

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 1 / 32

Grant Agreement: 604102 Project Title: Human Brain Project

Document Title: Neuromorphic Computing Platform v1 (public platform release)

Document Filename: SP9_D9.7.4_PlatformRelease_V0.17.docx

Deliverable Number: D9.7.4

Deliverable Type: Prototype

Work Package(s): WP 9.1, 9.2, 9.3, 9.5

Dissemination Level: PU

Planned Delivery Date: M30 / 31 Mar 2016 (public Platform release at the end of the Ramp-Up Phase)

Actual Delivery Date: M30 / 30 Mar 2016 (plaform relase event. 1st Neuromorphic Computing
Application workshop on 22 March 2016)

Authors: Karlheinz MEIER, Steve FURBER, Andrew DAVISON, David LESTER, Eric MÜLLER,
SP9 contributors

Compiling Editors:

Contributors:

Coordinator Review: UHEI (P45): Martina SCHMALHOLZ (STC)

Editorial Review: EPFL (P1): Lauren ORWIN

Abstract:

This Deliverable describes the v1 public release of the Neuromorphic Computing
Platform as of the end of the Ramp-Up Phase.
Both large scale systems, SpiNNaker (NM-MC1, in Manchester) and BrainScaleS
(NM-PM1, in Heidelberg), are accessible remotely via the NMPI (integrated into
the HBP Collaboratory) and reached their planned size of 500.000 cores for the
SpiNNaker and 20 wafer scale systems for the BrainScaleS machine.
A public live streamed release event (“1st Neuromorphic Computing Application
Workshop”) with max. 100 concurrent viewers on YouTube took place on 22
March 2016.
Access and info: http://neuromorphic.eu

Keywords: Neuromorphic Computing Platform

Available at: www.humanbrainproject.eu/ec-deliverables

http://neuromorphic.eu/
http://www.humanbrainproject.eu/ec-deliverables

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 2 / 32

Table of Contents
1. The Aim of this Document .. 4
2. How to Access the Neuromorphic Computing Platform .. 4
3. Platform User Instructions .. 4
4. Platform Testing and Quality Strategy ... 4

4.1 Web-Services .. 5
4.2 BrainScaleS (NM-PM) .. 5

4.2.1 Quality .. 6
4.3 SpiNNaker (NM-MC) ... 7

5. Platform User Adoption Strategy .. 8
6. Help and User Feedback .. 9

6.1 User Feedback Received Month 18 – Month 30 (examples) ... 9
6.2 Usage ... 9

7. Annex A: Platform Architectural Diagram ... 11
7.1 Architecture overview: NM-PI part .. 11
7.2 Architecture overviews: SpiNNaker part (NM-MC) .. 12
7.3 Architecture overview: BrainScaleS (NM-PM) .. 14

8. Annex B: Software and Services Included in this Platform Release 20
9. Annex C: Summary - Platform Use Case Status ... 23

9.1.1 SP9NMP-UC-001: A single run of a simple network model 23
9.1.2 SP9NMP-UC-002: A scripted run of a complex network model with input data and
parameter files ... 24
9.1.3 SP9NMP-UC-003: Using the Neuromorphic Computing Platform through the
Collaboratory and Brain Simulation Platform .. 25
9.1.4 SP9NMP-UC-004: Parameter sweeps .. 26
9.1.5 SP9NMP-UC-005: Closed-loop experiment involving a virtual environment 27

9.2 Missing features / under development features .. 27
10. Annex D: Summary – Service IT Resource Planning ... 28
11. Annex E: Summary – Service Technology Readiness Levels (TRLs) Metrics 29
12. Annex F: Backlog / Bug-tracking .. 30
13. Annex G: IPR Status, Ownership and Innovation Potential .. 32

List of Figures and Tables
Figure 1: Screenshot of the Jenkins overview page .. 6
Figure 2: Screenshot of the gerrit code review system .. 7
Figure 3: Screenshots as of 20 March 2016 of the Neuromorphic Computing Platform

Dashboard (https://www.hbpneuromorphic.eu/dashboard/): Number of completed
jobs on the NM computing systems BrainScaleS (NM-PM1) and SpiNNaker (NM-MC1) ... 10

Figure 4: Software architecture diagram: NMPI part (web interface from Collaboratory to
the platform system batch queues) .. 11

Figure 5: SpiNNaker software architecture diagram: Python software stack 12
Figure 6: SpiNNaker software architecture diagram: C software stack 12
Figure 7: SpiNNaker software architecture diagram: Remote access 13
Figure 8: Five SpiNNaker system racks (500.000 cores), fully wired, in the machine room in

Manchester, 25 March 2016 .. 13
Figure 9: Architecture diagram: Job submission for BrainScaleS (NM-PM1) 14
Figure 10: Architecture diagram: Software stack for NM-PM1 BrainScaleS jobs 15
Figure 11: Status of the HBP NM-PM1 system BrainScaleS as of 21 March 2016 16
Figure 12: The components of one BrainScaleS (NM-PM1) wafer module 16
Figure 13: BrainScaleS (NM-PM1) module from the power-board side 17
Figure 14: NM-PM1 BrainScaleS module with three of the four boards with FPGAs added .. 17
Figure 15: Fully assembled NM-PM1 BrainScaleS module, FPGA-side 18

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 3 / 32

Table 1: Component list for the 20 NM-PM1 BrainScaleS systems 18

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 4 / 32

1. The Aim of this Document
This document describes the status of the Neuromorphic Computing Platform NM-MC1 –
SpiNNaker, NM-PM1 – BrainScaleS and the related access software at the end of the ramp-
up phase for the 30 March 2016 HBP platform release. On 22 March 2016 both large scale
machines have been presented publicly in the 1st Neuromorphic Computing Application
Workshop – streamed live on YouTube1.

This Deliverable is also the documentation for reaching Milestone MS187 “Platform ready
for community release“.

2. How to Access the Neuromorphic Computing Platform
The Neuromorphic Platform is one of six ITC Platforms that comprise the HBP Scientific
Research Infrastructure. All these Platforms can be accessed via the HBP Collaboratory
web interface:

https://collab.humanbrainproject.eu/#/collab/19/nav/403

Direct link to the Neuromorphic Computing Platform on the Collaboratory:

https://collab.humanbrainproject.eu/#/collab/51/nav/244

3. Platform User Instructions
The living document HBP Neuromorphic Computing Platform guidebook is accessible:

• From within the collaboratory at
https://collab.humanbrainproject.eu/#/collab/51/nav/1069

• Publicly at http://electronicvisions.github.io/hbp-sp9-guidebook/

The Platform Documentation links are also collected in the separate Deliverable D9.7.5.

Info: D9.7.5 was also scheduled to include a roadmap describing plans for future Platform
development, but this topic is covered in this document - see Annex F: Backlog (remaining
bugs and new features to be added).

4. Platform Testing and Quality Strategy
The platform quality strategy is to use:

• Code review

• Robust software design (e.g. strictly enforced modularity with clearly defined
interfaces)

• Version control

• Both automated and manual testing

• Continuous integration

• Environment consistency and isolation

1 The workshop had up to 100 concurrent viewers on YouTube during the live event (plus a
few on AdobeConnect). The events recording remains accessible on YouTube at
https://www.youtube.com/watch?v=khRPnlDekIg As of 28 March the page showed 590
views.

https://collab.humanbrainproject.eu/#/collab/19/nav/403
https://collab.humanbrainproject.eu/#/collab/51/nav/244
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
http://electronicvisions.github.io/hbp-sp9-guidebook/
https://www.youtube.com/watch?v=khRPnlDekIg

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 5 / 32

• An agile development methodology incorporating feedback from users and co-design
projects with other HBP sub-projects.

• Application of coding and style standards for C, C++ and Python code.

• Comprehensive documentation.

All components of the platform have automated tests, both unit tests and integration
tests, which are run automatically on code changes and/or on a scheduled basis using
continuous integration tools (e.g. Jenkins or Travis CI). In contrast to conventional
software development, the interactions between hardware and software also have to be
tested. A large part of the test suite therefore implements tests involving the
neuromorphic systems. All code is under version control, using Git. All code changes are
reviewed by at least one person other than the author, using a structured workflow (Gerrit
or Github pull requests). Documentation is rebuilt and published automatically when the
source is updated.

Some details for the different platform parts, which are independently developed and
maintained in Gif-sur-Yvette (Web-services, CNRS), Manchester (SpiNNaker, UMAN),
Heidelberg (most parts of the BrainScaleS wafer module, UHEI) and Dresden (FPGA code
used in the BrainScaleS system, TUD) can be found below.

4.1 Web-Services

The web services are implemented using the Django framework, while front-end
applications are implemented using the AngularJS Javascript framework. Components are
deployed in Docker containers, which enables differences between development, staging
and production environments to be minimized. All components have both unit tests and
integration tests. For Python/Django components we use the Python "unittest" module and
the "nose" test runner. For AngularJS components we use the "Jasmine" test framework and
the "Karma" test runner. Each release of the platform is also tested by hand before moving
from staging to production. For each component there is an issue tracker. All code changes
are reviewed by at least one person other than the author before merging to the stable
branch. Continuous integration testing with Travis CI is used for the open-source
components (e.g. PyNN). We do not yet use continuous integration for the non-open-source
components; this is planned for the SGA1 phase of the project.

4.2 BrainScaleS (NM-PM)

The development of the NM-PM1 software stack is based on automated testing and code
review. All software packages are automatically built by “Jenkins” on the local cluster,
tests are executed and evaluated. Revisions that pass all tests are automatically installed
as “nightlies” to a distributed file-system. Both, debug and release builds provide a fast
test-debug cycle in case of emerging problems in the main development branch.

In contrast to conventional software development, the interactions between hardware and
software have to be tested. This is why a large part of the test suite implements tests
involving the neuromorphic system. Low-level regression tests run at least on a nightly
basis and provide information of basic system behaviour. Higher-level tests, often written
in the PyNN description language, provide a simple quality measure for “modelling
performance”.

A third application of the continuous integration framework are automated simulations of
chip components. This use case is a mixture of the previous two cases. Depending on the
detail level of the chip or circuit simulation, different aspects can be tested. Current work
heads in the direction of automated evaluation of neuroscientific benchmarks on circuits
that are still under development.

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 6 / 32

Figure 1: Screenshot of the Jenkins overview page

4.2.1 Quality

Another aspect of software development is code quality. The NM-PM1 software team
migrated to the “gerrit” review software at the end of 2014. By now, all software core
repositories and the major FPGA development repository have been moved into the code
review system. As a general rule, code modifications may only be passed upstream if at
least one other person tests and agrees with the proposed changes. Additionally, all
proposed changes are test-built and tested by the previously mentioned “Jenkins” CI tool.
Failing builds or tests yield a negative vote on the “changeset”.

However, robust software design is the main obligation when creating software for a new
computing platform. As a consequence, the core software stack itself is written in a
strongly-typed language, C++. Strictly type-safe APIs provide encapsulation of the different
abstraction layers. The local code reviewers and our coding guidelines encourage modern
C++ design. As an additional fast access to the software, many of our software layers
provide an auto-generated Python-based interface which exposes the C++ APIs to the
interpreted language. Thus, we allow non-expert programmers to access the hardware by
tools that require very little expertise; in particular, many students use “Jupyter” for
measuring and analysis scripts.

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 7 / 32

Figure 2: Screenshot of the gerrit code review system

4.3 SpiNNaker (NM-MC)

Software development for the SpiNNaker platform is all performed using git, with GitHub
providing additional pull request and code review features. Changes to the software,
including features and bug fixes, are developed within branches of the git repository. As
the software interacts with the hardware, we constantly carry out testing during the
development using the PyNN scripts found in the PyNNExamples git repository within the
SpiNNakerManchester GitHub organization. Once a branch is believed to be working, a
GitHub pull request is created. Someone in the software development team who did not
make the changes will then look through the code, checking for PEP8 compliance in Python
code, and against C coding standards for the SpiNNaker C code, as well as checking the
changes themselves to be correctly implemented and that the flow of any new
functionality makes sense. Before the pull request is merged into the master of the git
repository, it is again tested against the PyNNExamples scripts to ensure that no changes
have broken the functionality, as well as against a number of other integration tests that
have been gathered from users, including the 10%-scaled version of the Potjans &
Diesmann Microcortical Column model. We also have a growing number of unit tests for
the code which are continuously tested using the Jenkins continuous integration
suite. This ensures that the master branch of the repository contains only high quality and
generally functional code. Finally, releases of the software are made once a number of
new features have been added, or in time for training workshops. Before a release is
generated, it is further tested using all gathered integration tests. The release is then
tagged in the git repository and Python and built binaries are pushed into the PyPI
repositories for distribution. This ensures that it is always possible to return to a previous
version of the software should this be required by a particular script.

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 8 / 32

To ensure that the software is coherent, a fully enforced modular separation is
maintained, with a stack hierarchy that ensures that modules only depend on those below
them in the hierarchy. Interfaces between the layers make it easy to modify the internals
of the modules with as little interference to the other modules as possible. Abstraction is
used throughout the code to ensure that when a refactor of an interface is required, it is
easy to find all the places that rely upon or implement the interface, so that modules
don’t end up broken due to the refactoring. We also make use of integrated development
environments (Eclipse, PyDev and PyCharm) which aid in the development of the software
through highlighting defects and style violations, and also making it easy to move and
rename classes and interfaces when necessary.

5. Platform User Adoption Strategy
The Neuromorphic Computing Platform expects to attract users from three areas:
Academia, industry and education. In academia, users come mostly from neuroscience and
machine learning. Neuroscience users will exploit the simulation speed of the platform
machines to bridge the many different time scales present in biological systems which is
not possible with conventional high performance computers. The study of plasticity,
learning and development is among the most interesting challenges of brain science as it is
the aspect of self-organisation that makes biological brains different from traditional
computers. The strong involvement of the Neuromorphic Computing Platform in the future
co-design project CDP5 reflects this special strength of neuromorphic computing. In
machine learning the neuromorphic platform offers the possibility to study the features
and performance of novel computing architectures based on spiking neurons. Examples are
spiking Boltzmann machines, stochastic computing or deep learning networks. The novel
aspects in this research are in particular related to the implementation of local learning
and the corresponding performance benefits in energy and time usage. Industrial users are
expected to use neuromorphic computing for applications in processing of large, complex
data sets, specifically detecting and predicting spatio-temporal patterns. The
corresponding application areas are (among others) in telecommunication, finances,
automotive, robotics and possibly entertainment. Industry users will also be able to derive
special, low-cost, custom neuromorphic chips from the networks developed on the large
machines. Finally, educational users will introduce the concepts of neuromorphic
computing to the next generation of computer users ranging from high school to university
students. The HBP Neuromorphic Computing Platform is already offering a substantial
amount of teaching material and even small-scale hardware systems to address this very
important user group.

The neuromorphic computing platform has already implemented and put into place
strategies to attract new users from all areas described before into neuromorphic
computing. Academic and educational users are introduced to the systems at various
international schools and workshops, some of them are organized internally by the HBP
education group. The first Neuromorphic Computing Application Workshops has been
carried out on March, 22nd 2016 (as live streamed event on YouTube) and is planned to be
repeated each year throughout the HBP project duration.

Additional information for the SpiNNaker (NM-MC1) system: the primary users are research
teams (mainly academic, though some in national labs and industry) interested in
modelling biological or artificial neural networks for scientific research, real-time robotics,
or similar. Outreach is performed through conference presentations and demonstrations,
workshops (e.g. Capo Caccia and Telluride) and open training events (in Manchester and at
HBP events).

SpiNNaker is available via the HBP collaboratory (the 500,000-core system), through board
loans (primarily 4-node 72-core boards) and sales (single or multiple 48-node 864-core
boards). Currently we can make sales only to academic research labs, but we are
renegotiating our supply-side contracts to extend this.

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 9 / 32

6. Help and User Feedback
To obtain help in using the platform, please start by checking the online user docu-
mentation at: http://electronicvisions.github.io/hbp-sp9-guidebook/ (publicly accessible
link. The guidebook is also available from within the Collaboratory at:
https://collab.humanbrainproject.eu/#/collab/51/nav/1069

If you need personal assistance, want to provide feedback or contribute to the on-going
development of the platform, please use the contacts described in the guidebook at:
http://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html

6.1 User Feedback Received Month 18 – Month 30 (examples)

 Early-access user feedback received (e.g. the SP11.3 partners used the system HBP
internally):

• While the compatibility between the individual hardware PyNN interfaces saw constant
improvement over the last half year, no platform implements the newest PyNN
interface version (0.8) at this moment, requiring platform-specific workarounds (Spikey
is at version 0.6 and NM-MC1/NM-PM1 are at 0.7). Once these incompatibilities are
ironed out, the compute platform fulfills its task of providing user-friendly access to
the neuromorphic hardware systems and allowing to run scripts on entirely different
platforms at the flip of a switch.

• Suggestion for the job submission: allow direct upload of a project archive (instead of
URL of a public accessible repository or direct cut&paste)

• Suggestion: improve feedback regarding the current job status (position in the queue,
current status of the machines, streaming of the process output)

• Access to the NM-PM1/HICANN system generally works flawlessly. The system has -- in
comparison to NM-MC1 -- small setup and extremely small execution times. However,
the execution of larger networks does not provide meaningful results. This issue is
being actively investigated at Heidelberg and will hopefully be resolved in the near
future. (-> V4 Wafer)

• A limited number of neuron models have as yet been implemented on SpiNNaker (NM-
MC-1). Preliminary work indicates that AdEx could be implemented in fixed point
arithmetic, but Hodgkin-Huxley really needs floating point arithmetic. We intend to
extend the number of models supported during SGA1.

6.2 Usage

A usage graph for the components of the Neuromorphic Computing Platform is available as
a dashboard at: https://www.hbpneuromorphic.eu/dashboard/

http://electronicvisions.github.io/hbp-sp9-guidebook/
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
http://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html
https://www.hbpneuromorphic.eu/dashboard/

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 10 / 32

Figure 3: Screenshots as of 20 March 2016 of the Neuromorphic Computing Platform
Dashboard (https://www.hbpneuromorphic.eu/dashboard/): Number of completed jobs

on the NM computing systems BrainScaleS (NM-PM1) and SpiNNaker (NM-MC1)

https://www.hbpneuromorphic.eu/dashboard/

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 11 / 32

7. Annex A: Platform Architectural Diagram

7.1 Architecture overview: NM-PI part

Figure 4: Software architecture diagram: NMPI part (web interface from Collaboratory
to the platform system batch queues)

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 12 / 32

7.2 Architecture overviews: SpiNNaker part (NM-MC)

Figure 5: SpiNNaker software architecture diagram: Python software stack

Figure 6: SpiNNaker software architecture diagram: C software stack

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 13 / 32

Figure 7: SpiNNaker software architecture diagram: Remote access

Finally, we have an image of the completed machine. This has five cabinets of five racks
each, with each rack containing twenty-four 48 node boards. This machine thus comprises
28,800 SpiNNaker chips, or 518,400 individual ARM-968 cores. This machine constitutes
Milestone MS178. Further extensions to this machine will be made in SGA-1.

Figure 8: Five SpiNNaker system racks (500.000 cores), fully wired, in the machine
room in Manchester, 25 March 2016

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 14 / 32

7.3 Architecture overview: BrainScaleS (NM-PM)

Remote access to the NM-PM1 system is provided via NMPI. A client program accesses the
NMPI Rest API, pulls new jobs and provides back updated job status information for
previously pulled jobs. The NMPI client passes down jobs to the standard SLURM resource
managing software framework. Neuromorphic hardware as well as cluster resources and
other factors (e.g. fairness between users or jobs) are managed by the same software
package. Hardware resources are allocated to individual jobs and, as soon as the
requirements are satisfied, the job is executed on cluster nodes. A distributed cluster file-
system is used to access job output data from an Apache-based https server, which
provides user access to the result data.

Figure 9: Architecture diagram: Job submission for BrainScaleS (NM-PM1)

The NM-PM1 software stack contains one main execution pipeline that starts from the
PyNN-based network description (the PyNN implementation for the BrainScaleS system is
called PyHMF). Additional software layers provide a more C++-friendly data representation
of the mentioned neuronal network description. The translation from the PyNN biological
description to a matching hardware configuration is performed by the map & route tool
Marocco. Finally, a hardware access layer configures the system, controls input and
records output data of experiments running on the neuromorphic system.

As all layers provide APIs, low-level tools can access individual layers. For instance, the
calibration framework cake uses the low-level access layers to directly access single
neuron circuits on the NM-PM1 system. For real-time/hybrid operation, a real-time-capable
low-level API is provided by VerCL.

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 15 / 32

Figure 10: Architecture diagram: Software stack for NM-PM1 BrainScaleS jobs

Specification of the conventional compute cluster (4th rack from left, see Figure 11):

20 Compute Nodes:
• Intel Core i7-4771
• 4 (+4HT) cores
• 32GB
• 2x10GbE uplink

2 Frontend Servers:
• Intel Xeon E5-2643v2
• 6 (+6HT) cores
• 64GB
• 2x40GbE uplink
• 3TB SSDs

1 (Slow) Storage Server
• 64TB HDDs
• 2x40GbE uplink

Summary:

• 92 real (+ 92 HT) cores

• 4.2TFlop/s (only the CPUs, GPUs not counted)

• 768GB RAM

• Wafer to node network supports 560 Gbit/s (this is still less than the maximal possible
20*48Gbit/s = 960Gbit/s from all wafers combined)

• Aggregated SSD streamed write supports ~5GB/s (i.e. the peak output of one single
wafer module can be streamed to disk)

• 3TB (about 8 minutes at peak output of a single wafer) fast (SSD) and 50TB slow
storage (RAID 6, 64 TB raw disk storage capacity)

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 16 / 32

Figure 11: Status of the HBP NM-PM1 system BrainScaleS as of 21 March 2016

For the platform release day (30 March 2016) 20 systems are in place.

Figure 12: The components of one BrainScaleS (NM-PM1) wafer module

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 17 / 32

Figure 13: BrainScaleS (NM-PM1) module from the power-board side

Figure 14: NM-PM1 BrainScaleS module with three of the four boards with FPGAs added

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 18 / 32

Figure 15: Fully assembled NM-PM1 BrainScaleS module, FPGA-side

Table 1: Component list for the 20 NM-PM1 BrainScaleS systems

Description Total Number Required

Server racks with 42 U height
installed

7 7

Air conditioning system with 20 kW 2 2

Cooling drawer for the WMOD racks 20 20

Fans for wafer module cooling 240 200

Fan mounts 20 20

Elastomeric Connectors 16000 16000

Spartan6 Flyspi Boards 60 60

Post-processed HICANN V2 wafer 25 20

Post-processed HICANN V4.1 wafer 10 in prod. bonus

Main PCB assembled 24 20

Aluminum Top Cover 24 20

Aluminum Bracket 20 20

Wafer Cooling 20 20

Control Units for Reticles (Cure PCB) 160 160

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 19 / 32

Description Total Number Required

Positioning Mask for Elastomeric
Connectors

30 30

Main Power Supplies (PowerIt PCB) 25 20

Auxiliary Power Supply (AuxPwr
PCB)

48 40

FPGA Communication PCB (FCP) 1087 960

Wafer IO Boards (hor. and vert.
version)

96 80

Rack power supply 220V to 48V 6 (*3 units) 5

Raspberry Pi for system control 20 20

Intel NUC computer for ADC control 5 5

3HU crates for Sys-control
components

5 5

Analog Breakout Boards (AnaB) 50 40

Adjustment assemblies 2 2

Wafer module rack fixing set
(mechanics)

20 20

Analog Frontend PCB
(redesign postponed, current design
sufficient)

60 60

Insertion Frame 20 20

Compute/Control Nodes (standard
PC cluster)

20 20

Test node 1 1

Storage Server 3 3

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 20 / 32

8. Annex B: Software and Services Included in this Platform
Release

For each of the Platform’s user-accessible Software Packages and Services, an entry is
placed in the HBP Collaboratory’s Software Catalogue:
https://collab.humanbrainproject.eu/#/collab/19/nav/2108

The Annex here in the Word document is just an export, created on 20 March 2016, using
the https://collab.humanbrainproject.eu/#/collab/509/nav/4818 Collab application.

Name Title Version Category Description

pyhal PyNN
Implementation
for the Spikey
Neuromorphic
Hardware System

1e970f0 application

vmodule AnaRM (Analog
Readout Module of
HICANN Wafer
Modules) Software

2108859 library

omnibus A pipelined
hardware bus
system based on
OCP 2.0 written in
SystemVerilog

f073266 spec

ppu-software Basic software
libraries for the
Nux processor and
plasticity
measurements

669c2d6 library This repository contains basic
libraries to compile software for
the Nux processor. The
ppu_sweep program was used
for plasticity measurements in
the first HICANN-DLS prototype
chip.

nux A synthesizable
RISC processor
implementing the
Power ISA

d3384f5 spec This repository contains the Nux
Processor developed during the
Brain-i-Nets, BrainScaleS, and
HBP EU research projects. It is a
small RISC processor
implementing the Power ISA
2.06 (32 bit embedded
implementation). It also has a
non-standard SIMD processing
unit for 8 and 16-bit fixed-point
arithmetics. The design is open
source and provided under the
Solderpad license. For details
see the LICENSE and NOTICE
files.

logger Logging
Framework for
UHEI Software

826c5ed library

spikeyhal Low-level
Interface for (USB-
based) Spikey
Neuromorphic
Systems

260fc1e library Hardware Abstraction Layer of
the Spikey neuromorphic system
('spikeyhal') developed by the
Electronic Vision(s) Group,
Kirchhoff-Institute for Physics,
Ruprecht-Karls-Universität
Heidelberg, Germany.

https://collab.humanbrainproject.eu/#/collab/19/nav/2108
https://collab.humanbrainproject.eu/#/collab/509/nav/4818

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 21 / 32

Name Title Version Category Description

brick IC design work
flow based on the
waf build tool

3843b1 tool brICk is a waf-based IC design
work flow tool that offers
design-independent build folder
management. Multiple build runs
of an IC design can be kept in
parallel and can be switched
between. Design source files,
such as i.e. HDL code, tcl scripts
and full custom design files can
be copied into the components
folder of the tool's directory
structure. Their paths, given in a
text file, will be used by brICk to
hook into and allow it to
execute the necessary tasks.
These tasks may include

abstract generation
HDL code synthesis
Place & Route
Functional verification
Formal verification
Sign-off verification

Files resulting from these
operations will always be
avoided to be copied to the
source file tree and will be put
into a run-specific uniquely
named result folder. In a first
version, old runs will be kept,
giving users the possibility to
compare results of different runs
(with different parameters or
source code changes) to each
other. However, brICk will not
allow the user to recover and/or
continue these runs once he has
advanced to the next run. In a
future version, the user should
be able to switch back to old
runs and continue to work on
them at any later point and at
any given state. This can involve
an abandonment of the strict
distinction between source (i.e.
input) file tree and result (i.e.
output) file tree and make it
necessary to copy the current
task's tcl scripts and/or
necessary other input files to
the current run directory. To
allow for continuation of past
build runs, brICk will at least
have to force the user to commit
the current source file tree's
state to the version control
system and save the commit ID
for later resumption. Later on in

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 22 / 32

Name Title Version Category Description

the development of brICk, it
should be possible to maintain
different configurations to be
able to keep one single brICk
folder, holding in it's
components folder the source
files of different IC designs and
making it even possible to switch
between different designs.

brICk stands for |b|ackend
|r|apid |IC| |k|it. It is intended
as a hardware development
counterpart to symwaf2ic, the
central software build flow of
the Electronic Vision(s) group
which is also based on waf.

Neuromorphic-
Computing-
Platform-Job-
Manager

Neuromorphic
Computing
Platform Job
Manager

2 application Collaboratory app for submitting
jobs to the Neuromorphic
Computing Platform, and
retrieving/reviewing the results.

Neuromorphic-
Computing-
Platform-Job-
Queue-Service

Neuromorphic
Computing
Platform Job
Queue Service

1 service Web service for submitting and
retrieving simulation jobs
to/from the HBP Neuromorphic
Computing Platform.

Neuromorphic
Platform Python
client

Neuromorphic
Platform Python
client

0.3.0 library Client software for the Human
Brain Project Neuromorphic
Computing Platform.

PyNN PyNN 0.8.0 library A Python package for simulator-
independent specification of
neuronal network models.

sPyNNaker SpiNNaker PyNN
Software

2016.001

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 23 / 32

9. Annex C: Summary - Platform Use Case Status
Pasted in below are the latest “Technology Readiness Levels” TRL estimates for the use-
cases collected on the internal wiki page https://flagship.kip.uni-
heidelberg.de/w/SP9_UseCases_TRL

Status as of 29 March 2016:

9.1.1 SP9NMP-UC-001: A single run of a simple network model

Primary Actors: Bill, a computational neuroscientist

Bill has created a network model with point neurons and short-term synaptic plasticity
using the PyNN API. He has simulated the model using the NEST and NEURON simulators,
and now wishes to check that the results from neuromorphic hardware are comparable.
Precondition: The model and experiment description are in a single Python script on Bill’s
laptop.

9.1.1.1 Success Scenario. Overall TRL estimate: 5

• In a web browser, Bill navigates to the home page for the Neuromorphic Computing
Platform and logs in to his user page.

• Bill can see a list of previous jobs he has run on the Platform.

• Bill clicks a button to request a new job.

• Bill copies the content of the Python script from his text editor and pastes it into the
appropriate text box.

• Bill selects the Manchester system.

• Bill submits the job request.

• Bill is returned to his user page, where he can see that his new job has been added to
the list of jobs with the status ""in queue"".

• When the job is complete, Bill receives an e-mail containing a link to the job detail
page.

• Bill clicks on the link, which opens the job detail page in his browser. This page shows
that the job has successfully completed, and contains links to download the log and
output data files generated by the experiment.

• Bill downloads the data files and compares the results to his NEST simulations."

This scenario works as described.

9.1.1.2 Alternate Scenario 1 (syntax error in the script): Not currently implemented

• There is a syntax error in Bill’s script.

− when Bill submits the job request, he is taken back to the job submission page,
where a traceback of the error appears.

− Bill corrects the error and resubmits the job.

Not currently implemented, although some components are in place. Syntax errors are
currently handled as in Alternate Scenario 2.

https://flagship.kip.uni-heidelberg.de/w/SP9_UseCases_TRL
https://flagship.kip.uni-heidelberg.de/w/SP9_UseCases_TRL

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 24 / 32

9.1.1.3 Alternate Scenario 2 (error in the script in the output section): Overall TRL
estimate: 5

• There is an error in the output data-handling section of Bill’s script, after the
simulation section.

− Bill receives an e-mail informing him that the job was unsuccessful, and containing
a link to the job detail page.

− The job detail page shows the error traceback and contains a link to download the
log file, enabling Bill to debug his script.

Scenario works as described.

9.1.2 SP9NMP-UC-002: A scripted run of a complex network model with input
data and parameter files

Primary Actors: Carol, a computational neuroscientist Carol has developed a detailed
model of a sensory system, which uses spiketiming-dependent plasticity and receives
naturalistic stimulation. Even on a traditional HPC computer, the simulation takes several
days to run. Carol wishes to take advantage of the large acceleration factor of the
Heidelberg system to bring the run time down to a few minutes, so that she can study the
effect of parameter variations. Since she expects to submit many jobs with different
parameters, she wishes to script the job submission process rather than click through a
website. Precondition: The model and experiment descriptions are written using the PyNN
API and are in separate Python files in a public Git repository. The repository also contains
parameter files, a file containing data used to construct the sensory stimuli, and a main
script which reads all these files, launches the simulation and then handles the output
data processing.

9.1.2.1 Success Scenario. TRL estimate: 5

• Carol downloads a Python client for the Neuromorphic Computing Platform job
submission REST API.

• Using the client library, she writes a short script to submit a job to the Neuromorphic
Computing Platform and retrieve the results.

• The job request script includes the name of the system (the Heidelberg system in this
case), the URL of the Git repository, the path to the main script within the repository,
and the list of arguments (parameter file name, etc.) required by the script.

• After submitting the job request, the script receives a URL that returns a document
indicating the job status.

• The script polls the job status URL repeatedly until the job is complete, at which point
the job status document contains the URLs of the output data files and the log file.

• The script downloads the output data files and saves them to the local disk.

This scenario works as described.

9.1.2.2 Alternate Scenario 1 (error in the user code). TRL estimate: 5

• There is an error somewhere in Carol’s code

− the job status document indicates there has been an error, and contains the error
traceback and the URL of the log file

Works as described

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 25 / 32

9.1.2.3 Alternate Scenario 2 (public Git repository unavailable): TRL estimate: 5

• The public Git repository is unavailable

− The job status document indicates there has been an error, and indicates the cause
of the problem

Not tested, but expected to work

9.1.2.4 Alternate Scenario 3 (user script termination between job submission and
completion): TRL estimate: 5

• Carol cancels the job submission script, or reboots her computer, after the job has
been submitted but before the job has completed.

− The job remains in the queue

− When the job completes Carol receives an e-mail containing a link to the job detail
page.

Works as described.

9.1.2.5 Alternate Scenario 4 (using the Python client to cancel a job): TRL estimate 4

• After submitting the job but before it has completed, Carol realizes she has made a
mistake.

− Carol uses the Python client for the Neuromorphic Computing Platform job
submission REST API to cancel the job.

Implemented but not documented

9.1.3 SP9NMP-UC-003: Using the Neuromorphic Computing Platform through
the Collaboratory and Brain Simulation Platform

Primary Actors: Dennis, a neuroscientist. Dennis has used the Brain Builder component of
the Brain Simulation Platform to create a network model of a brain region, using point
neurons. He has successfully executed a simulation of the model on the HPC Platform using
the NEST simulator, and now wishes to execute the model on the Manchester hardware
preparatory to beginning a collaboration with the Neurorobotics sub-project. Dennis is not
comfortable with Python coding, and wishes to use the Collaboratory to perform his
simulations.

Precondition: Dennis’ model is available in the Collaboratory.

9.1.3.1 Success Scenario. TRL estimate: 1-2

• Dennis selects and executes a task that exports a Brain Builder model in a format
suitable for execution on the Neuromorphic Platform (PyNN).

• He configures a Neuromorphic simulation job, selecting the Manchester hardware.

• He launches the job, which is then queued and executed when time is available on the
hardware.

• About an hour later, Dennis receives an e-mail telling him his job has completed
successfully.

• Dennis returns to the Collaboratory, from where he can access the data files generated
by his simulation, as well as provenance information about the execution, e.g. what by

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 26 / 32

his simulation, as well as provenance information about the execution, e.g. what
version of the hardware system was used.

Export of brain models from the Brain Simulation Platform to PyNN format could not be
implemented in the Ramp-Up phase. We were over-optimistic in proposing this use case
for the RU phase, and did not take into account the planned development and research
schedules for the necessary inputs from SP4 and SP6. This use case is now planned for
SGA1.

9.1.3.2 Alternate Scenario (a model contains features not supported by the platform):
TRL estimate: 1-2

• Dennis’ model contains features that are not supported by the Neuromorphic
Computing Platform.

− The export task fails, with a clear error message indicating which features are not
supported.

− Dennis consults the documentation for the Neuromorphic Computing Platform and
modifies his model so that it will run on Neuromorphic Hardware.

− He runs simulations with the modified model on the HPC Platform, and finds that
the results are qualitatively unchanged.

− He now submits a new job for the Neuromorphic Computing Platform, using the
modified model, which successfully runs to completion."

9.1.4 SP9NMP-UC-004: Parameter sweeps

Primary actor: Esin, a computational neuroscientist

Description: Esin wishes to explore the parameter space of her network model. Due to its
long run time, she needs to make use of the large acceleration factor of the Heidelberg
system.

Preconditions: The model and experiment descriptions are written using the PyNN API in a
single Python file in a public Git repository.

9.1.4.1 Success Scenario. TRL estimate: 4

• Esin writes a batch configuration file. This provides values for those parameters that
will be varied across runs. She commits this to the Git repository.

• Esin downloads a Python client for the Neuromorphic Computing Platform job
submission REST API.

• Using the client library, she writes a short script to submit a job to the Neuromorphic
Computing Platform and retrieve the results.

• The job request script includes the name of the system (the Heidelberg system in this
case), the URL of the Git repository, the path to the model script within the repository,
and the path to the batch configuration file.

• After submitting the job request, the script receives a URL that returns a document
indicating the job status.

• The script polls the job status URL repeatedly until the job is complete, at which point
the job status document contains the URLs of the output data files and the log files
from all of the runs in the batch.

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 27 / 32

• the script downloads the output data files and saves them to the local disk.

This scenario has been implemented in a modified form: in place of a batch configuration
file, a Python script is used to implement the batch configuration.

9.1.4.2 Alternate Scenario (values outside valid range): TRL estimate: 3

• One of the parameter sets in the batch run contains values outside the valid range for
the Neuromorphic hardware.

− The invalid run is skipped, and a warning is written to the log file.

9.1.5 SP9NMP-UC-005: Closed-loop experiment involving a virtual environment

Primary actor: Fumiko, a roboticist.

Description: Fumiko has developed a robot simulation within a virtual environment. The
robot perceives its environment via a model retina, and acts upon its environment through
actuators. Communication from the retina to the robot brain model and from the brain to
the actuators is via spikes. The retina, actuators and virtual environment are implemented
as a C++ application.

Preconditions: Working with the developers of the Neuromorphic Computing Platform,
Fumiko has successfully installed the virtual environment software on the Platform,
working via remote shell access. The Python code for the brain model is in a Git
repository, which has been checked out on the platform.

9.1.5.1 Success Scenario. TRL estimate: 3 (so far NM-MC only)

• Fumiko writes a Python script which connects the brain model with the retina and
actuators, using a PyNN extension that connects spike-emitting and spike-receiving
ports (for example, using the MUSIC interface).

• Using the REST API, Fumiko launches the job, which runs until the robot completes a
pre-defined task, or until a pre-defined time limit is reached.

• When the job is complete, Fumiko receives an e-mail that contains a URL for the job
status.

• Fumiko accesses this URL through the REST API and downloads the data and log files
generated by the job.

A prototype of an SP10 virtual robotics environment running with SpiNNaker has been
demonstrated by Felix Scheider.

9.2 Missing features / under development features

• Full provenance integration (limited provenance integration in place)

• Closed loop interfaces to SP10.

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 28 / 32

10. Annex D: Summary – Service IT Resource Planning

Product/Software
Package/Service TRL

Data Storage
Capacity used by

this Product

Data Storage
Capacity

Allocated for this
Product

Location(s) of
Data Storage

Data Access
Protocol(s)*

Compute
Resource(s)
Allocated

Location(s) of
Compute

Resource(s)
Allocated

Compute Access
Protocol(s)**

SP9 user entry
portal for
submitting jobs to
the platforms

5-6 140 MB 20 GB
Cloud (Digital
Ocean datacentre
in Amsterdam)

https

Currently a single
webserver.
Scalable according
to demand.

Cloud (Digital
Ocean
datacentres in
Frankfurt and
Amsterdam)
(partner CNRS)

https

 SP9 NM-MC
(SpiNNaker)
component

Temporary
storage for
experiment and
result data.

 Local discs (internal access)

NM-MC1
(SpiNNaker)
system with
500.000 cores

Manchester
(partner UMAN)

SP9 NM-PM
(BrainScaleS)
component

5-6

Temporary
storage for
experiment and
result data.

20 TB Local discs

(internal access,
except for
optimized
UNICORE links)

NM-PM1
(BrainScaleS)
system with 20
wafers

Conventional
compute cluster

Heidelberg
(partner UHEI)

UNICORE, SLURM,
ssh

NM-PM standalone
system Spikey 5-6 cf. NM-PM cf. NM-PM cf. NM-PM cf. NM-PM 6 standalone

Spikey systems
Heidelberg
(partner UHEI) cf. NM-PM

* Data Access Protocols such as GPFS, N.FS, S3, Collab storage, etc.

** Compute Access Protocols such as EC2, Task Framework, Unicore, OCCI, Slurm, ssh, gLite, Condor, etc.

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 29 / 32

11. Annex E: Summary – Service Technology Readiness Levels (TRLs) Metrics
Documentation URL - User, Developer and/or Administrator documentation is available at this URL. Strong preference should be given for
publicly available documentation services.

Target User Count (TRL6+) – Target user counts (concurrent service users).

SLA Defined – The software documentation defines some Quality of Service metrics in the service documentation. These metrics may or may
not be enforced by the service itself. The service has not been tested to adhere to the documented QoS metrics.

SLA Monitored – The Quality of Service metrics are monitored by a monitoring service.

SLA Enforced – The Quality of Service metrics are enforced by implementing service. If the SLA Definition indicates on 3
API/request/sec/user, there are suitable mechanisms implemented in the service to ensure these limits are not exceeded.

Product/Software
Package/Service

Technology
Readiness Level

(TRL1-9)
Documentation URL

Target User
Count

(TRL6+)

SLA Defined
(TRL7+)

SLA Monitored
(TRL7+)

SLA Enforced
(TRL7+) Comments

Neuromorphic
Compute Platform v1

Approaching 5
(Prototype
integration -
Validation of
integrated system in
a real-world
environment = public
platform release)

See also Deliverable
D 9.7.5

- - - - The Neuromorphic Computer Workshop
on 22 March 2016 and the HBP wide
public platform release on 30 March 2016
makes the full system size described for
the ramp-up phase (500.000 cores for NM-
MC SpiNNaker and 20 wafers for NM-PM
BrainScaleS) available.

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 30 / 32

12. Annex F: Backlog / Bug-tracking
The platform release as of 30 March 2016 is the first public platform release (V1). Especially the calibration routines for the BrainScaleS
systems will be improved. Interaction with external users is expected to uncover bugs and create plenty of feature requests. For the next
hardware development steps (NM-MC2 and NM-PM2 chips) the roadmap can be found in the HBP Framework Partnership Agreement (FPA).

The means for users to report bugs/problems are described in the guidebook in the Getting-Help section at
http://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html Several bug trackers are in use to track the issues:

• For the NMPI component the internal bug-tracking and work-planning is carried out at https://trello.com/b/fjxahmd9/hbp-
neuromorphic-platform-ws (not public). The external bug-tracker is planned to be made accessible at
https://bitbucket.org/apdavison/nmpi/issues

http://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html
https://trello.com/b/fjxahmd9/hbp-neuromorphic-platform-ws
https://trello.com/b/fjxahmd9/hbp-neuromorphic-platform-ws
https://bitbucket.org/apdavison/nmpi/issues

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 31 / 32

• For the SpiNNaker system (NM-MC1) the main entry point for bug tracking is at the publicly accessible URL :
https://github.com/SpiNNakerManchester/sPyNNaker/issues

• For the BrainScaleS system (NM-PM1) the bug tracking is done using the internal https://brainscales-r.kip.uni-heidelberg.de/issues/
redmine system.

https://github.com/SpiNNakerManchester/sPyNNaker/issues
https://brainscales-r.kip.uni-heidelberg.de/issues/

Co-funded by
the European Union

SP9 D9.7.4 FINAL PU = Public Page 32 / 32

13. Annex G: IPR Status, Ownership and Innovation Potential

Product/Software
Package/Service

IPR
Status* Owner(s) Non-HBP users** Innovation Potential***

SpiNNaker (NM-MC1) UMAN and
contributors (Platform opening on 30 March 2016)

SpiNNaker standalone boards (4-
and 48-chip systems) Patent

Cogniscience Ltd
(a UMAN spin-out
company)

~ 70 SpiNNaker (mainly 4-node) boards are
on loan

~ 12 48-node boards have been sold to
academic research labs all around the world.

Still speculative, but there is interest in Deep Learning
applications.

BrainScaleS (NM-PM1)

UHEI and
contributors (e.g.
TUD for FPGA
components)

(Platform opening on 30 March 2016)

Innovation potential

- As a rapid prototyping system for neuromorphic computing with
physical models. Export of functioning circuits to custom chips

- As a high-performance, high speed data processing system for
spatio-temporal pattern detection

- As an evaluation system for generic, spike-based computing
(stochastic computing, deep learning)

Spikey standalone system

Standalone USB-Spikey systems can be
accessed via the internet (via the
Collaboratory) and can also obtained as
physical (USB-connected) box system.
Currently 3 systems are given out. Several
systems are accessible via the NMPI (internet
access)

Innovation potential mostly as an educational platform
introducing newcomers into neuromorphic computing with
physical model systems. The systems will be available for
collaborators.

* IPR Status: Open Source, Copyright, Patent, Trade Secret, pre-IPR (i.e. you intend to obtain some form of IPR in the future)

** If this product/software package/service is currently being used outside HBP (e.g. donated, loaned, licensed, sold), please specify by
whom.

*** Innovation Potential: Potential practical applications beyond HBP, commercial and/or non-commercial.

	1. The Aim of this Document 4
	2. How to Access the Neuromorphic Computing Platform 4
	3. Platform User Instructions 4
	4. Platform Testing and Quality Strategy 4
	4.1 Web-Services 5
	4.2 BrainScaleS (NM-PM) 5
	4.2.1 Quality 6
	4.3 SpiNNaker (NM-MC) 7
	5. Platform User Adoption Strategy 8
	6. Help and User Feedback 9
	6.1 User Feedback Received Month 18 – Month 30 (examples) 9
	6.2 Usage 9
	7. Annex A: Platform Architectural Diagram 11
	7.1 Architecture overview: NM-PI part 11
	7.2 Architecture overviews: SpiNNaker part (NM-MC) 12
	7.3 Architecture overview: BrainScaleS (NM-PM) 14
	8. Annex B: Software and Services Included in this Platform Release 20
	9. Annex C: Summary - Platform Use Case Status 23
	9.1.1 SP9NMP-UC-001: A single run of a simple network model 23
	9.1.2 SP9NMP-UC-002: A scripted run of a complex network model with input data and parameter files 24
	9.1.3 SP9NMP-UC-003: Using the Neuromorphic Computing Platform through the Collaboratory and Brain Simulation Platform 25
	9.1.4 SP9NMP-UC-004: Parameter sweeps 26
	9.1.5 SP9NMP-UC-005: Closed-loop experiment involving a virtual environment 27
	9.2 Missing features / under development features 27
	10. Annex D: Summary – Service IT Resource Planning 28
	11. Annex E: Summary – Service Technology Readiness Levels (TRLs) Metrics 29
	12. Annex F: Backlog / Bug-tracking 30
	13. Annex G: IPR Status, Ownership and Innovation Potential 32
	Word Bookmarks
	Success_Scenario._Overall_TRL_estimate:_
	Alternate_Scenario_1_.28syntax_error_in_
	Alternate_Scenario_2_.28error_in_the_scr
	SP9NMP-UC-002:_A_scripted_run_of_a_compl
	Success_Scenario._TRL_estimate:_5
	Alternate_Scenario_1_.28error_in_the_use
	Alternate_Scenario_2_.28public_Git_repos
	Alternate_Scenario_3_.28user_script_term
	Alternate_Scenario_4_.28using_the_Python
	SP9NMP-UC-003:_Using_the_Neuromorphic_Co
	Success_Scenario._TRL_estimate:_1-2
	Alternate_Scenario_.28a_model_contains_f
	SP9NMP-UC-004:_Parameter_sweeps
	Success_Scenario._TRL_estimate:_4
	Alternate_Scenario_.28values_outside_val
	SP9NMP-UC-005:_Closed-loop_experiment_in
	Success_Scenario._TRL_estimate:_3_.28so_
	Missing_features_.2F_under_development_f

