Modeling and Simulation

Wouter Klijn

Simlab neuroscience FZJ

Madrid 12-11-2019

Content

- NEST desktop
 - Life demo (when available)
- TVB and NEST
 - Mouse brain model with detailed cortex
 - Integration of human brain atlas and the virtual brain
- Multi scale co-simulation
 - Overview: lots of moving parts
 - Iterative & use-case driven development
 - Challenges and opportunities
 - Relationship with EBRAINS infrastructure

Nest desktop: nest-desktop.apps.hbp.eu

Select or make a new one

Build a network

Simulate and analyze

Cortical areas

Sheet of neurons

Homogeneous local and heterogeneous connectome links.

Mouse brain model with detailed cortex

Subcortical areas

Connectome from experiments

Neural mass model

Viktor Jirsa (viktor.jirsa@univ-amu.fr)

Integration of human brain atlas and the virtual brain

Viktor Jirsa (viktor.jirsa@univ-amu.fr)

Multi-simulator co-simulation

Brain processes are often inherently multi-scale

 Global brain behavior while depending on local (morphological) details

Simulate experimental characteristics at the appropriate level.

Efficient simulation

Multi-simulator co-simulation: lots of moving parts

Design choices / constraints

- Exa-scale ready
 - Problem decomposition: modularity
 - Data transport at size is hard
- Static routing and model
 - The connectome is build once, no dynamic ports
 - The full config is known at start of simulation (SONATA)
- Basic steering (init, start, stop, pause)
- Iterative development

Simplified view

Existing POCs

2 way NEST to TVB (2 versions: JSC / Aix-Marseille, Charite)

2 way Arbor to NEST to Visualization (JSC, CSCS, Aachen, Trier)

MUSIC (KTH)

High bandwidth online Analytics (JSC, INM6, NMBU)

LFPy 1 way Nest to Neuron to Python (JSC, CSCS, NMBU)

Driving use cases 1

- NEST & TVB two way coupling on HPC
 - Whole-brain behavior constrained by detailed local behavior of selected regions

- NEST-Arbor two-way co-simulation on HPC
 - Higher-level network architecture (NEST) and local behavior of selected regions (Arbor)

Driving use cases 2

- Data analysis and visualization coupling infrastructure
 - Common APIs and standards: (NEURON, Gazebo)

- LFPy one-way co-simulation,
 - NEST spiking results into a simplified Arbor simulation
 - producing current dipoles,
 - analysis framework to compute LFP & EEG predictions

lots of moving parts

Challenges / opportunities

- Orchestration of 6 or more monolithically application
 - Compounding of error rate: $P(system\ Failure) = 1 \prod (1 P_i)$

- Translation between scales is an unsolved scientific problem
 - Resource requirements are unknown

Relationship with EBRAINS infrastructure

Co-simulation for modular neuronal architectures

- Modular models of brain areas
 - Specific constrains
 - Optimized
 - Stand alone
- When combining this in one 'single' model
 - Constraints are additive
 - Need for new optimization
 - Replication of code/model at two location
- Solution: Each model in a simulator instance -> co-simulation

Summary

- NEST desktop: nest-desktop.apps.hbp.eu
- NEST TVB:
 - Mouse brain model with detailed cortex
 - Integration of human brain atlas and the virtual brain
- Co-simulation
 - Lots of moving parts
 - Iterative & use-case driven development towards exa-scale neuronal simulation
 - Challenges and opportunities

Questions?

Many thanks to:

Simlab Neuroscience:
Abigail Morrison
Alex Peyser
Sandra Diaz
Kim Sontheimer

Wolfram Schenck Benjamin Weyers

Co-simulation: lionel Kusch Simon Oehrl Dionysios Perdikis Thorsten Hater Lena Oden Modelling and simulation:
Petra Ritter
Viktor Jirsa
Hans Ekkehard Plesser
Markus Diesmann
Michele Migliore
Sonja Grün
Dennis Terhorst
Michael Denker

w.klijn@fz-juelich.de

Funded by the Helmholtz Association through the Helmholtz Portfolio Theme "Supercomputing and modeling for the Human Brain". This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 720270 (HBP SGA1) and No. 785907 (HBP SGA2).