBP_SP9_Specification 13 May 2014 (git 56b296e) 484

4.5 Architectural overview

• In the first stage of benchmark development, each benchmark will be implemented as
a self-contained Python script, using either the PyNN API or one of the lower-level,
hardware-specific APIs as appropriate.

• In later stages of development, it may be desirable to implement a framework to make
it easier to implement new benchmarks by taking care of common functionality and
eliminating boilerplate code.

• Each benchmark script should be tracked using version control.

• Each benchmark script should be registered with a central registry. This could be as
simple as a version-controlled text file containing the URL of each benchmark script,
or could be a more full-featured system making use of a relational database.

• All benchmarks should write the numerical output measures to file using a standardized
format (e.g. JSON, XML).

• The numerical output measures could also be stored in a relational database, allowing
faster and more sophisticated queries.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 485

HBP_SP9_Specification 13 May 2014 (git 56b296e) 486

Part 5

Following the platform building: Key
Performance Indicators and time plans

HBP_SP9_Specification 13 May 2014 (git 56b296e) 487

HBP_SP9_Specification 13 May 2014 (git 56b296e) 488

5.1 KPIs and time plans

5.1.1 KPIs of the NMPM

5.1.1.1 Wafer Production

Value Status values Target

Wafers

ordered at UMC
received from UMC
post-processing started
post-processing finished
mounted into Wafer Module, contact tests finished M18: 20 mntd

operational (complete defect map available) M30: 20

5.1.1.2 Printed Circuit Board Production

Explanation of status values that are used for PCB KPIs:

• Ordered: A prototype has been tested and the design has been signed off for production.
A manufacturer has been selected and an order for fully assembled PCBs has been placed
there.

• Manufactured: PCBs have been produced, assembled and received from the manufac-
turer. Bare PCBs have passed electrical tests and are assumed error-free. Assembled
PCBs have passed visual inspection by the manufacturer.

• Tested: Functional tests of the assembled PCB have been completed and it is ready for
usage in NM-PM1.

Wafer Module Main PCB Production

Due to its complexity, the MainPCB will be assembled by a company that is different from
the PCB manufacturer. This gives an additional status value.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 489

Value Status values Target

MainPCBs

bare PCBs ordered
bare PCBs manufactured
PCBs assembled
tested M18: 20 tested

Monitoring and Control PCB Production

Value Status values Target

Cure boards
ordered
manufactured
tested M18: 160 tested

FPGA Communication PCB Production

Value Status values Target

FCPs
ordered
manufactured
tested M18: 960 tested

PowerIt Main Power Supply PCB Production

Value Status values Target

PowerIts
ordered
manufactured
tested M18: 20 tested

Auxiliary Power Supply PCB Production

Value Status values Target

AuxPwrs
ordered
manufactured
tested M18: 40 tested

Analog Readout Components

Value Status values Target

Flyspis
ordered
manufactured
tested M18: 60 tested

HBP_SP9_Specification 13 May 2014 (git 56b296e) 490

Value Status values Target

AnaFPs
ordered
manufactured
tested M18: 60 tested

Value Status values Target

AnaRMs tested and mounted into NM-PM1 M18: 60

5.1.1.3 Wafer Module Production

Mechanical components

Value Status values Target

Mech. components for
one Wafer Module

material delivered M18: 20
electrosilvered and
coated

manufactured
electrosilvered and coated

Wafer Modules

Value Status values Target

Wafer Modules

all components delivered
assembled
integrated into server racks M18: 20 integrated

operational M30: 20

5.1.1.4 Software and Hardware Usage KPIs

Value Range Target

Code coverage of hardware abstraction layers 0–100 % M18: 100 %
Code coverage of calibration toolchain 0–100 % M30: 100 %
Code coverage of frontend and mapping layer 0–100 % M30: 100 %
Func. coverage of hardware abstraction layers 0–100 % M18: 100 %
Func. coverage of calibration toolchain 0–100 % M30: 100 %
Func. coverage of frontend and mapping layer 0–100 % M30: 100 %
Number of defect maps available (1/wafer) 0–20 M30: 20
Wafers available for PyNN users 0–100 % M30: 70 %
Number of calibration routines for hardware model parame-
ters

0–15 M30: 15

Number of neural network experiments exec’d Count

HBP_SP9_Specification 13 May 2014 (git 56b296e) 491

5.1.2 KPIs of the NMMC

5.1.2.1 Cabinet Assembly

Value Status values Target

Cabinet (47U)

ordered
received
assembled
tested
operational M18: 5 assembled

5.1.2.2 Sub-rack assembly

Value Status values Target

6U sub-rack

ordered
received
assembled
tested
operational M18: 25 assembled

Value Status values Target

Card guides

ordered
received
assembled
tested
operational M18: 1200 assembled

Value Status values Target

Backplane PCB

ordered
received
assembled
tested
operational M18: 75 operational

Value Status values Target

Spin5 PCB

ordered
received
assembled
tested
operational M18: 600 operational

HBP_SP9_Specification 13 May 2014 (git 56b296e) 492

Value Status values Target

SpiNNaker chip

ordered
received
assembled
tested M18: 28800 tested
operational M30: 28800 operational

Value Status values Target

SATA cables

ordered
received
assembled
tested
operational M18: 1800 operational

Value Status values Target

Mains cables

ordered
received
assembled
tested
operational M18: 100 operational

5.1.2.3 Network

Value Status values Target

Switch – Netgear FS726T

ordered
received
assembled
tested
operational M18: 25 operational

Value Status values Target

Network cables

ordered
received
assembled
tested
operational M18: 625 operational

HBP_SP9_Specification 13 May 2014 (git 56b296e) 493

5.1.2.4 Fan Tray Assembly

Value Status values Target

Fan tray metalwork

ordered
received
assembled
tested
operational M18: 25 operational

Value Status values Target

120mm fan

ordered
received
assembled
tested
operational M18: 150 operational

Value Status values Target

Display module

ordered
received
assembled
tested
operational M18: 25 operational

5.1.2.5 Power Supply Assembly

Value Status values Target

Power supply unit (650W)

ordered
received
assembled
tested
operational M18: 75 operational

Value Status values Target

Power supply panel

ordered
received
assembled
tested
operational M18: 25 operational

5.1.3 KPIs of the common software part

The UI function blocks are described in chapter 1.7 (page 45). The implementation of the
defined blocks will be followed as KPI.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 494

5.1.4 KPIs of the benchmark part

• M12: An initial suite of 4 benchmarks fully specified and defined as Python scripts, one
for each level of neuron, synapse, microcircuit, and network. Initial tests of these on
NM-PM1 (verified via ESS) implemented in PyNN and on NM-MC1 performed.

• M18: 2x4 benchmarks of each type is specified as PyNN scripts and entered into the
repository. 3 complete benchmark runnable on NM-PM1 (verified via ESS) implemented
in PyNN and on NM-MC1. 1 benchmark successfully run on NM-PM1 and 2 different on
NM-MC1, with results entered into the benchmark database.

• M30: 2x3 benchmarks successfully run on NM-PM1 (verified via ESS) and on NM-MC1.
The repeated 3 used to observe and verify improvements from M18.

Targets for benchmarks for Neuron | Synapse | Microcircuit | Network:

Value Status values Target

Benchmark

fully specified and defined in PyNN M18: 2 each
initial tests on NM-PM1 (ESS) and NM-MC1 performed M12: 1 each
complete bench. runnable on NM-PM1 (ESS) + NM-MC1 M18: 3
benchmark successfully run on NM-PM1 M18: 1, M30: 3
benchmark successfully run on NM-MC1 M18: 2, M30: 3

HBP_SP9_Specification 13 May 2014 (git 56b296e) 495

HBP_SP9_Specification 13 May 2014 (git 56b296e) 496

Bibliography

[1] IEEE Standard Test Access Port and Boundary-Scan Architecture. IEEE Std 1149.1-2001,
pages i–200, 2001.

[2] Maxim DS18B20 Datasheet, 2008.

[3] Open Core Protocol Specification 2.2, 2008.

[4] Texas Instruments PCA9544A datasheet, 2008.

[5] Vishay Siliconix Si7234DP datasheet, 2008.

[6] Vishay Siliconix SiA912DJ datasheet, 2008.

[7] Vishay Siliconix Si5903DC datasheet, 2010.

[8] Microchip dsPIC33FJ128GP710A datasheet, 2012.

[9] Intel NUC. http://www.intel.com/content/www/us/en/nuc/overview.html,
2014.

[10] Raspberry Pi. http://www.raspberrypi.org, 2014.

[11] C. Adams, S. Farrell, T. Kause, and T. Mononen. Internet X.509 Public Key Infrastructure
Certificate Management Protocol (CMP), September 2005.

[12] W. Barth. Nagios: System and Network Monitoring. No Starch Press Series. No Starch
Press, 2008.

[13] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty
Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. ExaScale Computing
Study: Technology Challenges in Achieving Exascale Systems. 2008.

[14] Jose Luis Blanco. nanoflann Website. http://code.google.com/p/nanoflann/,
2013.

[15] R. Brette and W. Gerstner. Adaptive Exponential Integrate-and-Fire Model as an Effective
Description of Neuronal Activity. J. Neurophysiol., 94:3637 – 3642, 2005.

[16] Daniel Brüderle, Eric Müller, Andrew Davison, Eilif Muller, Johannes Schemmel, and
Karlheinz Meier. Establishing a Novel Modeling Tool: A Python-based Interface for a
Neuromorphic Hardware System. Front. Neuroinform., 3(17), 2009.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 497

http://www.intel.com/content/www/us/en/nuc/overview.html
http://www.raspberrypi.org
http://code.google.com/p/nanoflann/

[17] Daniel Brüderle, Mihai Petrovici, Bernhard Vogginger, Matthias Ehrlich, Thomas Pfeil,
Sebastian Millner, Andreas Grübl, Karsten Wendt, Eric Müller, Marc-Olivier Schwartz,
Dan de Oliveira, Sebastian Jeltsch, Johannes Fieres, Moritz Schilling, Paul Müller, Oliver
Breitwieser, Venelin Petkov, Lyle Muller, Andrew Davison, Pradeep Krishnamurthy, Jens
Kremkow, Mikael Lundqvist, Eilif Muller, Johannes Partzsch, Stefan Scholze, Lukas Zühl,
Christian Mayr, Alain Destexhe, Markus Diesmann, Tobias Potjans, Anders Lansner, René
Schüffny, Johannes Schemmel, and Karlheinz Meier. A comprehensive workflow for
general-purpose neural modeling with highly configurable neuromorphic hardware sys-
tems. Biological Cybernetics, 104:263–296, 2011.

[18] James O. Coplien. Curiously Recurring Template Patterns. C++ Rep., 7(2):24–27, Febru-
ary 1995.

[19] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Per-
rinet, and P. Yger. PyNN: a common interface for neuronal network simulators. Front.
Neuroinform., 2(11), 2008.

[20] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[21] György Dósa. The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD(I)
<= 11/9 OPT(I) + 6/9. In Bo Chen, Mike Paterson, and Guochuan Zhang, editors,
Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, volume 4614
of Lecture Notes in Computer Science, pages 1–11. Springer Berlin Heidelberg, 2007.

[22] TU Dresden. DNC Specification. FACETS project internal documentation, 2008.

[23] M. Ehrlich, C. Mayr, H. Eisenreich, S. Henker, A. Srowig, A. Grübl, J. Schemmel, and
R. Schüffny. Wafer-Scale VLSI Implementations of Pulse Coupled Neural Networks. In
Proceedings of the International Conference on Sensors, Circuits and Instrumentation
Systems (SSD-07), March 2007.

[24] John Enck. Ethernet/802.3 and token ring/802.5. pages 265–295, 1994.

[25] Faraday Technology, www.faraday-tech.com. FSA0M_A Faraday Standard Cell Library,
2009.

[26] Faraday Technology, www.faraday-tech.com. FXPLL031HA0A_APGD Faraday
Phase-Locked Loop, 2009.

[27] J. Fieres, J. Schemmel, and K. Meier. Realizing Biological Spiking
Network Models in a Configurable Wafer-Scale Hardware System. In
Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN),
2008.

[28] Michael L. Fredman and Robert Endre Tarjan. Fibonacci Heaps and Their Uses in Im-
proved Network Optimization Algorithms. J. ACM, 34(3):596–615, July 1987.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 498

[29] Simon Friedmann. A new approach to learning in neuromorphic hardware. PhD thesis,
Heidelberg, Univ., Diss., 2013, 2013.

[30] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1st edition, 1979.

[31] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[32] Marcel Gort and Jason Helge Anderson. Deterministic multi-core parallel routing for
FPGAs. pages 78–86. IEEE, 2010.

[33] IEEE Ethernet Working Group. IEEE 802.3ab. http://www.ieee802.org/3.

[34] David Heeger. Poisson Model of Spike Generation, 2000.

[35] Dan Husmann and Holger Zoglauer. A Wafer-Scale-Intagration System(WSI). FACETS
project internal documentation, 2010.

[36] IEEE. IEEE 802.3ak. http://www.ieee802.org/3.

[37] Fujipoly Inc. Silicon Rubber Interface Materials Company. http://www.fujipoly.
com, 2013.

[38] Information Technology — Open Systems Interconnection — Basic Reference Model: The
Basic Model. ISO/IEC 7498-1:1994, ISO, Geneva, Switzerland, November 1994.

[39] Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM. Fraunhofer IZM.
Gustav-Meyer-Allee 25, 13355 Berlin, Germany,
http://http://www.izm.fraunhofer.de.

[40] JEDEC. DDR3 SDRAM standard, 2012.

[41] Andrew B. Kahng and Gabriel Robins. A new class of iterative Steiner tree heuristics with
good performance. IEEE Trans. on CAD of Integrated Circuits and Systems, 11(7):893–
902, 1992.

[42] Vitali Karasenko. A communication infrastructure for a neuromorphic system. Master’s
thesis (English), University of Heidelberg, 2014.

[43] RichardM. Karp. Reducibility among Combinatorial Problems. In Ray-
mondE. Miller, JamesW. Thatcher, and JeanD. Bohlinger, editors,
Complexity of Computer Computations, The IBM Research Symposia Series, pages
85–103. Springer US, 1972.

[44] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.
Science, 220(4598):671–680, 1983.

[45] SchedMD LLNL et al. Simple Linux Utility for Resource Management. http://slurm.
schedmd.com, 2014.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 499

http://www.ieee802.org/3
http://www.ieee802.org/3
http://www.fujipoly.com
http://www.fujipoly.com
http://slurm.schedmd.com
http://slurm.schedmd.com

[46] M. Massie, B. Li, B. Nicholes, and V. Vuksan. Monitoring with Ganglia. Oreilly and
Associate Series. O’Reilly Media, Incorporated, 2012.

[47] Microchip Technology. Microchip EMC1412 Datasheet, 2012.

[48] Sebastian Millner. Development of a Multi-Compartment Neuron Model Emulation. PhD
thesis, University of Heidelberg, 2012.

[49] Sebastian Millner, Andreas Grübl, Karlheinz Meier, Johannes Schemmel, and
Marc-Olivier Schwartz. A VLSI Implementation of the Adaptive Exponen-
tial Integrate-and-Fire Neuron Model. In J. Lafferty et al., editors,
Advances in Neural Information Processing Systems 23, pages 1642–1650, 2010.

[50] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
USA, 1996.

[51] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, New York, NY, USA, 1995.

[52] NXP Semiconductors. I2C-bus specification and user manual, 2012.

[53] K.E. Parsopoulos and M.N. Vrahatis. Recent approaches to global optimization problems
through Particle Swarm Optimization. Natural Computing, 1(2-3):235–306, 2002.

[54] S. Philipp. Generic ARQ Protocol in VHDL. Internal FACETS documentation., 2008.

[55] Jon Postel. RFC 768 User Datagram Protocol. RFC 768, Internet Engineering Task Force,
August 1980.

[56] Jon Postel. RFC 791 Internet Protocol, September 1981.

[57] PyNN. A Python package for simulator-independent specification of neuronal network
models – Website. http://www.neuralensemble.org/PyNN, 2008.

[58] Raspbian. Debian Linux distribution optimized for the Raspberry Pi. http://www.
raspbian.org, 2014.

[59] J. Schemmel, D. Brüderle, K. Meier, and B. Ostendorf. Modeling Synap-
tic Plasticity within Networks of Highly Accelerated I&F Neurons. In
Proceedings of the 2007 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 3367–3370. IEEE Press, 2007.

[60] J. Schemmel, A. Grübl, K. Meier, and E. Muller. Implement-
ing Synaptic Plasticity in a VLSI Spiking Neural Network Model. In
Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN).
IEEE Press, 2006.

[61] S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander, S. Hänzsche,
J. Partzsch, C. Mayr, and R. Schüffny. A 32 GBit/s Communication SoC for a Waferscale
Neuromorphic System. Integration, the VLSI Journal, 2011. in press.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 500

http://www.neuralensemble.org/PyNN
http://www.raspbian.org
http://www.raspbian.org

[62] S. Scholze, S. Henker, J. Partzsch, C. Mayr, and R. Schuffny. Optimized queue based
communication in VLSI using a weakly ordered binary heap. In Mixed Design of Integrated
Circuits and Systems (MIXDES), 2010 Proceedings of the 17th International Conference,
pages 316–320, june 2010.

[63] Stefan Scholze, Stefan Schiefer, Johannes Partzsch, Stephan Hartmann, Christian Georg
Mayr, Sebastian Höppner, Holger Eisenreich, Stephan Henker, Bernhard Vogginger, and
Rene Schüffny. VLSI implementation of a 2.8GEvent/s packet based AER interface with
routing and event sorting functionality. Frontiers in Neuromorphic Engineering, 5(117):1–
13, 2011.

[64] Marc-Olivier Schwartz. Reproducing Biologically Realistic Regimes on a
Highly-Accelerated Neuromorphic Hardware System. PhD thesis, Universität Heidel-
berg, 2013.

[65] National Semiconductor. LVDS Owner’s Manual. LVDS.national.com, 2004.

[66] Jeremy Siek. Boost Graph Dijkstra’s Algorithm Implementation 1.49.0 Web-
site. http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/dijkstra_
shortest_paths.html, 2001.

[67] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost Graph Library Version 1.49.0
Website. http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/index.
html, 2001.

[68] Steven Skiena. The Algorithm Design Manual. Springer Verlag, 2nd edition, 2008.

[69] Inc SolidWorks, Dassault Systèmes S.A. 3D-CAD tool. http://www.solidworks.com,
2013.

[70] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks. Pearson Education,
2012.

[71] The Human Brain Project. A Report to the European Commission, 2012.

[72] United Microelectronics Corporation (UMC). http://www.umc.com.

[73] Bernhard Vogginger. Testing the Operation Workflow of a Neuromorphic Hardware Sys-
tem with a Functionally Accurate Model. Diploma thesis, Ruprecht-Karls-Universität
Heidelberg, HD-KIP-10-12, 2010.

[74] Xilinx, Inc. 7 Series FPGAs Overview, v1.15 edition, 2014. DS180.

[75] Xilinx IP Documentation. Zynq-7000 SoC and 7 Series Devices Memory Interface Solutions
v2.0 User Guide, 2013.

HBP_SP9_Specification 13 May 2014 (git 56b296e) 501

http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/dijkstra_shortest_paths.html
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/dijkstra_shortest_paths.html
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/index.html
http://www.solidworks.com
http://www.umc.com

HBP_SP9_Specification 13 May 2014 (git 56b296e) 502

Glossary

1-wire
1-wire. 182

10GBASE-SR
10GBASE-SR. 177

10GbE
10-Gigabit Ethernet. 55, 175, 176

40GbE
40-Gigabit Ethernet. 55, 175, 176

ADC
Analog-to-Digital Converter. 57, 169, 170, 189, 250, 270

270

AdEx
Adaptive Exponential Integrate-and-Fire. 243, 271

271, 272

AL
Application Layer. 163, 164, 166

AnaB
Analog Breakout PCB. 56, 124, 131, 137, 139, 143, 180

AnaB to FsBo connector
16 pin connector for the connection of Analog Breakout PCB with Flyspi Breakout PCB.
139

AnaB to Rasperry Pi connector
26 pin connector for the connection of Analog Breakout PCB with Raspberry Pi. 139,
144

AnaFP
Analog Frontend PCB. 57, 169, 209, 491

HBP_SP9_Specification 13 May 2014 (git 56b296e) 503

AnaRM
Analog Readout Module. 8, 54, 55, 57, 139, 169, 170, 197, 203, 241, 242, 491

ANNCORE
Analog Neuronal Network Core. 65, 68, 82, 99, 244

API
Application Programming Interface. 59–61, 187, 240, 244, 245, 248, 274, 275

ARQ
Automatic Repeat Request. 86, 88, 90, 157, 160–162, 197, 198, 202, 203, 235, 236

ASIC
Application Specific Integrated Circuit. 53, 56

AuxPwr
Auxiliary Power Supply PCB. 56, 124, 132, 137–139, 179–181, 183, 184, 189, 190, 194,
195, 490

AXI
Advanced Extensible Interface. 157

BCB
Benzo Cyclo Butene. 111, 112

Calibration
Calibration. 60

calibtic
calibtic. 270, 274

CMOS
Complementary Metal-Oxide-Semiconductor. 53, 70, 71

Compute Cluster
A collection of computers interconnected by a dedicated network. 55, 57, 169

Compute Node
A single compute node as part of a Cluster. 56, 61, 176, 240, 247

CRC
Cyclic Redundancy Check. 86, 160

Cure
Monitoring and Control PCB for Reticles. 56, 130, 139, 140, 142, 143, 181–184, 188–190,
194, 195, 490

DAC
Digital-to-Analog Converter. 80, 249

HBP_SP9_Specification 13 May 2014 (git 56b296e) 504

DCON
Direct Wafer-to-Wafer Connections. 65, 68

DDR
Double Data Rate. 151, 152, 156–158, 203

DenMem
Dendrite Membrane Circuit. 80–82, 94, 245, 249

DI_VBias
DI_VBias: LVDS common mode voltage. 181

DI_Vbias
LVDS common mode voltage. 138

DI_VCC
DI_VCC: digital supply of DNC interface. 138

DI_VCC33ana
DI_VCC33ana:LVDS power supply of DNC interface. 138

DI_VCCana
DI_VCCana: analog supply of DNC interface. 138

DLL
Delay-Locked Loop. 71–73, 76

DNC
Digital Network Chip. 119, 120, 160, 239, 256, 257

DNC Interface
Digital Network Chip Interface. 86, 87, 163, 164

DRAM
Dynamic Random Access Memory. 57, 165, 169, 170

DRC
Design Rule Check. 114

DSC
Digital Synapse Control. 102–106, 222–224, 226, 227, 229

ElCo
Elastomeric Stripe Connector. 112, 123, 125–131, 143

ESS
Executable System Specification. 59, 62, 63, 240, 243–245

HBP_SP9_Specification 13 May 2014 (git 56b296e) 505

F-PLL
A Phase-Locked Loop provided by the standard cell vendor Faraday Technology [26].
87, 88

FC-PLL
A Phase-Locked Loop that has been designed for the HICANN chip during the BrainScaleS
project. 87, 88

FCP
FPGA Communication PCB. 54, 56, 65, 86, 88–90, 92, 94, 120, 124, 129, 131, 137, 139,
145, 146, 151–153, 155, 163–165, 175, 176, 180, 183, 184, 190, 195, 197, 240, 241, 247,
490

FIFO
First-In First-Out. 71, 87, 157, 158, 160, 164, 166

Flyspi
Flyspi FPGA PCB. 8, 57, 169, 170, 203, 490

FPGA
Field-Programmable Gate Array. 56, 57, 87, 120, 124, 146, 151–153, 155–162, 164,
169–173, 198–203, 231, 235, 236, 257, 273

FsBo
Flyspi Breakout PCB. 57

FSM
Finite State Machine. 87, 240

GbE
Gigabit Ethernet. 55, 56, 164, 175, 176, 197

GTX
Xilinx Gigabit Transceiver protocol. 151–153, 155, 156, 158

HAL
Hardware Abstraction Layer. 237, 244

HALbe
Hardware Abstraction Layer Backend. 61, 187, 237–245, 270

HDD
Hard disk drive. 56, 175

HICANN
High-Input Count Analog Neuronal Network Chip. 53, 56, 65, 66, 68–72, 74–79, 81, 82,
86–88, 90, 92, 93, 102, 111, 114–120, 129–131, 145, 146, 151–153, 156, 157, 160–164,
179, 180, 189, 194, 195, 199–203, 212, 213, 231, 233, 236–239, 241, 242, 244, 252,
260–264, 267, 270, 274

HBP_SP9_Specification 13 May 2014 (git 56b296e) 506

HICANN Wafer
A 20 cm silicon wafer with 384 HICANN ASICs interconnected by wafer-scale postpro-
cessing. 54, 56, 123

HostARQ
Host ARQ protocol. 162

I/O
Input/Output. 55, 175

I/O Node
A single I/O node as part of a Cluster. 176

I2C
Inter-Integrated Circuit Link. 56, 139, 140, 143, 156, 158, 159, 182–188, 195, 196

InFra
Insertion frame for mounting of additional PCBs. 125, 145

IP
Intellectual Property. 156, 157

IPC
Inter-process Communication. 245, 275

IPv4
Internet Protocol version 4. 197

JTAG
Joint Test Action Group. 86–88, 117, 119, 120, 156, 162, 182, 231, 233–236

KIP
Kirchhoff-Institute for Physics. 177

L0
Layer 0. 68

L1
Layer 1. 68, 69, 71–74, 76, 80, 111, 115, 160, 161, 234, 236, 244, 252, 254–261, 263,
265, 273, 274

L2
Layer 2. 68, 71, 73, 86, 162, 234, 273

LUT
Look Up Table. 160, 161

LVDS
Low-Voltage Differential Signaling. 87, 117, 119, 120, 151, 153, 156, 160, 234

HBP_SP9_Specification 13 May 2014 (git 56b296e) 507

LVS
Layout Versus Schematic. 114

MAC
Media Access Controller. 197

MaCU
Main System Control Unit. 124, 136, 138–140, 143, 182

MainPCB
Wafer Module Main PCB. 56, 65, 111, 119, 120, 124–131, 135–137, 139, 140, 143, 145,
146, 181, 182, 184, 185, 188, 195, 196, 489, 490

MainPCB to AnaB-Master connector A
120 pin fine pitch connector between MainPCB and Analog Breakout PCB Master. 133

MainPCB to AnaB-Master connector B
120 pin fine pitch connector between MainPCB and Analog Breakout PCB Master. 133

MainPCB to AnaB-Slave connector A
120 pin fine pitch connector between MainPCB and Analog Breakout PCB Slave. 134

MainPCB to AnaB-slave connector B
120 pin fine pitch connector between MainPCB and Analog Breakout PCB Slave. 134

MainPCB to Auxilary Power Supply PCB connector
120 pin PC104plus power connector for the auxilary power supply of the MainPCB and
the Wafer. 131, 137

MainPCB to Cure PCB connector
Sodimm connector between MainPCB and Cure PCB. 130, 140, 141

MainPCB to FCP connector
120 pin edge card socket between MainPCB and FPGA Communication PCB. 147

MainPCB to Wafer connector pair
connector pair between MainPCB and Wafer. 131

Mapping
Mapping. 60

marocco
marocco. 252

MCU
Microcontroller Unit. 56

MIG
Memory Interface Generator. 157

HBP_SP9_Specification 13 May 2014 (git 56b296e) 508

mongoDB
mongoDB. 271

MPW
Multi Project Wafer. 65

MRST
Minimum Rectilinear Steiner Tree. 262

MTREE
Merger Tree. 71, 72

NIC
Network Interface Controller. 175

NM-PM
Neuromorphic Physical Model. 6, 53, 55, 59–62, 175, 237, 240–245, 247–249, 274

NM-PM1
Neuromorphic Physical Model version 1. 6, 17, 54, 55, 112, 113, 121–123, 169, 176,
177, 197, 257, 489, 491, 511

NMOS
Negative Metal-Oxide Semiconducotr. 71

NP
Non-deterministic Polynomial-time. 262, 265

NUC
Next Unit of Computing. 57, 169

OCP
Open Core Protocol. 88, 92, 171

PCB
Printed Circuit Board. 57, 123, 126, 131, 146, 148, 169, 190, 489, 490

PCIe
Peripheral Component Interconnect Express. 56, 175

PLL
Phase-Locked Loop. 71, 87, 234

PMBus
Power Management Bus. 183, 190

PMk
Positioning Mask for the Elastomeric Stripe Connectors. 123, 126, 127

HBP_SP9_Specification 13 May 2014 (git 56b296e) 509

PMOS
Positive Metal-Oxide Semiconductor. 71

PMU
Power Management Unit. 247

Power-FET
Power Field-Effect Transistor. 56, 129, 181, 182, 184, 188–190, 194

PowerIt
PowerIt Main Power Supply PCB. 56, 124, 136, 137, 179, 180, 183, 184, 189, 194, 195,
490

PrePreg
Carbon fiber reinforced plastic CFRP. 131

PyHMF
Python for the Hybrid Multiscale Facility. 255, 259, 270

PyNN
PyNN. 59–61, 63, 248, 252, 273–275

PyNN.hardware.nmpm
NM-PM backend for PyNN. 9, 274, 275

Python
Python Programming Language. 59, 237, 241, 243, 252, 270

QSFP
Quad SFP. 55, 176

RAM
Random Access Memory. 98, 160, 161

Raspberry Pi
Raspberry Pi. 143, 179, 180, 182–184, 187, 190, 195, 196

RCF
Remote Call Framework. 187

RDMA
Remote Direct Memory Access. 54

RTL
Register Transfer Level. 243

Scheriff
State Checking and Error Identification Framework. 240

HBP_SP9_Specification 13 May 2014 (git 56b296e) 510

SFP+
Small Form-Factor Pluggable. 55, 176

SGMII
Serial Gigabit Media Independent Interface. 153, 155, 157

SimDenMem
HALbe simulation backend for analog circuits. 245

SLURM
Simple Linux Utility for Resource Management. 247

SMS
System Managment Software. 187, 190

SpL1
Synchronous Parallel Layer 1. 73, 74, 99, 102, 239, 254–260, 262–264

SRAM
Static Random Access Memory. 107, 214, 225

SSD
Solid-state Disk. 56, 175

STDP
Spike Timing Dependent Plasticity. 102, 103, 223, 229, 244, 273

273

StHAL
Stateful Hardware Abstraction Layer. 61, 241–245, 270

STP
Short-term plasticity. 266, 268, 269

TAP
Test Access Port. 86

ToCo
Top Cover. 124–127, 143, 145, 184

ToR
Top-of-Rack. 54–56, 176

UDP
User Datagram Protocol. 156, 157, 164–167, 197, 202

UMC
NM-PM1 semiconductor manufacturer: United Microelectronics Corporation UMC [72].
113–115, 120, 489

HBP_SP9_Specification 13 May 2014 (git 56b296e) 511

USB 2.0
Universal Serial Bus version 2.0. 57, 169, 170, 197

V5_Stby
5 V standby supply voltage for the Wafer Module. 136, 139, 179, 180

V_intermed
intermediate voltage for the Wafer Module (7-13.5 V). 131, 136, 179, 180

V_MainIn
main input voltage of the Wafer Module (-48 V). 136, 179, 190

V_OH
V_OH: upper voltage level for the Layer 1 signaling. 138, 180, 181, 189

V_OL
V_OL: lower voltage level for the Layer 1 signaling. 138, 180, 181, 189

VDD
1.8 V digital power supply voltage for the Wafer (1.8 V). 131, 136, 179–181, 189, 190,
245

VDD12
VDD12: floating-gate programming voltage. 138, 181

VDD25
VDD25: floating-gate programming supply. 138

VDD5
VDD5: floating-gate readout supply. 138, 181

VDDA
1.8 V analog power supply voltage for the Wafer (1.8 V). 131, 136, 179, 180, 189, 190

VDDBUS
VDDBUS: synapse line driver supply. 138, 180, 181, 189

VerCL
Virtual Environment for Closed-Loop Experiments. 240

Wafer
silicon wafer used as the basis of micro-chip production. 120, 123–126, 128–131, 137,
139, 140, 143, 145, 160, 169, 179–182, 184, 194, 489

Wafer Module
Assembly of an HICANN wafer, a Main PCB, 48 FPGA communication PCBs and power
supply PCBs. 53–57, 65, 123–125, 136, 137, 139, 143, 145, 146, 169, 175, 176, 179,
182, 183, 187, 190, 196, 240, 247, 489, 491

HBP_SP9_Specification 13 May 2014 (git 56b296e) 512

WBr
Wafer Bracket. 123, 125, 126, 143, 182, 184, 185, 195

WIO
Wafer I/O PCB. 56, 137, 145, 146

WIOH
Horizontal Wafer I/O PCB. 56, 124, 148

WIOV
Vertical Wafer I/O PCB. 56, 124, 148, 149

HBP_SP9_Specification 13 May 2014 (git 56b296e) 513

HBP_SP9_Specification 13 May 2014 (git 56b296e) 514

A Technical drawings of Wafer Module
components

HBP_SP9_Specification 13 May 2014 (git 56b296e) 515

��
��
��
��
P
P
�

��
��
�P

P
�

�5���PP�

�5�������PP�

�
����P

P
�

� ����P
P�

�5�
��
���
�P
P
�

�
��
��
P
P
�

�
���

�P
P�

�
���
��P

P�

� ��PP�

� �����PP�

�0�[����PP�

&
&

��
��
��
P
P
�

��
��
��
P
P
�

��
��
��
P
P
�

��
��
��
P
P
�

��
�P

P
�

��
�P

P
�

� �����PP�

&�&���������

&

� �� �

%

$

'

(

)

ZDIHUEUDFNHW
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 516

��
��
�P

P
�

�����PP�

���PP�
�����PP�

����PP�

�����PP���
��
�P

P
�

����PP�

��
��
�P

P
�

���PP�

���
�P
P�

������

���
���
�P
P�

�����PP�

�
��
��
�P
P
�

��������PP�
��
��
��
��
P
P
�

�������PP�

��
��
��
��
P
P
��������PP�

���
���
�P
P�

0DLQ3&%�WRS�YLHZ

PSFE�FXUH

PSFE�FXUH

PSFE�DES$�
PDVWHU�

PSFE�DES%
PDVWHU

PSFE�DX[SZU

PSFE�SRZHULW
YGG

PSFE�SRZHULW
YGGD

&

� �� �

%

$

'

(

)

0DLQ3&%
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 517

��
��
�P

P
�

�����PP�
����PP�

��
��
P
P
�

�������PP�
�������PP�

��
��
P
P
�

����PP�

�
��
P
P
�

��
�P

P
�

&

� �� �

%

$

'

(

)

3RZHU,W
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 518

��
��
�P

P
�

�0
�[�

���P
P�

���PP�

��
�P

P
�

�
�����PP�

�����PP� ����PP�

��
��
�P

P
�

����PP�

��
��
P
P
�

�����PP�

� �����PP�
� ���PP�

��������PP�

��������PP�
��
��
��
��
P
P
�

�
�����PP�

� ���PP�
�����PP�

��
��
��
��
P
P
�

�����PP�

&

� �� �

%

$

'

(

)

7RS&RYHU
:(,*+7��

$�

6+((7���2)��6&$/(�����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 519

�����PP�

��
��
��
�P
P
�

��
��
��
P
P
�

��
��
P
P
�

��
��
P
P
�

����PP�

��
��
��
�P

P
� �

���
��P

P�

�
�����PP�

�������PP�
�����PP�

��
�P

P
�

����PP�

&

� �� �

%

$

'

(

)

LQIUD
:(,*+7��

$�

6+((7���2)��6&$/(�����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 520

��
��
�P

P
�

�����PP�

����PP�

��
��
P
P
�

�
���
��P

P�

������PP�

��
��
��
P
P
�

��
��
��
P
P
�

������PP�

�������PP�

��
��
��
�P

P
�

&

� �� �

%

$

'

(

)

$QD%
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 521

�����PP�

��
��
�P

P
�

�����PP�

����PP�

��
��
�P

P
�

��
��
P
P
�

�
��PP�

���PP�
��
�P

P
� ����PP�

���PP�

���PP�

��
�P

P
�

����PP�

��
��
P
P
�

PSFE�DX[SZU
EDFNVLGH

&

� �� �

%

$

'

(

)

$X[3ZU
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 522

��
��
��
�P

P
�

�������PP�
�������PP�

��
��
��
�P

P
�

��
��
��
�P

P
�

��
�P

P
�

���PP�

���PP�

��
�P

P
�

�5�����P
P
�

��
�P

P
� �

���
��P

P�

&

� �� �

%

$

'

(

)

FXUH
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 523

��
��
P
P
�

����PP�
�������PP�

�������PP�

����PP�

�������PP�

�������PP�
�������PP�

�������PP�

� �����

IFS�ZLR
ERDUG�HGJH�FRQQHFWRU

������PP�

��
��
��
P
P
�

������PP� ������PP� ������PP���
��
��
P
P
�

��
��
��
P
P
�

���PP���
��
��
P
P
�

��
��
��
P
P
�
��
��
��
P
P
�

������PP�

��
��
��
P
P
�

PSFE�IFS
ERDUG�HGJH�FRQQHFWRU

&

� �� �

%

$

'

(

)

IFS
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 524

�������PP� ��
��
��
P
P
�

��
��
��
�P

P
�

������PP�
��
��
��
P
P
�

������PP�

�������PP�
�������PP�

������PP�

������PP���
��
��
P
P
� �5����

�PP�

��
��
��
P
P
�

DQDE�IVER

&

� �� �

%

$

'

(

)

)V%R
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 525

��������PP�

��
��
��
��
P
P
�

XVE����GRXEOH
FRQQHFWRU

(WKHUQHW
GRXEOH�FRQQHFWRU

��
��
��
�P

P
�

�������PP�

����PP� ����PP�

������PP�
IFS�ZLR

&

� �� �

%

$

'

(

)

ZLRK
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 526

��������PP�

��
��
��
��
P
P
�

IFS�ZLR

IFS�ZLR

XVE����GRXEOH
FRQQHFWRU

HWKHUQHW
GRXEOH�FRQQHFWRU

&

� �� �

%

$

'

(

)

ZLRY
:(,*+7��

$�

6+((7���2)��6&$/(����

':*�12�

7,7/(�

5(9,6,21'2�127�6&$/(�'5$:,1*

0$7(5,$/�

'$7(6,*1$785(1$0(

'(%85�$1'�
%5($.�6+$53�
('*(6

),1,6+�81/(66�27+(5:,6(�63(&,),('�
',0(16,216�$5(�,1�0,//,0(7(56
685)$&(�),1,6+�
72/(5$1&(6�
���/,1($5�
���$1*8/$5�

4�$

0)*

$339
'

&+.
'

'5$:1

HBP_SP9_Specification 13 May 2014 (git 56b296e) 527

HBP_SP9_Specification 13 May 2014 (git 56b296e) 528

	 The Neuromorphic Computing Platform
	 What is Neuromorphic Computing?
	 What are the key features of the HBP Neuromorphic Computing Platform?
	 How will the NM Platform be used?
	 Integration of the NM Platform into the HBP Platform Ecosystem
	 The purpose of this document

	1 User interface to the Neuromorphic Computing Platform
	1.1 Overall goals
	1.2 Use cases
	1.2.1 A single run of a simple network model
	1.2.2 A scripted run of a complex network model with input data and parameter files
	1.2.3 Using the Neuromorphic Computing Platform through the Unified Portal and Brain Simulation Platform
	1.2.4 Parameter sweeps
	1.2.5 Closed-loop experiment involving a virtual environment

	1.3 Functional requirements
	1.3.1 Model and experiment descriptions
	1.3.2 Job control interface
	1.3.2.1 Batch mode

	1.3.3 Data handling
	1.3.4 Closed-loop experiments

	1.4 Non-functional requirements
	1.4.1 Sharing
	1.4.2 Authentication and Authorization
	1.4.3 Security
	1.4.4 Accounting
	1.4.5 Efficiency and user volumes
	1.4.6 Reliability

	1.5 Architectural overview
	1.5.1 Job submission API
	1.5.1.1 Overview
	1.5.1.2 Endpoints
	1.5.1.3 Resource descriptions
	1.5.1.4 Serializations and allowed document types
	1.5.1.5 Physical architecture

	1.5.2 Python client for REST API
	1.5.3 Model/experiment verification
	1.5.4 Resource management software in Heidelberg and Manchester
	1.5.5 Tools for exporting Brain Builder model descriptions as PyNN descriptions

	1.6 Interfaces to other platforms
	1.6.1 Services required from other Platforms
	1.6.2 Services provided to other Platforms

	1.7 Key performance indicators and Function blocks

	2 Neuromorphic Computing with Physical Emulation of Brain Models
	2.1 Physical Model Platform: NM-PM
	2.1.1 Neuromorphic Physical Model
	2.1.2 Constitutent Parts of the nmpm1

	2.2 Users view of the nmpm system
	2.2.1 Usage of the NM-PM as a modeling back-end
	2.2.2 Low-level user access
	2.2.3 Real-time interaction with the NM-PM
	2.2.4 Evaluation Workflow

	2.3 Neuromorphic Circuits
	2.3.1 Overview
	2.3.2 Continuous-Time Layer 1 Communication
	2.3.2.1 Technical Implementation of the Layer 1 Communication
	2.3.2.2 Serial Layer 1 Sender - Sending Repeater
	2.3.2.3 Synapse Driver
	2.3.2.4 Repeater
	2.3.2.5 Neuron to Layer 1 and Layer 2 Interfaces
	2.3.2.6 Crossbar and Synapse Driver Switch Matrices
	2.3.2.7 L1 Pinout of the HICANN Chip

	2.3.3 Analog Neural Network Core (ANNCORE) circuits
	2.3.3.1 Synapse drivers
	2.3.3.2 Synapses
	2.3.3.3 Membrane Circuits
	2.3.3.4 Additional Features of the Denmem-Block
	2.3.3.5 Single-Poly Floating Gate Analog Parameter Storage

	2.3.4 Digital Control
	2.3.4.1 General system control
	2.3.4.2 DNC interface and Layer 2 circuits
	2.3.4.3 Configuration Interface
	2.3.4.4 Configuration Modules
	2.3.4.5 Digital synapse control

	2.4 Wafer-Scale Integration
	2.4.1 Post-Processing Procedure
	2.4.1.1 Post-Processing Design Rules
	2.4.1.2 Integration of PP Layers into ASIC Design Flow

	2.4.2 Reticle Design
	2.4.2.1 Pinout and HICANN Indexing

	2.4.3 UMC Wafer Map and Post-Processing Masks

	2.5 Wafer Module
	2.5.1 Overview
	2.5.2 Wafer Module Composition
	2.5.3 Mechanical Specification of Components
	2.5.3.1 Wafer Bracket (WBr)
	2.5.3.2 Sealing Rings
	2.5.3.3 Positioning Mask for the Elastomeric Stripe Connectors (PMk)
	2.5.3.4 Elastomeric Stripe Connectors (ElCo)
	2.5.3.5 Wafer Module Main PCB (MainPCB)
	2.5.3.6 Main power supply board (PowerIt)
	2.5.3.7 Auxiliary Power Supply PCB (AuxPwr)
	2.5.3.8 Breakout PCBs for analog readout signals of the Wafer (AnaB)
	2.5.3.9 Monitoring and Control PCB of Reticles (Cure)
	2.5.3.10 Main System Control Unit (MaCU)
	2.5.3.11 Top Cover (ToCo)
	2.5.3.12 Insertion Frame for mounting of additional PCBs (InFra)
	2.5.3.13 FPGA Communication PCB (FCP)
	2.5.3.14 Wafer I/O PCB (WIO)

	2.6 Communication Modules
	2.6.1 Overview
	2.6.2 Board Design
	2.6.2.1 Kintex7 board
	2.6.2.2 Wafer IO boards

	2.6.3 FPGA Firmware
	2.6.3.1 Overview
	2.6.3.2 Low-level interfaces
	2.6.3.3 Layer 2 HICANN interface
	2.6.3.4 Core logic
	2.6.3.5 HICANN ARQ
	2.6.3.6 HostARQ

	2.7 Analog Read-Out
	2.7.1 flyspi
	2.7.2 Analog Front End Board
	2.7.3 FPGA Firmware and Software interface
	2.7.3.1 FPGA Firmware
	2.7.3.2 Software Interface

	2.8 Compute Cluster and Networking
	2.8.1 Node architecture
	2.8.2 Network architecture

	2.9 System Control and Power Supply Infrastructure
	2.9.1 Power Supply
	2.9.1.1 HICANN Voltages
	2.9.1.2 Reticle Power Supply

	2.9.2 Control System
	2.9.2.1 Communication Channels
	2.9.2.2 System Monitoring
	2.9.2.3 Raspberry Pi - Main System Control Unit
	2.9.2.4 Monitoring and Control PCB for Reticles - Cure
	2.9.2.5 System Sequence Plans
	2.9.2.6 Error Management

	2.10 Hardware-Software Interface
	2.10.1 Host to FCP Communication
	2.10.1.1 Transport Layer Protocol

	2.10.2 Host to FCP Payload Data Formats
	2.10.2.1 FPGA Trace / Pulse Data
	2.10.2.2 FPGA Playback Data
	2.10.2.3 FPGA Configuration
	2.10.2.4 HICANN Configuration Data
	2.10.2.5 Sideband Data

	2.10.3 Analog Readout
	2.10.3.1 Host-to-anaread USB protocol
	2.10.3.2 Pin assignment for analog input header
	2.10.3.3 FPGA registers for ADC board configuration
	2.10.3.4 FPGA registers for Fast ADC controller
	2.10.3.5 FPGA packet format for SPI-based ADC controller
	2.10.3.6 FPGA bus base addresses

	2.10.4 HICANN Configuration Registers
	2.10.4.1 Hicann SRAM controller
	2.10.4.2 Hicann neuron builder
	2.10.4.3 Hicann denmem configuration
	2.10.4.4 HICANN analog output configuration registers
	2.10.4.5 HICANN floating gate controller instructions
	2.10.4.6 HICANN merger tree configuration
	2.10.4.7 HICANN background event generator configuration
	2.10.4.8 HICANN reapeater SRAM controller configuration
	2.10.4.9 HICANN DNC interface and Layer 2 circuit configuration
	2.10.4.10 Digital Synapse Control

	2.10.5 JTAG Access
	2.10.5.1 HICANN JTAG Access
	2.10.5.2 FPGA JTAG Access

	2.10.6 Experiment control

	2.11 Hardware Abstraction Layer
	2.11.1 User Coordinate System
	2.11.1.1 Implementation

	2.11.2 Stateless API
	2.11.2.1 Real-time Access

	2.11.3 Low-level Stateful API
	2.11.4 Executable System Specification - Simulation Layer
	2.11.4.1 Implementation
	2.11.4.2 Comparison with real system
	2.11.4.3 Using the ESS

	2.11.5 Hardware Simulations

	2.12 System Management Layer
	2.12.1 Cluster
	2.12.2 Hardware Resources
	2.12.3 Users

	2.13 PyNN Frontend and Translation Libraries
	2.13.1 Calibration
	2.13.2 Automated Mapping of Neural Networks to Hardware
	2.13.2.1 Neuron Placement
	2.13.2.2 Merger Routing
	2.13.2.3 Input Placement
	2.13.2.4 Wafer Routing
	2.13.2.5 Synapse Driver Routing
	2.13.2.6 Synapse Array Routing
	2.13.2.7 Parameter Transformation

	2.13.3 pynn.hardware.nmpm

	3 Neuromorphic Computing with Many-core Emulation of Brain Models
	3.1 Multi-core Platform: NM-MC
	3.1.1 Physical Architecture
	3.1.2 Software

	3.2 SpiNNaker Chip Datasheet
	3.2.1 Chip Organization
	3.2.1.1 Block Diagram
	3.2.1.2 System-on-Chip hierarchy
	3.2.1.3 Register description convention

	3.2.2 System architecture
	3.2.2.1 Routing
	3.2.2.2 Time references
	3.2.2.3 System-level address spaces

	3.2.3 ARM968 processing subsystem
	3.2.3.1 Features
	3.2.3.2 ARM968 subsystem organisation
	3.2.3.3 Memory Map

	3.2.4 ARM 968
	3.2.4.1 Features
	3.2.4.2 Organization
	3.2.4.3 Fault-tolerance

	3.2.5 Vectored interrupt controller
	3.2.5.1 Features
	3.2.5.2 Register summary
	3.2.5.3 Register details
	3.2.5.4 Interrupt sources
	3.2.5.5 Fault-tolerance

	3.2.6 Counter/timer
	3.2.6.1 Features
	3.2.6.2 Register summary
	3.2.6.3 Register details
	3.2.6.4 Fault-tolerance

	3.2.7 DMA controller
	3.2.7.1 Features
	3.2.7.2 Using the DMA controller
	3.2.7.3 Register summary
	3.2.7.4 Register details
	3.2.7.5 Fault-tolerance

	3.2.8 Communications controller
	3.2.8.1 Features
	3.2.8.2 Packet formats
	3.2.8.3 Control byte summary
	3.2.8.4 Debug access to neighbouring devices
	3.2.8.5 Register summary
	3.2.8.6 Register details
	3.2.8.7 Fault-tolerance

	3.2.9 Communications NoC
	3.2.9.1 Features
	3.2.9.2 Input structure
	3.2.9.3 Output structure

	3.2.10 Router
	3.2.10.1 Features
	3.2.10.2 Description
	3.2.10.3 Internal organization
	3.2.10.4 Multicast (MC) router
	3.2.10.5 The point-to-point (P2P) router
	3.2.10.6 The nearest-neighbour (NN) router
	3.2.10.7 Time phase handling
	3.2.10.8 Packet error handler
	3.2.10.9 Emergency routing
	3.2.10.10 Register summary
	3.2.10.11 Register details
	3.2.10.12 Fault-tolerance
	3.2.10.13 Test

	3.2.11 Inter-chip transmit and receive interfaces
	3.2.11.1 Features
	3.2.11.2 Programmer view
	3.2.11.3 Fault-tolerance

	3.2.12 System NoC
	3.2.12.1 Features
	3.2.12.2 Organisation

	3.2.13 SDRAM interface
	3.2.13.1 Features
	3.2.13.2 Register summary
	3.2.13.3 Register details
	3.2.13.4 The delay-locked loop (DLL)
	3.2.13.5 Fault-tolerance

	3.2.14 System Controller
	3.2.14.1 Features
	3.2.14.2 Register summary
	3.2.14.3 Register details

	3.2.15 Ethernet MII interface
	3.2.15.1 Features
	3.2.15.2 Using the Ethernet MII interface
	3.2.15.3 Register summary
	3.2.15.4 Register details
	3.2.15.5 Fault-tolerance

	3.2.16 Watchdog timer
	3.2.16.1 Features
	3.2.16.2 Register summary
	3.2.16.3 Register details

	3.2.17 System RAM
	3.2.17.1 Features
	3.2.17.2 Address location
	3.2.17.3 Fault-tolerance
	3.2.17.4 Test

	3.2.18 Boot ROM
	3.2.18.1 Features
	3.2.18.2 Address location
	3.2.18.3 Fault-tolerance

	3.2.19 JTAG
	3.2.19.1 Features
	3.2.19.2 Organisation
	3.2.19.3 Operation

	3.2.20 Input and Output signals
	3.2.20.1 Key
	3.2.20.2 SDRAM interface
	3.2.20.3 JTAG
	3.2.20.4 Ethernet MII
	3.2.20.5 Communication links
	3.2.20.6 Miscellaneous
	3.2.20.7 Internal SDRAM interface
	3.2.20.8 Internal SDRAM power & ground

	3.2.21 Packaging
	3.2.22 Application notes
	3.2.22.1 Firefly synchronization
	3.2.22.2 Neuron address space

	3.3 SpiNNaker Software Datasheet
	3.3.1 Run-time software
	3.3.1.1 Run-time software stack
	3.3.1.2 Inter-processor communication
	3.3.1.3 Runtime memory map

	3.3.2 Application programming interface (API)
	3.3.2.1 Event-driven programming model
	3.3.2.2 Programming interface

	3.3.3 Neural net simulation frameworks
	3.3.3.1 Spiking Neural net simulation framework
	3.3.3.2 MLP simulation framework

	3.3.4 Neural net simulation development route
	3.3.4.1 pyNN.spiNNaker
	3.3.4.2 PyNN API functions list
	3.3.4.3 Simulation setup and control
	3.3.4.4 Object-oriented interface for creating and recording networks
	3.3.4.5 PopulationView
	3.3.4.6 Assembly
	3.3.4.7 Object-oriented interface for connecting populations of neurons
	3.3.4.8 Procedural interface for creating, connecting and recording networks
	3.3.4.9 Neural Models
	3.3.4.10 Specification of synaptic plasticity
	3.3.4.11 Current Injection

	3.3.5 Damson development route
	3.3.5.1 Damson program compilation
	3.3.5.2 Damson code components
	3.3.5.3 Mapping code to SpiNNaker processors
	3.3.5.4 Runtime system
	3.3.5.5 Damson development flow

	3.3.6 PACMAN: partition and configuration manager
	3.3.6.1 Introduction
	3.3.6.2 Splitting
	3.3.6.3 Grouping
	3.3.6.4 Mapper
	3.3.6.5 Object File Generator
	3.3.6.6 Neural Data Structure generation
	3.3.6.7 Automatic Run Script generation
	3.3.6.8 MLP PACMAN

	3.3.7 Coding guidelines
	3.3.7.1 All languages
	3.3.7.2 C
	3.3.7.3 ARM assembly
	3.3.7.4 Python

	3.3.8 Documentation guidelines
	3.3.8.1 C / C++
	3.3.8.2 Assembly language
	3.3.8.3 Robodoc configuration file

	4 Benchmarks
	4.1 Overall goals
	4.2 Quality criteria for neuromorphic benchmark tests
	4.2.1 What units should be benchmarked?

	4.3 Use cases
	4.3.1 Tracking the performance of a neuromorphic computing system over time
	4.3.2 Determining whether the Neuromorphic Computing Platform is suitable for a specific task

	4.4 Functional requirements
	4.5 Architectural overview

	5 Following the platform building: Key Performance Indicators and time plans
	5.1 KPIs and time plans
	5.1.1 KPIs of the NMPM
	5.1.1.1 Wafer Production
	5.1.1.2 Printed Circuit Board Production
	5.1.1.3 Wafer Module Production
	5.1.1.4 Software and Hardware Usage KPIs

	5.1.2 KPIs of the NMMC
	5.1.2.1 Cabinet Assembly
	5.1.2.2 Sub-rack assembly
	5.1.2.3 Network
	5.1.2.4 Fan Tray Assembly
	5.1.2.5 Power Supply Assembly

	5.1.3 KPIs of the common software part
	5.1.4 KPIs of the benchmark part

	Bibliography
	Glossary
	A Technical drawings of Wafer Module components

