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1. Introduction 
 

The investigation of the structure and functioning of neurons and synapses, together with 
the challenge to simulate the human brain electronically have given rise to an exciting and 
dynamic area of research and innovation: Spiking Neural Networks (SNNs)1. 

Bio-inspired SNNs came to the fore with their effective and efficient processing capabilities 
of spatiotemporal data. Although these special neural networks can be simulated in 
contemporary processors, their asynchronous nature has led to the development of 
special neuromorphic computer systems with non-von-Neumann architecture2, which are 
able to process them much more efficiently (Durmaz, et al., 2020).  

With the explosion of the artificial intelligence (AI) industry with AlexNet in 2010, artificial 
neural networks (ANN) entered again into the research and technology agendas 
worldwide (Krizhevsky, et al., 2017). The results of multiple studies and research have 
contributed to make AI a part of our daily life; however, and regardless how successful AI 
applications have become, it is still difficult to find solutions with effective self-learning 
capacities in the AI landscape. In addition, the ever-increasing volume of data, data-
processing needs, and the large energy requested have motivated innovations in the area. 
The possibility that SNNs and neuromorphic chips could be the solution to effective self-
learning capabilities and energy-efficiency, has provided an opportunity for 
mathematicians and computing scientists to try to bridge a gap between biological 
research and deep neural networks (DNN)3 (Durmaz, et al., 2020).  

SpiNNaker hardware architecture from the University of Manchester (Furber, et al., 2013), 
BrainScaleS from Heidelberg University (Schemmel, et al., 2017), and Neurogrid from 
Stanford (Benjamin, et al., 2014) proved the energy saving potential of spiking 
neuromorphic chips in DNNs and have led technology giants, like IBM and Intel, to focus 
on this area of research (Durmaz, et al., 2020). However, although neuromorphic chips 
have demonstrated their adaptation to DNN, they lack efficient inference and suitable 
training algorithms compliant with the spatiotemporal structure of the brain since the 
application of gradient backpropagation algorithms4 are challenging to implement on 
neural structures (Neftci, et al., 2017). This lack restricts the application of neuromorphic 
hardware, preventing it from being scaled, and eliminates the competitive advantage they 
have over the currently utilised chips  (Neftci, et al., 2017). 

Within HBP, theorists Wolfgang Maass´  and Mihai Petrovici’ studies (Bellec, et al., 2020) 
(Maas, 2020) (Scherr, et al., 2020) (Baumbach, et al., 2020) on SNN algorithms shed light 
on the mentioned problems and enabled practical connections between Biology and 
deep learning. The algorithms enable native gradient calculations with SNNs which 
improve efficiency of deep learning applications on neuromorphic chips and provide an 

 
1 Investigation on Spiking neurons as a computational unit started in 90s with biological experiment results which 
indicate most of the bio-neural systems use spike impulses. (Maass, 1997) 
2   Traditional von Neumann systems are multi-model systems consisting of three different units: processing unit, I/O 
unit, and storage unit. These modules communicate with each other through various logical units in a sequential way. 
3 DNNs are second generation artificial neural networks. The decision functions work among each visible and hidden 
layers of perceptron and create the structure called “deep neural networks” (Durmaz, et al., 2020) 
4 Gradient Backpropagation algorithms are the workhorse of Deep neural networks which optimize parameters of the 
model. (Machine Learning Glossary, 2017) 
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effective solution for on-device training with them. Moreover, they will certainly be useful 
to solve the problem of continual learning artificial intelligence. 

The present report is inspired by the recent developments on deep SNNs and their 
potential impact on the AI domain. The objective is to serve as a bridge between scientists 
and non-expert readers in the area, demonstrate the potential of this research stream, and 
define the position of SNNs within the AI market. Hopefully, the report may help HBP 
researchers in the exploitation of their results by defining their roadmap to the markets, or 
to assess the possibilities of using current and near-future products on their own research. 

In the next section, common methodologies of training SNNs are explained, and the 
advantages of the new algorithms are pointed out. In section 3, advancements within and 
outside of the Human Brain Project are presented and the required components for 
efficient, effective, and scalable SNN training are identified. Section 4 presents a trend 
analysis of these components. Finally, in the section 5 edge, online-training application 
areas are revisited and current actors in the field are analysed. 
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2. SNN Learning Algorithms 
The relevance and interest of DNNs rely on their deep layer structures 
and their backpropagation, which is the calculation method to assess the 
gradient of the loss function5. Although gradient calculations on these 
deep networks are time consuming and prone to error, automatic 
differentiation6 (AD) tools such as Pytorch, Tensorflow, which have been 
developed in the last five years, made this work very simple (Wu, et al., 
2019). SNNs were not able, however, to make use of these tools, because 
they are not differentiable, and consequently SNNs scientists had to 
search for other different learning algorithms. 
 
SNN learning algorithms can be generally examined under three 
categories. The first one is those based on the Spike Time Dependent 
Plasticity7 (STDP) Hebbian learning mechanisms (Figure 1), separated 
into two branches; “STDP Learning” & “Stochastic STDP8”, the second 
one is the conversion of existing deep learning networks to spiking 
networks (Figure 1, “ANN-SNN Conversion”), and the third one is to 
backpropagation of spiking networks with approximate gradients9 
(Figure 1, “Backpropagation”).  

 
Figure 1 Comparison among SNN training methods (Srinivasan, et al., 2020)  

 
5 Calculating Gradient descent is the primary method for optimizing the performance of a neural 
network, i.e. reducing the network’s loss/error rate. (Nelson, 2020) 
6 Automatic differentiation is a standard algorithm used to efficiently compute gradients of loss 
functions in generic neural networks (Guo & Poletti, 2021) 
7 STDP rule: If postsynaptic neuron fires after presynaptic activity the weight connecting them is 
strengthened (long term potentiation). On the other hand, If the presynaptic neuron fires after 
the postsynaptic activity, then the weight is weakened (long term depression). (Tavanaei, et al., 
2019) It is based on the Canadian Neuropsychologist Donald Hebb’s rule of learning. “In a sense, 
then, cells that fire together wire together” (Zheng & Mazumder, 2020) 
8 Stochastic STDP contributes by encoding the probability of switching from one state to another 
for the binary synaptic weights. Using this low-level precision instead of bit-precision (classical 
STPD) increases the efficiency of memory. (Srinivasan, et al., 2020)   
9 Gradient approximation algorithms can obtain differentiable spike activities, thus, enables 
backpropagation on spiking neural networks. (Hao, et al., 2020) 

 
Software Tools 

such as Pytorch 

and Tensorflow 

play an 

important role 

on attracting 

developers. 

 
Direct SNN 

backpropagation 

algorithms 

promise solution 

for scalability of 

deep SNN. 
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Algorithms based on STDP are the most biologically plausible methods 
among these categories10. However, discovery of the learning 
mechanism of the brain is a complex and long-term research endeavour. 
In addition, these algorithms, although efficient, are not scalable11, and 
they are restricted with shallow networks which limits their accuracy. 
Consequently, STPD is not a preferred method for real-world 
applications. 
 
Conversion-based methods are based on the transformation of the real-
valued computing into spike-based computing. The ANNs are first 
trained and then mapped into SNNs. These methodologies are not native 
SNN learning and do not inherit from the STDP rule (Hao, et al., 2020). 
The purpose of these methods is to enable the use of deep learning 
mechanisms on neuromorphic chips thus benefiting from energy 
efficiency. However, they cannot achieve the required levels of 
performance as it is a process based on the time interval (Kugele, et al., 
2020) (Figure 2). The time interval needs to be shortened to decrease 
latency, but this makes the incoming spikes difficult to be counted and 
thereby the accuracy of the method decreases compared to deep 
learning. If the time interval is extended to increase the accuracy, the 
energy-saving potential will be wasted as there will be latency. These 
methods work efficiently in small scale systems, but as far as the network 
scales up to the industrial-scale applications, they lose their advantages 
over deep learning methodologies since the required latency to reach 
accuracy level of DNNs cannot compensate the energy cost12. (Panda, et 
al., 2020). 
 
The third algorithm method is based on the direct backpropagation of 
SNNs. The existence of backpropagation-like learning structure of the 
brain has been discussed for a long time (Lillicrap & Santoro, 2019). 
Sander Bohte developed the SpikeProp algorithm in 2000, which is one 
of the first steps in this strand of research (Zhou, et al., 2019). However, 
these networks could not scale and are restricted by shallow layers and 
their learning performance does not meet the requirements of real-world 
applications since it is far from the efficiency of the biological 
counterparts and computationally expensive (Xie, et al., 2016). This 
obstacle explains why attempts to merge deep learning and bio-inspired 
studies have been stuck until recently.  
 

 
10 STDP learning rule experimentally observed in the rat’s hippocampal glutamatergic synapses 
(Chakraborty, et al., 2019) 
11 At the time, The STDP algorithms is limited with <=4 layers, resulting in significantly lower 
state-of-art accuracy. Adding more layers deteriorates the accuracy. (Srinivasan, et al., 2020) 
12 It is worth to note that, the research on conversion methods is still on demand as these 
methods can benefit from state of art DNN algorithms. Another research of Wolfgang Maass 
(Stockl & Maass, 2020) is promising to find solution for the accuracy & energy-efficiency 
dilemma of conversion methods. 
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The development of deep learning methods, especially the recurrent 
network structures that can process spatiotemporal data and their ability 
to be backpropagated over time, attracted the attention of theorists to 
research on gradient based SNN backpropagation algorithms, again in 
2016 (Lee, et al., 2018). At the same time, developments in biology and 
the discovery of different neuron structures that play a role in learning 
mechanism were an opportunity to reunite these two fields. 
 

 
Figure 2 Spike based backpropagation requires lesser time-steps to reach top accuracy on 

CIFAR10 (Srinivasan, et al., 2020) 

 
Gradient approximation algorithms contribute to SNNs with deeper 
layers, enable the implementation of deep learning methods on them, 
and have even the potential to be a solution to concepts that deep-
learning cannot yet achieve (Bellec, et al., 2020) (Neftci, et al., 2019) (Wu, 
et al., 2018). One of the most promising developments is the e-prop 
algorithm (Bellec, et al., 2020) created by Wolfgang Maass and his team. 
In the last year, they enabled SNNs to learn directly supervised13 and with 
reinforcement14, combining biological STDP rule with gradient based 
methods, and most importantly, they offered a feasible online-learning15 
solution (Bohnstingl, et al., 2020). This not only facilitates its 
implementation on neuromorphic chips but also contributes to enhance 
the development of deep learning.  
 

  

 
13 Supervised learning means having a full set of labelled data while training an algorithm. 
(Salian, 2018) 
14 Reinforcement Learning, AI agents are attempting to find the optimal way to accomplish a 
particular goal or improve performance on a specific task through rewards and punishment. 
(Salian, 2018) 
15 Offline learning (Batch) is an approach that ingests all the data at one time to build a model, 
whereas Online learning (Batchsize=1) is an approach that ingests data one single observation at 
a time. (Ziganto, 2017) 
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3. Advancements within & outside HBP 
In this section, the advancements within and outside of the HBP are 
investigated to determine the short-term potential of the deep SNNs in 
the industry and to extract the required components to support the 
training of the deep SNNs. Training hardware and the dataset types 
directly influence the performance and the scalability of the SNNs. 
Therefore, developments and expectations among these two 
components are focused. 
 

3.1 Training of SNNs 
Every artificial intelligence model needs training to be used. During the 
training phase the model learns from the raw data and updates its 
parameters by comparing with the expected outcomes. The trained 
model is ready-for use to make prediction according to its use-case, and 
this phase is called inference (Figure 3).  
 
 

 
Figure 3 Training Phase (on the left) and Inference (on the right) (DeBeasi, 2019) 

 

 
Training of DNN 

models is mostly 

handled in the 

cloud data-

centers 
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Training algorithms and hardware of the neural networks, determines the 
overall energy efficiency, scalability, and inference accuracy of the 

systems; therefore, the hardware to be used for SNN training, and the 
relevant developments are discussed. 
 

3.1.1 Offline (Batch) Training 

In situations where entire dataset is available, training is generally 
applied, in batches (offline), to the independent and identically 
distributed (i.i.d.)16 datasets. The whole training dataset is presented, and 
their parameters are then processed (Figure 4).  
 
 

 
Figure 4 Entire dataset is required to train the model (Förster, 2014) 

 
The parallel structure of the Graphic Processing Unit (GPU) or customised 
AI accelerators are suitable for this process, and batch-training is carried 
out quickly through data-centers (Figure 5). As, new data becomes 
available, the model is re-trained from scratch by including new dataset 
to the previously trained ones. 
 

 
Figure 5 Traditional training and inference model (NVIDIA, 2020) 

 
Training industry-scale networks on Neuromorphic chips takes a lot of 
time due to their online characteristics (Stewart, et al., 2020). Therefore, 
Offline training maintains its importance to demonstrate the SNN 
inference capacity on neuromorphic chips. To speed up the process, the 
models are trained with simulators running on GPUs which accelerate 
operations with high batches and AD tools. Then, these ready-to-use 
models are mapped on the neuromorphic chips for inference. This 

 
16 A sequence of random variables is independent and identically distributed (i.i.d.) when each 
element of the sequence has the same probability distribution as the other values, and all values 
are mutually independent. (NIST, 2018) 
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mapping - from the simulator to hardware - can yet cause a reduction in 
accuracy because of the structural difference. To solve this issue, 
Schemmel and his team collaborated with Friedemann Zenke (as 
voucher) trained spike-based backpropagation with hardware in a loop 
way in HBP supported BrainScales and managed to minimize the 
differences in accuracy level (Figure 6) (Cramer, et al., 2020). 
Sequentially, they have developed a framework for in the loop training 
which maintains sparse spiking activity to exploit a superior power 
efficiency. (Cramer, et al., 2021). Heidelberg University is also 
cooperating with Dr. Mihai Petrovici from HBP (work package 3) and Intel 
Neuromorphic Research for spiking gradient-based algorithm solutions 
(Baumbach, et al., 2020). Complementarily, the Heidelberg group has 
developed an extension for the PyTorch called “hxtorch” (Spilger, et al., 
2020). This extension enables BrainScaleS to benefit from the automatic 
calculation feature of the AD tools in both spiking and non-spiking 
operations. The combination of learning methodologies, AD tools and 
hardware in loop training accelerates the transition period of on chip 
training on neuromorphic devices.  Likewise, the AI accelerators have 
been incorporated in the SpiNNaker 2 architecture (Furber & Bogdan, 
2020), which represents a significant contribution to training. 
 

 
Figure 6 BrainScaleS 2- Hardware in the loop training enables to use AD Tools (Cramer, et al., 

2020) 

Another issue with the backpropagation of deep SNNs is that they inherit 
vanishing and exploding gradient problems, thus limiting the scalability 
of networks with 10 layers (Zheng, et al., 2020). More layers are required 
to compete with DNNs in terms of accuracy (Zheng, et al., 2020). 
Recently, a couple of studies have managed to increase the layer size 
through optimization algorithms (Zheng, et al., 2020) (Zhou, et al., 2019). 
Zheng’ study reached the layer size of 34 with the accuracy level of 
67.05% on ImageNet dataset which is competitive in the edge computer 
vision field. Besides the algorithms, the AI accelerator Cerebras-CS1, 
influenced by the wafer-scale BrainScaleS architecture, promises to have 
a capacity of industry-scale SNN training (Vassilieva, 2020). This will allow 
the rapidly trained models to be transferred to neuromorphic chips. 
 

3.1.2 Online Training 

In situations where data are not i.i.d. and flow continuously in time, online 
learning is needed. The model updates itself as new data arrives (Figure 
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7). These situations include environments with quickly and unexpected 
changes, areas requiring personalization, or environments where data 
security is important (Žliobaitė, et al., 2015). The system should adapt 
itself to environment changes. However, non-i.i.d. data can eventually be 
the cause of a catastrophic forgetting17 (Stewart, et al., 2020).  
 

 
Figure 7 The model updates as new data arrives (Förster, 2014) 

 
 
Recent algorithms e-prop (Bellec, et al., 2020) and DECOLLE (Kaiser, et 
al., 2020) enable online training, as they calculate the loss function in 
forward mode and mitigate catastrophic forgetting risks (Zenke & Neftci, 
2020). Recent studies present a memory-efficient solution for multi-layer 
recurrent networks, which cannot be achieved even in DNNs yet 
(Bohnstingl, et al., 2020) (Kaiser, et al., 2020).  
 
Forward mode online training is a promising advance for the future of 
deep SNNs. However, high-scale datasets can take days for training with 
state-of-art neuromorphic chips. It seems that emerging memory 
technologies could theoretically solve this problem (Chen, et al., 2020) 
(Payvand, et al., 2020). Promisingly, research findings on simulations 
demonstrate the continuous online training capability and energy-
efficiency of neuromorphic chips with memristors since the required 
vector-matrix calculations are handled on these memory architectures. 
(Payvand, et al., 2020).  
 
Although there are remarkable improvements in this area, it is unlikely 
that such a chip will be available within five years because emerging 
memory technologies are still in early research phase and are expected 
to be in markets only after 2025 (Offrein, 2020). For this reason, online 
transfer-learning techniques such as meta-learning or federated-
learning, that allow online training (Stewart & Gu, 2020) of pre-trained 
models for certain application purposes, are more appropriate 
approaches nowadays. 
 

 
17 Catastrophic forgetting: the model loses already learned tasks as new data arrives 
(Stewart, et al., 2020). 
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3.1.3 Online Meta-Learning 

Meta-learning (learning-to-learn) is another approach to mitigate 
catastrophic forgetting problems and manages training from a few 
training samples (Beaulieu, et al., 2020). Meta-learning is a technique 
where the agents are learning to learn from past experiences. Instead of 
training from the scratch, the new task is learned with few samples from 
the previously available tasks (Finn, 2017). One of the most famous meta-
learning models is the Model-Agnostic Meta-Learning (MAML) which 
allows a rapid adaptation of a new task (Figure 8) (Finn, et al., 2017) 
(Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks). 

 
Figure 8 Meta-Learning Adaptation (Finn, et al., 2017) 

 
In situations where rapidly changing factors exist and unexpected data 
streams are the norm, learning a new model on a short-time scale is 
impractical. Meta-learning is then a good alternative for adapting new 
required tasks. Especially, online meta-learning can be a good solution 
on intelligent systems that are functioning in real-time (Nagabandi, et al., 
2018).  
 
With the new algorithms, SNNs can manage the online meta-learning, 
and some applications have been presented during 2020. One of these 
applications is learning new gestures with few samples (Stewart, et al., 
2020). Another one is an adaptation of the robotic arm to manage 
desired behaviour with learning from one trial. Other application is 
learning a new class of characters from a single example (Maas, 2020).  
 
These applications are very relevant as they demonstrate the 
competitiveness of the SNNs compared to their counterparts. Moreover, 
online meta-learning has already been implemented on neuromorphic 
chips which contribute to the applicability of on-chip learning. 
 

3.1.4 Federated Learning 

Federated Learning is an alternative method to centralized training, as it 
distributes learning among clients (Figure 9). A main concern of 
federated learning is to keep the privacy of the local data. Instead of 
sharing the dataset with the data-center, each client runs the learning 
algorithm in a distributed way and upload the models to the data-center; 
these collected models are then synchronized to generate a common 
model (Stewart & Gu, 2020).  
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Figure 9 Centralised ML vs Federated Learning (Rahman, et al., 2020) 

 
As this approach distributes the learning share among the edge devices, 
and on-chip training with neuromorphic hardware takes a lot of time, it 
can be a short-term solution to speed-up the on-chip training of 
neuromorphic hardware. The small models can be trained by using each 
client’s neuromorphic chip with the data gathered through a relevant 
edge device, and a generic complex model can be created by merging 
these models. 
 
Recent work has combined federated learning with online-meta learning 
and managed to show the distributed gesture learning capabilities of 
SNNs implemented on Intel’s Loihi neuromorphic chip (Stewart & Gu, 
2020).  
 

3.2 Training Datasets 
Direct SNN backpropagation algorithms enhance the capacity of SNNs 
to process temporal data. Temporal data are continuous dynamics 
signals like sound, radar, electrocardiograms, etc., or native spike data 
from event sensors. However, although SNNs are best known for 
processing dynamic data due to their recurrent structure, processing 
static data is also important, e.g. most of today's inferences are based on 
spatial data. Most of the SNN studies are therefore also considering static 
data in their experiments (Lecun, 2019).  
 

3.2.1 Static datasets 

Applications in this field provide output from static inputs such as images. 
They need high volumes of data, software tools, and large-scale data 
centers for their effective training (Lecun, 2019). Datasets and tools are 
optimized for ANNs and do not work with temporal factors, hence they 
are not suitable for native SNNs. SNNs have therefore lower accuracy 
than ANNs in the static dataset domain. However, the low-energy and 
fast processing capacity of SNNs, combined with neuromorphic 
hardware, are promising trade-off factors.  
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SNNs do not have yet sufficient native datasets, neither mature tools nor 
systems that can operate with static datasets on a large scale (Kugele, et 
al., 2020) since the native datasets requires neuromorphic sensors such 
as event-based cameras which are just emerging, and the common visual 
sensors are based on the static image data. Distribution and widespread 
of usage of event-based sensors is necessary for developing advanced 
native datasets. In this respect, we will describe a couple of solutions that 
have recently emerged. 
 
One solution converts static data into spikes (Figure 10) (Deng, et al., 
2020). Although practices in this area are very recent, a lot of work has 
been done during the last year. Energy efficiency in edge devices has 
been achieved by compromising accuracy at an acceptable rate 
(Sorbaro, et al., 2020). Recent papers demonstrate the possibility of 
processing ImageNet with a 50-layer deep SNN model, which is the deep 
required for higher accuracy. The MobileNet benchmark, which Intel's 
Mike Davies deems necessary for edge applications, has also achieved 
energy-efficient with this solution, as Brainchip Akida claims (Carlson, 
2020) (Posey, 2020). 
 
 

 
Figure 10 Conversion of Static Image to Event by incorporating time domain. 

 
Another approach is the separation of the spatial and temporal 
processes within the hardware. Chinese researchers applied this solution 
to the Tianjic hybrid chip. Luping Shi and his collegues at Tsinghua 
University processed the object recognition & detection applications 
with GPUs, and the voice recognition and detection process with the 
neuromorphic chip on the smart bike they controlled with the Tianjic chip 
(Figure 11). This successful combination allows the system to benefit 
from the powerful features of both SNN and neuromorphic chips. It 
provides a framework for SNNs development, while addressing the 
successful applications of Convolutional Neural Networks (CNNs) (Zou, 
et al., 2020). 
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Figure 11 Autonomous Bicycle Controlled with Tianjic Chip. a) Visual sensors are controlled with 

CNN b) auditory sensors with SNN (Zou, et al., 2020) 

 
Within HBP, the credit-card-size, edge-scale chip of Heidelberg 
University (Stradmann, et al., 2021) supports both spiking and 
conventional deep neural networks, thus gaining benefits from both 
domains. The architecture of the chip is based on the BrainScaleS-2 
analog neuromorphic chip. Its analog structure enables the acceleration 
of the processes and reduces energy consumption since it reduces 
required calculations. As a result, BrainScaleS-2 helps to efficiently 
process the static visual data and support the current processing needs 
of the sensor data. Most importantly, portable BrainScaleS-2 supports the 
evolving event-based sensors by emulating spiking neural networks. 
 

3.2.2 Native Spiking Datasets (Event-Based Cameras) 

Native datasets are event based and contain time domain. One common 
approach is to create native neuromorphic datasets based on static data 
(Figure 12). The static datasets are scanned with event-based sensors 
which incorporate temporal information to process them natively on 
SNNs. This conversion dataset is a new area of research. In fact, not only 
visual ones are under development but also audio datasets.  
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Figure 12 MNIST-DVS neuromorphic dataset,  MNIST data-set is recorded with event-camera (on 
the left) from different angles and its representation on spike train by neuron id through time(on 

the right)  (Stromatias, et al., 2017) 

 
 
Event-based cameras and sensors are one of the most promising areas 
for deep SNNs. Event-cameras transmit the data continuously over time, 
and SNNs are fully compatible to process those temporal data. These 
cameras perceive changes in the environment, capture a lot of detail, and 
consume a very low amount of energy because of the lower volume of 
data input. Since most of the simultaneous localization and mapping 
(SLAM) applications are performed quickly, they have a usage area in 
every environment where sudden changes happen, e.g. Robotics, 
drones, autonomous vehicles, and sky observation, etc. Fast object-
tracking has recently attracted attention in augmented reality, and eye-
tracking. Controller tracking applications have also been developed in 
this area. 
 
Until now, due to algorithm deficiencies, the processing of event data is 
preferably controlled with conventional processors. However, it implies 
to convert inputs from event-cameras into digital. Neuromorphic chips 
are already fed by events, so such a conversion is not necessary and both 
processing speed and energy efficiency are therefore available. 
 
Last year, studies in this area have begun to implement SNN 
backpropagation algorithms. They aim to perform better than ANNs so 
that they could eventually become the best option as a control 
mechanism. Promisingly, state-of-the-art levels of accuracy has been also 
achieved this year on event-based datasets with direct backpropagation 
of SNNs (Zheng, et al., 2020). 
 
Within HBP, University of Heidelberg has developed two native spiking 
datasets for speech classification and keyword spotting (Cramer, et al., 
2020). These datasets are based on the Heidelberg Digits which is consist 
of 10K high-quality audio recordings from zero to nine, and Speech 
Commands which consist of 24 single word command from 1864 
speakers. Combined with the native visual ones, Heidelberg’s two audio 
datasets provide a generic benchmarking tool for neuromorphic 
community. 
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3.3 Remarks 

In the short term, application of deep SNNs will be mainly in the edge 
area, providing that required accuracy levels and energy requirements 
are achieved. Combination of neuromorphic chips and SNNs is 
especially promising for the processing of event-based data. The 
expansion of event-based sensors will be surely a relevant factor for this 
success. Also, with the development of algorithms, signal data and even 
static data (with conversion) can reach the desired level of accuracy for 
industry-scale applications at the edge area of application. Finally, 
advances on memory technologies (memristors, Re-Rams, C-Ram, Fe-
Ram, etc.) are needed to fulfil successful on-chip training. The trend 
analysis developed below will examine the status of SNN algorithms, 
event-cameras, and emerging memory solutions. 
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4. Trend Analysis 
The trend analyses described in this section are based on patents and 
academic journals insights. The factors analysed, namely SNN 
algorithms, event-cameras & sensors, and emerging memory 
technologies, will certainly contribute to foster the utilisation of SNNs and 
neuromorphic hardware in the edge market.  
 

4.1 SNN Algorithms 
Backpropagation-based algorithms is a key factor of deep SNNs. Our 
trend analysis began by observing the progress of research papers 
publications in the area during the last decade.  
 
As it can be extrapolated from the correlated results of published articles 
(figure 13) and patent applications (figure 14) through time, together 
with the success of the Deep learning methods, SNN with 
backpropagation studies started in 2012. Unfortunately, no promising 
results were obtained and the interest on it decreased. The second rise 
started with the launch of the IBM TrueNorth in 2014. The main reason 
for that rise could be the IBM interest to promote that its neuromorphic 
chip. However, research on SNN algorithms stepped back again in 2015. 
With the release of the Loihi, the wave caused by Intel can be seen in 
2017. The studies during this period were non-novel conversion 
methods. With the emergence of direct backpropagation SNN 
algorithms, the rise can be seen again in 2019. A second peak is achieved 
then on backpropagation based SNN studies, and they have managed 
to still maintain the interest of researchers during the last year. The reflect 
of this interest has a similar pattern in the markets as can be seen in the 
patent search in the Figure 14, and the recent increase of the patent 
application is also observed. As it is too soon to comment on the rise, the 
evolution should have been observed in upcoming years to have a more 
concrete idea of this new wave.  
 

 
Figure 13.  Academic publications over time, SNN backpropagation (source: app.dimensions.ai, 

Query 1, Appendix A) 
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Figure 14.  Patent applications by time, SNN training (source: https://patentscope.wipo.int, 

Query 2, Appendix A) 

 
To examine the actors in the market better, it is necessary to shorten and 
analyse patent holders and their origin countries from 2019. This is 
because earlier waves, between 2016 and 2017, are less related with 
algorithms mentioned in this report. 
 

 
Figure 15. Patent applications by applicants between 2019-2021, SNN training (source: 

https://patentscope.wipo.int, Query 3, Appendix A) 

 
Figure 16. Patent applications by offices 2019-2021, SNN training (source: 

https://patentscope.wipo.int, Query 3, Appendix A) 

IBM and Intel stand out among the companies with the highest volume 
of applications for SNN training patents, but according to patent offices 
by countries, China’s patent application is higher than USA (Figure 15) 
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(Figure 16). Patent applications of China have been concentrated in 
research facilities which demonstrates the enthusiasm for SNN research.  
 
Last May 2020, the Chinese company SynSense acquired the Zurich-
based company aiCTX. As mentioned by the company's CEO, Ning Qiao, 
a new neuromorphic center will be established in China and this center 
will become the seed of an ecosystem where researchers will meet 
investors. It is therefore reasonable to anticipate that we will see some 
patents from Chinese companies soon. 
 
HRL Labs, which stands in the third place in the list, has developed meta-
learning and vision-based patent applications for drones to be produced 
for the USA industry of defence. Likewise, Intel made a deal with Sandia, 
a USA governmental company, to research on how to scale up their Loihi 
neuromorphic chip. 
 
On the list we also see that the Australian based BrainChip has patent 
applications. The company showed online-learning capability of their 
neuromorphic chip on its technology presentations last November. 
BrainChip is actually one of the few neuromorphic chip companies that 
is also expected to release their product into the market in 2021. 
 
Among the inventors, Narayan Srivinasa, Angeliki Pantazi, and Stanislaw 
Wozniak worth to be mentioned. Narayan Srivinasa is the director of Intel 
labs and the CTO of Eta Compute. Eta Compute is a company that started 
with the idea of the producing neuromorphic chips that process SNN, in 
2016. In 2018, they focused on deep AI accelerators, following investors' 
pressures, and they will launch their low energy consuming chips 
produced for the sensors during the next year. However, they left the 
door open for SNN operation on their chips. New patent applications 
from Narayan Srivinasa are signals of this intention. The other two names, 
Angeliki Pantazi and Stanislaw Wozniak, are IBM Europe researchers. The 
work of Wozniak and Wolfgang Maass on bridging SNN and DNN was 
published last September which shows IBM’ interest to collaborate with 
European researchers. 
 

4.2 Event Camera & Sensors 
Tobi Delbruck - one of the first architects of event-based cameras – stated 
a "slow but steady rise of the event camera" (Delbruck, 2020), which is 
corroborated with the correlation observed on patent applications 
(Figure 17). 
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Figure 17.  Patent applications over time, event-based sensors (source: 

https://patentscope.wipo.int, Query 4, Appendix A) 

 

 
Figure 18. Patent applications by applicants, event-based sensors (source: 

https://patentscope.wipo.int, Query 4, Appendix A) 

 
Event-based camera manufacturers are mostly European start-ups 
except the Samsung from Korea (Figure 18), e.g. Prophesee from France, 
Insightness and Inivation from Switzerland. In addition to these start-ups, 
there is also a Chinese company Celepixeli. Among the technology 
giants, Samsung holds the leadership. 
 
In the past two years, the interest in event-based cameras has grown 
enormously. The acquisition of Insightness by Sony, the agreements 
between Sony, Bosch, and Intel with Prophesee, the patent applications 
of Toyota, Huawei, Bosh, and especially Apple, are clear indications of 
this interest. The interest is mainly based on the real-world impactful 
applications that even-cameras have. These areas include autonomous-
vehicle sensors, IoT surveillance systems, and eye-tracking and control 
systems for augmented reality.  
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Samsung launched the first artificial intelligence security camera which 
can make on-device inference without sending data to servers, thus 
consuming lesser energy and maintains privacy (Figure 19) (Samsung, 
2020). 
 

  
Figure 19. Samsung SmartThings Vision is available in Australia (Samsung, 2020) 

As expected, Toyota is working on autonomous vehicles. Interestingly, 
Apple and Sony are filing patent applications on Augmented Reality (AR), 
taking advantage of the precise tracking features of event-cameras. 
Another company that applied for a patent on AR is a Google-funded 
start-up "Magic-Leap". Magic-Leap, a company that has lagged behind 
its competitors in the AR race because of their high price, have just got a 
new funding increase of about 350 million dollars. 
 
In the field of biology, the French company Gensight Biologics has filed 
a patent application combining its technology for the treatment of 
blindness with event-cameras. Another interesting company in the area 
is Medtronic. Medtronic seem to have applied for a patent on gesture 
recognition for adjusting the dosage of a patient´s medication, although 
no specific details have been publicly revealed yet. 
 
When searches are restricted to "neuromorphic" and "spiking", we get 
two results. One of them is Tianjin University from China, which is known 
for its research on SNN learning. The other is the British company 
MindTrace, which counts with the participation of Steve Furber as non-
exec director. MindTrace deals with the processing of event-data on 
neuromorphic chips, being the only patent-owner company in this area. 
MindTrace also focusses on the mainstream AI. 
 

4.3 Emerging Memory Technologies 
Emerging memories are another technology area that shows synergies 
with SNNs. The emerging memories can emulate the synaptic elements 
in a very compact fashion thus, enables massive parallel computations 
rapidly and efficiently (Chakraborty, et al., 2019). Advances in that area 
would not only increase the inference capabilities of SNNs but most 
importantly, can contribute to improve on-chip training. They allow 
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training on more complex applications, on an edge-scale, and manage 
efficient training on a large-scale. Interest in the use of non-volatile 
memories on neuromorphic chips has increased in the last few years 
(Figure 20). 
 

 
Figure 20. Patent applications over time, emerging memories with neuromorphic hardware 

(source: https://patentscope.wipo.int, Query 5, Appendix A) 

 
The biggest interest is from the USA. IBM, Qualcomm, and HRL are 
continuing their research efforts in this area. Korea-based Samsung and 
Sk Hynix also appear to have leaped onto neuromorphic memory 
development. Sk Hynix has acquired Intel NAND Memory Business for 
US $ 9 billion last year. In China, patent applications are again owned by 
universities and research centers. In addition, the application of the 
CeRAM patent for spiking neurons by the ARM company, which Nvidia 
has acquired recently, deserves attention. However, there is not an 
obvious market yet in the area. All developments are still at design and 
prototype stages of maturity. One promising example is produced from 
MIT University with the support of IBM and Samsung (Chu, 2020). 
 
Another promising start-up in the area is Rain-neuromorphic (Rain 
Neuromorphics, 2020). Even though they have not released much 
information, they have started to gather investors with the commitment 
to produce a memristor-based18 neuromorphic chip (Figure 21). 
 

 
18 A memristor is a non-volatile electronic memory device. Unlike other memories, memristors 
can remain their state even the electric input is removed, and their resistance can be adjustable. 
These features show similarities with neurons where the synaptic weight is adjusted according 
to action potential. (Choi, et al., 2019) 
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Figure 21. The Rain neuromorphic promises end-to-end training and inference with their Analog, 

Memristive and Nanowired axon chip (Rain Neuromorphics, 2020) 

 

4.4 Remarks 
Although the development of SNN algorithms, which gain momentum in 
2018, is a promising area of technology development, we also need to 
observe that it has also experienced decreasing trend periods in the past. 
For this reason, its evolution should be only assessed in the upcoming 
years. If present interest and attention from enterprises and key actors 
continue, its popularity in industry will gradually increase and only then 
we will be able to affirm that SNN algorithms can reach a good position 
in the markets.  
 
Event-cameras and sensors have found a place in markets before 
neuromorphic chips and deep SNNs. Increased investment and interest 
will play an active role in the development of event-cameras and, of 
course, in the increasing of neuromorphic datasets. Emergence of the 
neuromorphic datasets will result in optimized SNN algorithms. These 
developments would eventually facilitate a broader utilisation of 
neuromorphic chips as they are naturally efficient on processing events. 
 
Finally, it seems highly relevant the interest of industry on emerging 
memories. They could become the key component of bio-inspired in-
memory technologies. Although IBM's expectations go beyond 2025, 
the investments that Rain Neuromorphic has already made show that 
there is market potential for start-ups working in the area. 
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5. Application Areas of Edge Online, On-Device 

Learning & Market 
 
Although online-on-chip learning has specific and impactful application 
areas, the practices in the area have not been effective until recently 
because of technical limitations. The market is not yet mature (Figure 22).  
 
 
 
 

 
Figure 22 Edge-Training Market is limited compared to others (Shuler, 2019) 

 
Rather than competing with already developed and mature 
technologies, online-on-chip learning can be an important incentive for 
investment in neuromorphic chips and SNNs. According to McKinsey the 
market of the edge-training will rise to the 1-1,5 billion Dollars in 2025 
(Figure 23). 
 

 
Figure 11 Expectation on Edge training market can be also seen on the right (Batra, et al., 2018) 
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It is important to note that, the edge on-chip training is the continuity of 
the edge inference on the technology transformation (Figure 24). If the 
accuracy of the edge inference is not satisfying, the edge training by itself 
is not worthy. Therefore, in this analysis, it is assumed that required levels 
of accuracy are achieved for edge inference in deep SNNs. 
 

 
Figure 12. Transition of AI from Cloud to Edge. The current Level is 3-4 (6G Channel 2020). 

 

5.1 Application Areas of Online-Learning 
As stated before, online learning is necessary for applications that 
operate in changing environments with non-i.i.d. data. Application areas 
can be categorized into three fields: Monitoring and Control, Information 
Management and Analytics, and Diagnostics. Their functions in the 
industry are summarised in table 1. 
 

 
Table 1. Industry areas of three online-learning required categories (Žliobaitė, et al., 2015) 

(Babic, et al., 2021). 
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SNNs are suitable for input data incoming as a stream instead of batches. 
“Monitoring and Control” and “Analytics and Diagnostics” tasks are more 
relevant with streamed input data and Information Management tasks are 
in batches (e.g. the monitoring sensor system that detect anomaly where 
the abnormal behaviour is changing, needs to stream the incoming data 
continuously. On the on the hand, Amazon product recommendation 
system which is under category of “Information Management” can get the 
user’s data in batches even though user’s interest changes over time) 
Therefore, the focus should be on the application areas of “Monitoring 
and Control” and “Analytics and Diagnostics” (Žliobaitė, et al., 2015). 
 

5.1.1 Monitoring and Control 

The object of the Monitoring and Control is to detect and predict in 
contexts with uncertainty.  These systems are classified as: (Table 2) 

• “Monitoring for Management” tasks in the production and 

transportation industry. The complexity of the process both from 

human and environmental factors affect the data differences.  

• “Automated Control” tasks in the mobile systems, robotics, 

augmented reality, and smart home industry. Changes happens 

frequently in these environments, and the agent needs to adapt 

itself when interacting with them. 

• “Anomaly Detection” tasks in the computer security, 

telecommunication, medical and finance industry. The system's 

expected behaviour is well-defined; that system can be 

interrupted, however, by both human and environmental factors 

(Žliobaitė, et al., 2015). Medical signal monitoring devices such as 

electroencephalography (EEG) or Electrocardiography (ECG) do 

also require online learning. For example, brain computer 

interface devices that monitor EEG signals do need to adapt 

themselves for changes might come from mental state of the 

agent or from the environmental variations (Ma, et al., 2020).  

 

 
Table 2. Industry Domain and Application Tasks of “Monitoring and Control” (Žliobaitė, et al., 

2015) 
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5.1.2 Analytics and Diagnostics  

Analytics and Diagnostics involve the prediction and classification tasks 
where characterization is relevant.  Data changes usually occur slowly and 
depended on the population drift (e.g. face-detection systems needs to 
recognize relevant person (characterization) and it is expected to 
recognize that person even though his beard grows through time). These 
systems are separated by (Table 3); 

• “Forecasting” tasks can be used in the banking and economy 

industry. Changes happen with the population drift over time 

based on events. Covid-19 epidemic outbreak and its predictions 

of spread can be a recent example for these. 

• “Security” tasks are applied in the biometrics industry where 

authentication is relevant. Changing data may involve 

physiological factors. Face-detection with masks on smartphones 

is an example. 

• “Medicine” tasks in the drug research and clinical research 

industry. Changes happen due to the adaptive nature of 

microorganisms and systems need to adapt themselves to these 

changes (Žliobaitė, et al., 2015) (Babic, et al., 2021).  

 

 
Table 3. Industry Domain and Application Tasks of “Analytics and Diagnostics” (Žliobaitė, et al., 

2015) (Babic, et al., 2021) 

 

5.2 On-device edge training Market Analysis 
 
Artificial intelligence technologies have begun to show up in the Edge 
area in the last few years These developments primarily cover the 
inference area. Edge inference has barely started to have a place in the 
market. Therefore, in comments on the market competitiveness of edge-
training cannot be properly discussed yet (Figure 25). In figure 25, 
Everest Group has differentiated the edge devices and the edge servers. 
In this report, both devices and edge gateways are counted into the edge 
basket as their computing capabilities are limited relative to cloud 
datacenters.  
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Figure 25 Edge(Edge Gateway & Device) Data Processing (Inference) has just started to find a place itself in 

the workload.  (Everest Group, 2020) 

 
The interest of investors will surely arrive to this promising sector. In the 
patent analysis, federated learning is included since its applicability with 
neuromorphic chips has been presented in an online manner.  
 
The interest on the are has a history of 10 years, but the technical 
capabilities are only possible during last couple of years. Therefore, more 
than two-thirds of the patent applications were made after 2019 (Figures 
26 and 27). 
 

 
Figure 26. Patent applications overtime on online, on-chip training (source: 

https://patentscope.wipo.int, Query 6, Appendix A) 

 
In this growing sector, China holds the leadership with the most relevant 
applications. China is also the country with the highest number of patents 
in the edge sector. This shows how much importance and value China 
gives to the edge area. USA and Europe follow China, and Korea also has 
found a place in the list. 
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Figure 27. Patent applications by office online, on-chip training (source: 

https://patentscope.wipo.int, Query 6, Appendix A) 

 
As revealed in trend analysis, there are many Chinese applicants from 
research centres and universities (Figure 28). From the industry 
perspective, Google has the leading role, mostly dominated by its 
federated learning technologies. The huge potential of users enables the 
distributed learning among different devices. According to recent 
patents, Google even expand it by creating an API platform for 
developers to even build their federated learning apps.  
 
Surprisingly, other tech giants like Qualcomm and Apple have their 
patent applications in China. Their applications include federated 
learning where privacy is the main concern, which might be related to 
restrictions of the Chinese government for collecting the data. This is a 
positive indicator of the future of federated learning; in fact, if tensions 
on data privacy become significant, federated learning can be a 
dominant option for training models. 
 
 

 
Figure 28 Patent applications by applicants, online on-chip training (source: 

https://patentscope.wipo.int, Query 6, Appendix A) 
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Bosch is another tech-giant that invests high amounts of capital on on-
device learning chips. Their self-learning AI chip BHI260AP will be 
incorporated in wearables. Pre-trained exercise models can learn new 
exercises without connecting cloud or smartphones (Figure 29). The chip 
has been published the first quarter of 2021 and currently available for 
order (out of stock) according to Bosh-Sensortec’s webpage (Bosch-
Sensortec, 2020).  
 

 
 

Figure 29 Self-Learning AI sensor of Bosch, the pre-trained smartwatch learns new exercises 
(Bosch Sensortec, 2020). 

 
In 2021, applications of Samsung and LG have been approved. Samsung 
is working on on-device training for user recognition and language 
understanding and LG is bringing transfer learning to the edge systems. 
 
Besides the tech giants, a Korean AI-assisted driving company 
StradVision holds the second position. Their on-device continual learning 
applications are varied from smartphones, drones, vessels, and military 
purposes where adaptation for changing environments is required. 
Multinational Tata Consultancy has recently applied a transfer learning 
patent for industrial anomaly detection systems. Another promising start-
up Third Wave which provides cloud AI systems for automotive systems 
is researching continual-learning adaptive robotics. From the medical 
sector perspective, Doc AI, a medium-sized company, has a patent 
application for federated learning to train healthcare systems. The rest of 
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the patents are mostly based on detection and classification tasks which 
include applications of autonomous vehicles, traffic regulation, and 
anomaly detection. 
 
Other companies in the area, which are not yet involved in patent 
applications, are listed below (Table 4 & more can be found at Appendix 
B). These companies are focused either on ANN or SNN, and their size is 
small to medium. As this technology is recent, the assessment of their 
potential will be based on the level of the investment. 
 

Company 
Name 

Country Main 
Product 

Product Type Size Funding 

AnotherBrain France Another 
brain 

semiconductor 51-100 $20.8M 

BrainChip Australia Brainchip semiconductor 11-50 $27.8M 

Doc AI USA Omix Digital health 
trials 

51-100 $41M 

Edgecortix Japan DNA chip semiconductor 11-50 $5M 

Ekkono Sweden Ekkono 
SDK 

Software library 11-50 $2.9M 

ETA Compute USA TensAI 
(not 
spiking 
yet) 

semiconductor/ 
sensor 

11-50 $31.9M 

mindtrace.ai United 
Kingdom 

Brain-
Sense 

AI Solutions 11-50 $3M 

Neurala USA Lifelong-
DNN 

AI algorithm 11-50 $20.1M 

Rain 
Neuromorphic 

USA APU semiconductor 1-10 $5M 

StradVision Korea SVNet Software library 51-100 $42.2M 

ThirdWave 
Automation 

USA shared 
autonomy 

hardware+ 
software suit 

11-50 $15M 

Xayn Germany Xayn  Search Engine 11-50 €9.5M 

  
Table 4. Total funding of the small-medium size actors in the edge online/on-device training 

sector (4 of them from Europe) 

5.3 Remarks 
Due to the difficulties to deal with changing environments, online-
learning is critical for the future of artificial intelligence. Online-learning 
applications will emerge to prove its usefulness in the edge area rather 
than in the established cloud-based systems. Deep SNNs and 
neuromorphic chips can make a difference in this area due to their 
adaptive nature. Since they are not direct competitors to ANNs, they can 
provide integrity to edge systems and help them enter into the markets. 
In 2021, Brainchip is going to release the second version Akida 
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Neuromorphic system on chips. In order to increase the volume of 
potential customers they do also sell the intellectual property licenses of 
their designs (Mankar, 2020). Their stock value at Australian Securities 
Exchange (ASX) jumped up %973 during last year with the total Market 
Cap of $749.7M AUD (yahoo! finance, 2021) (stocklight, 2021). Impact of 
the Brainchip Akida should be monitored. It is observed that investors´ 
interest in this field has started.  
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6. Drivers of deep SNN algorithms development 
Drivers are influential elements, those factors with sufficient capacity to 
exert force towards the success of the deep SNNs. They have been 
reviewed under four categories, namely: Technological, Economical, 
Educational and Governmental. 
 

6.1. Technological Drivers 
Research groups constitute the first pillar in the technology development 
processes. Advances in SNN algorithms and neuromorphic design will 
continue to be the main driver in the future. Research institutions and 
laboratories, public and/or private, laboratories are main actors of this 
driving.  
 
Some leading institutions in Europe in this area are the University of 
Manchester, Heidelberg University, Graz University of Technology, and 
the Zurich Technical University. The first three leading institutions are also 
the members of the HBP organization. Apart from these, Stanford and 
California Universities from USA, Tsinghua and Zhejiang Universities from 
China are also prominent players (Appendix C). Leading public labs, 
working on Neuromorphic and SNN research, are Sandia Labs and the 
HRL Labs supported by the USA federation. Private actors include the 
labs of Intel & IBM, which show the ambition of driving the future of these 
technologies. 
 
Research on neuroscience and deep neural networks are another 
influential factor of the development for the future deep SNN learning 
algorithms. Discovery on the key elements of learning mechanism, 
defining their mathematical and physical models will lead to more 
efficient bio-SNN algorithms. Likewise, research on deep neural 
networks will contribute to this development. Contemporary DNN 
solutions already have outstanding perception (not cognition) 
capabilities and getting benefit from these research results in advanced 
algorithms such as e-prop which pave the way of adaptive artificial 
intelligence. 
 
More technological drivers are based on the evolution of emerging 
memories, event-based sensors, and neuromorphic chips. Emerging 
memories will play an important role in SNN training and inference and 
will pave the way for new neuromorphic architectures. Even-based 
sensors are critical components to allow the entrance of SNNs to the 
market. Their unique technology separates their market from other 
sensors. Since event-based sensors are naturally compatible with 
neuromorphic chips, their market impact will directly correlate with the 
interest shown in SNNs.  
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Of course, new algorithms will require new neuromorphic chip designs. 
In this sense, technological developments on neuromorphic architecture 
are also important for the implementation of these algorithms.  
 
In-memory AI accelerators are also influencing drivers for an efficient and 
effective SNN training. They can lead to scalable neuromorphic 
computing in terms of inference. However, it is a double edge sword 
since they are also aiming for efficient edge systems. Moreover, they can 
also benefit from the emerging memory technologies and potentially 
become a competitor in the field. 
 

6.2. Economic Drivers 
 
Some economic drivers of deep SNN algorithms to consider are the work 
of public and private funding institutions. Public drivers include 
governmental funding and organizations indirectly supported by 
national or transnational governments. HBP is one of the samples of such 
a support. Private driving actors include technology giants like IBM & 
Intel and investment-oriented organisations that create and support 
market-ready companies. 
 
In sectors which require adaptive robotics and wearables, efficient 
sensors are required; however, the available technology is not mature 
enough to fill this gap. Deep spiking neural networks can push the market 
with demonstration of real-world applications. To be precise on these 
sectors, an analysis of energy-accuracy trade-off is required.  
 
Therefore, the potential competitors or collaborators can be defined. 
Market of the battery-powered edge computing is between 30-80 billion 
US dollars and currently, neuromorphic devices represent almost 0 
percent of it (Bains, 2020).  From this giant cake, neuromorphic chips 
need to get its share. Technology giants, Intel and IBM will not enter to 
the market in the short term. They are still investing on collaborations and 
research with the expectation of competitive real-world applications. 
Therefore, start-ups and the spin-offs should take responsibility, and 
benefit from this market with tiny number of competitors (Appendix B).  
 
 

6.3. Educational Drivers 
 
Communities (Appendix B) and education are other important drivers, 
especially during technology exploitation stages. Communities facilitate 
collaboration environments among research groups. This serves to 
accelerate technology development processes. Besides, communities 
increase the visibility of the technology and have an impact on attracting 
industrial actors. Intel Neuromorphic Community, with increasing 
worldwide partners from industry to research, has gained the leading 
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role. In Europe, NeuroTech European Network which has been founded 
by pioneer researchers with the support of H2020 grant, unites the 
community with the object of increasing impact and visibility, reach out 
industry stakeholders, promote public interest and shaping the 
neuromorphic education. E ducation is another factor that enhance 
the opportunities of exploitation. Attracting ANN developers is a crucial 
aspect for the sustainability of the limited community of SNNs. Telluride 
workshop in USA and CapoCaccia in Europe, brings the enthusiastic 
developers around the world and enables a foundation of supportive 
community among the actors of neuromorphic technology. The HBP 
Education also plays an important role with variety of conferences, 
workshops, summer schools, code jam sessions and post graduate 
positions. YouTube channel of HBP Education provides an opportunity 
for the people with interest in the area to exchange information and 
ideas. (Online library of HBP can be found in here) 
 

6.4. Governmental Drivers 
More data is required from the AI industry to improve their models. 
However, collection of private data legally or illegally causes a security 
concern and are prevented by policy makers. Especially, in the medical 
and communication sector. SNNs and Neuromorphic chips can be 
beneficial for preserving the privacy of the sensible data with their on-
device processing capabilities at the edge.  
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7. Reflections on SNNs and HBP 
 
The main objective of Brain-inspired computing, a key area of research in the Human 
Brain Project since its foundation, is to reveal the learning mechanism of the brain and 
emulating it on neuromorphic processors. Cumulative knowledge and experience in 
this domain, together with the impact machine learning applications are yet having on 
society, have driven HBP researchers´ efforts towards the integration of the most 
powerful features of spiking neural networks on artificial intelligence. In this sense, 
industrial relations have been explored with leading companies like Intel & IBM, and 
HBP is gradually achieving a leading role within the neuromorphic global communities 
through participative neuromorphic events as NICE, Telluride & Capo Coccia. 
 
HBP work is distributed across different work packages, which are naturally dependent 
on each other. Neuroscience research generates knowledge on spiking neural 
networks which contribute to the creation of the new brain models as well as learning 
algorithms. The HBP Neurorobotics platform also requires these models and 
algorithms to validate neuroscience experiments and prototype adaptive robotics. In 
parallel, the HBP computing platform provides all the processing capabilities in this 
loop. Fundamentals of HBP efforts in the area can be seen in the scheme of figure 30. 
 
Research on spiking neural network and neuromorphic technologies are essential for 
neuroscience research (by supplying processing capabilities) as well as for validation. 
In this report, we have principally focused on the utility of SNNs in artificial intelligence. 
Recent spiking neural network algorithms developed within work package 3 and 
collaboration with work package 6 are considered impactful advances that can bring 
high value to the development of neuromorphic devices. These algorithms improve the 
efficiency and accuracy of deep learning applications on neuromorphic chips and 
provide an efficient solution for on-device training. Integration of emerging memories, 
event-based sensors, and maturity of these algorithms could open new opportunities 
in the edge intelligence market.  
 
According to our analysis, Europe presently plays a leading and centric role with 
respect to academic knowledge of spiking neural networks and their dissemination. 
However, Europe is still far below USA and China in terms of patent applications, 
probably due to a lack of investment initiatives. In fact, although Neuromorphic 
communities need each other's support and cooperation to advance, these conditions 
might change very soon due to the dynamism and growing rivalry with the AI markets. 
In addition, the lack of investments could give rise to a talent drain process, as European 
researchers could prefer to make agreements with non-EU companies. Investing in the 
integration of emerging technologies and advances in SNN would contribute to create 
a more solid and united European voice in the area.  
 
The necessary investments could come from large private corporations (USA strategy) 
or be supported financially by the governments, e.g. by funding research centres 
(China strategy). Although start-ups and spin-offs activity is also increasing, we have 
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observed that most of them struggle to survive and require big and decided investors 
to believe in technologies whose maturity is still low for the markets.  
 
 
 

 
 

Figure 30 Basic Structure of SNN research among HBP 

 
 
Last year, the European Commission ceased to finance large-scale neuromorphic 
hardware implementations as SpiNNaker-2 and BrainScaleS-2, which somehow 
paralysed some researchers´ works in the area. TU Dresden has managed to get an 
agreement for the development of SpiNNaker-2 with Dresden regional government 
afterwards. In this regard, a real threat exists that European knowledge and advances 
may be early captured and exploited by non-European companies as IBM and Intel. 
Promoting funding from European big players such as Mercedes, BOSCH, etc. could 
reverse the situation. Especially, neuromorphic devices combined with event-based 
sensors and emerging memories would surely bring very important added value to 
autonomous vehicles and intelligent edge devices markets.  
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8. Conclusion 
Deep SNNs and neuromorphic chips have the potential to make an impact in the edge-
scale applications markets soon. Although most of AI present applications are 
sufficiently well addressed by existing solutions, edge scale inference and training are 
features of increasing interest for industry, which is gradually transitioning from cloud 
technologies to on-chip solutions.  

There are also mainstream companies, emerging start-ups, and research institutions 
that are, however, still trying to find solutions through DNNs instead of SNNs. 
Developing AI accelerators and DNN algorithms could be in this respect an alternative 
and threat for the progress of deep SNNs.  

Deep SNNs are already demonstrating better accuracy of inference and energy 
efficiency when dealing with native datasets obtained from event-based sensors, or 
with signal datasets that contain time variability. Moreover, they can also show energy 
efficiency when working with static datasets in circumstances that compensate lower 
accuracy.  

Given the large spectrum of edge Scale applications (sensors, mobile, autonomous 
vehicle control, etc.), an analysis19 is required to identify the areas where deep SNNs 
are more advantageous than DNNs. In fact, it seems that SNNs will not replace DNNs 
but become a complement and supporting technology on different areas. 

As for training, it is expected that emerging memories will boost the application of deep 
SNNs. However, memory technology impactful advances are not likely to be in the 
market before 2025 and new neuromorphic architectures will be needed for their 
application. During this transition period - which is too long for a highly dynamic sector 
as AI - neuromorphic hardware still have to demonstrate its attractiveness and the 
impact may have in future investments. Technology organizations, research centres, 
tech-giants, and especially market-ready start-ups are yet contributing to these 
expectations. 

Although European knowledge in the SNN and Neuromorphic fields is higher than in 
other regions (see Appendix C), China and the USA are the countries that are showing 
highest financial efforts and policy interest. Intel's and IBM's collaborations with 
European scientists, and the acquisitions of European start-ups by Chinese and 
Japanese companies are clear indicators of such efforts. The Human Brain Project has 
some of the most important scientific leaders and teams in the area. Steve Furber, 
Wolfgang Maas, and Johannes Schemmel´s research work is placed at the frontiers of 
SNN and neuromorphic development. Supporting these endeavours and conducting 
international collaborations - not only with the USA but also with Chinese research 
faculties - can help to reverse this situation.  

The emergence of new algorithms and the acceleration of SNN research in the 
upcoming few years seem to be essential for an impactful neuromorphic technology 
development. These algorithms will contribute to the effectiveness and efficiency of 

 
19 The analysis should assess what applications require high levels of energy efficiency and which ones demand high 
accuracy. For example, accuracy is critical in sensors used to detect objects in autonomous cars, which have 
sufficient battery capacity to feed the chip and guarantee the functioning. On the contrary, wearable devices used 
in your daily activity require energy efficiency and can sacrifice to some extent their level of accuracy and precision.  
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neuromorphic chips as well as the development of AI. New hardware designs will 
emerge in the short term, which should contribute to the transition to and the evolution 
of edge AI. Meanwhile, deep SNNs need to demonstrate their competitive advantages 
on real-world applications and thus attract further research and capital investments. 
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Appendix A 
 

Queries 

 
[Q1] Query 1: "spiking" "network" ("training" OR "learning")  ("back-propagation" OR 
"backpropagation") "deep" 
From app.dimensions.ai 
[Q2] Query 2 FP:(("training" OR "learning") "spiking" "NETWORK" ) 
From https://patentscope.wipo.int/ 
 
[Q3] Query 3  FP:(("training" OR "learning") "spiking" "NETWORK" ) IC:(G*) 
DP:[01.01.2019 TO 01.01.2021] 
From https://patentscope.wipo.int/ 
 
[Q4] Query 4 AB:((("event camera") OR ("DVS sensor") OR ("DVS camera") OR 
("Dynamic vision") OR ("event-based" ("Camera" OR  "vision" OR "sensor"))  OR ("event-
data" ("processing"))  )) OR TI:((("event camera") OR ("DVS sensor") OR ("DVS camera") 
OR ("Dynamic vision") OR ("event-based" ("Camera" OR  "vision" OR "sensor")) OR 
("event-data" ("processing"))  )) AND DP:([01.01.2012 TO 01.01.2021]) 
From https://patentscope.wipo.int/ 
 
[Q5] Query 5 FP:(("spiking" OR "neuromorphic") AND ("pcm" OR "feram" OR "non-
volatile" OR "memristor" OR "reram" OR "ceram")) 
From https://patentscope.wipo.int/ 
 
[Q6] Query 6 FP:(    (("online-learning"~1 OR "online-training"~1 OR "continual-
training"~1 OR "continual-learning"~1 OR "meta-learning"~1 OR "one-shot learning" 
OR "few-shot learning" OR "incremental learning" OR "transfer learning" OR "federated 
learning") AND ("on-chip"~1 OR "on-device"~1 OR "edge" OR "sensor")) OR ("on-
device training"~1 OR "on-chip training"~1 OR "on-device learning"~1 OR "on-chip 
learning"~1   ))  ANDNOT IC:("G06F?1*") ANDNOT IC:("G06Q?10*") ANDNOT 
IC:("G09B*") ANDNOT IC:("G06T*") ANDNOT IC:("G06Q*") 
From https://patentscope.wipo.int/ 
 
[Q7] Query 7 FP:(    (("online-learning"~1 OR "online-training"~1 OR "continual-
training"~1 OR "continual-learning"~1 OR "meta-learning"~1 OR "one-shot learning" 
OR "few-shot learning" OR "incremental learning" OR "transfer learning" ) AND ("on-
chip"~1 OR "on-device"~1 OR "edge" OR "sensor")) OR ("on-device training"~1 OR 
"on-chip training"~1 OR "on-device learning"~1 OR "on-chip learning"~1   ))  ANDNOT 
IC:("G06F?1*") ANDNOT IC:("G06Q?10*") ANDNOT IC:("G09B*") ANDNOT 
IC:("G06T*")  ANDNOT FP:("federated") 
From https://patentscope.wipo.int/ 
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Appendix B 
 
Neuromorphic Communities. 
 

Name Type of Community Location Organized by Since Link 

NICE Workshop Yearly Changes NICE Workshop 
Foundation,USA 

2013 https://niceworksho
p.org/ 

CapoCaccia Workshop Italy University of Zurich, 
Switzerland 

2007 https://capocaccia.c
c/ 

Telluride Workshop USA National Science 
Foundation, USA 

1993 https://sites.google.
com/view/telluride2
020/home 

NEUROTECH Project Switzerland H2020, Europe 2018 https://neurotechai.
eu/ 

Intel Neuromorphic 
Research 
Community 

Global Network USA Intel, USA 2019 https://www.intel.c
om/content/www/u
s/en/research/neur
omorphic-
community.html 

International 
Conference on 
Neuromorphic 
Systems 

Conference USA  US Department of 
Energy, USA 

 
https://icons.ornl.go
v/ 

 
 
 
Event-Based Sensor and Related Companies 
 
  

Company Name Location Related Product Product-Type Size 
(employees) 

Funding Link 

CelePixel Shanghai CELEX SENSOR visual event-
sensor 

1-10 $6M http://www.cele
pixel.com/ 

GenSight 
Biologics 

France GS030 optogene
tics 

solution for 
sight-threatening 
diseases 

11-50 $153M https://www.gen
sight-
biologics.com/ 

Inivation Switzerland  Dynamic Vision 
Sensor 

visual event-
sensor 

11-50 - https://inivation.
com/ 

Magic Leap USA image sensor 
(patent phase) 

augmented 
reality sensor 

11-50 $3B https://www.ma
gicleap.com/en-
us 

Pixium Vision France PRIMA SYSTEM retinal-imlant 
system 

1-10 €33.3M https://www.pixi
um-vision.com/ 

Prophesee France METAVISION 
SENSOR 

visual event-
sensor 

51-100 $65.3 M https://www.pro
phesee.ai/ 

Samsung Korea Dynamic Vision 
Sensor 

visual event-
sensor 

not-available not applicable https://www.sa
msung.com/us/s
sic/session/even
t-based-vision-
algorithms/ 

SonyAI (acq. 
Insightness) 

Japan Intelligent Vision 
Sensor 

visual event-
sensor 

51-100 not applicable https://www.son
y.com/en/SonyIn
fo/sony_ai/techn
ology/evs.html 
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Spiking Neuromorphic SMEs 
  

Company 
Name 

Location Main Product Product Type On-device 
training 

Application 
Area 

Size Funding Link 

AnaFlash USA neuromorphic 
edge chip 

semicondutor unknown energy 
efficient 
edge IoT 
solutions 

1-10 Granted 
by  
the 
National 
Science 
Foundati
on 

http://anaflash.c
om/ 

BrainChip Australia Brainchip semicondutor yes ultra-low 
latency and 
low power 
processing 
at the edge 

11-50 $27.8M https://brainchi
pinc.com/ 

ETA Compute USA TensAI (not 
spiking yet) 

semicondutor
/sensor 

patent 
application 

ultra-low 
latency and 
low power 
processing 
at the edge 

11-50 $31.9M https://etacomp
ute.com/ 

Femtosense USA based on 
Stanford 
Braindrop 

semicondutor not 
mentioned 

large-scale 
neural 
network 
processing 
to the edge 

1-10 €1.1M https://www.fe
mtosense.ai/ 

GrAI Matter 
Labs 

France NeuronFlow semicondutor not 
mentioned 

ultra-low 
latency and 
low power 
processing 
at the edge 

51-100 $29M https://www.gra
imatterlabs.ai/ 

Innatera 
Nanosystems 

Netherlands Innatera semicondutor not 
mentioned 

sensor-
driven 
application
s at the 
extreme-
edge 

11-50 €5M https://www.inn
atera.com/ 

Rain 
Neuromorphic 

USA APU semicondutor yes ultra-low 
latency and 
low power 
processing 
at the edge 

1-10 $5M http://rain-
neuromorphics.c
om/ 

SynSense (ex. 
aiCTX) 

Switzerland DYNAP  semicondutor yes(DYNAP
-SEL) 

ultra-low 
latency and 
low power 
processing 
at the edge 

11-50 $2.7M https://www.sy
nsense-
neuromorphic.c
om/ 

 
 
 
On-device Learning SMEs 
 

Company 
Name 

Location Main Product Product Type Application 
Area 

Size Funding Link 

AnotherBrain France another brain semicondutor ultra-low 
latency and 
low power 
processing at 
the edge 

51-100 $20.8M https://anoth
erbrain.ai/#ho
me 

BrainChip Australia Brainchip semicondutor ultra-low 
latency and 
low power 
processing at 
the edge 

11-50 $27.8M https://brainc
hipinc.com/ 
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Doc AI USA Omix Digital health 
trials 

edge A.I. 
models in 
which the 
computation 
takes place 
where 
 the data is 
captured, as 
well as 
federated 
learning, 

51-100 $41M https://doc.ai/ 

Edgecortix Japan DNA chip semiconducto
r 

Reconfigurabl
e Artificial 
Intelligence 
Processor 
technology  
to the 
embedded 
edge 

11-50 $5M https://www.
edgecortix.co
m/ 

Ekkono Sweden Ekkono SDK Software 
library 

edge 
incremental 
learning on 
streaming 
sensor data –  
onboard the 
device 

11-50 $2.9M https://www.
ekkono.ai/ 

ETA Compute USA TensAI (not 
spiking yet) 

semicondutor
/sensor 

ultra-low 
latency and 
low power 
processing at 
the edge 

11-50 $31.9M https://etaco
mpute.com/ 

mindtrace.ai United 
Kingdom 

Brain-Sense Ai Solutions continuous AI 
learning 

11-50 $3M https://www.
mindtrace.ai/ 

Neurala USA Lifelong-DNN AI algorithm on-device 
inference and 
allows it to 
learn on the 
device itself 

11-50 $20.1M https://www.
neurala.com/ 

Rain 
Neuromorphic 

USA APU semicondutor ultra-low 
latency and 
low power 
processing at 
the edge 

1-10 $5M http://rain-
neuromorphic
s.com/ 

StradVision Korea SVNet Software 
library 

AI Assisted 
Driving 

51-100 $42.2M https://stradvi
sion.com/ 

Third Wave 
Automation 

USA shared 
autonomy 

hardware+soft
ware suit 

machine 
learning 
technology to 
material 
handling 
automation 

11-50 $15M https://www.t
hirdwave.ai/ 

Xayn Germany Xayn  Search Engine Federated 
Learning-data 
private search 
engine for 
mobile 

11-50 €9.5M https://www.x
ayn.com/ 
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Appendix C 
 
100 Scientist with top publications listed by Citations/Publication rate. query: “Spiking 
Neural Networks” 
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Publications of European research centers have received 64% of the total citations. 

 
 
 
 
 
 

 
European research centers have produced 52% of total publications 
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Research Centers with top publications (based on the data of top researchers) 

 

Organization Country Zone Total Publications

University of Ulster United Kingdom Europe 220

University of Manchester United Kingdom Europe 200

University of California United States North America 200

ETH Zurich Switzerland Europe 195

Purdue University West Lafayette United States North America 177

Auckland University of Technology New Zealand Australasia 174

Tokyo Metropolitan University Japan Asia 150

Seville Institute of Microelectronics Spain Europe (EU) 121

CEA France Europe (EU) 109

Heidelberg University Germany Europe (EU) 109

National University of Singapore Singapore Asia 93

Western Sydney University Australia Australasia 86

King's College London United Kingdom Europe 80

University of Granada Spain Europe (EU) 76

Graz University of Technology Austria Europe (EU) 75

Tianjin University China Asia 71

Princeton University United States North America 68

University of Seville Spain Europe (EU) 67

IBM Research - Zurich Switzerland Europe 66

Zhejiang University China Asia 64

University of Tokyo Japan Asia 62

Nottingham Trent University United Kingdom Europe 59

Duke University United States North America 58

RWTH Aachen University Germany Europe (EU) 55

Centre for Nanoscience and Nanotechnology France Europe (EU) 52

TU Dresden Germany Europe (EU) 52

Fujian Normal University China Asia 52

Oak Ridge National Laboratory United States North America 52

Seoul National University South Korea Asia 51

Guangxi Normal University China Asia 50

Jülich Research Centre Germany Europe (EU) 47

Nanyang Technological University Singapore Asia 47

University of Waterloo Canada North America 46

Pennsylvania State University United States North America 45

University of Windsor Canada North America 45

University of Zurich Switzerland Europe 43

Swiss Federal Institute of Technology in LausanneSwitzerland Europe 43

Brain and Cognition Research Center France Europe (EU) 43

Macquarie University Australia Australasia 43

Queen's University Canada North America 43

University of Lausanne Switzerland Europe 43

Bielefeld University Germany Europe (EU) 41

University of Dayton United States North America 40

City University of Hong Kong China Asia 40

GenSight Biologics (France) France Europe (EU) 38

University of Tennessee at Knoxville United States North America 38

The Ohio State University United States North America 37

Huazhong University of Science and Technology China Asia 35

Northumbria University United Kingdom Europe 35

Institut de la Vision France Europe (EU) 34

Indian Institute of Technology Bombay India Asia 34

New York University United States North America 33

Hosei University Japan Asia 33

Imperial College London United Kingdom Europe 32

Technical University of Munich Germany Europe (EU) 32

Research Center for Information Technology Germany Europe (EU) 31

Drexel University United States North America 30

Pompeu Fabra University Spain Europe (EU) 29

University of Sussex United Kingdom Europe 29

Stockholm University Sweden Europe (EU) 28

University of Pittsburgh United States North America 28

Comenius University Slovakia Europe (EU) 28

University of Pavia Italy Europe (EU) 28

The University of Texas at San Antonio United States North America 28

Ghent University Belgium Europe (EU) 27

Polytechnic University of Milan Italy Europe (EU) 27

University of Surrey United Kingdom Europe 27

Royal Institute of Technology Sweden Europe (EU) 27

Délégation Ile-de-France Sud France Europe (EU) 26

National University of Ireland Galway, Ireland Europe (EU) 26

Rochester Institute of Technology United States North America 26
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