
 	

HPAC Tutorial Hands-on Session

Pollux 101 – OpenStack VM resources

In this tutorial, we will cover the introductory topics of accessing the VM resource Pollux, mainly

using the Horizon web interface. This offers a relatively simple way of configuring and launching VM

instances. You will have been given an account to login, you will also use this later to access the

scalable compute resource Piz Daint. In addition to these instructions, each step references the

slides that contain screenshots showing you what you should see.

Usually the first step is to configure the network and the router, as we are limited in time this has

been done for you in advance However, if you would like details about these, these can be found

on slides 36 – 41. We will be connecting to the network HPAC_network for the instances that are

created. Note that all instances that are created will be deleted after a few days as we are using a

test project space.

Step 1: Slide 34

The first step is to access the Pollux web interface via the following address: https://pollux.cscs.ch/

You will be prompted to login, select authenticate using CSCS, and enter your studxx username and

password. You will now see an overview of the compute resources available.

Step 2: Slide 35

Next we want to look at the current instances in the project. To do this, select Instances from the

Compute menu. There should only be one or two, as we are in the project space std02. In our

project, we are allowed a maximum of 20 instances, so it is suggested that you pair up if you want,

to reduce the load on the project space.

Step 3: Slides 42 – 44

Before we create an instance, we have to create a key pair to allow us to connect to the VM. In order

to do this, select Key Pairs under the Compute menu. Click on Create Key Pair, and put studxx as the

name, replacing xx with your account number. Click Create Key Pair, and save the file to your laptop.

Hopefully you should have already ensured that SSH is working on your machine, we will use this to

securely connect to the VM that is created. Move the file you have just downloaded to the .ssh

directory on your laptop.

Step 4: Slides 45 – 50

Now that the network, router, and key pair are configured we can launch the instance. There are a

number of steps now that allow us to configure the instance. For this tutorial we will use Ubuntu

https://pollux.cscs.ch/

 	

18.04 as the source. Click Yes on create new volume and delete volume on instance delete. For the

instance flavour, select m1.tiny. For the network, select HPAC_network as the network that we will

use. We can skip network ports, and for security groups we also select HPAC_tutorial. For Key Pair,

select the one that you created previously that corresponds to your account details. We can now

launch the instance.

Step 5: Slides 51 – 54

Once the instance is launched, we have to associate it with a floating IP in order to remotely connect

to it. In order to do this, click Instance under the Compute menu where you should see your newly

created instance. To the right, there is a drop-down menu, click Associate Floating IP. In the next

screen, you will be told that no floating IPs are allocated, click to the + symbol. On the next screen,

click Allocate IP. On the next screen an IP address will now be allocated, click Associate. We have

now associated a floating IP to our instance. Copy this IP address as we will use it now.

Step 6: Slides 55 – 56

To check that the IP address has been currently setup and that we are able to communicate with it,

we can ping it from the command line. To do this, open the command line on your laptop, and type:

ping 148.187.xx.xx (where xx.xx corresponds to your IP address)

If we receive a successful reply, we can then login to the instance using the SSH key generated

before. To this, navigate to the folder that you saved the SSH key in, e.g. \.ssh, and type the

following from the command line on your laptop:

ssh -i studxx.pem ubuntu@148.187.xx.xx (where xx.xx corresponds to your IP address)

Note that ubuntu is the default username for the cloud Ubuntu image that we are using. Once we

have managed to enter the instance, we can set the password so that we are able to login using the

console with the following command:

sudo passwd ubuntu

After which you will be prompted to enter a password

Step 7 – Slide 57

In the final step, we will now connect to the instance from the console in the web interface. To do

this, we click on the name of the instance under Instances from the Compute menu, and click the

Console tab. From there we are prompted to login. Using the password we just created, we can login

with the ubuntu username. We have now managed to access the VM from the browser.

Step 8 – more advanced and also if we have time

OpenStack Object Store, known as Swift, offers cloud storage software so that you can store and

retrieve lots of data with a simple API. One of the nice features it has is that access control lists

 	

(ACLs) can be used to restrict who is able to share data with who. In the project space, four

containers (file directories) have already been setup:

• Public_container – everyone can access

• container_51_60 – only accounts stud51 to stud60 can access

• container_51_60 – only accounts stud61 to stud70 can access

• container_51_60 – only accounts stud71 to stud80 can access

In this example we are going to setup the command line interface to Swift and show the use of the

controlled access. You can use the Ubuntu instance that you created previously for this if you want.

From the command line, type the following commands (each new line is a new command):

virtualenv openstack_cli

source openstack_cli/bin/activate

pip install -U pip setuptools

pip install -U python-openstackclient lxml oauthlib python-swiftclient

cd openstack_cli

git clone https://github.com/eth-cscs/openstack

source openstack/cli/pollux.env

If you have done this correctly, you will be prompted for your username and password. After this,

you will now be able to see the containers and upload/download files from them. The following

command shows the contents of container_71_80:

swift list container_71_80

The following command uploads a file called README.md to container_71_80:

swift upload container_71_80 ./README.md

The following command downloads a file called README.md from container_71_80:

swift download container_71_80 README.md

Using the above commands, create a text file called studxx (where xx is your account number), and

upload it to the container that you have access to. Ignore the warning message, this is a known bug

and your file will still be uploaded correctly. Once you have done this, download a text file from the

container from another user account apart from your own. Now enjoy your coffee, you’ve earnt it

 	

Piz Daint 101 – scalable compute resource

In this tutorial, we will cover the introductory topics of accessing the scalable compute resource Piz

Daint via SSH, logging in via Ela, the module system and then finally submitting a simple batch job. In

addition to these instructions, the slides contain screenshots showing you what you should see

when you enter the commands. Commands that you will enter on your laptop are shown in bold

text. If there is time, we will also introduce the container engine Sarus, developed for running

containerised workflows at scale on Piz Daint.

Step 1: Slide 67

The first step is to access the login node Ela. To do this, we will use the account details that you have

been given. Open the command line on your laptop, and type the following command, replacing xx

with the number of your account:

ssh studxx@ela.cscs.ch

Enter the password and press enter. You should now have enter, and will see a reminder for users of

CSCS facilities. From the login node, you can access your $HOME storage directory, but cannot carry

out any calculations.

Step 2: Slide 68

To access the programming environments, you have to access Daint. To do this, type the following

command on your laptop:

ssh daint

Enter the password and press enter. You should now be inside Piz Daint.

Step 3: Slide 69

Piz Daint uses a module system. To see the modules that are currently loaded, type the following

command on your laptop:

module list

This will return a list of the modules currently loaded.

Step 4: Slide 70

There are a number of modules available on Piz Daint that you can use. To see the modules that are

available, type the following command on your laptop:

module avail

This will return a long list of the modules that can be loaded.

 	

Step 5: Slide 71

If we are interested in a particular module to use, e.g. Python, we can search for this rather than go

through the long list of the modules that are available. As such, we will search for Cray Python

modules, a version of Python adapted to work on Cray systems. To do this, type the following

command on your laptop:

module avail cray-python

This will return a shorter list of four Cray Python modules that can be loaded.

Step 6: Slide 72

We can find out more about modules that we might be interested in using. In our case, we want to

find out more about the Cray Python 3.6.5.7 module. To do this, type the following command on

your laptop:

module show cray-python/3.6.5.7

This returns information about this module.

Step 7: Slide 73

Piz Daint offers the user two choices of compute node, multicore and hybrid. Based on our

application, we may want to choose one or the other. If we want to use GPUs, then we should load

the hybrid nodes modules. To do this, type the following command on your laptop:

module load daint-gpu

This allows us to use the hybrid nodes.

Step 8: Slide 74

If our application needs a lot of cores and does not need GPUs, we might instead be interested in

using the 2x18 multicore nodes, e.g. if we have an application that takes advantage of OpenMP.

Therefore we should load the multicore nodes module. To do this, type the following command on

your laptop:

module load daint-mc

This allows us to use the multicore nodes.

Step 9: Slide 79

In order to use an application, we require data. As previously mentioned, there are different storage

directories associated to the user on the CSCS scalable compute systems. The $USER directory is

accessible from the login node, and uses GPFS. It is designed with reliability in mind, and is backed

up with GPFS snapshots. In the next step, we will move a file from our local system to our $USER

 	

directory. This directory can be accessed using the $HOME command. Close the connection to Daint

and Ela, and carry out the following steps.

Firstly, create a small txt file on your laptop, and save it with the name HPAC_tutorial.txt , and

create a directory on local system called HPAC_tutorial. Then from the command line on your local

system type the following:

scp C:\HPAC_tutorial\HPAC_tutorial.txt studxx@ela.cscs.ch:/users/studxx/HPAC_tutorial.txt

You will be prompted to enter your password, after that you will see the status of the transfer. The

file has now been copied to your $HOME directory. Log back into Ela and navigate to your $HOME

directory.

Step 10: Slide 80

No jobs should be run on data in the $HOME directory, so we now have to copy it to the $SCRATCH

directory, a fast workspace for running jobs. This is based on Lustre, and files older than 30 days are

deleted from this space on a daily basis. As such, you should not store files here that you want to

keep. In addition, no backups are taken of this, so any files you want to keep should be transferred

once your job has completed. In this step, we are going to copy the HPAC_tutorial.txt file to the

$SCRATCH workspace. As we are not able to access the $SCRATCH directory from Ela, ssh into Daint

and then type the following:

scp $HOME/HPAC_tutorial.txt $SCRATCH/HPAC_tutorial.txt

Toy example: Slide 82

We will now look at how jobs are submitted to the compute system. For the sake of convenience, we

use a batch script that contains information about the allocation and job. Here we can specify the

number of nodes, type of node, job duration etc. In order to simplify this, there is a jobscript

generator that you can use found here: https://user.cscs.ch/access/running/jobscript_generator/

Make sure you are in Daint, and working in your $SCRATCH directory. We will now try something a

bit more advanced, and submit a job that prints a message from Python on different tasks on the

node. In order to do this, first we need load a Python module. Looking back on previous steps, see if

you are able to load the Cray Python Module 3.6.5.7 . Having done this, the next step is to select the

hybrid nodes. Again, looking back at previous steps, see if you are able to load the hybrid module.

The next step is to create a batch script. This can be done using a text editor on your local system,

saving with the extension .sbatch . You can also directly create an .sbatch file in the $SCRATCH space

using e.g. emacs or vim if you are comfortable with these tools.

Copy and modify the following text below into a text editor and save the file as studxx.sbatch (where

xx is the number of your account).

#!/bin/bash -l
#SBATCH --job-name="studxx"
#SBATCH --mail-type=ALL
#SBATCH --mail-user=your email address
#SBATCH --time=0:01:00
#SBATCH --nodes=2
#SBATCH --ntasks-per-core=2

https://user.cscs.ch/access/running/jobscript_generator/

 	

#SBATCH --ntasks-per-node=24
#SBATCH --cpus-per-task=1
#SBATCH --partition=normal
#SBATCH --constraint=gpu
#SBATCH --hint=multithread

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export CRAY_CUDA_MPS=1

srun python -c \
'import os; \
print("Hello from Python task {} on node {}".format \
(os.environ["SLURM_PROCID"], os.environ["HOSTNAME"]))'

Copy this file to your $SCRATCH space using previously explained steps, and then finally execute the

job with the following command:

sbatch --reservation=HPAC_training studxx.sbatch

In order to reduce waiting time, a reservation called HPAC_training has been setup for this course,

and specify this at the time of execution. Normally you would have a short wait for the job to run,

but with the reservation the job is run immediately.

Once the job has been executed, you should see a file named slurm-xxxxxxx.out in your $SRATCH

space. Using the vi or emacs command inspect this file.

If you want, you can copy this output file to your $HOME directory or laptop, using the steps

previously described.

Sarus container engine

Sarus is an OCI-compliant container engine engineered by CSCS, developed for the requirements of

HPC. It has a user interface similar to Docker, and offers native performance through the use of

hooks such as MPI and GPU. It enables researchers to run workflows developed on their laptop at

scale on the Piz Daint scalable compute resources, and also enables a portable way to share

workflows. In this tutorial, we will cover loading the Sarus module, pulling an image and then finally

running it. We will demonstrate the MPI performance of Sarus using the OSU Micro-benchmarks

which allows us to measure the performance of an MPI implementation, focusing on the latency and

bandwidth tests.

Step 1: slide 90

As previously, the first step is to load the sarus module, and unload the module xalt. This is done by

typing the following commands:

module load sarus

module unload xalt

The Sarus module is now loaded and ready for use.

 	

Next we pull an image onto the system. The default location for pulling images from is DockerHub. In

this example we pull the OSU image (ethcscs/osu-mb) that we will use measure the MPI

performance by typing the following command:

srun -C gpu -N1 -t5 --reservation=HPAC_training sarus pull ethcscs/osu-
mb:5.3.2-mpich3.1.4-ubuntu18.04

This pulls the following image from DockerHub: https://hub.docker.com/r/ethcscs/osu-mb

We can see the images that are available on the system, i.e. that have been pulled, typing the

following command:

sarus images

Step 2: slides 91 – 94

After pulling the image onto the system, the next step is to run it. First we will run it using native MPI

by typing the following command:

srun -C gpu -N2 -t2 --reservation=HPAC_training sarus run --mpi
ethcscs/osu-mb:5.3.2-mpich3.1.4-ubuntu18.04 ./osu_latency

This command gives latency values. We can compare the numbers (lower is better) with a container

that does not use native MPI support, but instead the non-optimised MPI coming from the image

(notice the `--mpi=pmi2` option to `srun` and the absence of `--mpi`) by typing the following

command:

srun -C gpu -N2 -t2 --mpi=pmi2 --reservation=HPAC_training sarus run
ethcscs/osu-mb:5.3.2-mpich3.1.4-ubuntu18.04 ./osu_latency

Latency tests are carried out in a ping-pong fashion. The sender sends a message with a certain data

size to the receiver and waits for a reply from the receiver. The receiver receives the message from

the sender and sends back a reply with the same data size. Many iterations of this ping-pong test are

carried out and average one-way latency numbers are obtained.

The next test we can carry out is the bandwidth, where higher is better. Bandwidth tests are carried

out by having the sender sending out a fixed number (equal to the window size) of back-to-back

messages to the receiver and then waiting for a reply from the receiver. The receiver sends the reply

only after receiving all these messages. This process is repeated for several iterations and the

bandwidth is calculated based on the elapsed time (from the time sender sends the first message

until the time it receives the reply back from the receiver) and the number of bytes sent by the

sender. The objective of this bandwidth test is to determine the maximum sustained data rate that

can be achieved at the network level.

To test the bandwidth (higher is better) instead of latency, we can use `./osu_bw`, e.g. first with

native MPI by typing:

srun -C gpu -N2 -t2 --reservation=HPAC_training sarus run --mpi
ethcscs/osu-mb:5.3.2-mpich3.1.4-ubuntu18.04 ./osu_bw

and then comparing it to the results with non-native MPI by typing the following:

srun -C gpu -N2 -t2 --mpi=pmi2 --reservation=HPAC_training sarus run
ethcscs/osu-mb:5.3.2-mpich3.1.4-ubuntu18.04 ./osu_bw

https://hub.docker.com/r/ethcscs/osu-mb

