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1. The Aim of this Document 
This document describes the status of the Neuromorphic Computing Platform NM-MC1 – 
SpiNNaker, NM-PM1 – BrainScaleS and the related access software at the end of the ramp-
up phase for the 30 March 2016 HBP platform release. On 22 March 2016 both large scale 
machines have been presented publicly in the 1st Neuromorphic Computing Application 
Workshop – streamed live on YouTube1.  

This Deliverable is also the documentation for reaching Milestone MS187 “Platform ready 
for community release“. 

2. How to Access the Neuromorphic Computing Platform 
The Neuromorphic Platform is one of six ITC Platforms that comprise the HBP Scientific 
Research Infrastructure. All these Platforms can be accessed via the HBP Collaboratory 
web interface: 

https://collab.humanbrainproject.eu/#/collab/19/nav/403 

Direct link to the Neuromorphic Computing Platform on the Collaboratory: 

https://collab.humanbrainproject.eu/#/collab/51/nav/244  

3. Platform User Instructions 
The living document HBP Neuromorphic Computing Platform guidebook is accessible: 

• From within the collaboratory at 
https://collab.humanbrainproject.eu/#/collab/51/nav/1069  

• Publicly at http://electronicvisions.github.io/hbp-sp9-guidebook/  

The Platform Documentation links are also collected in the separate Deliverable D9.7.5. 

Info: D9.7.5 was also scheduled to include a roadmap describing plans for future Platform 
development, but this topic is covered in this document - see Annex F: Backlog (remaining 
bugs and new features to be added). 

4. Platform Testing and Quality Strategy 
The platform quality strategy is to use: 

• Code review 

• Robust software design (e.g. strictly enforced modularity with clearly defined 
interfaces) 

• Version control 

• Both automated and manual testing 

• Continuous integration 

• Environment consistency and isolation 

                                                 
1 The workshop had up to 100 concurrent viewers on YouTube during the live event (plus a 
few on AdobeConnect). The events recording remains accessible on YouTube at 
https://www.youtube.com/watch?v=khRPnlDekIg As of 28 March the page showed 590 
views. 

https://collab.humanbrainproject.eu/#/collab/19/nav/403
https://collab.humanbrainproject.eu/#/collab/51/nav/244
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
http://electronicvisions.github.io/hbp-sp9-guidebook/
https://www.youtube.com/watch?v=khRPnlDekIg
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• An agile development methodology incorporating feedback from users and co-design 
projects with other HBP sub-projects. 

• Application of coding and style standards for C, C++ and Python code. 

• Comprehensive documentation. 

All components of the platform have automated tests, both unit tests and integration 
tests, which are run automatically on code changes and/or on a scheduled basis using 
continuous integration tools (e.g. Jenkins or Travis CI). In contrast to conventional 
software development, the interactions between hardware and software also have to be 
tested. A large part of the test suite therefore implements tests involving the 
neuromorphic systems. All code is under version control, using Git. All code changes are 
reviewed by at least one person other than the author, using a structured workflow (Gerrit 
or Github pull requests). Documentation is rebuilt and published automatically when the 
source is updated. 

Some details for the different platform parts, which are independently developed and 
maintained in Gif-sur-Yvette (Web-services, CNRS), Manchester (SpiNNaker, UMAN), 
Heidelberg (most parts of the BrainScaleS wafer module, UHEI) and Dresden (FPGA code 
used in the BrainScaleS system, TUD) can be found below. 

4.1 Web-Services 

The web services are implemented using the Django framework, while front-end 
applications are implemented using the AngularJS Javascript framework. Components are 
deployed in Docker containers, which enables differences between development, staging 
and production environments to be minimized. All components have both unit tests and 
integration tests. For Python/Django components we use the Python "unittest" module and 
the "nose" test runner. For AngularJS components we use the "Jasmine" test framework and 
the "Karma" test runner. Each release of the platform is also tested by hand before moving 
from staging to production. For each component there is an issue tracker. All code changes 
are reviewed by at least one person other than the author before merging to the stable 
branch. Continuous integration testing with Travis CI is used for the open-source 
components (e.g. PyNN). We do not yet use continuous integration for the non-open-source 
components; this is planned for the SGA1 phase of the project. 

4.2 BrainScaleS (NM-PM) 

The development of the NM-PM1 software stack is based on automated testing and code 
review. All software packages are automatically built by “Jenkins” on the local cluster, 
tests are executed and evaluated. Revisions that pass all tests are automatically installed 
as “nightlies” to a distributed file-system. Both, debug and release builds provide a fast 
test-debug cycle in case of emerging problems in the main development branch. 

In contrast to conventional software development, the interactions between hardware and 
software have to be tested. This is why a large part of the test suite implements tests 
involving the neuromorphic system. Low-level regression tests run at least on a nightly 
basis and provide information of basic system behaviour. Higher-level tests, often written 
in the PyNN description language, provide a simple quality measure for “modelling 
performance”. 

A third application of the continuous integration framework are automated simulations of 
chip components. This use case is a mixture of the previous two cases. Depending on the 
detail level of the chip or circuit simulation, different aspects can be tested. Current work 
heads in the direction of automated evaluation of neuroscientific benchmarks on circuits 
that are still under development. 
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Figure 1: Screenshot of the Jenkins overview page 

4.2.1 Quality 

Another aspect of software development is code quality. The NM-PM1 software team 
migrated to the “gerrit” review software at the end of 2014. By now, all software core 
repositories and the major FPGA development repository have been moved into the code 
review system. As a general rule, code modifications may only be passed upstream if at 
least one other person tests and agrees with the proposed changes. Additionally, all 
proposed changes are test-built and tested by the previously mentioned “Jenkins” CI tool. 
Failing builds or tests yield a negative vote on the “changeset”. 

However, robust software design is the main obligation when creating software for a new 
computing platform. As a consequence, the core software stack itself is written in a 
strongly-typed language, C++. Strictly type-safe APIs provide encapsulation of the different 
abstraction layers. The local code reviewers and our coding guidelines encourage modern 
C++ design. As an additional fast access to the software, many of our software layers 
provide an auto-generated Python-based interface which exposes the C++ APIs to the 
interpreted language. Thus, we allow non-expert programmers to access the hardware by 
tools that require very little expertise; in particular, many students use “Jupyter” for 
measuring and analysis scripts. 
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Figure 2: Screenshot of the gerrit code review system 

4.3 SpiNNaker (NM-MC) 

Software development for the SpiNNaker platform is all performed using git, with GitHub 
providing additional pull request and code review features.  Changes to the software, 
including features and bug fixes, are developed within branches of the git repository.  As 
the software interacts with the hardware, we constantly carry out testing during the 
development using the PyNN scripts found in the PyNNExamples git repository within the 
SpiNNakerManchester GitHub organization.  Once a branch is believed to be working, a 
GitHub pull request is created.  Someone in the software development team who did not 
make the changes will then look through the code, checking for PEP8 compliance in Python 
code, and against C coding standards for the SpiNNaker C code, as well as checking the 
changes themselves to be correctly implemented and that the flow of any new 
functionality makes sense.  Before the pull request is merged into the master of the git 
repository, it is again tested against the PyNNExamples scripts to ensure that no changes 
have broken the functionality, as well as against a number of other integration tests that 
have been gathered from users, including the 10%-scaled version of the Potjans & 
Diesmann Microcortical Column model.  We also have a growing number of unit tests for 
the code which are continuously tested using the Jenkins continuous integration 
suite.  This ensures that the master branch of the repository contains only high quality and 
generally functional code.  Finally, releases of the software are made once a number of 
new features have been added, or in time for training workshops.  Before a release is 
generated, it is further tested using all gathered integration tests.  The release is then 
tagged in the git repository and Python and built binaries are pushed into the PyPI 
repositories for distribution.  This ensures that it is always possible to return to a previous 
version of the software should this be required by a particular script. 
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To ensure that the software is coherent, a fully enforced modular separation is 
maintained, with a stack hierarchy that ensures that modules only depend on those below 
them in the hierarchy.  Interfaces between the layers make it easy to modify the internals 
of the modules with as little interference to the other modules as possible.  Abstraction is 
used throughout the code to ensure that when a refactor of an interface is required, it is 
easy to find all the places that rely upon or implement the interface, so that modules 
don’t end up broken due to the refactoring.  We also make use of integrated development 
environments (Eclipse, PyDev and PyCharm) which aid in the development of the software 
through highlighting defects and style violations, and also making it easy to move and 
rename classes and interfaces when necessary. 

5. Platform User Adoption Strategy 
The Neuromorphic Computing Platform expects to attract users from three areas: 
Academia, industry and education. In academia, users come mostly from neuroscience and 
machine learning. Neuroscience users will exploit the simulation speed of the platform 
machines to bridge the many different time scales present in biological systems which is 
not possible with conventional high performance computers. The study of plasticity, 
learning and development is among the most interesting challenges of brain science as it is 
the aspect of self-organisation that makes biological brains different from traditional 
computers. The strong involvement of the Neuromorphic Computing Platform in the future 
co-design project CDP5 reflects this special strength of neuromorphic computing. In 
machine learning the neuromorphic platform offers the possibility to study the features 
and performance of novel computing architectures based on spiking neurons. Examples are 
spiking Boltzmann machines, stochastic computing or deep learning networks. The novel 
aspects in this research are in particular related to the implementation of local learning 
and the corresponding performance benefits in energy and time usage. Industrial users are 
expected to use neuromorphic computing for applications in processing of large, complex 
data sets, specifically detecting and predicting spatio-temporal patterns. The 
corresponding application areas are (among others) in telecommunication, finances, 
automotive, robotics and possibly entertainment. Industry users will also be able to derive 
special, low-cost, custom neuromorphic chips from the networks developed on the large 
machines. Finally, educational users will introduce the concepts of neuromorphic 
computing to the next generation of computer users ranging from high school to university 
students. The HBP Neuromorphic Computing Platform is already offering a substantial 
amount of teaching material and even small-scale hardware systems to address this very 
important user group. 

The neuromorphic computing platform has already implemented and put into place 
strategies to attract new users from all areas described before into neuromorphic 
computing. Academic and educational users are introduced to the systems at various 
international schools and workshops, some of them are organized internally by the HBP 
education group. The first Neuromorphic Computing Application Workshops has been 
carried out on March, 22nd 2016 (as live streamed event on YouTube) and is planned to be 
repeated each year throughout the HBP project duration. 

Additional information for the SpiNNaker (NM-MC1) system: the primary users are research 
teams (mainly academic, though some in national labs and industry) interested in 
modelling biological or artificial neural networks for scientific research, real-time robotics, 
or similar. Outreach is performed through conference presentations and demonstrations, 
workshops (e.g. Capo Caccia and Telluride) and open training events (in Manchester and at 
HBP events). 

SpiNNaker is available via the HBP collaboratory (the 500,000-core system), through board 
loans (primarily 4-node 72-core boards) and sales (single or multiple 48-node 864-core 
boards). Currently we can make sales only to academic research labs, but we are 
renegotiating our supply-side contracts to extend this. 
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6. Help and User Feedback 
To obtain help in using the platform, please start by checking the online user docu-
mentation at: http://electronicvisions.github.io/hbp-sp9-guidebook/ (publicly accessible 
link. The guidebook is also available from within the Collaboratory at:  
https://collab.humanbrainproject.eu/#/collab/51/nav/1069  

If you need personal assistance, want to provide feedback or contribute to the on-going 
development of the platform, please use the contacts described in the guidebook at: 
http://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html  

6.1 User Feedback Received Month 18 – Month 30 (examples) 

 Early-access user feedback received (e.g. the SP11.3 partners used the system HBP 
internally):  

• While the compatibility between the individual hardware PyNN interfaces saw constant 
improvement over the last half year, no platform implements the newest PyNN 
interface version (0.8) at this moment, requiring platform-specific workarounds (Spikey 
is at version 0.6 and NM-MC1/NM-PM1 are at 0.7). Once these incompatibilities are 
ironed out, the compute platform fulfills its task of providing user-friendly access to 
the neuromorphic hardware systems and allowing to run scripts on entirely different 
platforms at the flip of a switch. 

• Suggestion for the job submission: allow direct upload of a project archive (instead of 
URL of a public accessible repository or direct cut&paste) 

• Suggestion: improve feedback regarding the current job status (position in the queue, 
current status of the machines, streaming of the process output) 

• Access to the NM-PM1/HICANN system generally works flawlessly. The system has -- in 
comparison to NM-MC1 -- small setup and extremely small execution times. However, 
the execution of larger networks does not provide meaningful results. This issue is 
being actively investigated at Heidelberg and will hopefully be resolved in the near 
future. (-> V4 Wafer) 

• A limited number of neuron models have as yet been implemented on SpiNNaker (NM-
MC-1). Preliminary work indicates that AdEx could be implemented in fixed point 
arithmetic, but Hodgkin-Huxley really needs floating point arithmetic. We intend to 
extend the number of models supported during SGA1. 

6.2 Usage 

A usage graph for the components of the Neuromorphic Computing Platform is available as 
a dashboard at: https://www.hbpneuromorphic.eu/dashboard/ 

http://electronicvisions.github.io/hbp-sp9-guidebook/
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
http://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html
https://www.hbpneuromorphic.eu/dashboard/
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Figure 3: Screenshots as of 20 March 2016 of the Neuromorphic Computing Platform 
Dashboard (https://www.hbpneuromorphic.eu/dashboard/): Number of completed jobs 

on the NM computing systems BrainScaleS (NM-PM1) and SpiNNaker (NM-MC1) 

 

https://www.hbpneuromorphic.eu/dashboard/
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7. Annex A: Platform Architectural Diagram 

7.1 Architecture overview: NM-PI part 

 

Figure 4: Software architecture diagram: NMPI part (web interface from Collaboratory 
to the platform system batch queues) 
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7.2 Architecture overviews: SpiNNaker part (NM-MC) 

 

Figure 5: SpiNNaker software architecture diagram: Python software stack 

 
 

Figure 6: SpiNNaker software architecture diagram: C software stack 
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Figure 7: SpiNNaker software architecture diagram: Remote access 

Finally, we have an image of the completed machine. This has five cabinets of five racks 
each, with each rack containing twenty-four 48 node boards. This machine thus comprises 
28,800 SpiNNaker chips, or 518,400 individual ARM-968 cores. This machine constitutes 
Milestone MS178. Further extensions to this machine will be made in SGA-1. 

 

Figure 8: Five SpiNNaker system racks (500.000 cores), fully wired, in the machine 
room in Manchester, 25 March 2016 
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7.3 Architecture overview: BrainScaleS (NM-PM) 

Remote access to the NM-PM1 system is provided via NMPI. A client program accesses the 
NMPI Rest API, pulls new jobs and provides back updated job status information for 
previously pulled jobs. The NMPI client passes down jobs to the standard SLURM resource 
managing software framework. Neuromorphic hardware as well as cluster resources and 
other factors (e.g. fairness between users or jobs) are managed by the same software 
package. Hardware resources are allocated to individual jobs and, as soon as the 
requirements are satisfied, the job is executed on cluster nodes. A distributed cluster file-
system is used to access job output data from an Apache-based https server, which 
provides user access to the result data. 

 

Figure 9: Architecture diagram: Job submission for BrainScaleS (NM-PM1) 

The NM-PM1 software stack contains one main execution pipeline that starts from the 
PyNN-based network description (the PyNN implementation for the BrainScaleS system is 
called PyHMF). Additional software layers provide a more C++-friendly data representation 
of the mentioned neuronal network description. The translation from the PyNN biological 
description to a matching hardware configuration is performed by the map & route tool 
Marocco. Finally, a hardware access layer configures the system, controls input and 
records output data of experiments running on the neuromorphic system. 

As all layers provide APIs, low-level tools can access individual layers. For instance, the 
calibration framework cake uses the low-level access layers to directly access single 
neuron circuits on the NM-PM1 system. For real-time/hybrid operation, a real-time-capable 
low-level API is provided by VerCL. 
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Figure 10: Architecture diagram: Software stack for NM-PM1 BrainScaleS jobs 

 

Specification of the conventional compute cluster (4th rack from left, see Figure 11): 

20 Compute Nodes: 
• Intel Core i7-4771 
• 4 (+4HT) cores 
• 32GB 
• 2x10GbE uplink 

2 Frontend Servers: 
• Intel Xeon E5-2643v2 
• 6 (+6HT) cores 
• 64GB 
• 2x40GbE uplink 
• 3TB SSDs 

1 (Slow) Storage Server 
• 64TB HDDs 
• 2x40GbE uplink 

 

 
Summary: 

• 92 real (+ 92 HT) cores 

• 4.2TFlop/s (only the CPUs, GPUs not counted) 

• 768GB RAM 

• Wafer to node network supports 560 Gbit/s (this is still less than the maximal possible 
20*48Gbit/s = 960Gbit/s from all wafers combined) 

• Aggregated SSD streamed write supports ~5GB/s (i.e. the peak output of one single 
wafer module can be streamed to disk)  

• 3TB (about 8 minutes at peak output of a single wafer) fast (SSD) and 50TB slow 
storage (RAID 6, 64 TB raw disk storage capacity) 
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Figure 11: Status of the HBP NM-PM1 system BrainScaleS as of 21 March 2016 

For the platform release day (30 March 2016) 20 systems are in place.  

 

Figure 12: The components of one BrainScaleS (NM-PM1) wafer module  



 

Co-funded by  
the European Union 

 
 

 

 
SP9 D9.7.4 FINAL  PU = Public  Page 17 / 32 

 

 

Figure 13: BrainScaleS (NM-PM1) module from the power-board side 

 

Figure 14: NM-PM1 BrainScaleS module with three of the four boards with FPGAs added 
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Figure 15: Fully assembled NM-PM1 BrainScaleS module, FPGA-side 

 

Table 1: Component list for the 20 NM-PM1 BrainScaleS systems 

Description Total Number Required 

Server racks with 42 U height 
installed 

7 7 

Air conditioning system with 20 kW 2 2 

Cooling drawer for the WMOD racks 20 20 

Fans for wafer module cooling 240 200 

Fan mounts 20 20 

Elastomeric Connectors 16000 16000 

Spartan6 Flyspi Boards 60 60 

Post-processed HICANN V2 wafer  25 20 

Post-processed HICANN V4.1 wafer 10 in prod. bonus 

Main PCB assembled 24 20 

Aluminum Top Cover  24 20 

Aluminum Bracket 20 20 

Wafer Cooling 20 20 

Control Units for Reticles (Cure PCB) 160 160 
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Description Total Number Required 

Positioning Mask for Elastomeric 
Connectors 

30 30 

Main Power Supplies (PowerIt PCB) 25 20 

Auxiliary Power Supply (AuxPwr 
PCB) 

48 40 

FPGA Communication PCB (FCP) 1087 960 

Wafer IO Boards (hor. and vert. 
version) 

96 80 

Rack power supply 220V to 48V 6 (*3 units) 5 

Raspberry Pi for system control 20 20 

Intel NUC computer for ADC control 5 5 

3HU crates for Sys-control 
components 

5 5 

Analog Breakout Boards (AnaB) 50 40 

Adjustment assemblies 2 2 

Wafer module rack fixing set 
(mechanics) 

20 20 

Analog Frontend PCB 
(redesign postponed, current design 
sufficient) 

60 60 

Insertion Frame 20 20 

Compute/Control Nodes (standard 
PC cluster) 

20 20 

Test node 1 1 

Storage Server 3 3 
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8. Annex B: Software and Services Included in this Platform 
Release 

For each of the Platform’s user-accessible Software Packages and Services, an entry is 
placed in the HBP Collaboratory’s Software Catalogue: 
https://collab.humanbrainproject.eu/#/collab/19/nav/2108 

The Annex here in the Word document is just an export, created on 20 March 2016, using 
the https://collab.humanbrainproject.eu/#/collab/509/nav/4818 Collab application. 

Name Title Version Category Description 

pyhal PyNN 
Implementation 
for the Spikey 
Neuromorphic 
Hardware System 

1e970f0 application  

vmodule AnaRM (Analog 
Readout Module of 
HICANN Wafer 
Modules) Software 

2108859 library  

omnibus A pipelined 
hardware bus 
system based on 
OCP 2.0 written in 
SystemVerilog 

f073266 spec  

ppu-software Basic software 
libraries for the 
Nux processor and 
plasticity 
measurements 

669c2d6 library This repository contains basic 
libraries to compile software for 
the Nux processor. The 
ppu_sweep program was used 
for plasticity measurements in 
the first HICANN-DLS prototype 
chip. 

nux A synthesizable 
RISC processor 
implementing the 
Power ISA 

d3384f5 spec This repository contains the Nux 
Processor developed during the 
Brain-i-Nets, BrainScaleS, and 
HBP EU research projects. It is a 
small RISC processor 
implementing the Power ISA 
2.06 (32 bit embedded 
implementation). It also has a 
non-standard SIMD processing 
unit for 8 and 16-bit fixed-point 
arithmetics. The design is open 
source and provided under the 
Solderpad license. For details 
see the LICENSE and NOTICE 
files. 

logger Logging 
Framework for 
UHEI Software 

826c5ed library  

spikeyhal Low-level 
Interface for (USB-
based) Spikey 
Neuromorphic 
Systems 

260fc1e library Hardware Abstraction Layer of 
the Spikey neuromorphic system 
('spikeyhal') developed by the 
Electronic Vision(s) Group, 
Kirchhoff-Institute for Physics, 
Ruprecht-Karls-Universität 
Heidelberg, Germany. 

https://collab.humanbrainproject.eu/#/collab/19/nav/2108
https://collab.humanbrainproject.eu/#/collab/509/nav/4818
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Name Title Version Category Description 

brick IC design work 
flow based on the 
waf build tool 

3843b1 tool brICk is a waf-based IC design 
work flow tool that offers 
design-independent build folder 
management. Multiple build runs 
of an IC design can be kept in 
parallel and can be switched 
between. Design source files, 
such as i.e. HDL code, tcl scripts 
and full custom design files can 
be copied into the components 
folder of the tool's directory 
structure. Their paths, given in a 
text file, will be used by brICk to 
hook into and allow it to 
execute the necessary tasks. 
These tasks may include 
 
abstract generation 
HDL code synthesis 
Place & Route 
Functional verification 
Formal verification 
Sign-off verification 
 
Files resulting from these 
operations will always be 
avoided to be copied to the 
source file tree and will be put 
into a run-specific uniquely 
named result folder. In a first 
version, old runs will be kept, 
giving users the possibility to 
compare results of different runs 
(with different parameters or 
source code changes) to each 
other. However, brICk will not 
allow the user to recover and/or 
continue these runs once he has 
advanced to the next run. In a 
future version, the user should 
be able to switch back to old 
runs and continue to work on 
them at any later point and at 
any given state. This can involve 
an abandonment of the strict 
distinction between source (i.e. 
input) file tree and result (i.e. 
output) file tree and make it 
necessary to copy the current 
task's tcl scripts and/or 
necessary other input files to 
the current run directory. To 
allow for continuation of past 
build runs, brICk will at least 
have to force the user to commit 
the current source file tree's 
state to the version control 
system and save the commit ID 
for later resumption. Later on in 
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Name Title Version Category Description 

the development of brICk, it 
should be possible to maintain 
different configurations to be 
able to keep one single brICk 
folder, holding in it's 
components folder the source 
files of different IC designs and 
making it even possible to switch 
between different designs. 
 
brICk stands for |b|ackend 
|r|apid |IC| |k|it. It is intended 
as a hardware development 
counterpart to symwaf2ic, the 
central software build flow of 
the Electronic Vision(s) group 
which is also based on waf. 

Neuromorphic-
Computing-
Platform-Job-
Manager 

Neuromorphic 
Computing 
Platform Job 
Manager 

2 application Collaboratory app for submitting 
jobs to the Neuromorphic 
Computing Platform, and 
retrieving/reviewing the results. 

Neuromorphic-
Computing-
Platform-Job-
Queue-Service 

Neuromorphic 
Computing 
Platform Job 
Queue Service 

1 service Web service for submitting and 
retrieving simulation jobs 
to/from the HBP Neuromorphic 
Computing Platform. 

Neuromorphic 
Platform Python 
client 

Neuromorphic 
Platform Python 
client 

0.3.0 library Client software for the Human 
Brain Project Neuromorphic 
Computing Platform. 

PyNN PyNN 0.8.0 library A Python package for simulator-
independent specification of 
neuronal network models. 

sPyNNaker SpiNNaker PyNN 
Software 

2016.001   
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9. Annex C: Summary - Platform Use Case Status 
Pasted in below are the latest “Technology Readiness Levels” TRL estimates for the use-
cases collected on the internal wiki page https://flagship.kip.uni-
heidelberg.de/w/SP9_UseCases_TRL   

Status as of 29 March 2016: 

9.1.1 SP9NMP-UC-001: A single run of a simple network model  

Primary Actors: Bill, a computational neuroscientist  

Bill has created a network model with point neurons and short-term synaptic plasticity 
using the PyNN API. He has simulated the model using the NEST and NEURON simulators, 
and now wishes to check that the results from neuromorphic hardware are comparable. 
Precondition: The model and experiment description are in a single Python script on Bill’s 
laptop.  

9.1.1.1 Success Scenario. Overall TRL estimate: 5  

• In a web browser, Bill navigates to the home page for the Neuromorphic Computing 
Platform and logs in to his user page.  

• Bill can see a list of previous jobs he has run on the Platform.  

• Bill clicks a button to request a new job.  

• Bill copies the content of the Python script from his text editor and pastes it into the 
appropriate text box.  

• Bill selects the Manchester system.  

• Bill submits the job request.  

• Bill is returned to his user page, where he can see that his new job has been added to 
the list of jobs with the status ""in queue"".  

• When the job is complete, Bill receives an e-mail containing a link to the job detail 
page.  

• Bill clicks on the link, which opens the job detail page in his browser. This page shows 
that the job has successfully completed, and contains links to download the log and 
output data files generated by the experiment.  

• Bill downloads the data files and compares the results to his NEST simulations."  

This scenario works as described.  

9.1.1.2 Alternate Scenario 1 (syntax error in the script): Not currently implemented  

• There is a syntax error in Bill’s script.  

− when Bill submits the job request, he is taken back to the job submission page, 
where a traceback of the error appears.  

− Bill corrects the error and resubmits the job.  

Not currently implemented, although some components are in place. Syntax errors are 
currently handled as in Alternate Scenario 2.  

https://flagship.kip.uni-heidelberg.de/w/SP9_UseCases_TRL
https://flagship.kip.uni-heidelberg.de/w/SP9_UseCases_TRL
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9.1.1.3 Alternate Scenario 2 (error in the script in the output section): Overall TRL 
estimate: 5  

• There is an error in the output data-handling section of Bill’s script, after the 
simulation section.  

− Bill receives an e-mail informing him that the job was unsuccessful, and containing 
a link to the job detail page.  

− The job detail page shows the error traceback and contains a link to download the 
log file, enabling Bill to debug his script.  

Scenario works as described.  

9.1.2 SP9NMP-UC-002: A scripted run of a complex network model with input 
data and parameter files  

Primary Actors: Carol, a computational neuroscientist Carol has developed a detailed 
model of a sensory system, which uses spiketiming-dependent plasticity and receives 
naturalistic stimulation. Even on a traditional HPC computer, the simulation takes several 
days to run. Carol wishes to take advantage of the large acceleration factor of the 
Heidelberg system to bring the run time down to a few minutes, so that she can study the 
effect of parameter variations. Since she expects to submit many jobs with different 
parameters, she wishes to script the job submission process rather than click through a 
website. Precondition: The model and experiment descriptions are written using the PyNN 
API and are in separate Python files in a public Git repository. The repository also contains 
parameter files, a file containing data used to construct the sensory stimuli, and a main 
script which reads all these files, launches the simulation and then handles the output 
data processing.  

9.1.2.1 Success Scenario. TRL estimate: 5  

• Carol downloads a Python client for the Neuromorphic Computing Platform job 
submission REST API.  

• Using the client library, she writes a short script to submit a job to the Neuromorphic 
Computing Platform and retrieve the results.  

• The job request script includes the name of the system (the Heidelberg system in this 
case), the URL of the Git repository, the path to the main script within the repository, 
and the list of arguments (parameter file name, etc.) required by the script.  

• After submitting the job request, the script receives a URL that returns a document 
indicating the job status.  

• The script polls the job status URL repeatedly until the job is complete, at which point 
the job status document contains the URLs of the output data files and the log file.  

• The script downloads the output data files and saves them to the local disk.  

This scenario works as described.  

9.1.2.2 Alternate Scenario 1 (error in the user code). TRL estimate: 5  

• There is an error somewhere in Carol’s code  

− the job status document indicates there has been an error, and contains the error 
traceback and the URL of the log file  

Works as described  
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9.1.2.3 Alternate Scenario 2 (public Git repository unavailable): TRL estimate: 5  

• The public Git repository is unavailable  

− The job status document indicates there has been an error, and indicates the cause 
of the problem  

Not tested, but expected to work  

9.1.2.4 Alternate Scenario 3 (user script termination between job submission and 
completion): TRL estimate: 5  

• Carol cancels the job submission script, or reboots her computer, after the job has 
been submitted but before the job has completed.  

− The job remains in the queue  

− When the job completes Carol receives an e-mail containing a link to the job detail 
page.  

Works as described.  

9.1.2.5 Alternate Scenario 4 (using the Python client to cancel a job): TRL estimate 4  

• After submitting the job but before it has completed, Carol realizes she has made a 
mistake.  

− Carol uses the Python client for the Neuromorphic Computing Platform job 
submission REST API to cancel the job.  

Implemented but not documented  

9.1.3 SP9NMP-UC-003: Using the Neuromorphic Computing Platform through 
the Collaboratory and Brain Simulation Platform  

Primary Actors: Dennis, a neuroscientist. Dennis has used the Brain Builder component of 
the Brain Simulation Platform to create a network model of a brain region, using point 
neurons. He has successfully executed a simulation of the model on the HPC Platform using 
the NEST simulator, and now wishes to execute the model on the Manchester hardware 
preparatory to beginning a collaboration with the Neurorobotics sub-project. Dennis is not 
comfortable with Python coding, and wishes to use the Collaboratory to perform his 
simulations.  

Precondition: Dennis’ model is available in the Collaboratory.  

9.1.3.1 Success Scenario. TRL estimate: 1-2  

• Dennis selects and executes a task that exports a Brain Builder model in a format 
suitable for execution on the Neuromorphic Platform (PyNN).  

• He configures a Neuromorphic simulation job, selecting the Manchester hardware.  

• He launches the job, which is then queued and executed when time is available on the 
hardware.  

• About an hour later, Dennis receives an e-mail telling him his job has completed 
successfully.  

• Dennis returns to the Collaboratory, from where he can access the data files generated 
by his simulation, as well as provenance information about the execution, e.g. what by 
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his simulation, as well as provenance information about the execution, e.g. what 
version of the hardware system was used.  

Export of brain models from the Brain Simulation Platform to PyNN format could not be 
implemented in the Ramp-Up phase. We were over-optimistic in proposing this use case 
for the RU phase, and did not take into account the planned development and research 
schedules for the necessary inputs from SP4 and SP6. This use case is now planned for 
SGA1.  

9.1.3.2 Alternate Scenario (a model contains features not supported by the platform): 
TRL estimate: 1-2  

• Dennis’ model contains features that are not supported by the Neuromorphic 
Computing Platform.  

− The export task fails, with a clear error message indicating which features are not 
supported.  

− Dennis consults the documentation for the Neuromorphic Computing Platform and 
modifies his model so that it will run on Neuromorphic Hardware.  

− He runs simulations with the modified model on the HPC Platform, and finds that 
the results are qualitatively unchanged.  

− He now submits a new job for the Neuromorphic Computing Platform, using the 
modified model, which successfully runs to completion."  

9.1.4 SP9NMP-UC-004: Parameter sweeps  

Primary actor: Esin, a computational neuroscientist  

Description: Esin wishes to explore the parameter space of her network model. Due to its 
long run time, she needs to make use of the large acceleration factor of the Heidelberg 
system.  

Preconditions: The model and experiment descriptions are written using the PyNN API in a 
single Python file in a public Git repository.  

9.1.4.1 Success Scenario. TRL estimate: 4  

• Esin writes a batch configuration file. This provides values for those parameters that 
will be varied across runs. She commits this to the Git repository.  

• Esin downloads a Python client for the Neuromorphic Computing Platform job 
submission REST API.  

• Using the client library, she writes a short script to submit a job to the Neuromorphic 
Computing Platform and retrieve the results.  

• The job request script includes the name of the system (the Heidelberg system in this 
case), the URL of the Git repository, the path to the model script within the repository, 
and the path to the batch configuration file.  

• After submitting the job request, the script receives a URL that returns a document 
indicating the job status.  

• The script polls the job status URL repeatedly until the job is complete, at which point 
the job status document contains the URLs of the output data files and the log files 
from all of the runs in the batch.  
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• the script downloads the output data files and saves them to the local disk.  

This scenario has been implemented in a modified form: in place of a batch configuration 
file, a Python script is used to implement the batch configuration.  

9.1.4.2 Alternate Scenario (values outside valid range): TRL estimate: 3  

• One of the parameter sets in the batch run contains values outside the valid range for 
the Neuromorphic hardware.  

− The invalid run is skipped, and a warning is written to the log file.  

9.1.5 SP9NMP-UC-005: Closed-loop experiment involving a virtual environment  

Primary actor: Fumiko, a roboticist.  

Description: Fumiko has developed a robot simulation within a virtual environment. The 
robot perceives its environment via a model retina, and acts upon its environment through 
actuators. Communication from the retina to the robot brain model and from the brain to 
the actuators is via spikes. The retina, actuators and virtual environment are implemented 
as a C++ application.  

Preconditions: Working with the developers of the Neuromorphic Computing Platform, 
Fumiko has successfully installed the virtual environment software on the Platform, 
working via remote shell access. The Python code for the brain model is in a Git 
repository, which has been checked out on the platform.  

9.1.5.1 Success Scenario. TRL estimate: 3 (so far NM-MC only)  

• Fumiko writes a Python script which connects the brain model with the retina and 
actuators, using a PyNN extension that connects spike-emitting and spike-receiving 
ports (for example, using the MUSIC interface).  

• Using the REST API, Fumiko launches the job, which runs until the robot completes a 
pre-defined task, or until a pre-defined time limit is reached.  

• When the job is complete, Fumiko receives an e-mail that contains a URL for the job 
status.  

• Fumiko accesses this URL through the REST API and downloads the data and log files 
generated by the job.  

A prototype of an SP10 virtual robotics environment running with SpiNNaker has been 
demonstrated by Felix Scheider.  

9.2 Missing features / under development features  

• Full provenance integration (limited provenance integration in place)  

• Closed loop interfaces to SP10. 
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10. Annex D: Summary – Service IT Resource Planning 

Product/Software 
Package/Service TRL 

Data Storage 
Capacity used by 

this Product 

Data Storage 
Capacity 

Allocated for this 
Product 

Location(s) of 
Data Storage 

Data Access 
Protocol(s)* 

Compute 
Resource(s) 
Allocated 

Location(s) of 
Compute 

Resource(s) 
Allocated 

Compute Access 
Protocol(s)** 

SP9 user entry 
portal for 
submitting jobs to 
the platforms  

5-6 140 MB 20 GB 
Cloud (Digital 
Ocean datacentre 
in Amsterdam)  

https 

Currently a single 
webserver. 
Scalable according 
to demand. 

Cloud (Digital 
Ocean 
datacentres in 
Frankfurt and 
Amsterdam) 
(partner CNRS) 

https 

 SP9 NM-MC 
(SpiNNaker) 
component 

 

Temporary 
storage for 
experiment and 
result data.  

 Local discs (internal access) 

NM-MC1 
(SpiNNaker) 
system with 
500.000 cores  

Manchester 
(partner UMAN)  

SP9 NM-PM 
(BrainScaleS) 
component 

5-6 

Temporary 
storage for 
experiment and 
result data. 

20 TB Local discs 

(internal access, 
except for 
optimized 
UNICORE links) 

NM-PM1 
(BrainScaleS) 
system with 20 
wafers 

Conventional 
compute cluster  

Heidelberg 
(partner UHEI) 

UNICORE, SLURM, 
ssh 

NM-PM standalone 
system Spikey 5-6 cf. NM-PM cf. NM-PM cf. NM-PM cf. NM-PM 6 standalone 

Spikey systems 
Heidelberg 
(partner UHEI) cf. NM-PM 

* Data Access Protocols such as GPFS, N.FS, S3, Collab storage, etc. 

** Compute Access Protocols such as EC2, Task Framework, Unicore, OCCI, Slurm, ssh, gLite, Condor, etc. 
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11. Annex E: Summary – Service Technology Readiness Levels (TRLs) Metrics 
Documentation URL - User, Developer and/or Administrator documentation is available at this URL. Strong preference should be given for 
publicly available documentation services. 

Target User Count (TRL6+) – Target user counts (concurrent service users). 

SLA Defined – The software documentation defines some Quality of Service metrics in the service documentation. These metrics may or may 
not be enforced by the service itself. The service has not been tested to adhere to the documented QoS metrics. 

SLA Monitored – The Quality of Service metrics are monitored by a monitoring service.   

SLA Enforced – The Quality of Service metrics are enforced by implementing service. If the SLA Definition indicates on 3 
API/request/sec/user, there are suitable mechanisms implemented in the service to ensure these limits are not exceeded. 

Product/Software 
Package/Service 

Technology 
Readiness Level 

(TRL1-9) 
Documentation URL 

Target User 
Count 

(TRL6+) 

SLA Defined 
(TRL7+) 

SLA Monitored 
(TRL7+) 

SLA Enforced 
(TRL7+) Comments 

Neuromorphic 
Compute Platform v1 

Approaching 5 
(Prototype 
integration - 
Validation of 
integrated system in 
a real-world 
environment = public 
platform release) 

See also Deliverable 
D 9.7.5 

- - - - The Neuromorphic Computer Workshop 
on 22 March 2016 and the HBP wide 
public platform release on 30 March 2016 
makes the full system size described for 
the ramp-up phase (500.000 cores for NM-
MC SpiNNaker and 20 wafers for NM-PM 
BrainScaleS) available. 
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12. Annex F: Backlog / Bug-tracking 
The platform release as of 30 March 2016 is the first public platform release (V1). Especially the calibration routines for the BrainScaleS 
systems will be improved. Interaction with external users is expected to uncover bugs and create plenty of feature requests. For the next 
hardware development steps (NM-MC2 and NM-PM2 chips) the roadmap can be found in the HBP Framework Partnership Agreement (FPA). 

 

The means for users to report bugs/problems are described in the guidebook in the Getting-Help section at 
http://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html Several bug trackers are in use to track the issues: 

• For the NMPI component the internal bug-tracking and work-planning is carried out at  https://trello.com/b/fjxahmd9/hbp-
neuromorphic-platform-ws (not public). The external bug-tracker is planned to be made accessible at 
https://bitbucket.org/apdavison/nmpi/issues 

 
 

http://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html
https://trello.com/b/fjxahmd9/hbp-neuromorphic-platform-ws
https://trello.com/b/fjxahmd9/hbp-neuromorphic-platform-ws
https://bitbucket.org/apdavison/nmpi/issues
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• For the SpiNNaker system (NM-MC1) the main entry point for bug tracking is at the publicly accessible URL : 
https://github.com/SpiNNakerManchester/sPyNNaker/issues  

• For the BrainScaleS system (NM-PM1) the bug tracking is done using the internal  https://brainscales-r.kip.uni-heidelberg.de/issues/ 
redmine system. 

 

  

https://github.com/SpiNNakerManchester/sPyNNaker/issues
https://brainscales-r.kip.uni-heidelberg.de/issues/
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13. Annex G: IPR Status, Ownership and Innovation Potential 
 

Product/Software 
Package/Service 

IPR 
Status* Owner(s) Non-HBP users** Innovation Potential*** 

SpiNNaker (NM-MC1)  UMAN and 
contributors (Platform opening on 30 March 2016)  

SpiNNaker standalone boards (4- 
and 48-chip systems) Patent 

Cogniscience Ltd 
(a UMAN spin-out 
company) 

~ 70 SpiNNaker (mainly 4-node) boards are 
on loan 

~ 12 48-node boards have been sold to 
academic research labs all around the world. 

Still speculative, but there is interest in Deep Learning 
applications. 

BrainScaleS (NM-PM1)  

UHEI and 
contributors (e.g. 
TUD for FPGA 
components) 

(Platform opening on 30 March 2016) 

Innovation potential 

- As a rapid prototyping system for neuromorphic computing with 
physical models. Export of functioning circuits to custom chips 

- As a high-performance, high speed data processing system for 
spatio-temporal pattern detection 

- As an evaluation system for generic, spike-based computing 
(stochastic computing, deep learning) 

Spikey standalone system   

Standalone USB-Spikey systems can be 
accessed via the internet (via the 
Collaboratory) and can also obtained as 
physical (USB-connected) box system. 
Currently 3 systems are given out. Several 
systems are accessible via the NMPI (internet 
access) 

Innovation potential mostly as an educational platform 
introducing newcomers into neuromorphic computing with 
physical model systems. The systems will be available for 
collaborators. 

* IPR Status: Open Source, Copyright, Patent, Trade Secret, pre-IPR (i.e. you intend to obtain some form of IPR in the future) 

** If this product/software package/service is currently being used outside HBP (e.g. donated, loaned, licensed, sold), please specify by 
whom. 

*** Innovation Potential: Potential practical applications beyond HBP, commercial and/or non-commercial. 
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