

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 1 / 43

Project Number: 720270 Project Title: Human Brain Project

Document Title: Collaboratory Architecture

Document Filename(1): SP11 D11.3.1 FINAL_Resubmission

Deliverable Number: D11.3.1

Deliverable Type: Platform Architecture Document

Work Package(s): WP 5.5, WP7.5, WP11.2, WP11.3

Dissemination Level: PU

Planned Delivery Date: M 6 / 30 Sept 2016

Actual Delivery Date: 12 Oct 2016, Resubmission 31 May 2017

Authors: Jeffrey MULLER (EPFL-P1), Chris EBELL (EPFL-P1), Martin TELEFONT (EPFL-P1)

Compiling Editor(s): EPFL (P1): Jeffrey MULLER

Contributors:

EPFL (P1): Selim ARSEVER, Jean-Denis COURCOL, Mike GEVAERT, Daniel
PEPPICELLI, Luis RIQUALME, Felix SCHÜRMANN, Werner VAN GEIT, Stefano
ZANINETTA, Martin TELEFONT, Guy WILLIS, Marc-Oliver GEWALTIG

JUELICH (P20): Thomas LIPPERT, Anna LÜHRS, Timo DICKSCHEID

ETHZ (P18): Thomas SCHULTHESS, Colin MCMURTRIE

UMAN (P63): David LESTER

UIO (P81): Jan BJAALIE, Dmitri DARINE

Reviewers: EPFL (P1): Colin MCKINNON

Abstract:

Keywords:

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 2 / 43

Table of Contents
Executive Summary ... 4
1. Introduction ... 5
2. The HBP Collaboratory (HBP-COLL) .. 5

2.1 HBP-COLL: Overall Goals ... 5
2.2 HBP-COLL: Refined Use Cases ... 7

2.2.1 Roles .. 7
2.2.2 Low Volume Scientific Data Sharing, Single COLL Project with Upload (HBPCOLL-UC-001)
 7
2.2.3 Low Volume Scientific Data Sharing, Multi COLL Project (HBPCOLL-UC-002) 8
2.2.4 Data Release (HBPCOLL-UC-004) .. 9
2.2.5 Portal Developer Services and Component Reuse (HBPCOLL-UC-005) 9
2.2.6 Viewing of Data in HBP-COLL (HBPCOLL-UC-006) ... 10
2.2.7 Collaborative Scientific Analysis (HBPCOLL-UC-007) .. 10
2.2.8 Scientific Developer Iterative Workflow Development (HBPCOLL-UC-008) 10
2.2.9 Visualisation Developer Component Reuse (HBPCOLL-UC-009) 11

2.3 HBP-COLL: Functional Requirements .. 11
2.3.1 Authentication and Authorisation (HBPCOLL-FR-001) .. 11
2.3.2 Search (HBPCOLL-FR-002) ... 12
2.3.3 COLL Projects (HBPCOLL-FR-003) .. 12
2.3.4 Storage and Data Lifecycle Management (HBPCOLL-FR-004) 12
2.3.5 Common Service Interfaces (HBPCOLL-FR-005) .. 13
2.3.6 Web Services (HBPCOLL-FR-006) ... 13
2.3.7 Non-Web Services (HBPCOLL-FR-007) .. 13

2.4 Components .. 13
2.4.1 App Components ... 14
2.4.2 Service Components .. 15

2.5 HBP-COLL: Architecture ... 17
2.5.1 Architectural Principles .. 17
2.5.2 Standard App Component .. 19
2.5.3 Standard REST Web Service API ... 20
2.5.4 Physical Architecture and Infrastructure Dependencies 21

2.6 HBP-COLL: Dependencies .. 22
2.6.1 Required .. 22
2.6.2 Preferred ... 22

3. Common Architecture ... 23
3.1 Considerations for Extensibility .. 23

3.1.1 Overview .. 23
3.2 For SaaS, PaaS and IaaS Software Development ... 23
3.3 Operations Standards ... 23

3.3.1 Overview .. 23
3.3.2 Current Standard - BBP Standard DevOps Stack ... 24
3.3.3 Future Standard - HBP Standard DevOps Stack .. 26

4. Extensibility and Platform Integration ... 29
4.1 Extensibility .. 29
4.2 Brain Simulation Platform ... 29
4.3 Medical Informatics Platform ... 32
4.4 Neuromorphic Computing Platform .. 33
4.5 Neurorobotics Platform .. 35

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 3 / 43

Annex A: Glossary .. 37
Annex B: HBP Collaboratory Documentation (Release 1.9.3) ... 43

List of Figures and Tables
Figure 1: App Infrastructure Relationship ... 19
Figure 2: COLL App Architecture .. 20
Figure 3: Common REST service architecture .. 21
Figure 4: High-level Component Block Diagram .. 22
Figure 5: BBP Standard Continuous development and deployment ... 26
Figure 6: Planned HBP Standard Continuous development and deployment 28
Figure 7: SP6 Infrastructure Integration - Case 1 .. 30
Figure 8: SP6 Infrastructure Integration - Case 2 .. 31
Figure 9: SP8 Infrastructure Integration ... 32
Figure 10: SP9 Infrastructure Integration.. 34
Figure 11: SP10 Infrastructure Integration .. 36

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 4 / 43

Executive Summary

There are six Information and Communications Technology (ICT) Platforms that will be
developed by the Human Brain Project (HBP). The HBP Platforms will be made accessible to
scientific, medical and engineering researchers over the internet via an HBP Collaboratory
(HBP-COLL or COLL). The Neuroinformatics Platform (HBP-NIP or NIP) plays a crucial role in
guaranteeing traceability and discoverability in the COLL. This is essential in the upcoming
phase of the Project to ensure a solid ecosystem for data sharing and software and to enable
application of that data to scientific problems. The HPAC Platform provides the
computational resources, storage and networking necessary for key data and modelling use
cases and must also be well integrated with the NIP and the COLL.

The purpose of this document is to set out the architecture for the COLL, along with clear
architecture for its integration with the NIP and HPAC Platform.

The NIP, on the one hand, will be deeply integrated with the COLL in SGA1 in order to ensure
an effective ecosystem for data sharing and software, enabling application of that data to
scientific problems. On the other hand, SP7’s HPAC Platform provides the computational
resources, storage and networking necessary for both the primary archive platform for the
HBP as well as the management, analysis, transport and storage capabilities along, with the
federation of very large data sets required for key data and modelling use cases. The HPAC
Platform thus needs to be deeply integrated with the NIP and the COLL as well. The linkages
between the COLL and ongoing HPAC initiatives highlights the importance of these planned
integrations.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 5 / 43

1. Introduction

The Human Brain Project (HBP) is a 10-year research project, funded by the European
Commission (EC), to lay the foundations for a new approach to brain research. Neuroscience,
medicine and information technology each have important roles to play in addressing this
challenge, but their contributions are currently fragmented. The HBP will integrate these
inputs and catalyse a community effort to achieve a new understanding of the brain, new
treatments for brain disease, and new brain-like computing technologies.

It is a central tenet of the HBP strategy that a comprehensive understanding of the brain
requires knowledge of structure and function across all levels of brain organisation; this
understanding cannot be achieved at any one level alone. To achieve this understanding,
interdisciplinary expertise joining neuroscience, computer science, physics and mathematics
is key. A massive scientific collaboration is required to reconstruct such multi-level models.
The social internet and open source software communities have shown that modern
Information and Communications Technology (ICT) permits the massive collaborative efforts
needed.

To facilitate the scientific community’s access to the HBP’s ICT Platforms and, in a broader
sense, to make large-scale collaborations possible in neuroscience, the HBP is developing
the HBP Collaboratory (HBP-COLL or simply COLL). This web-based collaborative scientific
platform provides access to the HBP’s research, community and administrative activities, as
well as its six ICT Platforms. A tool within the COLL of particular importance is a deeply
integrated search developed in the Neuroinformatics Platform (NIP).

The COLL is to be equipped with a layer of social networking functions to allow fluid sharing
of data, theories, applications and models prior to publication, while still maintaining proper
attribution. This social networking framework will be expanded throughout the operation of
the HBP and has already enabled the inclusion of researchers outside the HBP in
Collaborative HBP activities. This sharing of research, results and expertise should help to
accelerate neuroscience and the achievement of the HBP’s ambitious goals.

This document sets out the architecture for the COLL with specific focus on integration of
the COLL with NIP and HPAC Platform’s respective components. It is intended for a technical
and scientific readership. The document focuses on the functionality that the COLL will
provide and the use cases it will serve. It describes the ways in which web-based platform
components will interact with other system. It also provides details of how the COLL and
HPAC Platform are integrated, highlighting where this is different from the currently
available COLL system.

2. The HBP Collaboratory (HBP-COLL)

This section presents the HBP Collaboratory. It starts with the requirements that informed
the design process and the relationship to other Platforms, before dealing with the
architecture of the COLL and its components. Where necessary, it describes in technical
detail the architecture of planned integrations between the COLL and the NIP and HPAC
Platforms.

2.1 HBP-COLL: Overall Goals

The COLL is a web-based portal intended to provide a single point of access to collaborators
participating in all research activities in HBP. The COLL will allow scientists from around
world to collaboratively:

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 6 / 43

• Gather and organise multi-level neuroscience data (via the NIP)

• Reconstruct, validate and refine multi-level brain models at different levels of fidelity
(via the Brain Simulation Platform [BSP])

• Search, analyse and cluster distributed clinical data (via the Medical Informatics Platform
[MIP])

• Develop and access interactive supercomputing (via the High Performance Analytics and
Computing [HPAC] Platform)

• Configure, train and operate neuromorphic computing systems (via the Neuromorphic
Computing Platform [NCP])

• Couple brain models to virtual agents acting in virtual environments to perform in silico
cognition and behaviour experiments (via the Neurorobotics Platform [NRP]).

• crowdsourcing of literature mining

Underneath the web-based portal the COLL is designed to support novel collaborations by
providing a Service-oriented architecture (SOA) which supports:

1) instantaneous sharing of data, models, tools, theories, configurations, methods and
applications,

2) tracking and crediting researchers for their contributions (provenance),

3) launching of collaborative projects with various levels of access control and user-defined
tool sets.

The COLL will also be the primary means by which the HBP shares its scientific and
technological advances with the scientific, medical and engineering communities. The COLL
will therefore provide a platform for Strategic Partners to present their research projects,
form collaborative projects, known as collabs, with other members of the Flagship
Consortium, and share their progress in advancing or using the HBP ICT platforms. Finally,
the current COLL implementation also allows researchers outside the HBP to join and create
collabs. In its current implementation, it provides a software and service catalog for the
HBP. In the next phase a universal search for collabs, software, service, documentation and
data will be provided, thanks to the planned NIP integration.

The COLL is an open and standards-based architecture. As such, it is capable of integrating
platforms for European and international collaborations, depositing and licensing IP,
subscribing to HBP services, and developing knowledge streams, and also for accessing and
managing educational services, providing feedback for Responsible Research and Innovation
(RRI), and general administration and management of the HBP. The COLL will be designed
to scale to very large numbers of researchers in science, medicine and engineering, providing
a novel virtual environment for distributed, collaborative and multi-disciplinary research and
development.

To achieve this goal, the COLL must:

4) Serve both technical Power Users and non-technical Casual Users,

5) Facilitate simple access models for high performance computing (HPC) and neuromorphic
computing resources,

6) Facilitate simple discovery and access for rich multi-modal data sets.

In most cases the modellers, theoreticians and computer scientists are the ones building
tools for inclusion in the COLL. These are the Power Users. However, it is often difficult to
validate or use those tools without input or validation data. Biologists need computational

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 7 / 43

tools in their toolkit, but those tools must be easy to use. These are the Casual Users. It is
necessary to serve both Power Users and Casual Users because the goals of the HBP can only
be met by active collaboration between biologists, theoreticians, modellers and computer
scientists.

Neuroscientific data are among the most complex (due to their multidimensionality,
ontologies, and formats), and opaque in science. Part of the problem in understanding the
human brain is finding and organising the data so that they can be searched and used to
build models and other applications. By providing web-based tools for searching, viewing
and analysing rich neuroscientific data sets, the HBP will shorten the distance between
experiment and discovery and make possible worldwide data-centric collaboration.

In the current project phase (SGA1), the HBP has an increased awareness of the Platform
linkages required to achieve goals 1-3 above. It is for this reason that this document contains
extensive documentation of the architecture required to integrate the HPAC Platform and
the NIP.

2.2 HBP-COLL: Refined Use Cases

The Use Cases below describe success scenarios for small numbers of actors. The scenarios
describe high-level interaction with the HBP-COLL, NIP and HPAC Platform and their
underlying services.

Each Use Case described in this document is attributed a unique identifier. “HBPCOLL”
indicates that it relates to the COLL. “UC” indicates a Use Case, while “FR” denotes a
Functional Requirement.

2.2.1 Roles

• Computational Scientific User (CSU) – A User with scientific development skills,
comfortable launching command line HPC jobs.

• Biological Scientific User (BSU) – A User with scientific expertise, but limited technical
computing skills.

• Scientific User (SU) – A scientific User, either a CSU or a BSU.
• Scientific Developer (SCIDEV) – A User who is developing software to directly realise the

scientific objectives. This User usually works in close collaboration with scientists, both
CSUs and BSUs.

• Developer (DEV) – A User who is developing software to realise engineering, operational
and/or scientific objectives.

• Portal User (PU) –A User who accesses Platform functions through the Web GUI.

• Service User (ServU) – A User who accesses Platform functions through a programmatic
Service Client API.

• Infrastructure Personnel (INFRA) - An Infrastructure System Administrator or Developer,
typically responsible for deploying and monitoring Platform services that are offered
directly to customers.

2.2.2 Low Volume Scientific Data Sharing, Single COLL Project with Upload
(HBPCOLL-UC-001)

Abigail needs help analysing some morphologies so she creates a COLL Project to collaborate
with another scientific User in a shared workspace.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 8 / 43

Primary Actors: Two Scientific Users, Abigail and Bill.

Success Scenario:

1) Abigail has morphology geometry data on her local machine or on a public and permanent
internet-accessible URL.

2) She creates a COLL Project, COLL Project 1, in the Portal to hold the morphologies.
Abigail is the owner of COLL Project 1.

3) She uploads the morphology files or their URLs to COLL Project 1. The COLL will request
that she add MINDS metadata (see Glossary) to the Artefacts on upload.

4) If she decides not to add MINDS metadata to any uploaded data, the UI will display those
data files differently.

5) Some portions of the MINDS data can be extracted from the data, if the data type is
known to the COLL.

6) If she attempts to use uploaded data that are not MINDS annotated in COLL analysis
Tasks, she will be required to add MINDS metadata before the analysis is launched.

7) Abigail can also add a simple wiki entry to her collab and link it to the uploaded
morphology. This wiki entry will help to give context to the uploaded morphology to help
Users find it from the COLL search functionality.

8) A background process will index COLL Project 1 and all of its metadata into the NIP
Search.

9) She adds Bill to the COLL Project team and gives him read and write access to the COLL
Project.

10) Bill can now download (COLL Project read) or use Portal Tasks (COLL Project read and
write) to analyse and model with the morphologies.

2.2.3 Low Volume Scientific Data Sharing, Multi COLL Project (HBPCOLL-UC-
002)

Abigail and Chris created a COLL Project in a previous Use Case and now Bill needs additional
help to review the output of one of his analysis. However, he doesn’t want Chris, whom he
asked for help, to see the original COLL Project.

Primary Actors: Three Scientific Users, Abigail and Bill and Chris.

Precondition:

• Abigail has created COLL Project 1 with Bill as described in HBPCOLL-UC-001.

Success Scenario:

1) Bill creates a new COLL Project, COLL Project 2.

2) Bill creates a COLL link, denoted L, in COLL Project 2 to an analysis output data file,
denoted A, in COLL Project 1.

3) Bill then adds Chris to the COLL Project 2 as a COLL Project Administrator.

4) Bill then performs analysis on L, specifying COLL Project 2 as the output directory. The
output of the analysis on L is denoted A’.

5) Chris (or any other User with read permissions in COLL Project 2) is able to see A’.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 9 / 43

6) Users with read permissions in COLL Project 2 are not able to see the contents of A’ (i.e.:
A) unless they have been added to Abigail’s COLL Project as a reader, or unless Abigail
has made the data public to one of the sharing groups that Chris is a part of.

2.2.4 Data Release (HBPCOLL-UC-004)
Abigail has some data that she wants to share with a larger community.

Primary Actors: Two Scientific Users, Abigail and Bill.

Precondition:

• Abigail has created a COLL Project 2 with Bill as described in HBPCOLL-UC-001.

Success Scenario:

1) Abigail is confident that her latest cerebellum model in COLL Project 2 is a significant
improvement over previous cerebellum models. She wants to make her model available
to others to run simulations on, analyse and refine.

2) Abigail selects the folder in her COLL Project that contains the cerebellum model, named
“model” and presses the Release button.

3) She is warned that the Release is an irreversible action and that her COLL Project will
become read-only.

4) She selects a name for the new Release, “Cerebellum Release 1”.

5) She is prompted to update the permissions of the Released model as a convenience.
Abigail upgrades the visibility of the new Release to allow everyone in the HBP to see it.
This grants access to all data in her new Release to anyone in the HBP.

6) The “model” folder is moved to the new release entity named Cerebellum Release 1.
The original folder location in COLL Project 2 is replaced with a link the model folder in
Cerebellum Release 1.

7) Releases can be published to the Knowledge Space if required.

2.2.5 Portal Developer Services and Component Reuse (HBPCOLL-UC-005)
Catherine wants to extend the data visualisation capabilities of the Portal.

Primary Actor: One Portal Developer, Catherine.

Success Scenario:

1) Portal Developer User Catherine has a Web UI extension to the HBP Portal that she would
like to implement.

2) Catherine’s application will be divided into HTML5 client-side logic and a REST service
implemented in Python or Java.

3) For the browser client side of the application, Catherine will be able to take advantage
of any HTML5 libraries she wants, or she can use the Angular widgets produced by the
HBP COLL Portal team. She will then create the client side portion of her application.
She will integrate the client-side connector library to allow her application to talk the
HBP COLL Portal container.

4) For the server side of the application, Catherine will use a standardised authentication
library to authenticate Users of her application securely against an HBP Central
Authentication Service. The integration with the HBP Authentication Service will allow
her application to access COLL REST APIs on behalf of the authenticated User.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 10 / 43

2.2.6 Viewing of Data in HBP-COLL (HBPCOLL-UC-006)
Abigail is interested in some data that are found through a search interface, in a COLL
Project, or that are viewed from a site supporting the COLL authentication data. She wants
to view those data using a rich visualisation.

Primary Actor: Abigail, a Scientific User.

Success Scenario:

1) Abigail has used the Search App to find morphology data.

2) Abigail has the option to view her morphology data using an image rendering, a 3D
geometry viewer or a provenance viewer, showing where the data came from.

3) She can add the data to a COLL Project where she can use the same viewer options to
view the data.

4) The available viewers will be filtered based on semantic content types and can be used
in Web UIs throughout the various platforms.

2.2.7 Collaborative Scientific Analysis (HBPCOLL-UC-007)
Bill wants some help analysing data. He recruits Abigail to his COLL Project and then shares
the results with Chris.

Primary Actors: Three Scientific Users: Abigail with strong software development skills, and
Bill and Chris with strong biological skills. Abigail and Bill are working on the same COLL
Project. Chris does not share any COLL Projects with Abigail and Bill.

Success Scenario:

1) Bill has morphology geometry data in a COLL Project that he would like to understand
quantitatively, but he needs additional expertise to write the analysis software and to
analyse the data.

2) He adds Abigail to the COLL Project team and gives her access to the morphologies.

3) Abigail can now use Jupyter notebooks to analyse data and answer questions for Bill.

4) Abigail or Bill can execute notebooks, new and previously existing, on the data they share
in the collab.

5) If Abigail decides that her new analysis notebook is useful to others, she can use the
Portal (through UI or service interface) to make their analysis public for others to run.

6) Chris, who also works with morphologies, can now use Abigail’s analysis notebook. The
Portal tracks Chris’s output data and knows that Abigail’s analysis was used to generate
it.

2.2.8 Scientific Developer Iterative Workflow Development (HBPCOLL-UC-008)
Daniel needs to update a Jupyter notebook workflow to integrate a new type of data
constraint.

Primary Actor: One Scientific Developer, Daniel.

Success Scenario:

1) Scientific Developer User Daniel would like to add the use of synthesised morphologies
to the circuit building workflow.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 11 / 43

2) Daniel will download the notebook code for the workflow. He will also be able to
download the container or VM definition for the COLL-hosted Jupyter notebook so he can
run his local analysis with the same software dependencies

3) Finally, he modifies the circuit building workflow to include the synthesis in the
appropriate location.

4) Once he has tested his workflow and container description locally, Daniel will upload and
share his Jupyter notebook with other COLL users.

2.2.9 Visualisation Developer Component Reuse (HBPCOLL-UC-009)
A CAVE Visualisation Developer, Elisabeth wants to find data to view in her application.

Primary Actor: A Visualisation Developer, Elisabeth.

Success Scenario:

1) Visualisation Developer User Elisabeth would like to find cellular models for visualising
inside her CAVE application.

2) Elisabeth’s application uses the NIP Search API to search for cellular models matching
certain metadata queries.

3) The application then uses the Collab Storage Service API to find a local path from which
her application can load data.

4) If the data for the cellular model are not available on a locally accessible storage
resource, the application can use the Data Transfer API to move the data from the remote
location to a locally accessible storage resource.

5) The application can use standard filesystem APIs to load and visualise the cellular model
in the CAVE.

6) If needed, her application can also use the Knowledge Graph REST client API to find
source data from which a particular cellular model was constructed.

2.3 HBP-COLL: Functional Requirements

2.3.1 Authentication and Authorisation (HBPCOLL-FR-001)
1) Users must be authenticated against a central database.

2) Users must have access control based on COLL Project-specific groups of Users.

3) The Portal and its applications will be accessible only through the SSL protected https://
or wss:// protocols.

4) Single sign-on will allow a User to log in once for most applications.

5) Certain applications may require re-authentication to perform some privileged
operations.

6) Authentication will be standards-based.

7) The Platform will allow limited delegation, i.e. the User will be able to restrict services
in the Platform constellation from accessing certain services on their behalf.

8) Access to COLL Projects, Artefacts, Parameters, Tasks, Workflows and their metadata
will be controlled by the authorisation system.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 12 / 43

2.3.2 Search (HBPCOLL-FR-002)
1) Artefacts uploaded to the COLL will be searchable by diverse metadata.

2) Artefacts produced by the COLL will be searchable by diverse metadata.

3) Artefacts in the COLL will be searchable across the COLL and NIP.

4) Parameter contents will be searchable.

5) COLL Project wiki descriptions will be full-text searchable.

6) The search service must provide a common search API for searching NIP and COLL
Databases for relevant metadata.

7) The search service must return the first page of search results in less than five seconds.
Since it will take a series of incrementally refined searches to find a User’s desired data,
searches taking longer than five seconds to return the first page of 10-25 results will
greatly reduce search utility.

8) Both the Search App and REST API must honour the ACLs of the services that have been
indexed.

2.3.3 COLL Projects (HBPCOLL-FR-003)
1) It will be possible for the Portal User or Service User to attach a wiki to Entities.

2) Permissions are COLL Project-wide.

3) Read permissions are required to read in from the COLL Projects. Some metadata from
the COLL Projects will be globally visible to enable public discovery. Read permissions
are granted by assigned COLL Project Administrators.

4) Write permissions are required to add data, link data and modify metadata. A COLL
Project Administrator grants Write permissions.

5) Administration permissions are required to modify User COLL Project permissions. A COLL
Project Administrator grants Administration permissions.

6) The COLL must provide a mechanism for COLL Project Administrators to modify COLL
User permissions for the COLL Projects that the Administrator owns.

7) The COLL must provide a mechanism for a User to create, move, copy and link a User
readable data file in one COLL Project to a User readable data file in another COLL
Project.

8) There is a COLL Storage Viewer that embeds content type-specific viewers.

9) The COLL Storage Viewer must provide controls for managing the Storage and Data
Lifecycle.

2.3.4 Storage and Data Lifecycle Management (HBPCOLL-FR-004)
1) Users must be identifiable and have access permissions on all services in the Portal.

2) There must be a metadata service with functionality for deleting data.

3) The COLL expects to use the FeDaPP/FENIX Storage for storage of various low-density
data files.

4) The COLL will use services in the FeDaPP/FENIX Storage API for accessing data that are
not available in a local storage resource.

5) File storage in the collab should be allocated from a per-COLL Project storage quota.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 13 / 43

6) File storage in FeDaPP/FENIX using the COLL Storage Browser app will be governed by
HPAC site storage quotas. The COLL expects to delegate the management of storage
quotas to the HPAC Platform and its per-site implementation.

7) There will need to be an FeDaPP/FENIX service that facilitates the reliable transfer of
data between sites using high performance bulk transfer protocols.

8) The transfer service will need to be available to the COLL. This requirement suggests
that the transfer service should be JSON REST-enabled. This does not mean that the
actual transfer is done over REST, but that the transfer is initiated and managed over
REST.

9) The FeDaPP/FENIX Transfer service should enforce quotas of limited transfer resources.
The COLL expects to delegate the management of transfer quotas to FeDaPP/FENIX.

2.3.5 Common Service Interfaces (HBPCOLL-FR-005)
1) All services must use the HBP LDAP as their source of truth for providing User metadata

and for authenticating Users. This authentication can be exposed through one of the
authentication mechanisms described in Sections 2.3.2 and 2.3.3.

2) All services—web or otherwise—must log their system logs through the system-wide syslog
Logging Service.

3) All Services must provide a method to determine service health for the system-wide
Monitoring Service.

2.3.6 Web Services (HBPCOLL-FR-006)
1) Web Services will offer a REST binding using JSON.

2) REST services must conform to Platform standards.

3) REST services must provide web accessible documentation in a standard location.

4) REST services must have Platform-provided client libraries for Python.

5) Access to REST services must be authenticated via OpenID-Connect that uses HBP LDAP
as its source of authentication authority.

6) Web Service Interfaces must log API accesses. Ideally this will provide per-User
accounting.

2.3.7 Non-Web Services (HBPCOLL-FR-007)
1) Public facing non-Web Service interfaces must be authenticated with one of OpenSSH

keys, Kerberos or X509 client certificates.

2.4 Components

Current URL: https://collab.humanbrainproject.eu

Development Standard: BBP Standard -> HBP Standard

Depends on Services: HBP Identity Service

Current TRL: TRL7 (minus SLA definition)

SGA1 Target TRL: TRL7 (minus SLA definition)

Further Details: TBD

https://collab.humanbrainproject.eu/#/collab/19/nav/6342

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 14 / 43

2.4.1 App Components
2.4.1.1 COLL Content Apps

Description: A collection of Apps used to add, edit and view content in the COLL.

Current URL: https://collab.humanbrainproject.eu

Development Standard: BBP Standard -> HBP Standard

Depends on Services: HBP Identity Service, COLL Services

Current TRL: Mixed, TRL6-8 (minus SLA definition)

SGA1 Target TRL: TRL7+ for all (minus SLA definition)

Further Details:

The COLL provides a number of types of content pages which can be used by Collab teams
to explain and contextualise the work they present in their collabs.

Currently there are 3 types, each with different use cases and user bases:

1) Markdown – Simple text markup. This is favoured by many technical users for efficient
editing of content without having to worry about presentation.

2) Richtext – WYSIWYG editing of HTML content. This is favoured for cases where
presentation is more important or the user is less technical.

3) Live documents – Realtime collaborative documents with simple formatting. This was
recently added to support collaborative editing of content and being used in a wide
number of use cases.

2.4.1.2 COLL Storage App

Description: Provides simple access to web based storage

Current URL: https://collab.humanbrainproject.eu

Development Standard: BBP Standard

Depends on Services: HBP Identity Service, Collab Storage Service

Current TRL: TRL7 (minus SLA definition)

SGA1 Target TRL: TRL8 (with SLA definition)

Further Details:

The COLL Storage App provides simple access to web-based storage associated with each
collab. The system provides upload, download, rename, delete and move operations. Under
this model ACLs are provided in a simple per-collab membership list.

In addition, early support is available for browsing FedAPP/FENIX storage using the same
interface. In this mode the Collab Storage App defers ACLs to UNICORE and the per-site
configuration.

Both backends, Collab storage and UNICORE are accessed through a standard API provided
by the Collab Storage Service.

2.4.1.3 COLL Chat App

Description: Integrated Chat functionality for the COLL

Current URL: https://collab.humanbrainproject.eu

Development Standard: BBP Standard

https://collab.humanbrainproject.eu/#/collab/19/nav/6342
https://collab.humanbrainproject.eu/#/collab/19/nav/6342
https://collab.humanbrainproject.eu/#/collab/19/nav/6342

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 15 / 43

Depends on Services: HBP Identity Service

Current TRL: TRL6

SGA1 Target TRL: TBD – alternative chat approaches are being considered to maximise utility
of chat functionality while leveraging existing software effectively.

Further Details:

The COLL has an integrated chat system in the version released at the end of the Ramp-Up
Phase. Each collab gets its own chat room. Chat is writable by anyone who can view a collab.
This allows people who are not members of a public collab to interact with collab owners,
while still restricting write permission on public collab content to collab members.

2.4.1.4 COLL Jupyter Notebook App

Description: Integrated Chat functionality for the COLL

Current URL: https://collab.humanbrainproject.eu

Development Standard: BBP Standard

Depends on Services: HBP Identity Service, conditional dependencies on other services
depending on the notebook in question.

Current TRL: TRL6

SGA1 Target TRL: TRL8

Further Details:

This app integrates the web interface of a popular web-based collaborative software
development tool, known as the Jupyter notebook, into the COLL. Interface modifications
have been made to facilitate COLL-friendly editing, upload and download.

See the Jupyter HowTo Collab here:

https://collab.humanbrainproject.eu/#/collab/509/nav/11881

2.4.2 Service Components
2.4.2.1 COLL Service

Description: Service storing per-collab metadata

Current URL: https://collab.humanbrainproject.eu

Service API documentation: https://collab.humanbrainproject.eu/#/collab/54/nav/1878

Development Standard: BBP Standard

Depends on Services: HBP Identity Service

Current TRL: TRL7 (minus SLA definition)

SGA1 Target TRL: TRL8 (with SLA definition)

Further Details:

The goal of the COLL Service is to provide metadata and ACL information to support the
Collab UI via a REST API. It is used as an authorisation mechanism for many Platform apps
and services.

2.4.2.2 HBP Identity Service

Description:

https://collab.humanbrainproject.eu/#/collab/19/nav/6342
https://collab.humanbrainproject.eu/#/collab/509/nav/11881
https://collab.humanbrainproject.eu/#/collab/19/nav/6342
https://collab.humanbrainproject.eu/#/collab/54/nav/1878

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 16 / 43

Current URL: https://collab.humanbrainproject.eu

Service API documentation: https://collab.humanbrainproject.eu/#/collab/54/nav/4853

Development Standard: BBP Standard

Depends on Services: HBP Identity Service

Current TRL: TRL7 (minus SLA definition)

SGA1 Target TRL: TRL8 (with SLA definition)

Further Details:

Authentication is the act of confirming a User’s identity by requesting a piece of information
that only they should be able to provide. This can be a password or a number derived from
a private key via a cryptographically irreversible process.

The COLL will include an Authentication Service that implements the OpenID-Connect
standard to authenticate REST APIs and Web applications. This standard is used to allow web
or native application Single Sign-On (SSO) for applications using REST APIs provided by the
various HBP Platforms.

More information on OpenID-connect can be found here: http://openid.net/connect/.

2.4.2.3 COLL Storage Service

Description: REST API for accessing Storage through various backends

Current URL: https://collab.humanbrainproject.eu

Development Standard: BBP Standard

Documentation: https://collab.humanbrainproject.eu/#/collab/54/nav/2412

Depends on Services: HBP Identity Service

Current TRL: TRL7 (minus SLA definition)

SGA1 Target TRL: TRL8 (with SLA definition)

Further Details:

COLL Storage provides a REST service to access storage space in each collab which honours
the ACLs of the collab. Collab members can read, write and rename files and their metadata.
Both backends, Collab storage and UNICORE are accessed through a standard API provided
by the Collab Storage Service.

2.4.2.4 COLL Jupyter Notebook Service

Description:

Current URL: https://collab.humanbrainproject.eu

Development Standard: BBP Standard

Documentation: https://collab.humanbrainproject.eu/#/collab/509/nav/11881

Depends on Services: HBP Identity Service

Current TRL: TRL5

SGA1 Target TRL: TRL7 (without SLA)

Further Details:

This app integrates the web interface of a popular web-based collaborative software
development tool, known as the Jupyter notebook, into the COLL. Service modifications

https://collab.humanbrainproject.eu/#/collab/19/nav/6342
https://collab.humanbrainproject.eu/#/collab/54/nav/4853
http://openid.net/connect/
https://collab.humanbrainproject.eu/#/collab/19/nav/6342
https://collab.humanbrainproject.eu/#/collab/54/nav/2412
https://collab.humanbrainproject.eu/#/collab/19/nav/6342
https://collab.humanbrainproject.eu/#/collab/509/nav/11881

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 17 / 43

have been made to facilitate HBP Identity Service integration, COLL-friendly editing, upload
and download.

The service currently provides a Jupyter kernel with a standard software suite based on user
requests: https://collab.humanbrainproject.eu/#/collab/509/nav/12747.

The system is currently based on the JupyterHub multi-user server system:

https://github.com/jupyterhub/jupyterhub

Documentation: http://jupyterhub.readthedocs.io/en/latest/

REST API Documentation:

http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/jupyterhub/
master/docs/rest-api.yml#/default

2.4.2.5 COLL XMPP Service

Description:

Current URL: https://collab.humanbrainproject.eu

Development Standard: BBP Standard

Documentation:

Depends on Services: HBP Identity Service

Current TRL: TRL6

SGA1 Target TRL: TBD – under consideration

Further Details:

A customised ejabberd implementation is used as the XMPP service behind the COLL Chat
system. This is also used to power the notification system. Customisations were required for:

• Notifications

• Collab automatic chat groups

• HBP Identity authentication

2.5 HBP-COLL: Architecture

2.5.1 Architectural Principles

• Service Oriented Architecture – the COLL provides standard APIs to support a Service
Oriented Architecture ecosystem. These are typically versioned REST APIs to support
COLL integration and the handling of common authentication, authorisation, metadata
and data operations.

• Permissions model – the COLL permissions are allocated in a very coarse-grained manner,
and are intended to be uniform across all files in a particular COLL Project. Permission
sets available are:

− Public collabs:

 Members can read and write any authenticated user can read.

 Member can invite other COLL users to the collab.

 Visible in the “All Collabs” list.

https://collab.humanbrainproject.eu/#/collab/509/nav/12747
https://github.com/jupyterhub/jupyterhub
http://jupyterhub.readthedocs.io/en/latest/
http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/jupyterhub/master/docs/rest-api.yml#/default
http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/jupyterhub/master/docs/rest-api.yml#/default
https://collab.humanbrainproject.eu/#/collab/19/nav/6342

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 18 / 43

− Private collabs:

 Members can read and write; no one else can read or write.

 Members can invite other COLL users to the collab.

 Only visible to members of the collab in the “All Collabs” list.

− Currently members are added one by one. There is a group mechanism in the HBP
Identity Service. Adding and removing these groups will eventually be supported as
members in the collab member list.

− The permissions are opt-in for authorisation. App providers are free to choose their
own authorisation model and may choose to use some or all of the collab permissions
model or semantics in the app they provide.

• Provenance Tracking – Provenance tracking is the discipline of tracking where things
come from and where they’ve gone. Historically in the COLL, this is the tracking of
software versions and software execution environments and their data inputs and
outputs. Provenance is used to establish reproducibility of computational Tasks, and to
attribute credit for data production and tool development. This work is being revisited
in SGA1 with a planned integration between the COLL and the NIP. Both implement a
superset of PROV-DM to track links between Entities, Activities and Agents.

• Components – The COLL can be extended with the following components

− Apps - web GUIs for certain services integrated into the COLL. In most cases these
components will also use COLL services.

− Services - web services, network file systems, SSH, source control (git), continuous
integration, databases, configuration and deployment services. Software-as-a-
Service, Platform-as-a-Service and Infrastructure-as-a-Service offerings.

− Software - analysis libraries, simulators, and data access libraries, as well as thick
client applications (desktop visualisation tools).

The COLL architecture is such that operators of services can deploy their services wherever
they like while still preserving key integration characteristics inside the COLL ecosystem.
This is primarily a consequence of architectural decisions of the HBP Identity service as well
as the decision to provide a Microservice-based Service Oriented Architecture.

As a result, there is no coupling between deployment sites for the Apps visible in the COLL.
The ensures that services and Apps can evolve independently and it allows a Federation of
App providers across Europe. This can already be seen emerging in the Platform offerings
demonstrated by the HBP at the end of the Ramp-Up Phase.

http://www.w3.org/TR/prov-dm/

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 19 / 43

Figure 1: App Infrastructure Relationship

2.5.2 Standard App Component
For developers wishing to extend the COLL, App components are intended to allow them the
ability to write standard web applications using any client-side HTML functionality, and any
backend service. Typically, these apps would also integrate with several key COLL services,
such as Authentication, Monitoring and Logging. COLL Apps would also be integrated with
other COLL services. However, the level of integration with COLL services is entirely the
decision of the App developer and should be decided on the basis of the App’s provided
functionality.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 20 / 43

Figure 2: COLL App Architecture

The COLL Authentication system and Service-Oriented Architecture (SOA) allows loose
coupling of HBP and third party apps to the COLL. This same approach also allows the Apps
and their supporting web service to be deployed to any Base Infrastructure. This is key to
the long-term federation strategy which will be developed in the Operational Phase.

2.5.3 Standard REST Web Service API
A COLL standard REST API has the following properties:

1) Python REST — implemented using BBP Tornado standard worker pooling behind an NGINX
frontend.

a) For database interaction, SQLAlchemy or Django persistence models are preferred.

2) Python, Java or Scala REST services include standard Rest API documentation, and a
Python API used in service integration and load testing.

Official COLL REST APIs are expected to support client authentication using OpenID-Connect
access tokens.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 21 / 43

Figure 3: Common REST service architecture

The diagram above shows three main types of infrastructure needed to support a Service
Oriented Architecture. They are:

1) PaaS – Proxy servers, Log collection and monitoring services, Databases (or DBaaS)

2) IaaS – Virtual machines, storage and network configurations.

In addition to these, efficient development of such systems requires an extensive developer
service stack as well as disciplined developer processes to ensure that services are
developed, tested, configured and deployed in an efficient and sustainable manner. See the
section on Operations Standards for more details.

2.5.4 Physical Architecture and Infrastructure Dependencies
The infrastructure dependencies of the current COLL are outlined below. In the SGA1 phase,
the COLL will migrate from running on infrastructure hosted by the Blue Brain Project at
EPFL (described in the figure below) to a combination of commercial cloud providers
operating with explicit SLAs and infrastructure operated by SP7 partners and developed in
part under the FENIX project. This mix of service providers will allow the COLL team to
optimise development and deployment costs while ensuring that the COLL can operate
continuously despite planned and unplanned outages at a given site.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 22 / 43

Figure 4: High-level Component Block Diagram

2.6 HBP-COLL: Dependencies

The service dependencies are well described in the architecture sections above, but this
section discusses some of the other non-service, non-infrastructure dependencies which
need to be addressed to ensure the COLL achieves its ambitious goals.

2.6.1 Required
1) Data management guidelines are needed to guide COLL (and other Platform) developers

in the offering of data processing and data storage services.

2.6.2 Preferred
1) A number of COLL use cases would be well served by a pay-as-you-go computing access

model. Currently such a model is only mature with commercial vendors, but the
availability of such a model at HPAC partner sites would enable a number of interesting
use cases.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 23 / 43

3. Common Architecture

3.1 Considerations for Extensibility

3.1.1 Overview

3.2 For SaaS, PaaS and IaaS Software Development

In Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service
(IaaS) tiers of the service hierarchy, software is a crucial component. All research activities
in the HBP are heavy consumers and producers of complex software packages. A robust
approach to software quality will be a critical factor in the success of the HBP.

Drawing on the experience of other large-scale software projects, the HBP identified the
need to invest in software maturity early on.

These investments have continued and expanded to include the following best practices:

• Unit testing, typically with minimum test coverages (e.g.: 90% or higher on all COLL Team
developments)

• Automated Integration testing suites (automated post-deployment system testing)

• Continuous integration

• Ticket management for project feature planning

• Scrum training for Agile software development (either with an Agile coach or an HBP
practitioner)

• Coding standards

• Utilization of Code review by Developer teams.

Bringing all these pieces together results in a discipline called Continuous Delivery. All teams
in the HBP use a variant of this approach with slightly different mixes of tools. These will be
described in more detail in the upcoming D11.2.2 – HBP Software Engineering and Quality
Assurance Approach delivered at SGA1 - Month 10.

3.3 Operations Standards

3.3.1 Overview
For SaaS, PaaS and IaaS tiers the reliable and repeatable deployment software is a crucial
component of the overall operations strategy. Monitoring of services will be based on best
practices from industry along with crucial expertise from HPAC providers in the HBP and
Federated infrastructure providers throughout the EU.

The HPAC Platform team has well-defined deployment and monitoring practices which are
informed by a long history of service provision. For the other Platform teams, no such history
exists so best practices have been adopted from Agile software development. Platform teams
in the HBP have been adapting these techniques and tools according to their team needs.

To this end a DevOps model is in the process of being pragmatically adopted across HBP:

• Deployment lifecycle w/ dev, staging (optional) and production environments for all
services.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 24 / 43

• Continuous integration – unit testing, integration testing, repeatable software builds and
package releases.

• VM configuration development – source control and code review of configuration changes.
Requires a programmable configuration system.

• VM configuration management – associate service configurations with specific VM
resources.

• VM configuration deployment – deploy approved changes through an automated system.

• Object Storage – highly available, redundant storage for VMs and service data.

• Internet Gateway w/ Caching Proxy Server – services typically are not available directly
via the internet. Best practice places a tuned caching proxy server between application
servers and the open internet for reliability, flexibility and performance reasons.

3.3.2 Current Standard - BBP Standard DevOps Stack
The most widely used of the DevOps infrastructures, BBP Standard was developed by various
teams at the BBP and serves as the basis for development, deployment, configuration and
monitoring of the following Platforms:

• Collaboratory

• SP5 – Neuroinformatics Platform

• SP6 – Brain Simulation Platform

• SP10 – Neurorobotics Platform

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 25 / 43

Table 1: BBP Standard DevOps stack components

3.3.2.1 BBP Standard Service deployment

The COLL and NIP currently follow the BBP Standard development and deployment model,
as described in the HBP System Engineering documentation and represented in the figure
below.

Service Category Service Provided by Notes

Dev hosts Openstack BBP Core Services

Staging hosts Openstack BBP Core Services Optional environment

Production hosts VMWare BBP Core Services

Continuous integration Jenkins BBP Core Services Jenkins uses Openstack
VMs for jobs

VM configuration development Git + Gerrit BBP Core Services

VM configuration management Foreman BBP Core Services Integrates with VMware
and Openstack

VM configuration deployment Puppet BBP Core Services

Object Storage Ceph BBP Core Services Used by both Openstack
VMs and COLL Storage
Service

Internet Gateway w/ Caching
Proxy server

Apache Traffic Server BBP Core Services

Monitoring Icinga, Grafana, Kibana,
syslogd, collectd

BBP Core Services

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 26 / 43

Figure 5: BBP Standard Continuous development and deployment

This process makes extensive use of the following open source tools:

Git – a leading distributed Version Control system.

Jenkins – a leading Java-based Continuous Integration (CI) system: https://jenkins.io/.

Gerrit – a leading Git and Java-based source code change review system:
https://www.gerritcodereview.com/.

Puppet – a leading devops system configuration system: https://puppet.com/.

Foreman – associates Puppet recipes with particular hosts: http://theforeman.org/.

3.3.3 Future Standard - HBP Standard DevOps Stack
For Platforms moving towards serving HBP-wide needs, infrastructure must be soundly
governed by an organisation with the mandate to provide services for and on behalf of HBP.
The planned HBP Standard DevOps Stack serves as the basis for development, deployment,
configuration and monitoring of the following Platforms:

• Collaboratory

• SP5 – Neuroinformatics Platform

https://jenkins.io/
https://www.gerritcodereview.com/
https://puppet.com/
http://theforeman.org/

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 27 / 43

Table 2: HBP Standard DevOps stack components

3.3.3.1 HBP Standard Service deployment

The COLL and NIP will follow the HBP Standard development and deployment model, as
described in the HBP System Engineering documentation and represented in Figure 5.

Service Category Service Provided by Notes

Dev hosts Cloud vendor – TBD EPFL-HBPPCO procurement

Staging hosts Cloud vendor – TBD EPFL-HBPPCO procurement Optional environment

Production hosts Cloud vendor and HPAC
Platform

EPFL-HBPPCO procurement

Continuous integration Travis-CI EPFL-HBPPCO procurement

VM configuration development Github and/or
Phabricator

EPFL-HBPPCO

VM configuration management TBD EPFL-HBPPCO

VM configuration deployment Puppet or Ansible - TBD EPFL-HBPPCO

Object Storage Cloud vendor and FENIX EPFL-HBPPCO

Internet Gateway w/ Caching
Proxy server

NGINX EPFL-HBPPCO

Monitoring TBD EPFL-HBPPCO

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 28 / 43

Figure 6: Planned HBP Standard Continuous development and deployment

This process makes extensive use of the following open source tools:

Git – a leading distributed Version Control system.

Travis-CI – a leading Java-based Continous Integration (CI) system: https://travis-ci.org/.

Phabricator – a leading code forge site with extensive project management feature set and
code-review system change review system: https://www.gerritcodereview.com/.

Puppet – a leading devops system configuration system: https://puppet.com/.

Ansible – a serverless devops system automation framework: https://www.ansible.com/.

https://travis-ci.org/
https://www.gerritcodereview.com/
https://puppet.com/
https://www.ansible.com/

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 29 / 43

4. Extensibility and Platform Integration

4.1 Extensibility

As described in the HBP-COLL: Architecture section above, the HBP Collaboratory is designed
from the ground-up to be extensible at all levels of the architecture. This has significant
advantages. First, the HBP Collaboratory can be seen as self-extend to add each new feature
addition. Secondly, it allows a tested extension model which can allow HBP Platform
developers and third-party developers can use to add functionality to the Collaboratory.
Finally, it requires HBP Collaboratory services and modules to be swapped out with
alternative implementations readily as requirements change.

SP7 plays a key role in powering the Collaboratory and the HBP infrastructure architecture
and should be considered a horizontal service provide both directly and indirectly through
various HBP-COLL services. The details of this architecture are described in D5.6.2 “IT
Architecture of the HBP Integrated System of Platforms”. Further details on the specifics of
HBP-COLL extension can be found in the HBP-COLL developers guide, an attachment to this
document.

For the remaining platforms, SP6, SP8, SP9 and SP10 have made heavy use of the
Collaboratory to develop their solution verticals. The details of these interactions are
described in the sections below.

4.2 Brain Simulation Platform

The Brain Simulation Platform (BSP) makes heavy use of Python-based Jupyter notebooks to
document usage of their tools. These notebooks are offered through the HBP-COLL to allow
users of the Platform to easily reproduce and customise model building, simulation and
analysis task in an interactive fashion.

For less technically adept users, the BSP team is also building a collection of purpose-built
web-based applications to increase the ease of use of certain workflows. These applications
are largely build on the same foundations as the python notebooks above, but have been
wrapped in web-based GUIs to ease understanding, configuration and execution of the
workflows.

The two figures below describe the integration points between these two application
paradigms and the HBP infrastructure. Case 1 describes the Jupyter notebook integration
pattern and Case 2 describes the Collab Application integration pattern. It should be further
noted that these two cases share similarities with the integration patterns of other HBP
Platforms.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 30 / 43

Figure 7: SP6 Infrastructure Integration - Case 1

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 31 / 43

Figure 8: SP6 Infrastructure Integration - Case 2

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 32 / 43

4.3 Medical Informatics Platform

The Medical Informatics Platform (MIP) has different constraints on its authentication and authorisation practices due to privacy constraints which come
when dealing with medical data. As a result, the MIP relies on external platform services much less than the other platforms. It is expected that Medical
Informatics could integrate more services from other SPs as the constraints on human data are better reflected in HBP Data Policy and later implemented
in various services.

Figure 9: SP8 Infrastructure Integration

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 33 / 43

4.4 Neuromorphic Computing Platform

The Neuromorphic Computing Platform Collab App largely follows the model of the SP6 Case 2 Collaboratory App, but adds an additional dimension
integrating the Neuromorphic job services. While not diagrammed as below, it is worth noting that the Neuromorphic execution services can also be used
from the Collaboratory Jupyter notebooks, thanks to the OIDC token integration in the Jupyter notebooks.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 34 / 43

Figure 10: SP9 Infrastructure Integration

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 35 / 43

4.5 Neurorobotics Platform

The Neurorobotics Platform (NRP) also follows the SP6 Case 2 Collaboratory App integration model. This is expected to serve the HBP well in later versions
of the NRP because the similarities in the integration patterns between the Neuromorphic Computing Platform (NCP) and the NRP will facilitate easy
integration of NCP job execution services into the NRP simulation environment. This is a potential integration scenario which is not currently on the
roadmap, but would be well supported and will only require having the NRP simulation backend collocated with the NCP for latency reasons.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 36 / 43

Figure 11: SP10 Infrastructure Integration

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 37 / 43

Annex A: Glossary

Term Description

0-9

2D Atlas A 2D reference space, a collection of 2D parcellations, 2D images or a
collection of registered data.

2D Parcellation A collection of closed polygonal or spline boundaries at specific cut planes in
3D space. Each boundary is linked to one or more ontological elements.

2D Reference space A collection of 2D subspaces, each aligned with a specific cut plane in 3D
space. Each subspace has a single coordinate origin and affine transformation.

3D Atlas A 3D reference space, a collection of 3D parcellations, 3D voxel volumes and
a collection of registered data.

3D Parcellation A collection of meshes that define 3D boundaries. Each boundary is linked to
one or more ontological elements.

3D Reference space A set of 3D basis vectors with a single coordinate origin and affine
transformation.

A

Anchor A spatial location with orientation and scale or a semantic-spatial with
optional orientation and scale.

Artefact A high data-density discrete data element, primarily meant to denote a file
larger than 10kB which is not human readable or editable.

Atlas A 2D or 3D atlas.

B

Biophysically realistic

Mathematical description of physical phenomena relevant to the biological
processes of cellular behaviour. In particular, but not limited to, a model of
the neuronal tree with the cable equation and ion channels by the
phenomenological Hodgkin-Huxley formulation.

Brain System A specific set of interacting brain regions.

C

Capability
supercomputing

Tightly integrated parallel supercomputer providing a high-speed and low-
latency network between the computing nodes (in contrast to embarrassingly
parallel computers).

Cockpit Desktop, display wall or cave visualisation resource with a mechanism for
good data locality.

Cognitive Architecture A specific set of brain regions and interactions that are proposed to underlie
specific cognitive capabilities.

Compute resource A computer or collection of computers where a job can be executed.

Configurability
The ability of the simulator to provide extensibility for additional
mathematical formulations of novel physical phenomena and integrate these
mathematics in the compute-critical inner integration loop.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 38 / 43

Term Description

Continuous time spike
interaction

Representation of the time point of an action potential as a floating-point
number with double precision on a continuous time axis. The action potential
is generated at the time point of threshold crossing of the sending neuron and
is communicated with full precision to its target cells, where it affects the
receiving neuron‚ acting at the point in time after the application synapse
delay.

CRUD A commonly used acronym for Create, Read, Update, Delete.

Curation

A manual or analytic process involving a human to make decisions about some
property of the reconstruction or one of its components. Curation can be
applied to everything from electrical channel models in the Hodgkin-Huxley
model to ontology names for a particular neuron morphology class.

D

Datatype

A datatype is a semantically enriched mimetype. For example, the mimetype
of a particular data file might be XML, but the datatype would be CircuitML,
implying that the data file can be interpreted in a richer way. This allows the
selection of editing interfaces and input data in a much more user-friendly
way than in the COLL.

Detailed model The finest level of representation with full geometry.

E

e-type A short-hand form of the ne-type abbreviation defined below.

Entity

A COLL Project, a file or a folder. These exist as part of a hierarchy; they may
have a parent and children. Each entity has a series of predefined key values
associated to it (such as name, creation date, etc.) and can also have some
custom Metadata associated to it.

Exact integration
A method applicable to the integration of sets of linear differential equations.
The solution agrees to the mathematically exact solution. Often formulated in
terms of a matrix exponential.

F

File
Entities that are required to have a parent but cannot have any children. In
addition to the standard attribute they also have a Content URL that defines
how to access the content of the file.

Folder Plain Entities that are required to have a parent.

Full scale Representation of a network with the natural number of neurons and synapses
per neuron as found in the biological system.

G

Glial cell
Non-neuronal cells that function in homeostasis and energy usage, which
provide support and protection for neurons. They can be divided into
microglia and macroglia types.

H

HBP Collaboratory
(HBP-COLL)

The unified web interface through which the web-accessible components of
the six HBP Platforms and all other HBP activities are made available.

MINDS A minimum metadata specification. Similar in spirit to the Carmen MINI
specification but tailored to the Use Cases of the HBP.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 39 / 43

Term Description

Hidden Entity

Entities can be hidden from the Document Service REST API and through the
Web GUI. Hidden data are not visible by default in the COLL Project browser.
Hidden data will still be optionally visible (though marked as hidden) to
anyone it has been shared with. Hidden data are a separate function from
true deletion. Deletion of data is a highly privileged operation that must be
done by System Administrators on User request. See the Data Hiding Use Case
for more information.

Host A single operating system instance, running on virtualised or real hardware.

I

Ionic conductance
models

Models that represent ionic permeation through the plasma membrane. Both
stochastic and deterministic approaches should be covered. Extension toward
molecular models (WP6.4.1) is envisaged.

J

Job
An instance of an execution of a Task on a compute resource. For some Tasks,
the compute resource will be selected by the User in the COLL on job launch.
For other Tasks the execution will be decided by the Task.

L

Level of resolution

The choice of abstraction applied to the representation of the network. The
level of resolution of MolSim corresponds to single neurons or synapses. The
level of resolution of NetSim corresponds to single neurons and synapses. The
level of resolution of CellSim equates to electrical compartments coupled by
conductances.

M

m-type A short-hand form of the nm-type abbreviation below.

me-type A short-hand form of the nme-type abbreviation below.

Macrocircuit The definition of the whole brain as a set of brain regions connected through
long-range fibre tracts - the whole brain.

Mesocircuit The definition of the smallest collection of midrange interacting microcircuits
through their intra-areal or regional arbours - a brain area or region.

Metabolism The set of chemical transformations within the cells of living organisms that
maintain life.

Microcircuit The definition of the smallest collection of short-range interacting neurons
through their local arbours.

Microcircuit models Models that represent an entire microcircuit, including 3D geometrical
architecture, synaptic connectivity and neuronal and synaptic models.

Microservice
architecture

A variant of the Service Oriented Architecture ICT architecture where
software functionality is provided by a collection of network accessible
services, each with a well defined responsibility and minimal cross service
dependencies. It is well described in various internet fora:
(https://en.wikipedia.org/wiki/Microservices)

Molecular level models

Models that are structurally accurate at the subcellular level (organelles,
intracellular and extracellular spaces) and that contain molecules that
ultimately follow cell biological rules of production, transport, localisation
and degradation as well as the environment-dependent thermodynamics and

https://en.wikipedia.org/wiki/Microservices

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 40 / 43

kinetics of their interactions. Both stochastic as well as deterministic versions
will be covered.

Term Description

Molecular Simulations

Numerical simulations at the atomistic or coarse-grained level used for
predicting structures of molecular complexes and the estimation of kinetic
and thermodynamic parameters for molecular interactions. Molecular
Simulations are based on atomistic structures of proteins available either
from the Protein Data Bank or from homology modelling.

Morphology The geometric definition of the shape of a neuron.

Multi-constraint fitting The process whereby one data parameter or property constrains other data
parameters or properties.

N

n-type A class of brain cells or a particular instance, depending on context.

ne-type Abbreviation for an electrophysiological type of cell. This abbreviation is used
to refer to a class of cells or a particular instance, depending on context.

ng-type Abbreviation for a genetic type of cell. This abbreviation is used to refer to a
class of cells or a particular instance, depending on context.

nm-type Abbreviation for a morphology type of cell. This abbreviation is used to refer
to a class of cells or a particular instance, depending on context.

nme-type
Abbreviation for a morpho-electrophysiological combination type of cell. This
abbreviation is used to refer to a class of cells or a particular instance,
depending on context.

np-type Abbreviation for a protein type of cell. This abbreviation is used to refer to a
class of cells or a particular instance, depending on context.

Neuro-glia vasculature
(NGV)

The three principal components in neural tissue, which function as a unit to
regulate blood flow and metabolism.

NEURON Open source simulator NEURON (http://www.neuron.yale.edu) developed by
Michael L. Hines.

Neuron model

Implementation of neuron dynamics defined as a set of differential equations.
The implementation solves the dynamics within a finite time span given the
incoming spike events are supplied. Incoming synapses can be modelled as
currents or conductances.

Neuropil
Any area in the nervous system composed of mostly unmyelinated axons,
dendrites and glial cell processes that form a synaptically dense region
containing a relatively low number of cell bodies.

P

p-type An abbreviation for projection type, a to-be-determined classification scheme
for determining classes of projections between meso-scale brain regions.

Parameter
A low data-density discrete data element that is primarily meant to denote a
value that one might enter into a single form element. It might also be used
to refer to a richer configuration document containing a group of settings.

Parcellation
One or more spatial boundaries associated with a set of discrete semantic
concepts. Usually developed by manual, semi-automated or automated image
analysis of landmarks.

http://www.neuron.yale.edu/
http://en.wikipedia.org/wiki/Nervous_system
http://en.wikipedia.org/wiki/Myelin
http://en.wikipedia.org/wiki/Axons
http://en.wikipedia.org/wiki/Dendrite
http://en.wikipedia.org/wiki/Glial_cell

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 41 / 43

Platform Software components: libraries, services, APIs and their documentation that
are to be used to build portals or cockpits.

Predictive
reconstruction

The process whereby multi-constraint solutions yield a hypothesis and hence a
prediction of the data parameter space.

Term Description

COLL Project
COLL Projects are Entities with no parent. In addition to the standard
attribute and Metadata associated with Entities, COLL Projects have also ACL
that define which Users can access their content.

R

Reconstruction data Data that is used to parameterise a model.

Reconstruction process
A workflow that uses a configuration of the data parameters and implements
a set of fundamental biological principles to constrain and instantiate the
model.

Reference space In 2D, a collection of slices with an optional 2D parcellation. In 3D, a voxel
volume with an optional 3D parcellation.

Registered data A URL accessible data set with an anchor.

Resources Parameters, Artefacts, services, or compute capacity.

REST An acronym for Representational State Transfer, for a definition see
http://en.wikipedia.org/wiki/Representational_state_transfer.

S

s-type Abbreviation for the type of synaptic connection. This abbreviation is used to
refer to a class of cells or a particular instance depending on context.

Sa-type
Abbreviation for the anatomical type of synaptic connection. This
abbreviation is used to refer to a class of synaptic connection or a particular
instance depending on context.

Sp-type
Abbreviation for the physiological type of synaptic connection. This
abbreviation is used to refer to a class of synaptic connection or a particular
instance depending on context.

SAN An acronym for Storage Area Network,
http://en.wikipedia.org/wiki/Storage_area_network.

Semantic-spatial
location Association of semantic concept (e.g.: cerebellum) with a spatial boundary.

Service
A software function performed by a third party for a User or other Service. In
the language of the COLL, Services consume Parameters, Artefacts and
compute capacity. Services produce Artefacts and parameters.

Single neuron models
Models that represent entire neurons, including 3D structure,
electroresponsiveness, synaptic activation and intracellular biochemical
cascades (developed in WP6.4.1).

Site
A collection of hosts collected together in a single location. The grouping is
potentially arbitrary. QIJ might be considered one site, LNMC another or one
might consider EPFL a site unto itself.

Spatial location 2D or 3D location.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Storage_area_network

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 42 / 43

Synapse model

A model representing synaptic plasticity, such as spike timing dependent
plasticity (STDP). The implementation solves the dynamic equation describing
the evolution of the synaptic amplitude, typically formulated as a differential
equation, given the spike times of the presynaptic and possibly the
postsynaptic neuron.

Synaptic models

Models that represent processes of synaptic transmission, including
neurotransmitter release and postsynaptic receptor activation. Both
stochastic and deterministic approaches should be covered. Extension toward
molecular models and molecular networks (WP6.4.1) of neuromodulation,
synaptic plasticity and homeostasis is envisaged.

Term Description

Systems Biology Markup
Language (SBML)

A mark-up language for representing standardised reaction networks within
compartments.

T

Task

A logical software unit. A Task takes Artefacts and Parameters as input, and
produces Artefacts and Parameters as output. It may or may not be visible as
a Service. A Task identifies its dependencies and its default parameters.
Concretely, it is a software component that combines:
• A Python-based Task entry point
• A git repository or Python package index URL for the Task
• A repository revision or package content specified by sha1
• A requirements file specifying all required dependencies. Tasks can have

dependencies in non-Python languages, but these dependencies must be
packaged for reproducible deployment.

Task definition The collection of data that defines an individual Task.

Task repository A database of Task definitions.

V

Validation data Data that is used to validate a model.

Validation process A workflow that compares results obtained in the model when experimental
protocols used to obtain the validation data are applied to the model.

Vasoconstriction Narrowing of blood vessels resulting from constricting of smooth muscle cells
within the vessel walls.

Vasodilation Widening of blood vessels due to relaxation of smooth muscle cells within the
vessel walls.

Voxel A 3D unit volume, the 3D analogue of an image pixel.

Voxel volume A 3D volume made up of voxels. Typically, the voxels densely fill a
rectangular prism spatial bounding volume.

W

Workflow
A tree of decision structures and Tasks. A Workflow takes Artefacts and
Parameters as input, and produces Artefacts and Parameters as output. It
may or may not be visible as a Service.

Co-funded by
the European Union

SP11 D11.3.1 FINAL_Resubmission 31-May-2017 Page 43 / 43

Annex B: HBP Collaboratory Documentation (Release 1.9.3)

HBPCollaboratory Documentation
Release 1.9.3

TBD

May 31, 2017

CONTENTS

1 Introduction 3
2 UserManual 5
2.1 Introduction . 5
2.2 User Interface . 6
2.3 Access Control . 6
2.4 Software Catalog . 7

3 AppDeveloperManual 9
3.1 Introduction . 9
3.2 Getting Started . 15
3.3 Security . 47
3.4 HBP StreamAPI Documentation . 47
3.5 Django Template . 55
3.6 OpenID Connect Client . 55
3.7 Deep Linking . 56
3.8 angular-hbp-collaboratory . 58
3.9 HBP Storage . 104
3.10 Related Resources . 135

4 Contact & Support 137
4.1 Contact . 137
4.2 Support . 137

5 License 139
6 Frequently asked questions 141
Bibliography 143
HTTP Routing Table 145
Index 147

i

ii

HBPCollaboratory Documentation, Release 1.9.3

Todo
This should be a very visual description with pointers to the different manuals and the introduc-
tion page.

Contents:

CONTENTS 1

HBPCollaboratory Documentation, Release 1.9.3

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

3

HBPCollaboratory Documentation, Release 1.9.3

4 Chapter 1. Introduction

CHAPTER
TWO

USERMANUAL

The HBP Collaboratory User manual. Find out about the Collaboratory, in concepts and in prac-
tice.

Introduction
Youwill learn how theCollaboratory can enable your collaborations. Youwill find out about how
to accomplish some common tasks in the collaboratory. You will find out where to get more help
if you need it.

Intended Audience
This manual is intended for all users of the Collaboratory.

Document Status
This document is intended to accompany the Collaboratory with every release and be updated
as the functionality of the Collaboratory is updated.

What is the Collaboratory?
“A [matchmaking] site for [scientific collaboration]” – Dr. Christine Aicardi, University College
London
The Collaboratory is intended to be a a hub for scientific collaboration. More than this, the shar-
ing and collaboration around data, software and services. Much of the functionality which is de-
livered through the Collaboratory is largely web based.
As part of the sharing strategy, the Collaboratory is architected to provide an ecosystem which
can extended by people outside the Collaboratory developer team. If you are a software devel-
oper or you just like to program, you can extend the Collaboratory to better support how you
want to work and collaborate with others.

5

HBPCollaboratory Documentation, Release 1.9.3

User Interface
Concepts
Collaboratory - the central site where all HBP Platform functionality can be found.
collab - A collaborative project instance in the Collaboratory. It has a user editable navigation
structure, one ormore teammembers and a history of activities.
extension - softwareor serviceswhich extendCollaboratory or collab functionality. Inmost cases,
users of the Collaboratory can contribute their own extensions.
apps - a user interface extension which displays itself in the workspace.
app links - binding an app to a point in the navigation tree.

Basic Elements
Navigation - organize the app links in your collab
Workspace - where apps are displayed
Collaboration - contact the people in the current collab team.
Showcase You can see the Collaboratory highlights in this collab [here](https://collab.
humanbrainproject.eu/#/collab/143/nav/759)

Access Control
Access control for the Collaboratory is primarily enforced on the level of a collab.
A collab can be either Public or Private. All collabs have a list of members.
NOTE: HBP Collaboratory Apps should try to be as consistent with the Access Control models
listed below. However, individual apps provided by others can allowmore fine grained or course
grained Access Control over their content inside the CollabWorkspace.

Public collabs
• Everyone can create a public collab.
• Everyonewho can login to the Collaboratory can view the collab.
• Collab members can edit the collab navigation items.
• Collab members can add files to the Collab storage.

Private collabs
• OnlyHBPMembers can create a private collab.
• Collab members can view the collab.
• Collab members can edit the collab.

6 Chapter 2. UserManual

https://collab.humanbrainproject.eu/#/collab/143/nav/759
https://collab.humanbrainproject.eu/#/collab/143/nav/759

HBPCollaboratory Documentation, Release 1.9.3

• Collab members can edit the collab navigation items.
• Collab members can add files to the Collab storage.
• Collab members can add/remove users from the Collab.
• Everyone else can not see the collab or content in the Collab storage.

At some point in the future the Collaboratory may support the following additional Access con-
trol options.
NOTE: The HBP Collaboratory team prioritizes features based on user feedback. If the fea-
tures below are needed for your work please let us know in the HBP forum (https://forum.
humanbrainproject.eu/), as it will help us prioritize future work.

Under Consideration for Future expansion
1. Read-onlymembers of Private collabs. Such members would be able to read content in Pri-
vate collabs, but not modify it or add/update/delete files in Collab storage.

2. Create a Manage role in both Private and Public collabs. Such members would be the only
ones able tomodify the collabmember list of a given collab.

3. Private collabs for non-HBPmembers.

Software Catalog
Uploading Software Information
Uploading the software information for anewversionof the tool canbedoneusing curl command
line or any other app able to sendHTTP POST requests.

User token
To retrieve one of your tokens, you can use this page:
https://services.humanbrainproject.eu/oidc/manage/user/tokens
Just copy an existing token from here, it will have the value $MY_VERY_PERSONAL_TOKEN in
the following steps.
Open a terminal and enter the following to create a very minimal version of ‘awesome-software’
software.
$ curl -0 -X POST https://services-dev.humanbrainproject.eu/software-catalog/v0/api/

→˓version/ \
-H "Authorization: Bearer $MY_VERY_PERSONAL_TOKEN" \
--data "name=awesome-software" \
--data "version=1.0.0" \
--data-urlencode "title=Awesome Software" \
--data "category=library"

2.4. Software Catalog 7

https://forum.humanbrainproject.eu/
https://forum.humanbrainproject.eu/
https://services.humanbrainproject.eu/oidc/manage/user/tokens

HBPCollaboratory Documentation, Release 1.9.3

8 Chapter 2. UserManual

CHAPTER
THREE

APPDEVELOPERMANUAL

TheHBP Collaboratory App development guide for beginners tomasters.

Introduction
Intended Audience
This manual is primarily targeted at platform developers with a software engineering back-
ground.
To develop Collaboratory application, it is assumed that you have some knowledge on how to
build web applications: - Basic knowledge of what is a RestWeb Service to use our API - At least
averageWebDevelopment skills for developing the frontend;

this includes being fluent with Javascript HTML and CSS
• UnderstandingOauth2 basics

Wewill propose various toolkit for our standard stack, but you are definitly free to choose other
technologies. Our stack includes: - Python Django for the backend server - AngularJS for the
frontend scripting - Sass for the stylesheets on the frontend - NGinx as server
The tutorial is based on basic knowledge of Django. The starting guide of Django is probably
sufficient.

Document Status
This documentation explains how to develop application for the Collaboratory. It is currently in
development so theremight be some rough edges right now. In the future the Collaboratory will
supper easier ways of developing scientific applications, targeted at scientific developers.
The core of the documentation is the tutorial section. The API references are currently incom-
plete andwill be improved over time.

Applications
An Application defines a set of HTML5 pages that enable participation in one HBP activity. They
are context sensitive in the sense that they show data in the context of where they are instanti-
ated, for example:

9

HBPCollaboratory Documentation, Release 1.9.3

• A File Viewer application should open with the intended file already displayed. It is the
same as opening a text document by clicking on the file directly as opposed to first opening
the text editor application.

• A Wiki application should store and retrieve its content given the context in which it has
been opened.

Applications aredevelopedby theHBPplatformsandHBPpartners to enablewide access to their
core business tools.

Backend
To achieve their goal, an Application Developer can use a wide range of RESTful web services. If
HBP Collaboratory ensures the integration of scientific data and tools within the same working
space, the interoperability of the various platforms is guaranteed by the underlyingMicroservice
Architecture, which provides a directory of web services that are guaranteed to seemlessly work
together.
An application will create its UI by using a combination of general web services (authentication,
provenance, unicore, data registration, . . .) and specialized and/or custom web services (brain
simulation builder, brain atlas, . . .).

Applications that are a good fit for Collaboratory
Any scientific application that enables access to data in order to visualize, query, or more gener-
ally interact with them could be present in the Collaboratory.
A scientific teamshould be able to organize its projectmaterial and toolswithin theHBPbyusing
only the Collaboratory.
An application that cannot be accessed using a web interface without a lot of effort should still
have at least a Project Page describing how to get to andwork with the tool.
Any HBPmanagement application is also a good fit as we want to assemble the tools that help a
team to organise their activities within the Collaboratory.

Application Requirements
An application must provide at least one HTTPS URL that will be used to display its purpose.
The application must be registered within the Collaboratory Apps Manager by its developer. An
application is responsible for its hosting, data storage, security and access. TheHBPConsortium
is here to help find solutions of course.

Developing Applications
As of today, developing a Collaboratory application requires web development skills. Any appli-
cation is composed of a web UI that will be loaded within the Collaboratory platform following
the same kind of patterns as a Facebook iframe application.
In the upcoming release, we will release alternative ways of creating applications to enable a
broader community to create them. One of the main targets is to enable scientific developer to
publish application that let scientists run code in the HBP computing centers. In those cases, the

10 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

web User Interface (UI) generation will be automated. A web developer will be able to step in
later to replace the automatically generated UI with amore user-friendly customUI.

Streamline Publication
One of the goals of the Collaboratory is to streamline the process of research and publication of
newdiscoveries. Preparinganaccompanyingwebsite for apublication, suchas in theNMCPortal
should become a matter of cleaning up a Collab instead of becoming a fewmonths development
project. As a result, any data that should be part of a publication should at least have a viewer
application available in the Collaboratory.

ArchitectureOverview

HBP Collaboratory Workspace (HTML5)

HTML5 User Interface

Collaboratory
UI Components
SDK

Collaboratory
Rest Service
Clients

App

Platform
HTML Content

Platform
Rest API

Collab Manager

postMessage
API

Platform Backend

HTTPS
or WSS

Authentication Service (oAuth2/OIDC)

…

…

Provenance REST Service

Notification REST Service

Activity REST Service

User Directory REST Service

Collaboratory REST Service

Platform
Rest API

Microservice Architecture

Provided by HBP/Platform

Provided by the HBP Consortium

Provided By You ?
+

An Application is composed from an HTML5 frontend and a backend coded with the technology
of your choice (our current default is Python). The backend is typically in charge of serving the
frontend and storing your Application data.
To develop an application quickly, we provide the Collaboratory SDK. It is composed of:
• angular-hbp-common (AngularCommon): delivers a set of common libraries for AngularJS.
You can use them in an AngularJS based web application to connect to the Collaboratory
core services.

3.1. Introduction 11

https://bbp.epfl.ch/nmc-portal/welcome
https://developer.humanbrainproject.eu/docs/angular-hbp-common/latest/

HBPCollaboratory Documentation, Release 1.9.3

• collaboratory-ui (: provides a set of AngularJS directives and filters of reusable compo-
nents.

• collaboratory-theme (Collaboratory UI Theme) : provides a CSS or SASS template based on
Twitter Bootstrap

• generator-collaboratory-app: aYeomangenerator tobootstrap a client application forCol-
laboratory

Todo
Point to specific documentation above

Basic user interactionwith an Appwithin Collaboratory
Your application can provide two access points to load the client:
• a runmodeURL, accessible to all people who can access the Collab
• an editmodeURL, accessible only to Collabmembers

Note: Your application can further restrict the access to some data or actions but they should
provide the user with amessage of what is causing the restriction.

12 Chapter 3. AppDeveloperManual

https://developer.humanbrainproject.eu/docs/HBP%20Collaboratory%20Theme/latest/
http://getbootstrap.com/
http://yeoman.io/

HBPCollaboratory Documentation, Release 1.9.3

:Collaboratory User :Collaboratory Frontend :App

newMenuItem(ctx:UUID, title:String)

[GET]http://app_edit_url?ctx=UUID

[GET]http://app_run_url?ctx=UUID

POST:some_data_to_save(ctx=UUID)

200:`edit page HTML`

200:`run page HTML`

switchMode(mode=‘run’)

Store data

Load data

200:OK

UML SequenceDiagram representing the interaction between a user and an appwithin theHBP
Collaboratory.
1. The user adds aNavigation Item in the navigation. TheNavigation Item is assigned a Context
UUID and is bound to an Application.

2. When the item has been created, the Edit View is instantiated in the workspace iframe. To
achieve that, the HBP Collaboratory opens the Edit URL defined by the application and ap-
pends ctx=contextUUID as a query parameter.

3. The application renders the Edit View, which should store user configuration data associ-
ated with the Context UUID.

4. At some point, the user is donewith the editing and switches to the Run View.
5. TheCollaboratorynowopens theRunURLdefinedby theapplicationandappends the same
Context UUID to it.

6. The application uses the Context UUID to retrieve the stored data and display a view that is

3.1. Introduction 13

HBPCollaboratory Documentation, Release 1.9.3

specific to thisNavigation Item.

General Concepts
Belowwe present themain concepts that describe an application.

Roles and ACL
All users need to be Authenticated to access the HBP Collaboratory. The authorization involves
the creation of an HBP user account. The Collaboratory provides a few roles that an application
can use to provide Authorization.
• Collaboratory Administrator: Global admin of the Collaboratory platform
• CollabMember: Someonewho is member of the current collab team
• Collab User: Anybodywith an access to the current collab

There is inheritance at play here: a Collab Member is a also Collab User. Likewise a Collaboratory
Administrator is also a CollabMember

Edit/Run
As we have seen previously, an application should avoid a common view to privileged content
in the context of the current Collab and Context UUID. For example, given a specific Navigation
Item, an application Run View should display a specific document rather than a list of all available
documents. To create this link between a Navigation Item, a Context UUID is sent to each view.
The application should provide an Edit view that links this Context UUID to some relevant data.
To summarize:
• theEdit View provides away to configurehowtheapplication is accessedwithin aparticular
Context UUID.

• the Run View provides a UI to work with the data defined by the current Context UUID.

Note: In most applications, the Run View will also have editing functionality, but the purpose is
different. in a Run View, We are working with the application data, not the application configu-
ration. For example, in a Brain Simulation application, the Edit View will let you choose a specific
model while the Run Viewwill let you configure the simulation parameters, run it, and display the
results.

The access rights are not the samebetweenboth views. ACollabMember can access both the Edit
View and the Run Viewwhere a Collab User can access only the Run View.

Note: This restriction is enforced only in theUI. The application should enforce the same access
permission in its backend.

The run view can (and should) further restrict what is possible for a given user based on Collab-
oratory roles or application specific ACL. In this case, the application should always state why
something cannot be done and explain how to enable the functionality.

14 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Context UUID
This is an important concept to understand. HBPCollaboratory stores no application data.

Note: Why? Data is a very important citizen of the system. They need to be backed up,migrated,
verified, accessed from various location. They are very heterogenous by nature. As an Applica-
tion Developer it is your responsibilityto handle them with care. The HBP still plans to provide
some common storage infrastructure and service to access data, but it is not part of the HBP
Collaboratorymission to solve this concern.

Instead, the Collaboratory provides the application with a Context UUID, which respects the
UUIDv4 format specification. The application uses this context tomatch the viewof aNavigation
Item to its data. Of course, the application doesn’t know at first how to map the context to a set
of data, this is the purpose of the Edit View. At this point, a context UUID matches exactly one
Navigation Item. This principle might be relaxed a bit in the future but at least the Context UUID
should always point to a given data set. And it will be possible to resolve Collaboratory Access
Control based on a Context UUID.

Note: It is possible to create a new Navigation Item from within an application. In this case, the
application directly knows what data is bound to the Context UUID. In this case, the Edit View is
not needed.

Getting Started
A Simple Example
The following example is here to show you what is a very simple application and what makes it a
Collaboratory application. Consider it as theHelloWorld for a Collaboratory Application.
The example can be downloaded as an archive: collaboratory-app-example.tar.gz
The remaining part of this article explains what is in the application and how to load it within the
Collaboratory.

Project Structure
File Description
index.html Themain HTML page
app.js This application javascript code
lib/hello.all.js
lib/hbp.hello.js

The library HelloJS is used tomanage authentication that handles user
authorization. This library handles all the OpenID Connect authentication.

lib/jquery.js jQuery is a popular javascript framework
lib/collaboratory.bootstrap.cssThe Collaboratory CSS theme. This theme is based on Twitter Bootstrap.

Using it ensures a consistent look and feel with the Collaboratory.
fonts/ Contains fonts required by the theme stylesheet
runserver A Python script to run a local ssl server

3.2. Getting Started 15

http://jquery.com
http://getbootstrap.com

HBPCollaboratory Documentation, Release 1.9.3

The index.html file
<!DOCTYPE html>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="./lib/collaboratory.bootstrap.css">
<title>Hello World</title>

<header>
<h1>My First Collaboratory Application</h1>
<h2>Retrieve this collab informations</h2>
<p><button class="btn btn-primary" href="#" retrieve-collab-info>Retrieve Collab␣

→˓Informations</button></p>
</header>

<article>
<h3 class="collab-title"></h3>
<p class="collab-content"></p>
<pre class="data-source" style="display: none;"></pre>

</article>

<script src="./lib/jquery-2.1.4.min.js" charset="utf-8"></script>
<script src="./lib/hello.all.js" charset="utf-8"></script>
<script src="./lib/hbp.hello.js" charset="utf-8"></script>
<script src="./app.js" charset="utf-8"></script>

A simple HTML5 file that contains a button to request collab informations and simplemarkup to
hold the server response.

The app.js file
/*global $, document, window, hello*/
(function() {
'use strict';

var init = function() {
// Setup OpenID connect authentication using the clientId provided
// in the HBP OIDC client page.
// https://collab.humanbrainproject.eu/#/collab/54/nav/1051
hello.init({
hbp: '2bc1364d-1039-495b-b51e-608108cbefce'

});
// If the user is not authenticated, it will redirect to the HBP auth server
// and use an OpenID connect implicit flow to retrieve an user access token.
hello.login('hbp', {display: 'page', force: false});

$(document).ready(function() {
$('*[retrieve-collab-info]')
.on('click', retrieveCurrentContext);

});
}

// Extract the context UUID from the querystring.
var extractCtx = function() {
return window.location.search.substr(
window.location.search.indexOf('ctx=') + 4,

16 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

36 // UUID is 36 chars long.
);

};

var retrieveCurrentContext = function() {
var ctx = extractCtx();

// Retrieve the user auth informations
var auth = hello.getAuthResponse('hbp');
if (auth && auth.access_token) {

var token = auth.access_token;
// Query the collaboratory service to retrieve the current context
// related collab and other associated informations.
$.ajax('https://services.humanbrainproject.eu/collab/v0/collab/context/' + ctx + '/

→˓', {
headers: {
Authorization: 'Bearer ' + token

}
})
.done(function(data) {

// Update the DOM with the context object retrieved by the web service.
$('.collab-title').html(data.collab.title);
$('.collab-content').html(data.collab.content);
$('.data-source').html(JSON.stringify(data, null, 2)).show();

})
.fail(function(err) {
$('.data-source').html(JSON.stringify(err, null, 2)).show();

});
} else {
$('.collab-title').html('Not Authenticated');
$('.collab-content').html('Please login first');

}
};

init();
}());

This app.js file contains the javascript code that will authenticate the user and request the cur-
rent collab context information.

The lib/ folder
The lib folder contains the hbp.hello.js script, that has been downloaded from the hbp.hello.js
git project. This library handle all the OpenID Connect authentication flow and is used by our
main scripts.

Make this example work
Tomake this example work as a Collaboratory application, you need to:
1. create anOpenID Client
2. modify the code to use your OpenID Connect Client ID
3. make the application accessible throughHTTPS

3.2. Getting Started 17

https://bbpcode.epfl.ch/projects/hbp/JSLibOidcClient

HBPCollaboratory Documentation, Release 1.9.3

4. register the application in the Collaboratory
5. create a newNavigation Item using this application

Create anOpenID Connect client
TheHow to develop appsCollabhas anavigation itemcalledOpenIDConnectClientManager that
lets you register new applications.
The user will have to authorize your application in order:
• for him to use it
• for the application to use other API on its behalf

In this example,weuse theOpenIDConnect user access token to get access to the currentCollab
information and display it.

Modify the code to use your OpenID Connect Client ID
in app.js, look for the string YOUR_CLIENT_ID and replace it by the the one provided in the pre-
vious step.

Access throughHTTPS
Any way that will let you serve a static page over HTTPS is acceptable. Two ways are described
in this example, using Divshot free service or a local Python server.

Using a local Python server

For testing purpose, you can run a local https server to test the application.

Note: PleaseNote that only youwill be able to access your application so don’t release anything
public this way. Add a file called runserver in the root of the website and paste this content

#!/usr/bin/env bash
HTTPS_PORT=4443
HOST_SERVED=localhost
CWD=$(pwd)
CERT_PATH=$CWD/server.pem
APP_ROOT=.

move to app root folder
cd $APP_ROOT

generate self-signed cert the first time
if [! -f $CERT_PATH]; then

openssl req -new -x509 -subj "/C=CH/ST=Geneve/L=Geneve/O=lol/CN=localhost" -keyout
→˓$CERT_PATH -out $CERT_PATH -days 365 -nodes

fi

18 Chapter 3. AppDeveloperManual

https://collab.humanbrainproject.eu/#/collab/54/nav/1051

HBPCollaboratory Documentation, Release 1.9.3

echo "launching HTTPS server on port $HTTPS_PORT"
python -c "import BaseHTTPServer, SimpleHTTPServer, ssl;\

httpd = BaseHTTPServer.HTTPServer(('${HOST_SERVED}', ${HTTPS_PORT}), SimpleHTTPServer.
→˓SimpleHTTPRequestHandler);\

httpd.socket = ssl.wrap_socket (httpd.socket, certfile='${CERT_PATH}', server_
→˓side=True);httpd.serve_forever()"

You can then run the server using the following command.
$. ./runserver

During the first launch, it will generate a local https certificate. Before going to the next step,
ensure your computer trust your self signed certificate (see Trust your certificate) ; otherwise
the webpagewill not be display.
Your page will be available at the URL: https://localhost:4443/

Register the application in the Collaboratory
Tomake your application accessible in theCollaboratory, you need to be able to add it to aCollab
navigation. To do so, it is necessary to register your application using the Apps Manager page in
the How to develop apps Collab.
1. Click theRegister App button
2. Enter your application title
3. Enter a description for your application
4. Enter themain URL for your application, which is the URL obtained in the previous step
5. Leave the edit URL blank
6. Leave the default entry label blank
7. Use Prototype as category
8. Ensure the visibility of the app is private because you don’t want everybody to use your
example application.

9. Hit the save button.

Create a newNavigation Item using this application
You can now navigate to one of your collab and create a new instance of your application. When
you access your application instance for the first time, you should see the authorization page.
Once approved, a page with a single button will be displayed. Once the user hits the button, the
collab title, description and the raw result of the query should be displayed as well.

What’s Next
You did the quick tour, now is the time to: - start developing your own application using your
preferred web stack. You might be interested by our various web service documentation there.
- Create Your First Application using Django as a backend - get in touch with the Collaboratory
team for more informations

3.2. Getting Started 19

https://localhost:4443/
https://collab.humanbrainproject.eu/#/collab/54/nav/374
https://collab.humanbrainproject.eu/#/collab/54/nav/368
mailto:bbp-ou-platformdev@epfl.ch
mailto:bbp-ou-platformdev@epfl.ch

HBPCollaboratory Documentation, Release 1.9.3

Install and Setup
Create a local SSL Certificate
To see how your application behaves within Collaboratory, you will have to run your local server
using an SSL certificate. The following guide explains how to create a self signed SSL certificate.

Note: Security is an important issue. You should set up even your local server to work over an
HTTPS connection for various reasons. The most important being that a token will be passed to
your local server and HTTPS is an important security measure to keep it private. Moreover, any
content loaded into the Collaboratory iframewill eventually be accessed throughHTTPS.
The quickest way to achieve this on a development box is to use a self-signed certificate that you
will trust on your own development computer. Since you will have to tell your OS to trust it, it is
very important that you don’t share this certificate or commit it to a any public repository.

Ensure you haveOpenSSL installed on your computer:
$ which openssl
/usr/bin/openssl

Install Open SSL

OS Installer
MacOSX brew install openssl (using Homebrew)
RedHat yum install openssl

Ubuntu apt-get install openssl

Generate a private, self-signed, SSL certificate

Inside a private folder, for example $HOME/.ssl, issue the following commands.

Note: The documentation will use that path as a default so if you decide to use something else,
youmight need to adapt the examples.

Generate a self-signed SSL certificate:
This command generates a signing key, a certificate signing request and then a signed certificate,
using its own key.
openssl genrsa -des3 -passout pass:x -out server.pass.key 2048
openssl rsa -passin pass:x -in server.pass.key -out server.key
rm server.pass.key
Ensure to use ``localhost`` as the Common Name
openssl req -new -key server.key -out server.csr
openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

20 Chapter 3. AppDeveloperManual

http://mxcl.github.com/homebrew/

HBPCollaboratory Documentation, Release 1.9.3

Trust your certificate

In order for your browser to accept a self-signed certificate, youmust tell yourOS to trust it. This
operation is OS dependent:

Todo
Complete command to trust the ca cert on RedHat and Ubuntu.

OS Trust
MacOSX
(Yosemite)

issue the command open server.crt. The certificate will automatically be
added to your login keychain.

RedHat TBD
Ubuntu TBD
OnMacOSXYosemite, to trust the local certificate, open it in theKeychain Access app. You then
have to restart your browsers to refresh their internal keystore.
There are no strong requirements on how to build an application since one can be defined just
as a title grouped to two HTTPS URLs declared in the Apps Manager. However, to build a rich
interactive application the HBP provides a Collaboratory SDK that developers can leverage to
quickly get aworking application. This SDK requires few tools to be present in your development
environment:
• NodeJS: NodeJS is used to compile the HTML5 assets and retrieve other javascript devel-
opment dependencies.

• GruntJS: A NodeJS task runner used as a build tool.
• Bower: A packagemanager for the web.
• AngularJS: JavascriptMVW framework.
• Python: At least to run the quickstart guidemini-server.

Install Dependencies
NodeJS

• Install via packagemanager
• Download binaries or source

Depending on your environment youmight need a symlink or an alias for node to point to nodejs
executable.

Grunt and Bower

Install globally via the NPM (NodeJS PackageManager)
npm install -g grunt-cli bower

3.2. Getting Started 21

https://nodejs.org/
http://gruntjs.com/
http://bower.io/
https://angularjs.org/
https://www.python.org/
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://nodejs.org/download/

HBPCollaboratory Documentation, Release 1.9.3

Python

OS Installer
MacOSX brew install python (usingHomebrew_)
RedHat yum install python

Ubuntu apt-get install python

OrDownload binaries or source.

OpenSSL

OS Installer
MacOSX brew install openssl (usingHomebrew_)
RedHat yum install openssl

Ubuntu apt-get install openssl

Create Your First Application
Bootstrap the Django application
The first step is to create a Django application that you can start using SSL.
To create the Django project, issue the following command in your project parent folder:
$ django-admin startproject miniki

This create a standard Django layout in the miniki subfolder. It is a good practice to use Python
virtualenv tomanage dependencies and avoid conflict.

Virtual Environment

Create a virtual environment and activate it with the following commands:
$ virtualenv .venv
$ source .venv/bin/activate

Dependencies Using Pip

Create a requirements.txt file thatwill contains all dependenciesweneed to achieve this tutorial.
Listing 3.1: miniki/requirements.txt

Django >=1.8.2, <1.9
django-sslserver == 0.15
django-bower == 5.0.4
bleach == 1.4.1
Markdown == 2.6.2
hbp-app-python-auth==0.1.*
django-jsonify==0.3.0
python-social-auth==0.2.21

22 Chapter 3. AppDeveloperManual

https://www.python.org/downloads/

HBPCollaboratory Documentation, Release 1.9.3

You can then install those dependencies using pip:
$ pip install -r requirements.txt

Edit settings.py

Modify the list of used application in settings.py
Listing 3.2: miniki/miniki/settings.py

INSTALLED_APPS = (
'sslserver',
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'miniki',

)

Also comments the X-Frame-Options middleware as the application will be loaded inside an
iframe.

Listing 3.3: miniki/miniki/settings.py
MIDDLEWARE_CLASSES = (

'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'django.middleware.security.SecurityMiddleware',

)

Launch Server

Run the databasemigrations and launch the SSL server:
$./manage.py migrate
$./manage.py runsslserver

System check identified no issues (0 silenced).
June 18, 2015 - 07:31:27
Django version 1.8.2, using settings 'miniki.settings'
Starting development server at https://127.0.0.1:8000/
Using SSL certificate: /usr/local/lib/python2.7/site-packages/sslserver/certs/development.

→˓crt
Using SSL key: /usr/local/lib/python2.7/site-packages/sslserver/certs/development.key
Quit the server with CONTROL-C.

3.2. Getting Started 23

HBPCollaboratory Documentation, Release 1.9.3

If you access https://localhost:8000/admin, your browser will display a warning about an unse-
cure connection. This is because django-sslserver use a self signed certificate that your computer
don’t trust. The solution is to relaunch the server using a trusted certificate. You can generate
one for your machine using Create a local SSL Certificate. If you follow the tutorial, you should be
able to relaunch the server with this command:
$./manage.py runsslserver --certificate /path/to/certificate.crt --key /path/to/key.key

If you refresh https://localhost:8000/admin, you should now be able to display a web page with-
out anymore warning from your browser. In the next step, we will create the wiki page run view
and the wiki page edit view.

Edit and Run view
Most HBP Collaboratory application are composed of a run view and an edit view. In this step we
will create both view and reference them in the Django urls.py file.

Todo
Link to the UserManual run/edit modewhen it exists.

Create HTMLViews

In this step wewill create view placeholder and link them to the correct URL.
Create theminiki/miniki/templates directory and add the following three templates:
• layout.html: a global layout for all our views
• show.html: will display a wiki page content
• edit.html: will display a form to edit a wiki page

For now, those files will contains minimal content.
Listing 3.4: miniki/miniki/templates/layout.html

<!DOCTYPE html>
<html>
<head>
<title>Tutorial Application</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">

</head>
<body>
{% block content %}{% endblock %}

</body>
</html>

Listing 3.5: miniki/miniki/templates/show.html
{% extends 'layout.html' %}

{% block content %}

24 Chapter 3. AppDeveloperManual

https://localhost:8000/admin
https://localhost:8000/admin

HBPCollaboratory Documentation, Release 1.9.3

<main class="page">
<header class="page-header">

<h1>Show Template</h1>
</header>

<section role="content">
<code>{{context}}</code>

</section>
</main>
{% endblock %}

Listing 3.6: miniki/miniki/templates/edit.html
{% extends 'layout.html' %}

{% block content %}
<main class="page">

<header class="page-header">
<h1>Edit Template</h1>

</header>

<section role="content">
<code>{{context}}</code>

</section>
</main>
{% endblock %}

Bind the templates to views

Create associated views in a new file called views.py
Listing 3.7: miniki/miniki/views.py

'''Views'''

from django.shortcuts import render_to_response
from uuid import UUID

def show(request):
'''Render the wiki page using the provided context query parameter'''
context = UUID(request.GET.get('ctx'))
return render_to_response('show.html', {'context': context})

def edit(request):
'''Render the wiki edit form using the provided context query parameter'''
context = UUID(request.GET.get('ctx'))
return render_to_response('edit.html', {'context': context})

link URL to the created views

Edit urls.py to register the view to proper URL pattern file:

3.2. Getting Started 25

HBPCollaboratory Documentation, Release 1.9.3

Listing 3.8: miniki/miniki/urls.py
from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url(r'^admin/', include(admin.site.urls)),
url(r'^$', 'miniki.views.show', name='wiki_page_show'),
url(r'^edit/$', 'miniki.views.edit', name='wiki_page_edit'),

]

A wiki page should be accessible at https://localhost:8000/?ctx=
4f406c10-168d-11e5-b939-0800200c9a66.

This same page will be editable at https://localhost:8000/edit?ctx=
4f406c10-168d-11e5-b939-0800200c9a66.

In the following steps, we will register the local server as an application within the HBPCollabo-
ratory and create theWikiPagemodel.

Register Your Application
In this step we will register our development server as a private application. A private applica-
tion can only be instantiated by its owner. It’s purpose is to not pollute the public area while
developing a new application.
To register an application, go to the Apps Manager app in the How to develop Apps collab and
press ‘Register App’ button.

26 Chapter 3. AppDeveloperManual

https://localhost:8000/?ctx=4f406c10-168d-11e5-b939-0800200c9a66
https://localhost:8000/?ctx=4f406c10-168d-11e5-b939-0800200c9a66
https://localhost:8000/edit?ctx=4f406c10-168d-11e5-b939-0800200c9a66
https://localhost:8000/edit?ctx=4f406c10-168d-11e5-b939-0800200c9a66
https://collab.humanbrainproject.eu/#/collab/54/nav/374
https://collab.humanbrainproject.eu/#/collab/54

HBPCollaboratory Documentation, Release 1.9.3

Enter the following parameters:
Name Value Description
Title JohnDoe-DevWiki

Page
Application namemust be unique

Description Wiki Application A description that is displayed to collaborators
Main URL https://localhost:

8000/
The URL that will be used in Runmode

Edit URL https://localhost:
8000/edit

The URL that will be used in Editmode
Default Entry
Label

Leave empty, this is used to define a default title for
the nav items

Category Leave it empty, apps optionally can be grouped by
categories

Private [checked] A private application can only be instantiated by the
application owner

Then hit save to register your new application.

Loading the application

You can test the application from your sandbox collab, if you add a new item in the navigator, you
can now choose your application in the list of available apps.
If your local server is running, you should be able to view the same page as in the previous step,
but loadedwithin Collaboratory this time.

3.2. Getting Started 27

https://localhost:8000/
https://localhost:8000/
https://localhost:8000/edit
https://localhost:8000/edit

HBPCollaboratory Documentation, Release 1.9.3

28 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

In the next steps, wewill build theDjangomodel representing awiki page and use the Collabora-
tory theme to quickly build up a nice looking edit form.

CreateWikiPageModel
Create amodels.py file and add theWikiPagemodel to it.

Listing 3.9: miniki/miniki/models.py
from django.db import models
from django.core.urlresolvers import reverse

class WikiPage(models.Model):
"""A wiki page"""

title = models.CharField(max_length=1024)
text = models.TextField(help_text="formatted using ReST")
This field stores the UUID added as an argument by the Collaboratory.
ctx = models.UUIDField(unique=True)
created_on = models.DateTimeField(auto_now_add=True)

def __unicode__(self):
return self.title

UUIDField is not supported by automatic JSON serializer
so we add a method that retrieve a more convenient dict.
def as_json(self):

return {
'title': self.title,
'text': self.text,
'ctx': str(self.ctx),

}

@models.permalink
def get_absolute_url(self):

return reverse('wiki_page_show', args=[str(self.ctx)])

The ctx field

Thismodelmay contains anyfields corresponding to awiki page. Theonly difference is that there
is aHBPCollaboratoryContext associated to it. The context is added to theURLof every requests
made by theCollaboratory to your application and let you bind aCollaboratory location - an item
of the navigation - to a specific context within your application. This linkage is most of the time
the purpose of your application edit view.

DatabaseMigration

Quit the Django server, runmigration and relaunch.
$./manage.py migrate
$./manage.py runsslserver

3.2. Getting Started 29

HBPCollaboratory Documentation, Release 1.9.3

Next

In the next step, wewill use the HBPCollaboratory theme to create a nice looking edit form.

Create a Simple Edit Form
In this step we will create a Django Form and use it to edit our wiki page instances. We will use
the HBPCollaboratory Theme to have a UI that is correctly integrated within the portal.

Create the Django form

Create the file named ‘miniki/miniki/forms.py’ and use the content below
Listing 3.10: miniki/miniki/forms.py

from django import forms
from .models import WikiPage

class WikiPageForm(forms.ModelForm):
"""Wiki Page edition form"""

class Meta:
model = WikiPage
fields = ['title', 'text', 'ctx']
widgets = {

'ctx': forms.HiddenInput(),
'title': forms.TextInput(attrs={

'class': 'form-control',
'ng-model': 'wikiPage.title',

}),
'text': forms.Textarea(attrs={

'class': 'form-control form-control-editor',
'ng-model': 'wikiPage.text',

}),
}

Using the Collaboratory Theme

Wewill use our first frontend dependencies. Collaboratory use bower as a package manage for
frontend depdencies. django-bower is a library that provides tools to deal with bower dependen-
cies (it has been declared in your requirements.txt file).

Require bower dependencies

Add the following definitions to settings.py file
Listing 3.11: miniki/miniki/settings.py

INSTALLED_APPS = (
'sslserver',
'django.contrib.admin',

30 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'miniki',
'djangobower',

)

STATIC_URL = '/static/'

STATICFILES_FINDERS = (
'django.contrib.staticfiles.finders.FileSystemFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',
'djangobower.finders.BowerFinder',

)

BOWER_COMPONENTS_ROOT = BASE_DIR

BOWER_INSTALLED_APPS = (
'hbp-collaboratory-theme',
'angular-hbp-common',

)

Add a .bowerrc at the project root which point to the HBP Bower Repository.
Listing 3.12: miniki/.bowerrc

{
"directory": "bower_components",
"registry": "http://bbpteam.epfl.ch/repository/bower"

}

You can then install or update dependencies using the following command:
$./manage.py bower install

Load the Collaboratory theme

We can now load the Collaboratory theme in layout.html
Listing 3.13: miniki/miniki/templates/layout.html

{% load static %}

<!DOCTYPE html>
<html>
<head>
<title>Tutorial Application</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">

{# Bower Dependencies #}
<link rel="stylesheet" href="{% static 'hbp-collaboratory-theme/dist/css/bootstrap.css

→˓' %}">
</head>

3.2. Getting Started 31

HBPCollaboratory Documentation, Release 1.9.3

<body>
{% block content %}{% endblock %}

{# Bower Dependencies #}
<script type="text/javascript" src="{% static 'jquery/dist/jquery.min.js' %}"></script>
<script type="text/javascript" src="{% static 'lodash/dist/lodash.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular/angular.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-bootstrap/ui-bootstrap-tpls.

→˓min.js' %}"></script>
</body>

</html>

Update Edit View

Let’s replace our dummy edit view by a more complete version that actually handle a wiki page
instance.

Listing 3.14: miniki/miniki/views.py (edit function)
'''Views'''

from django.shortcuts import render_to_response, render, redirect
from django.core.urlresolvers import reverse
from uuid import UUID

import bleach

from .forms import WikiPageForm
from .models import WikiPage

def edit(request):
'''Render the wiki edit form using the provided context query parameter'''

context = UUID(request.GET.get('ctx'))
get or build the wiki page
try:

wiki_page = WikiPage.objects.get(ctx=context)
except WikiPage.DoesNotExist:

wiki_page = WikiPage(ctx=context)

if request.method == 'POST':
form = WikiPageForm(request.POST, instance=wiki_page)
if form.is_valid():

wiki_page = form.save(commit=False)
Clean up user input
wiki_page.text = bleach.clean(wiki_page.text)
wiki_page.save()

else:
form = WikiPageForm(instance=wiki_page)

return render(request, 'edit.html', {'form': form, 'ctx': str(context)})

def _reverse_url(view_name, context_uuid):
"""generate an URL for a view including the ctx query param"""

32 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

return '%s?ctx=%s' % (reverse(view_name), context_uuid)

Thenew edit.html template feature a formusing theCollaboratoryThemewhich is basedonTwit-
ter Bootstrap.

Listing 3.15: miniki/miniki/templates/edit.html
{% extends 'layout.html' %}

{% block content %}
<form action="" class="wiki-form" method="POST">

<div class="wiki-form-fields">
{% csrf_token %}
{{ form.non_field_errors }}
{{ form.ctx }}
<div class="form-group">

{{ form.title.label_tag }}
{{ form.title }}
<p class="help-text">{{ form.title.errors }}</p>

</div>
<div class="form-group form-group-editor">

{{form.text.label_tag}}
{{form.text}}
<p class="help-text">{{ form.text.errors }}</p>

</div>
</div>

<div class="navbar navbar-form">
<button type="submit" class="btn btn-primary">Save</button>

</div>
</form>
{% endblock %}

Update Run View

We can replace the show view as well in order to have the real content displayed.
Listing 3.16: miniki/miniki/views.py (edit function)

'''Views'''

from django.shortcuts import render_to_response, render, redirect
from django.core.urlresolvers import reverse
from uuid import UUID
from markdown import markdown

import bleach

from .forms import WikiPageForm
from .models import WikiPage

def show(request):
'''Render the wiki page using the provided context query parameter'''
context = UUID(request.GET.get('ctx'))

3.2. Getting Started 33

HBPCollaboratory Documentation, Release 1.9.3

try:
wiki_page = WikiPage.objects.get(ctx=context)
content = markdown(wiki_page.text)

except WikiPage.DoesNotExist:
wiki_page = None
content = ''

return render_to_response('show.html', {'wiki_page': wiki_page, 'content': content})

def edit(request):
'''Render the wiki edit form using the provided context query parameter'''

context = UUID(request.GET.get('ctx'))
get or build the wiki page
try:

wiki_page = WikiPage.objects.get(ctx=context)
except WikiPage.DoesNotExist:

wiki_page = WikiPage(ctx=context)

if request.method == 'POST':
form = WikiPageForm(request.POST, instance=wiki_page)
if form.is_valid():

wiki_page = form.save(commit=False)
Clean up user input
wiki_page.text = bleach.clean(wiki_page.text)
wiki_page.save()

else:
form = WikiPageForm(instance=wiki_page)

return render(request, 'edit.html', {'form': form, 'ctx': str(context)})

def _reverse_url(view_name, context_uuid):
"""generate an URL for a view including the ctx query param"""
return '%s?ctx=%s' % (reverse(view_name), context_uuid)

The new show.html template feature the wiki page title and text content, formatted using mark-
down.

Listing 3.17: miniki/miniki/templates/show.html
{% extends "layout.html" %}

{% block content %}
<main class="page">

{% if wiki_page %}
<header class="page-header">

<h1>{{wiki_page.title}}</h1>
</header>

<section role="content">
{{content|safe}}

</section>
{% else %}
<header class="page-header">

<h1>This page does not exists</h1>
</header>
<section role="content">

<p>Go to edit mode to create it.</p>

34 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

</section>
{% endif %}

</main>
{% endblock %}

Fig. 3.1: The edit view

Fig. 3.2: The run view once the content has been saved.

Next

In the next steps we will add authentication and authorization to the wiki page resource, using
the HBPOIDC service.

Authentication
Our wiki works but it is open to everyone to read and write content (which can be seen as a
condition to be called a wiki). In our case we want to prevent access to members outside of the
HBP and only authorize themembers of a Collab to edit wiki pages written in this collab.
In this section, we will discuss how we manage the authentication part using the HBP Authenti-
cation Service based onOpenID Connect protocol.

3.2. Getting Started 35

HBPCollaboratory Documentation, Release 1.9.3

OIDC application

Touse theOpenIDConnect protocol on the server, youneed to create anOIDCclient. To register
a client, go to the OIDC Client Manager app in the How to develop Apps collab and press ‘Create
newClient’ button.

Enter the following parameters:
Name Value Description
Name JohnDoe-DevWiki Page Client namewill be shown in the client

approval page
Application type check Server flow Authentication will be performed server side
Authorized
redirect URL

https://localhost:
8000/complete/hbp

The authentication tokenwill be sent only to
this url

Authorized
scopes

check hbp.collab This defines the set of apis that the appwill
request access to

Logo URL (default value) This logo will be shown in the approval page,
it must be a public URL

Then press ‘Save’ to create the client. In the following page, you will find the Client ID and the
Client Secret that youwill need in the next steps of the tutorial.

python-social-auth plugin

Wewill use the python-social-auth plugin in order to implement authentication with HBPOIDC
server. We first need to load the plugin and configure it with a few constants.

Private settings

Client ID and Client Secret are private data and should not be committed in your version control
system. Create the config file in miniki/miniki/config.py and ensure it is ignored by your version

36 Chapter 3. AppDeveloperManual

https://collab.humanbrainproject.eu/#/collab/54/nav/1051
https://localhost:8000/complete/hbp
https://localhost:8000/complete/hbp

HBPCollaboratory Documentation, Release 1.9.3

control (eg: add it to the .gitignore file).
Listing 3.18: miniki/miniki/config.py (authentication)

import hbp_app_python_auth.settings as auth_settings
auth_settings.SOCIAL_AUTH_HBP_KEY = '...provided-client-id...'
auth_settings.SOCIAL_AUTH_HBP_SECRET = '...provided-client-secret...'

Name Description
SOCIAL_AUTH_HBP_KEY Your Client ID
SOCIAL_AUTH_HBP_SECRET Your Client Secret (keep it secret)

Public settings

Listing 3.19: miniki/miniki/settings.py (authentication)
from config import *

INSTALLED_APPS = (
'sslserver',
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'miniki',
'djangobower',
'social.apps.django_app.default',
'hbp_app_python_auth',

)

MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'django.middleware.security.SecurityMiddleware',
'social.apps.django_app.middleware.SocialAuthExceptionMiddleware',

)

AUTHENTICATION_BACKENDS = (
'hbp_app_python_auth.auth.HbpAuth',
'django.contrib.auth.backends.ModelBackend',

)

Add the Python Social Auth URL

Python social auth needs a few endpoints to handle the login, logout and other redirectionwhich
are part of oAuth 2.

3.2. Getting Started 37

HBPCollaboratory Documentation, Release 1.9.3

Listing 3.20: miniki/miniki/urls.py (authentication)
from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url(r'^admin/', include(admin.site.urls)),
url('', include('social.apps.django_app.urls', namespace='social')),
url('', include('hbp_app_python_auth.urls', namespace='hbp-social')),
url(r'^$', 'miniki.views.show', name='wiki_page_show'),
url(r'^edit/$', 'miniki.views.edit', name='wiki_page_edit'),

]

Protect the views

Now that our authentication layer is configured properly, we can actually announce that both
our views are protected by annotating them. Edit the views.py file as follow:

Listing 3.21: miniki/miniki/views.py (authentication)
from django.contrib.auth.decorators import login_required

@login_required(login_url='/login/hbp')
def show(request):

'''Render the wiki page using the provided context query parameter'''
context = UUID(request.GET.get('ctx'))
try:

wiki_page = WikiPage.objects.get(ctx=context)
content = markdown(wiki_page.text)

except WikiPage.DoesNotExist:
wiki_page = None
content = ''

return render_to_response('show.html',
{'wiki_page': wiki_page, 'content': content})

@login_required(login_url='/login/hbp')
def edit(request):

'''Render the wiki edit form using the provided context query parameter'''

if not _is_collaborator(request):
return HttpResponseForbidden()

context = UUID(request.GET.get('ctx'))
get or build the wiki page
try:

wiki_page = WikiPage.objects.get(ctx=context)
except WikiPage.DoesNotExist:

wiki_page = WikiPage(ctx=context)

if request.method == 'POST':
form = WikiPageForm(request.POST, instance=wiki_page)
if form.is_valid():

wiki_page = form.save(commit=False)
Clean up user input

38 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

wiki_page.text = bleach.clean(wiki_page.text)
wiki_page.save()

else:
form = WikiPageForm(instance=wiki_page)

return render(request, 'edit.html', {'form': form, 'ctx': str(context)})

Edit also the layout.html template to include a snippet code responsible for ensuring that the
logged in user is the same as the Collaboratory user where the app is running.

Listing 3.22: miniki/miniki/templates/layout.html
{% load static %}
{% load oidc_session %}

<!DOCTYPE html>
<html>
<head>
<title>Tutorial Application</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">

{# Bower Dependencies #}
<link rel="stylesheet" href="{% static 'hbp-collaboratory-theme/dist/css/bootstrap.css

→˓' %}">
</head>
<body>
{% hbp_oidc_session_handler request.user %}

{% block content %}{% endblock %}

{# Bower Dependencies #}
<script type="text/javascript" src="{% static 'jquery/dist/jquery.min.js' %}"></script>
<script type="text/javascript" src="{% static 'lodash/dist/lodash.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular/angular.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-bootstrap/ui-bootstrap-tpls.

→˓min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-bbp-config/angular-bbp-config.

→˓js' %}"></script>
<script type="text/javascript" src="{% static 'bbp-oidc-client/angular-bbp-oidc-

→˓client.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-ui-router/release/angular-ui-

→˓router.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-resource/angular-resource.min.

→˓js' %}"></script>
<script type="text/javascript" src="{% static 'marked-hbp/marked.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-hbp-common/dist/angular-hbp-

→˓common.min.js' %}"></script>

{# App Specific #}
<script type="text/javascript" src="{% static 'scripts/app.js' %}"></script>

</body>
</html>

The next time you will access a wiki page from within the Collaboratory, HBP Authentication
will ask you to authorize miniki app to access your user informations. If you are not logged in
Collaboratory already, a new authentication challenge will be provided as well.

3.2. Getting Started 39

HBPCollaboratory Documentation, Release 1.9.3

At this point, the access tominiki is restricted to authenticated users. In the next step, wewill see
how to restrict it further.

Todo
link to HBPAuthentication Service

Adding Authorization
Now that we can authenticate our users, it is time to ensure they have the correct access level
to access a resource. Authentication is the responsability of the HBP Authentication Service but
Authorization is every app duty. We will ensure that only HBP Collaboratory members can edit
a wiki page. To achieve this task wewill use the Collaboratory REST service.

Define Collab Service Settings

Add the following constant declaration to settings.py.
Listing 3.23: miniki/miniki/settings.py (authorization)

HBP_COLLAB_SERVICE_URL = 'https://services.humanbrainproject.eu/collab/v0/'

Check Permissions

Edit views.py to add a permission check function that will call the web service to retrieve the
collab for the current context and the user authorization on the current collab. If the current
user is a member of the collab, then we will authorize access to the edit page. Otherwise, we
return a 403 error.

Listing 3.24: miniki/miniki/views.py (authorization)
from django.conf import settings
from django.http import HttpResponseForbidden

from hbp_app_python_auth.auth import get_access_token, get_token_type, get_auth_header
import hbp_app_python_auth.settings as auth_settings

@login_required(login_url='/login/hbp')
def edit(request):

'''Render the wiki edit form using the provided context query parameter'''

if not _is_collaborator(request):
return HttpResponseForbidden()

context = UUID(request.GET.get('ctx'))
get or build the wiki page
try:

wiki_page = WikiPage.objects.get(ctx=context)
except WikiPage.DoesNotExist:

wiki_page = WikiPage(ctx=context)

40 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

if request.method == 'POST':
form = WikiPageForm(request.POST, instance=wiki_page)
if form.is_valid():

wiki_page = form.save(commit=False)
Clean up user input
wiki_page.text = bleach.clean(wiki_page.text)
wiki_page.save()

else:
form = WikiPageForm(instance=wiki_page)

return render(request, 'edit.html', {'form': form, 'ctx': str(context)})

def _is_collaborator(request):
'''check access depending on context'''

svc_url = settings.HBP_COLLAB_SERVICE_URL

context = request.GET.get('ctx')
if not context:

return False
url = '%scollab/context/%s/' % (svc_url, context)
headers = {'Authorization': get_auth_header(request.user.social_auth.get())}
res = requests.get(url, headers=headers)
if res.status_code != 200:

return False
collab_id = res.json()['collab']['id']
url = '%scollab/%s/permissions/' % (svc_url, collab_id)
res = requests.get(url, headers=headers)
if res.status_code != 200:

return False
return res.json().get('UPDATE', False)

If you try to edit a wiki page with a context parameter belonging to a collab that did not belongs
to you, it will now retrieve a 403 Forbidden response.

More

• Collab REST Service API Documentation

Next

In the next section, we will add a Markdow preview using AngularJS and the angular-hbp-
common library. It will let us bootstrap our application to supportmodern reactiveWebApplica-
tion wheremost of the work is done in the client.

PreviewMarkdownwith AngularJS
In this stepwewill bootstrapAngularJSwith all needed configurations to enable all the function-
ality available in angular-hbp-common. This library give you access to common UI components,
filters and service clients of the HBP platform (see angular-hbp-common API Documentation).

3.2. Getting Started 41

https://developer.humanbrainproject.eu/docs/hbp-collab-service/latest/
https://developer.humanbrainproject.eu/docs/angular-hbp-common/latest/

HBPCollaboratory Documentation, Release 1.9.3

Environement

To work properly, the angular-hbp-common library needs access to environments data. It uses
the angular-bbp-config library to retrieve them (see angular-bbp-config API Documentation).
This library read the configuration from a global variable window.bbpConfig. We have to write
a script that will set this variable before launching the Angular application.
To retrieve the proper environments, we will reuse the one define at https://collab.
humanbrainproject.eu/config.json and inject the user token in it.
To do that, we need to configure a new view that will build this json reprensentation and create a
javascript launch script that will bootstrap our angular application.

Define the /config.json URL

Edit urls.py to configure the newURL:
Listing 3.25: miniki/miniki/urls.py (add config.json URL)

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url(r'^admin/', include(admin.site.urls)),
url('', include('social.apps.django_app.urls', namespace='social')),
url('', include('hbp_app_python_auth.urls', namespace='hbp-social')),
url(r'^$', 'miniki.views.show', name='wiki_page_show'),
url(r'^edit/$', 'miniki.views.edit', name='wiki_page_edit'),
url(r'^config.json$', 'miniki.views.config', name='config'),

]

Define the config view

Defineanew config function thatwill load theofficial config.jsonand tailor it tofit this application.
The parameters that needs to be set are defined below:
Parameter
name

Description
auth.client_id This applicationOpenID Connect identifier
auth.token The user token describe as an object containing the following keys:

access_token, token_type, expires_in and scopes
Define the URL of the HBP environment URL in settings.py:

Listing 3.26: miniki/miniki/settings.py (add config.json URL)
HBP_ENV_URL = 'https://collab.humanbrainproject.eu/config.json'

The new view is written in views.py:

42 Chapter 3. AppDeveloperManual

https://developer.humanbrainproject.eu/docs/angular-bbp-config/latest/
https://collab.humanbrainproject.eu/config.json
https://collab.humanbrainproject.eu/config.json

HBPCollaboratory Documentation, Release 1.9.3

Listing 3.27: miniki/miniki/views.py (add config function)
@login_required(login_url='/login/hbp')
def config(request):

'''Render the config file'''

res = requests.get(settings.HBP_ENV_URL)
config = res.json()

Use this app client ID
config['auth']['clientId'] = settings.SOCIAL_AUTH_HBP_KEY

Add user token informations
request.user.social_auth.get().extra_data
config['auth']['token'] = {

'access_token': get_access_token(request.user.social_auth.get()),
'token_type': get_token_type(request.user.social_auth.get()),
'expires_in': request.session.get_expiry_age(),

}

return HttpResponse(json.dumps(config), content_type='application/json')

Bootstrap Script

The bootstrap script load /config.json and then set the result to window.bbpConfig accordingly to
angular-bbp-config specification. Once done, it boostraps an AngularJS application.

Listing 3.28: miniki/miniki/static/scripts/app.js (bootstrap code)
(function() {

// Define the miniki application, currently doing nothing.
angular.module('miniki', ['hbpCommon']);

// Bootstrap function
angular.bootstrap().invoke(function($http, $log) {
$http.get('/config.json').then(function(res) {
window.bbpConfig = res.data;
angular.element(document).ready(function() {

angular.bootstrap(document, ['miniki']);
});

}, function() {
$log.error('Cannot boot miniki application');

});
});

}());

Load dependencies

Load all necessary dependencies in the layout page:

3.2. Getting Started 43

HBPCollaboratory Documentation, Release 1.9.3

Listing 3.29: miniki/miniki/templates/layout.html (js dependencies)
{% load static %}
{% load oidc_session %}

<!DOCTYPE html>
<html>
<head>
<title>Tutorial Application</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">

{# Bower Dependencies #}
<link rel="stylesheet" href="{% static 'hbp-collaboratory-theme/dist/css/bootstrap.css

→˓' %}">
</head>
<body>
{% hbp_oidc_session_handler request.user %}

{% block content %}{% endblock %}

{# Bower Dependencies #}
<script type="text/javascript" src="{% static 'jquery/dist/jquery.min.js' %}"></script>
<script type="text/javascript" src="{% static 'lodash/dist/lodash.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular/angular.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-bootstrap/ui-bootstrap-tpls.

→˓min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-bbp-config/angular-bbp-config.

→˓js' %}"></script>
<script type="text/javascript" src="{% static 'bbp-oidc-client/angular-bbp-oidc-

→˓client.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-ui-router/release/angular-ui-

→˓router.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-resource/angular-resource.min.

→˓js' %}"></script>
<script type="text/javascript" src="{% static 'marked-hbp/marked.min.js' %}"></script>
<script type="text/javascript" src="{% static 'angular-hbp-common/dist/angular-hbp-

→˓common.min.js' %}"></script>

{# App Specific #}
<script type="text/javascript" src="{% static 'scripts/app.js' %}"></script>

</body>
</html>

The AngularJS Application

Time to write the AngularJS controller that will handle the displying of a HTML preview of the
Markdown formatted wiki text.

TheWikiPageFormCtrl

Angular controller handle application states. We can add theWikiPageFormCtrl to app.js:

44 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Listing 3.30: miniki/miniki/static/scripts/app.js (WikiPageFormCtrl)
(function() {

// Define the miniki application
angular.module('miniki', ['hbpCommon'])
.controller('wikiPageForm', function($scope) {
// The form controller that manage the displays of preview.
$scope.isPreviewOpen = false;
$scope.togglePreview = function () {
$scope.isPreviewOpen = !$scope.isPreviewOpen;

};
});

// Bootstrap function
angular.bootstrap().invoke(function($http, $log) {

$http.get('/config.json').then(function(res) {
window.bbpConfig = res.data;
angular.element(document).ready(function() {

angular.bootstrap(document, ['miniki']);
});

}, function() {
$log.error('Cannot boot miniki application');

});
});

}());

Update edit template

We can now edit the template to integrate the backendwith the frontend.
Listing 3.31: miniki/miniki/templates/edit.html (angular markdown preview)

{% extends 'layout.html' %}

{% load jsonify %}

{% block content %}
<form action="" class="wiki-form" method="POST"

ng-controller="wikiPageForm" ng-init='wikiPage = {{form.instance.as_json|jsonify}}'>
<div class="wiki-form-fields"

ng-show="!isPreviewOpen">
{% csrf_token %}
{{ form.non_field_errors }}
{{ form.ctx }}
<div class="form-group">

{{ form.title.label_tag }}
{{ form.title }}
<p class="help-text">{{ form.title.errors }}</p>

</div>
<div class="form-group form-group-editor">

{{form.text.label_tag}}
{{form.text}}

3.2. Getting Started 45

HBPCollaboratory Documentation, Release 1.9.3

<p class="help-text">{{ form.text.errors }}</p>
</div>

</div>

<div class="wiki-form-preview"
ng-show="isPreviewOpen">
<header class="page-header">

<h1 ng-bind="wikiPage.title"></h1>
</header>

<section role="content" ng-bind-html="wikiPage.text|hbpMarkdown"></section>
</div>

<div class="navbar navbar-form">
<button type="submit" class="btn btn-primary">Save</button>
<button type="button" class="btn btn-default"

ng-click="togglePreview()"
ng-bind="isPreviewOpen ? 'Editor' : 'Preview'"></button>

</div>
</form>
{% endblock %}

Load the jsonify library in Django by adding it to the list of applications:
Listing 3.32: miniki/miniki/settings.py (add config.json URL)

INSTALLED_APPS = (
'sslserver',
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'miniki',
'djangobower',
'social.apps.django_app.default',
'jsonify',

)

Results

If you access a wiki page and switch to edit mode, you can know enable a preview using the Pre-
view button and switch back to the editor. Moreover, you can use all the existing services which
requires client side authentication as the backend token is registered in the frontend as well.

Next

You probably owe yourself a little break here. Feel free to send any comments about this tutorial
at the following address: bbp-ou-platformdev@groupes.epfl.ch

46 Chapter 3. AppDeveloperManual

mailto:bbp-ou-platformdev@groupes.epfl.ch

HBPCollaboratory Documentation, Release 1.9.3

Overview
As an example, we will create a minimal DjangoWiki application that integrates in the HBP Col-
laboratory.
This tutorial shows how to create a very minimal Wiki and how to integrate into HBP Collabo-
ratory using Django on the backend, AngularJS on the frontend. The first part is a condensed
version of thework to create anyDjango applicationwhile the remaining dive intoCollaboratory
specific features like binding resources to a context, authentication and authorization.
We’ll assume you have Django 1.8+ installed already. You can tell Django is installed and which
version by running the following command:
$ python -c "import django; print(django.get_version())"

Note: This tutorial assume you have basic knowledge of Django. The following guide will repro-
duce all the basic steps needed to setup a new Django project without further explanation. You
should have completed the Django Tutorial to understand this tutorial.

The Getting Started guide is divided in two parts:
A simple example demonstrates the “hello world” application and can be completed in about 30
minutes.
Create your first application is a bit longer and showcase the making of a Django application that
will use more integration point and is a good starting point for a real world application. One
should expect one day of work to complete it.

Security

Todo
Explains how to secure backend and frontend

Scopes
HBP StreamAPI Documentation
Contents:

Notification API
AnyHBPApplication can use the Notification REST API to send notifications targeted to users.
The goal of theNotification API is to inform a specific user of activities that they should be aware
of as quickly as possible, either because they need to take an action or because this is potentially
important for their work.

3.3. Security 47

https://docs.djangoproject.com/en/1.8/intro/tutorial01/

HBPCollaboratory Documentation, Release 1.9.3

publishScopes(‘mybackend’, [‘access’, ‘access:restricted’, ‘access:read’])

publishScopes(‘provenance’, [‘access’, ‘access:browse’, ‘access:publish’])

publishScopes(‘datareg’, [‘access’, ‘access:restricted’])

My
Backend

Data Registration Provenance

OpenID Connect

My
Application

Provenance
Viewer

Application

My
Backend

Data Registration Provenance

OpenID Connect

register(token, data)

getProvInfo(tokenB, provID)
save(token, data)

trackProvenance(token, dataID, user)

getToken(scopes=[‘openid’, ‘mybackend.access:restricted’,
‘datareg.access’, ‘provenance.access:publish’]) getToken(scopes=[‘openid’, ‘provenance.access:browse’])

48 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Each application has the responsability to carefully choosewhich activities are important to send
to a specific user. For more generic activities, the Activity APIwill provide a more verbose inter-
face for general information aggregation and distribution to user feeds.

Is it an Activity or a Notification?
A notification system commonly shows activity related to your account. Whereas
an activity stream shows activity by the people you follow [CIT001].

This good definition might translate in Collaboratory as: a notification system commonly
shows activity related to the user. Whereas an activity stream show activity by the people
in the collabs you are part of. As a generale rule of thumb, notify when people needs to take an
action or that an asynchronous event occurs because of a user action.

OpenID Connect Scopes
To use the Notification API, an application needs to generate a token with specific scopes
(hbp.notification.self or hbp.notification.all). More information about how to generate
such a client is available inManage OpenID Connect Clients.
• hbp.notification.self: This scope allow the application to notify the current user only.
It is less permissive and ensure that the application cannot spread unwanted messages to
anybody on the behalf of the current user. Any application can request this scope by ac-
cessingManage OpenID Connect Clients.

• hbp.notification.all: This scope allows the application to notify any HBP users. One
must be very careful when sending notifications to avoid flooding users with unwanted
messages. Consider using activities instead of notifications where appropriate. To obtain
this scope for your client, please follow the procedure describe in Ask for restricted scopes

Create a newNotification
You can easily create a new notification using the following REST call:
POST https://stream.humanbrainproject.eu/api/v0/notifications/

Authorization:Bearer HERE_COME_THE_USER_TOKEN
Accept: application/json
Content-Type: application/json

{
"summary": "Ping"
"targets": [{
"type": "HBPUser",
"id": "233444"

}],
"object": {
"type": "HBPCollaboratoryContext",
"id": "24497C98-C399-4FDE-B5FA-28B15E79598D"

}
}

3.4. HBP StreamAPI Documentation 49

HBPCollaboratory Documentation, Release 1.9.3

This will send a notification with the text “Ping” to the user with id “233444”. A link will be pro-
vided to the user to navigate to the notification object ; in this case a Collaboratory page identi-
fied by its context. You can use HBPGroup as a “type” for target and group name as “id” to send
notification to everybody from group. hbp.notification.all scope is required in this case.

Activity Stream Service
Any HBP Application can use the Activity Stream REST API to report activities and retrieve ac-
tivity streams.

What is an Activity
Activity describes some kind of action. It has the following attributes:
• Actor - primary actor for the activity
• Verb - identifies the action that the activity describes
• Object - describes the primary object of the activity
• Time - when activity happened
• Summary - message describing the activity
• Target - describes the indirect object, or target, of the activity. Will often be the object of
the English preposition “to”. Optional

ObjectReference
Anobject referencedescribesobjects living somewherewithin theHBP.ObjectReference is used
as the type for Actor, Object or Target for the Activity. An application that workswith object ref-
erence should know how to retrieve most of them, and support not knowing some of them. If an
application doesn’t knowhow to resolve anobject reference to the real instance, it should handle
the exception properly and avoid to block the application for this. ObjectReference Attributes:
• type - String, some examples are HBPUser, HBPContext, HBPApp
• id - String
• state - String that an application use to display an object reference in themost appropriate
form. The object type should advertise what is the format of the state parameter.

What is an Activity Stream
Activity Stream is a set of activities related to some context. For example, CollabActivity Stream
will contain all activities related to a particular Collab. Activity Stream is defined by type and id
where
• type - free form string like HBPUser or HBPCollab. HBP prefix is used for generic Collabo-
ratory types like HBPUser, HBPCollab or HBPCollabContext

• id - id of the corresponding entity, for example, user id or collab id

50 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Activity Propagation
When some Activity is reported in the system, it automatically propagates to the corresponding
Activity Streams. For example, Activity like
UserA added UserB to collab Collab

will appear in Activity Streams for UserA, UserB and Collab.
AlsoActivity is automatically propagated to every collabmember in case object or target has type
HBPCollab. ForHBPCollabContext type of object or target activity automatically propagated to
corresponding collab stream.
Streams propagate Activities employing an asynchronous job. It means there can be delay be-
tween posting Activity and the time it appears in the corresponding streams.

Summary preprocessing
There is special support for placeholders in Activity Summary. The main reason for it is that
sometimes there is not enough information on the service side to form user-friendly summary
text. For example, on a service side, there is only user id for the actor. It does not make sense
to send a request to Identity APIs to get the corresponding user id. Instead, it can be done asyn-
chronously in Activity Service. Next placeholders are supported - {{actor}}, {{object}} and {{tar-
get}}. Before saving activity to the database these placeholderswill be automatically substituted
by proper text which is:
• @username forHBPUser type
• collab title forHBPCollab type
• context name forHBPCollabContext type
• type<id> for all other types

During placeholders substitutions, the corresponding indices saved to provide a way to do cus-
tom rendering on frontend side. For the details check /apidoc/stream-api

Access Control
For some known types, like User or Collab, an appropriate access control is implemented during
stream access. When the stream type is not understandable by the system, no access control
guarantees are provided.

Aggregation
TODO

API
Detailed API description can be found /apidoc/stream-api

3.4. HBP StreamAPI Documentation 51

HBPCollaboratory Documentation, Release 1.9.3

API Documentation
API Endpoints
APIModels
Activity StreamAPI Endpoints
Register Activity

Example request
POST https://services.humanbrainproject.eu/stream/v0/api/activity/

Authorization:Bearer HERE_COME_THE_USER_TOKEN
Accept: application/json
Content-Type: application/json

{
"summary": "{{actor}} uploaded DocumentB to CollabC",
"actor": {"type": "HBPUser", "id": "240343"},
"verb": "UPLOAD",
"object": {"type": "HBPDocument", "id": "uuid_here"},
"target": {"type": "HBPCollab", "id": "123"},
"time": "2016-05-23T15:39:15.048284Z"

}

Example response
HTTP/1.1 201 Created

Retrieve Activity Stream

Example request
GET https://services.humanbrainproject.eu/stream/v0/api/stream/HBPUser:240243/

Authorization:Bearer HERE_COME_THE_USER_TOKEN
Accept: application/json

:query page_size (optional): page size, default is 100
:query from (optional): get only activities after given date (format YYYY-MM-DD)
:query to (optional): get only activities before given date (format YYYY-MM-DD)

Example response
HTTP/1.1 200 OK
Content-Type: application/json

{
"count": 2,
"next": null,
"previous": null,
"results": [

52 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

{
"actor": {

"id": "240243",
"state": null,
"type": "HBPUser"

},
"object": {

"id": "226241",
"state": null,
"type": "HBPUser"

},
"references": {},
"summary": "240243 added new member `226241` to collab `yury testtt`",
"target": {

"id": "2003",
"state": null,
"type": "HBPCollab"

},
"time": "2016-05-23T15:39:15.048284Z",
"verb": "ADD"

},
{

"actor": {
"id": "240243",
"state": null,
"type": "HBPUser"

},
"object": {

"id": "123",
"state": null,
"type": "HBPUser"

},
"references": {

"actor": {
"indices": [

0,
7

]
},

},
"summary": "@brukau uploaded DocumentB to CollabC",
"target": {

"id": "1",
"state": null,
"type": "HBPCollab"

},
"time": "2016-05-19T13:32:20.875589Z",
"verb": "ADD"

}
]

}

Activity StreamHeatmap

Return heatmap for last 90 days by default

3.4. HBP StreamAPI Documentation 53

HBPCollaboratory Documentation, Release 1.9.3

Example request
GET https://services.humanbrainproject.eu/stream/v0/api/heatmap/HBPUser:240243/?days=5

Authorization:Bearer HERE_COME_THE_USER_TOKEN
Accept: application/json

:query days(optional): number of days for the heatmap, default is 90

Example response
HTTP/1.1 200 OK
Content-Type: application/json

{
"details": [

{
"date": "2016-07-15",
"value": 4

},
{

"date": "2016-07-16",
"value": 1

},
{

"date": "2016-07-17",
"value": 2

},
{

"date": "2016-07-18",
"value": 0

},
{

"date": "2016-07-19",
"value": 3

}
],
"total": 10

}

Getting Started
As a start, we will train the HBP Notification API. This API lets an HBP Application send their
own notifications to a specific user.
In order to use it, you will need a validOIDC client, your user token and your user id.

User Token
As a first, we generate a user tokenwhich has the ability to send notifications to the user.
POST https://stream.humanbrainproject.eu/token

54 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Django Template
There is a template thatwill help you bootstrap aCollaboratoryApplication based on theDjango
framework.

Usage
$ pip install cookiecutter
$ cookiecutter git+https://$USER@bbpcode.epfl.ch/code/platform/hbp/hbp-app-django-template

This will ask a few question about the awesome new project and generate:
• ADjango application compatible with Python 2.6
• A Puppet recipe to deploy the application on BBP infrastructure

Next Step
• at the root of the Django project, run make dev_install

• Ask for a gerrit repository
• Ask for a new PostgreSQL orMySQL database instance
• puppet recipe: fill in the blank, encrypt and publish in the puppet repository

OpenID Connect Client
TheHBPOpenIDConnect Service let you create clients. A client is a recognizedHBP entity that
a user can authorize to work with its credentials in order to complete some tasks. The amount
of power given to the application is defined by a contract, formalized by a list of scopes that an
application requires from the user. The user has the choice to accept or refuse the contract.
In the latter case, the application won’t be able to authenticate the user.

ManageOpenID Connect Clients
Create a newClient

Todo
Just write it

ManageOpenID Connect Clients

Todo

3.5. Django Template 55

https://www.djangoproject.com/

HBPCollaboratory Documentation, Release 1.9.3

Just write it

Ask for restricted scopes
Some scopes give you great power on the behalf of the users, so they cannot be added automat-
ically. You have to send a support request to the Collaboratory team in order to see wether this
scopemakes sense for your application. List of restricted scopes:
• hbp.notification.all
• hbp.accountrequests

Deep Linking
Introduction
An application can share its state with the Collaboratory using the postMessage API. The Col-
laboratorywill update its currentURL to contain the application state so thatwhen a user copies
and pastes its browser URL, the application can receive the state in its URL and go to the specific
view a user wanted to share.
An application that uses the Deep Linking API is more usable because it:
• lets the user share internal state naturally; and
• lets the notification API focus on the internal part of the application.

RawAccess
This is the raw level access, without using any Javascript helper.

Reading the current state
When the application is loading, it should check if a state has been set and refresh the page ac-
cordingly.
The state is available in the URL, like the context UUID:
https://my-application.com/runURL?ctx=UUID&**ctxstate=myapplicationstatestring

The ctxstate query parameter contains the current state.
You can also ask for the full context using the postMessage API.
window.parent.postMessage({
eventName: 'workspace.context',
ticket: 111

}, 'https://collab.humanbrainproject.eu/');

window.addEventListener('message', function(event) {
console.log(event);
// Print the message if it is the answer to the context query.

56 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

var msg = event.data;
if (!msg || msg.origin !== 111) {
// another answer
return;

}

if (msg.eventName === 'error') {
// unexpected error
console.error('Cannot retrieve context', msg);
return;

}

// Manage event response

console.log('Current Context is:', msg.data.ctx);
console.log('Current Mode is:', msg.data.mode);
console.log('Current State is:', msg.data.state);

}, false)

Send the current state
Every time the application state changes, a signal should be sent to the HBP Collaboratory in
order for the URL to be updated and, as a result, to enable the deep linking feature.
You can post the followingmessage to the parent window in order to achieve that.
window.parent.postMessage({
eventName: 'workspace.context',
ticket: 112,
data: {
state: 'MyStateAsAPlainString like' + JSON.stringify([1, 2])

}
}, 'https://collab.humanbrainproject.eu/');

Please note that the mode and context attributes are ignored. Once you run this
code, the browser URL will be replaced by a new one, including a state
parameter with your string.

Security
Your application MUST support corrupted messages and even malicious ones. The state is basi-
cally a user defined string passed to your application. It might be invalid for example because of
the partial copy/paste of a link. In this case, the intended behaviour is to render the default view
(when the state is empty) rather than to display an error message.
Moreover this state is read and stored by a cache router so it should not contain any sensitive
information or information that can render differently over time.
We discourage use of the app’s URL without careful verification, otherwise a malicious user
might create a link which can point to another site location, outside of your control. Storing a
paremater value or a query string is preferred to the full URL for this reason.
Finally, never ever evaluate an expression in the state as Javascript code (JSON is OK).

3.7. Deep Linking 57

HBPCollaboratory Documentation, Release 1.9.3

Javascript Client
A Javascript client which wraps the code described in the previous section is available, but the
API is unstable at this point. Follow the discussion on Github:
https://github.com/HumanBrainProject/hbp-collaboratory-app-toolkit

angular-hbp-collaboratory
AnAngularJS tool to develop web application based on the HBPCollaboratory

Contents
Module: clb-app

Local Navigation
• Children
• Description

Children

Namespace: clbApp

MemberOfModule: clb-app

Local Navigation
• Children
• Description

– Usage
• Function: emit
• Function: context
• Function: open
• Typedef: HbpCollaboratoryContext

– Properties
• Examples

Children

58 Chapter 3. AppDeveloperManual

https://github.com/HumanBrainProject/hbp-collaboratory-app-toolkit

HBPCollaboratory Documentation, Release 1.9.3

Description

An AngularJS service to interface a web application with the HBP Collaboratory. This library
provides a few helper to work within the Collaboratory environment.

Usage

• Function: context is used to set and retrieve the current context.
• Function: emit is used to send a command to theHBPCollaboratory andwait for its answer.

Function: emit

Send amessage to the HBPCollaboratory.
emit(name, data)

Arguments
• name (string) – name of the event to be propagated
• data (object) – corresponding data to be sent alongside the event

Return Promise resolve with themessage response

Function: context

Asynchronously retrieve the current HBP Collaboratory Context, including the mode, the ctx
UUID and the application state if any.
context(data)

Arguments
• data (object) – new values to send to HBPCollaboratory frontend

Return Promise resolve to the context

Function: open

Open a resource described by the givenObjectReference.
The promise will fulfill only if the navigation is possible. Otherwise, an error will be returned.
open(ref)

Arguments
• ref (ObjectReference) – The object reference to navigate to

Return Promise The promise retrieved by the call to emit

3.8. angular-hbp-collaboratory 59

HBPCollaboratory Documentation, Release 1.9.3

Typedef: HbpCollaboratoryContext

Properties

• string mode: the current mode, either ‘run’ or ‘edit’
• string ctx: the UUID of the current context
• string state: an application defined state string

Examples

Listing 3.33: Retrieve the current context object
clbApp.context()
.then(function(context) {

console.log(context.ctx, context.state, context.collab);
})
.catch(function(err) {

// Cannot set the state
});

Listing 3.34: Set the current state in order for a user to be able to copy-paste its current URL and
reopen the same collab with your app loaded at the same place.
clbApp.context({state: 'lorem ipsum'})
.then(function(context) {

console.log(context.ctx, context.state, context.collab);
})
.catch(function(err) {

// Cannot set the state
});

Description

clb-appmodule provides utilities to retrieve current HBP Collaboratory Context in an app and
to communicate with the current Collaboratory instance.
This module must be bootstraped using angular.clbBootstrap function as it needs to load the
global environment loaded in CLB_ENBIRONMENT angular constant.

Module: clb-automator

Local Navigation
• Children
• Description

60 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Children

Namespace: Tasks

MemberOfModule: clb-automator

Local Navigation
• Children
• Description
• Function: createCollab
• Function: createNavItem
• Function: overview
• Function: storage

Children

Description

Document a list of available tasks.

Function: createCollab

Create a collab defined by the given options.
createCollab(descriptor, descriptor.name, descriptor.description[, descriptor.privacy][, after])

Arguments
• descriptor (object) – Parameters to create the collab
• descriptor.name (string) – Name of the collab
• descriptor.description (string) – Description in less than 140 char-
acters of the collab

• descriptor.privacy (string) – ‘private’ or ‘public’. Notes that only HBP
Members can create private collab

• after (Array) – descriptor of subtasks
Return Promise

• promise of a collab

Function: createNavItem

Create a new nav item.

3.8. angular-hbp-collaboratory 61

HBPCollaboratory Documentation, Release 1.9.3

createNavItem(descriptor, descriptor.name, descriptor.collabId, descriptor.app[, context][, con-
text.collab])

Arguments
• descriptor (object) – a descriptor description
• descriptor.name (string) – name of the nav item
• descriptor.collabId (Collab) – collab in which to add the item in.
• descriptor.app (string) – app name linked to the nav item
• context (object) – the current run context
• context.collab (object) – a collab instance created previously

Return Promise promise of a NavItem instance

Function: overview

Set the content of the overview page. If an ‘entity’ is specified, it will use the content of that
storage file If an ‘app’ name is specified, it will use that app for the overview page
The collab is indicated either by an id in descriptor.collab or a collab object in context.collab.
overview(descriptor[, descriptor.collab][, descriptor.entity][, descriptor.app], context[, con-

text.collab][, context.entities])
Arguments

• descriptor (object) – the task configuration
• descriptor.collab (object) – id of the collab
• descriptor.entity (string) – either a label that can be found in

context.entities or a FileEntity UUID
• descriptor.app (string) – the name of an application
• context (object) – the current task context
• context.collab (object) – the collab in which entities will be copied
• context.entities (object) – a list of entities to lookup in for descrip-
tor.entiry value

Return object created entities where keys are the same as provided in con-
fig.storage

Function: storage

Copy files and folders to the destination collab storage.
storage(descriptor, descriptor.storage[, descriptor.collab], context[, context.collab])

Arguments
• descriptor (object) – the task configuration

62 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

• descriptor.storage (object) – a object where keys are the file path in
the new collab and value are the UUID of the entity to copy at this path.

• descriptor.collab (object) – id of the collab
• context (object) – the current task context
• context.collab (object) – the collab in which entities will be copied

Return object created entities where keys are the same as provided in con-
fig.storage

Namespace: clbAutomator

MemberOfModule: clb-automator

Local Navigation
• Children
• Description

– How to add new tasks
– Evaluate the automator

• Function: task
• Function: run
• Function: createSubtasks
• Function: missingDataError
• Function: ensureParameters
• Function: extractAttributes
• Examples

Children

Class: Task

MemberOfNamespace: clbAutomator

Local Navigation
• Children
• Description
• Function: run
• Function: runSubtasks

3.8. angular-hbp-collaboratory 63

HBPCollaboratory Documentation, Release 1.9.3

Children

Description

Instantiate a task given the given config. The task can thenbe runusing the run() instancemethod.

Function: run

Launch the task.
run(context)

Arguments
• context (object) – current context will bemerged into the default one.

Return Promise promise to return the result of the task

Function: runSubtasks

Run all subtasks of the this tasks.
runSubtasks(context)

Arguments
• context (object) – the current context

Return Array all the results in an array

Description

clbAutomator is an AngularJS factory that provide task automation to accomplish a sequence of
common operation in Collaboratory.

How to add new tasks

New tasks can be added by calling clbAutomator.registerHandler.
You can see a few example of tasks in the tasks folder.

Evaluate the automator

From the root of this project, you can start a server that will let youwrite a descriptor and run it.
gulp example

64 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Function: task

Instantiate a new Task intance that will run the code describe for a handlers with the give name.
The descriptor is passed to the task and parametrize it. The task context is computed at the time
the task is ran. A default context can be given at load time and itwill be fedwith the result of each
parent (but not sibling) tasks as well.
task(name[, descriptor][, descriptor.after][, context])

Arguments
• name (string) – the name of the task to instantiate
• descriptor (object) – a configuration object that will determine which
task to run and in which order

• descriptor.after (object) – an array of task to run after this one
• context (object) – a default context to run the task with

Return Task
• the new task instance

Function: run

Directly generate tasks from given description and run them.
run(descriptor[, context])

Arguments
• descriptor (object) – description of the tasks to run
• context (object) – the initial context

Return Promise promise of the top level task result

Function: createSubtasks

Create an array of tasks given an array containing object where the key is the task name to run
and the value is the descriptor parameter.
createSubtasks(after)

Arguments
• after (object) – the content of descriptor.after

Return Array/Task array of subtasks

Function: missingDataError

Return a HbpError when a parameter is missing.
missingDataError(key, config)

3.8. angular-hbp-collaboratory 65

HBPCollaboratory Documentation, Release 1.9.3

Arguments
• key (string) – name of the key
• config (object) – the invalid configuration object

Return HbpError a HbpError instance

Function: ensureParameters

Ensure that all parameters listed after config are presents.
ensureParameters(config)

Arguments
• config (object) – task descriptor

Return object created entities

Function: extractAttributes

Return an object that only contains attributes from the attrs list.
extractAttributes(config, attrs)

Arguments
• config (object) – key-value store
• attrs (Array) – a list of keys to extract from config

Return object key-value store containing only keys from attrs found in config

Examples

Listing 3.35: Create a Collab with a few navigation items
// Create a Collab with a few navigation items.
angular.module('MyModule', ['clb-automator'])
.run(function(clbAutomator, $log) {

var config = {
title: 'My Custom Collab',
content: 'My Collab Content',
private: false

};
clbAutomator.task(config).run().then(function(collab) {

$log.info('Created Collab', collab);
});

})

Listing 3.36: Create a Collab with entities and navigation items
clbAutomator.run({
"collab": {
"title": "Test Collab Creation",

66 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

"content": "My Collab Description",
"private": true,
"after": [
{
"storage": {
"entities": {

// Use one of your file UUID here.
"sample.ipynb": "155c1bcc-ee9c-43e2-8190-50c66befa1fa"

},
"after": [{
"nav": {
"name": "Example Code",
"app": "Jupyter Notebook",
"entity": "sample.ipynb"

}
}]

}
},
{
"nav": {
"name": "Empty Notebook",
"app": "Jupyter Notebook"

}
},
{
"nav": {
"name": "Introduction",
"app": "Rich Text Editor"

}
}

]
}

}).then(function(collab) {
$log.info('Created Collab', collab);

});

3.8. angular-hbp-collaboratory 67

HBPCollaboratory Documentation, Release 1.9.3

Listing 3.37: Create a Collab with a pre-filled overview
clbAutomator.run({
"collab": {
"title": "Test Collab With Pre Filled Overview",
"content": "Test collab creation with a pre filled overview",
"private": true,
"after": [{
"overview": {
// Use one of your HTML file UUID here.
"entity": "155c1bcc-ee9c-43e2-8190-50c66befa1fa"

}
}]

}
}).then(function(collab) {

$log.info('Created Collab', collab);
});

Description

clb-automatormodule provides an automation library for the Collaboratory using the AngularJS
service clbAutomator. It supports object describing a serie of actions that have to be run either
concurrently or sequentially.
It is used for example to script the creation of new custom collab in the Create New Collab func-
tionality in collaboratory-extension-core.

Module: clb-collab

Local Navigation
• Children
• Description
• Function: ClbCollabModel
• Function: ClbContextModel

Children

Class: App

Local Navigation
• Children
• Description

68 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

• Function: toJson
• Function: App.fromJson

Children

Description

client representation of an application

Function: toJson

Transform an App instance into an object reprensentation compatible with the backend schema.
This object can then be easily converted to a JSON string.
toJson()

Return object server representation of an App instance

Function: App.fromJson

Create an app instance from a server representation.
App.fromJson(json)

Arguments
• json (object) – converted from the server JSON string

Return App the newApp instance

Namespace: clbCollabApp

Local Navigation
• Children
• Description
• Function: list
• Function: getById
• Function: findOne

Children

3.8. angular-hbp-collaboratory 69

HBPCollaboratory Documentation, Release 1.9.3

Description

clbCollabApp can be used to find andwork with the registered HBPCollaboratory applications.

Function: list

list()

Return Promise promise of the list of all applications

Function: getById

Retrieve an App instance from its id.
getById(id)

Arguments
• id (number) – the app id

Return Promise promise of an app instance

Function: findOne

findOne(params)
Arguments

• params (object) – query parameters
Return Promise promise of an App instance

Namespace: clbCollabNav

Local Navigation
• Children
• Description
• Function: getRoot
• Function: getNode
• Function: getNodeFromContext
• Function: addNode
• Function: deleteNode
• Function: update
• Function: insertNode

70 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Children

Class: NavItem

MemberOfNamespace: clbCollabNav

Local Navigation
• Children
• Description
• Function: toJson
• Function: update
• Function: ensureCached
• Function: NavItem.fromJson

Children

Description

Client representation of a navigation item.

Function: toJson

Return a server object representation that can be easily serialized to JSONand send to the back-
end.
toJson()

Return object server object representation

Function: update

update(attrs)
Arguments

• attrs (object) – NavItem instance attributes
Return NavItemt this instance

Function: ensureCached

ensureCached()

Return NavItem this instance

3.8. angular-hbp-collaboratory 71

HBPCollaboratory Documentation, Release 1.9.3

Function: NavItem.fromJson

Build an instance from the server object representation.
NavItem.fromJson(collabId, json)

Arguments
• collabId (number) – collab ID
• json (string) – server object representation

Return NavItem new instance of NavItem

Description

clbCollabNav provides tools to create andmanage navigation items.

Function: getRoot

Retrieve the root item of the given collab.
getRoot(collabId)

Arguments
• collabId (number) – collab ID

Return Promise promise the root nav item

Function: getNode

getNode(collabId, nodeId)
Arguments

• collabId (number) – collab ID
• nodeId (number) – node ID

Return NavItem thematching nav item

Function: getNodeFromContext

getNodeFromContext(ctx)
Arguments

• ctx (str) – The context UUID
Return Promise The promise of a NavItem

72 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Function: addNode

addNode(collabId, navItem)
Arguments

• collabId (number) – collab ID
• navItem (number) – the NavItem instance to add to the navigation

Return Promise promise of the addedNavItem instance

Function: deleteNode

deleteNode(collabId, navItem)
Arguments

• collabId (number) – collab ID
• navItem (NavItem) – the NavItem instance to remove from the naviga-
tion

Return Promise promise of an undefined item at the end

Function: update

update(collabId, navItem)
Arguments

• collabId (number) – collab ID
• navItem (NavItem) – the instance to update

Return Promise promise the updated instance

Function: insertNode

Insert node in the three.
A queue is used to ensure that the insert operation does not conflict on a single client.
insertNode(collabId, navItem, parentItem, insertAt)

Arguments
• collabId (int) – id of the collab
• navItem (NavItem) – Nav item instance
• parentItem (NavItem) – parent item
• insertAt (int) – add to themenu

Return Promise a promise that will return the update nav item

3.8. angular-hbp-collaboratory 73

HBPCollaboratory Documentation, Release 1.9.3

Namespace: clbCollabTeamRole

Local Navigation
• Children
• Description

Children

Description

Namespace: clbCollabTeam

Local Navigation
• Children
• Description

Children

Description

Angular client to access Collab TeamREST endpoint.

Namespace: clbCollab

MemberOfModule: clb-collab

Local Navigation
• Children
• Description

Children

Description

Provide a javascript client to query the Collab REST service.

74 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Namespace: clbContext

MemberOfModule: clb-collab

Local Navigation
• Children
• Description
• Function: get

Children

Description

Function: get

get(uuid)
Arguments

• uuid (string) – UUID of the context
Return Promise Resolve to the ClbContextModel instance

Description

Contain services to interact with collabs (e.g.: retriving collab informations or teammembers).

Function: ClbCollabModel

Representation of a Collab.
ClbCollabModel([attributes])

Arguments
• attributes (object) – initial values

Function: ClbContextModel

Representation of a Collab Context.
ClbContextModel()

3.8. angular-hbp-collaboratory 75

HBPCollaboratory Documentation, Release 1.9.3

Module: clb-context-data

Local Navigation
• Children
• Description

Children

Description

Provides a key value store where keys are context UUID and values are string.

Module: clb-env

Local Navigation
• Children
• Description
• Function: clbEnv

Children

Description

clb-envmodule provides a way to information from the global environment.

Function: clbEnv

Get environement information using dotted notation with the clbEnv provider or service.
Before being used, clbEnvmust be initializedwith the context values. You can do so by setting up
a global bbpConfig variable or using angular.clbBootstrap.
clbEnv($injector)

Arguments
• $injector (object) – AngularJS injection

Return object provider

76 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Module: lodash

Local Navigation
• Children
• Description

Children

Description

Fix some compatibility issues with previous angular-hbp-common.

Module: hbpCollaboratoryCore

Local Navigation
• Children
• Description

Children

Module: hbpCollaboratoryUI

MemberOfModule: hbpCollaboratoryCore

Local Navigation
• Children
• Description
• Typedef: UUID

Children

Namespace: hbpCollaboratory

MemberOfModule: hbpCollaboratoryUI

3.8. angular-hbp-collaboratory 77

HBPCollaboratory Documentation, Release 1.9.3

Local Navigation
• Children
• Description

Children

Description

hbpCollaboratorymodule is a shell around various AngularJSmodules that interface with the
HBPCollaboratory. It loads both the coremodules and theUImodules, aswell as the back-
ward compatibility modules.

Description

Module to load the UI part of angular-hbp-collaboratory. Try to use the sub-modules instead.

Typedef: UUID

A string formatted as a valid UUID4

Description

Module to load all the coremodules. Try to use the sub-modules instead.

Module: clb-rest

Local Navigation
• Children
• Description

Children

Namespace: clbResultSet

Local Navigation
• Children
• Description

78 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Children

Class: ResultSet

MemberOfNamespace: clbResultSet

Local Navigation
• Children
• Description

Children

Description

Build a result set with internal support for fetching next and previous results. Member: next:
Retrieve the next result page.

Description

Member: ResultSetEOL: error thrownwhenmodule:clb-rest.ResultSet is crawledwhen at an
extremity.

Member: get: Return a promise that will resolve once the result set first page is loaded.
The promise contains the instance of the result set as well.

Description

clb-restmodule contains util for simplifying access to Rest service.

Module: clb-storage

Local Navigation
• Children
• Description
• Typedef: EntityDescriptor

– Properties

3.8. angular-hbp-collaboratory 79

HBPCollaboratory Documentation, Release 1.9.3

Children

Namespace: clbStorage

MemberOfModule: clb-storage

Local Navigation
• Children
• Description
• Function: getEntity
• Function: getAbsolutePath
• Function: runOnce
• Function: getEntityByUUID
• Function: query
• Function: metadataKey
• Function: addMetadata
• Function: deleteMetadata
• Function: create
• Function: copy
• Function: getContent
• Function: getUserAccess
• Function: getChildren
• Function: upload
• Function: downloadUrl

Children

Description

The clbStorage service provides utility functions to ease the interaction of apps with storage.

Function: getEntity

Get an entity (e.g.: a project, a file or a folder) using a locator. The only accepted locator at this
time is the entity UUID.
• the entity UUID
• an entity representation with {_uuid: ENTITY_UUID}

80 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

• the entity related context {ctx: CONTEXT_UUID}

• the entity collab ID {collab: COLLAB_ID}

• the entity absolute path
getEntity(locator)

Arguments
• locator (any) – Describe the entity to retrieve (see description).

Return Promise Return a module-clb-storage.EntityDescriptor when fulfilled
or reject a module-clb-error.ClbError

Function: getAbsolutePath

Return the absolute path of the entity
getAbsolutePath(entity)

Arguments
• entity (object|UUID) – UUID or descriptor

Return Promise return a path string when fulfilled.

Function: runOnce

Ensure there is only one async fn run named k at once. subsequent call to runOncewith the same
k value will return the promise of the running async function.
runOnce(k, fn)

Arguments
• k (string) – The key
• fn (function) – The function that retrieve a Promise

Return Promise Resolve to the function result

Function: getEntityByUUID

getEntityByUUID(uuid)
Arguments

• uuid (string) – Entity UUID
Return Promise Resolve to the entity Descriptor

Function: query

Query entities by attributes or metadata.
query(params)

3.8. angular-hbp-collaboratory 81

HBPCollaboratory Documentation, Release 1.9.3

Arguments
• params (object) – Query Parameters

Return Promise Return the results

Function: metadataKey

Retrieve the key to lookup for on entities given the ctx
metadataKey(ctx)

Arguments
• ctx (string) – application context UUID

Return string name of the entity attribute that should be used

Function: addMetadata

Addmetadata to the provided entity and returns a promise that resolves to an object containing
all the newmetadata. The promise fails if one of themetadata already exists.
addMetadata(entity,metadata)

Arguments
• entity (object) – Entity Descriptor
• metadata (object) – key/value store where keys are the metadata name
to set

Return Promise Resolves after the operation is completed

Function: deleteMetadata

Delete metadata keys in input from the provided entity and returns a promise that resolves to
an object containing all the remainingmetadata. The promise fails if one of themetadata doesn’t
exist.
deleteMetadata(entity,metadataKeys)

Arguments
• entity (object) – Entity Descriptor
• metadataKeys (array) – Array of metatdata keys to delete

Return Promise Resolve to themetadata

Function: create

Create a new entity.
create(type, parent, name, options)

Arguments
82 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

• type (string) – Entity Type (e.g.: file, folder, project)
• parent (string|object) – Parent UUID or entity descriptor
• name (string) – File name
• options (object) – Extend the entity descriptor with those data

Return Promise Resolve once done

Function: copy

Copy a file to a destination folder
copy(srcId, destFolderId)

Arguments
• srcId (string) – UUID of the entity to copy
• destFolderId (string) – UUID of the target directory

Return Promise Resolves when done

Function: getContent

Retrieves the content of a file given its id.
getContent(id[, customConfig])

Arguments
• id (string) – FileEntity UUID
• customConfig (object) – contains extra configuration

Return Promise The raw content

Function: getUserAccess

Get current user access right to the provided entity.
The returned promise will be resolved with an object literal containing three boolean flags cor-
responding the user access:
• canRead
• canWrite
• canManage

getUserAccess(entity)
:param module:clb-storage.EntityDescriptor entity: The entity to retrieve user access for
:return object: Contains {boolean} canRead, {boolean} canWrite, {boolean} canManage

3.8. angular-hbp-collaboratory 83

HBPCollaboratory Documentation, Release 1.9.3

Function: getChildren

Retrieve children entities of a ‘parent’ entity according to the options and add them to the chil-
dren list. The returned promise will be resolved with the list of fetched children and a flag indi-
cating if more results are available in the queried direction.
getChildren(parent[, options][, options.accept][, options.acceptLink][, options.sort][, op-

tions.filter][, options.until][, options.from][, options.pageSize]):param module:clb-storage.EntityDescriptor parent: The parent entity :param object op-
tions: Options to make the query :param array/string options.accept: Array of accepted
_entityType :param boolean|array/string options.acceptLink: true or an array of accepted
linked _entityType :param string options.sort: Property to sort on :param string op-
tions.filter: The result based on Acls. Values: read (default), write :param UUID op-
tions.until: Fetch results until the given id (exclusivewith from) :paramUUIDoptions.from:
Fetch results from the given id (exclusivewith until) :param int options.pageSize: The num-
ber of results per page. Default is provided by the service. Set to 0 to fetch all the records.
:return Promise: When fulfilled, return a paginated result set. You can also access it imme-
diately using promise.instance

Function: upload

Create file entity and upload the content of the given file.
options should contain a parent key containing the parent entity.
Possible error causes:
• FileTooBig
• UploadError - generic error for content upload requests
• EntityCreationError - generic error for entity creation requests
• FileAlreadyExistError

upload(file, options)
Arguments

• file (File) – The file descriptor to upload
• options (Object) – The list of options

Return Promise a Promise that notify about progress and resolve with the new
entity object.

Function: downloadUrl

Asynchronously ask for a short-lived (a few seconds), presigned URL that can be used to access
and download a file without authentication headers.
downloadUrl(entity)

:parammodule:clb-storage.EntityDescriptor entity: The file to download :return Promise:
Return a string containing the URL once the Promise

is fulfilled.

84 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Member: setContextMetadata: the function links the contextId with the doc browser entity in
input by setting a specificmetadata on the entity.
Entity object in input must contain the following properties: - _entityType - _uuid
In case of error, the promise is rejected with a HbpError instance. Member:
deleteContextMetadata: the function unlink the contextId from the entity in input by deleting
the context metadata.
Entity object in input must contain the following properties: - _entityType - _uuid
In case of error, the promise is rejected with a HbpError instance. Member:
updateContextMetadata: the function delete the contextId from the oldEntity metadata
and add it as newEntitymetadata.
Entity objects in input must contain the following properties: - _entityType - _uuid
In case of error, the promise is rejected with aHbpError instance.

Description

The clb-storagemodule contains tools needed to access andworkwith theHBPDocument Ser-
vice. It is targeted to integrate easily with the HBP Collaboratory, even if the service is more
generic.

Typedef: EntityDescriptor

Describe an arbitrary entity in the storage stytem. The principal types are
• file: the entity is a file whose content can be retrieved
• folder: the entity is a folder and can be the parent of other entities
• project: First level folder. It behave like a folder but also defines the ACL for all the children

Properties

• UUID _uuid: The entity UUID
• string _entityType: The entity type (e.g.: file, folder, project)

Module: clb-stream

Local Navigation
• Children
• Description
• Function: registerUrlHandler

3.8. angular-hbp-collaboratory 85

HBPCollaboratory Documentation, Release 1.9.3

Children

Namespace: clbStream

MemberOfModule: clb-stream

Local Navigation
• Children
• Description
• Function: buildURLOptions
• Function: getStream

Children

Description

clbStream service is used to retrieve feed of activities given a user, a collab or a specific context.

Function: buildURLOptions

Builds the URL options such as the from and to date as well as the page_size
buildURLOptions(url, options)

Arguments
• url (string) – original url
• options (object) – pageSize:15, date:‘2016-07-20’

Return string Built URL

Function: getStream

Get a feed of activities regarding an item type and id.
getStream(type, id, options)

Arguments
• type (string) – The type of object to get the feed for
• id (string|int) – The id of the object to get the feed for
• options (object) – Parameters to pass to the query

Return Promise resolve to the feed of activities
Member: activityListFactoryFunc: Return activities

86 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Description

The clb-stream module contains a service and a few directives to retrieve and display the HBP
Collaboratory stream provided by the various applications.

Function: registerUrlHandler

Add a function that can generate URL for some types of object reference.
The function should return a string representing the URL. Any other response means that the
handler is not able to generate a proper URL for this type of object.
The function signature is function(objectReference) { return 'url' // or nothing}

registerUrlHandler(handler)
Arguments

• handler (function) – a function that can generate URL string for some
objects

Return provider The provider, for chaining.
Member: clbResourceLocator: resourceLocator service

Module: clb-ui-dialog

Local Navigation
• Children
• Description

Children

Namespace: clbDialog

Local Navigation
• Children
• Description

Children

Description

Service to trigger modal dialog.

3.8. angular-hbp-collaboratory 87

HBPCollaboratory Documentation, Release 1.9.3

Description

Module: clb-ui-error

Local Navigation
• Children
• Description

Children

Namespace: clbErrorMessage

Local Navigation
• Children
• Description
• Examples

Children

Description

The clb-error-message directive displays an error.
clb-error is a HbpError instance, built by the HbpErrorService

Examples

Listing 3.38: Retrieve the current context object
<div ng-controller='SomeController'>
Validation error:
<clb-error-message clb-error='error'></clb-error-message>
Permission denied error:
<clb-error-message clb-error='errorPermissions'></clb-error-message>

</div>

Description

Member: clbError: The factory clbUiError instantiates modal error dialogs. Notify the user
about the given error.

88 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Module: clb-ui-form

Local Navigation
• Children
• Description

Children

Namespace: clbFormControlFocus

Local Navigation
• Children
• Description
• Examples

Children

Description

The clbFormControlFocusDirective mark a form element as the one that should receive the fo-
cus first.

Examples

Listing 3.39: Give the focus to the search field
angular.module('exampleApp', ['clb-ui-form']);

// HTML snippet:
// <form ng-app="exampleApp"><input type="search" clb-ui-form-control-focus></form>

Namespace: clbFormGroupState

Local Navigation
• Children
• Description
• Examples

3.8. angular-hbp-collaboratory 89

HBPCollaboratory Documentation, Release 1.9.3

Children

Description

clbFormGroupState directive flag the current form groupwith the class has-error or has-success
depending on its form field current state.

Examples

Listing 3.40: Track a field validity at the .form-group level
angular.module('exampleApp', ['hbpCollaboratory']);

Description

clb-ui-form provides directive to ease creation of forms.

Module: clb-ui-identity

Local Navigation
• Children
• Description
• Function: clbUsercard

– Attributes

Children

Namespace: clbUserAvatar

MemberOfModule: clb-ui-identity

Local Navigation
• Children
• Description

– Attributes
• Examples

90 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Children

Description

Display an square icon for a user.

Attributes

Name Description
clb-user The ClbUser instance to display

Examples

Listing 3.41: Display user avatar
<clb-user-avatar clb-user="vm.currentUser"></clb-user-avatar>

Namespace: clbUsercardPopoverDirective

MemberOfModule: clb-ui-identity

Local Navigation
• Children
• Description

Children

Description

Display the user summary in a popover element.
Only one of those can be open at any time.
NameDescription
{string|HBPUser} clb-usercard-popover The ClbUser instance to display or its ID

Namespace: clbUserCardPopoverService

MemberOfModule: clb-ui-identity

Local Navigation

3.8. angular-hbp-collaboratory 91

HBPCollaboratory Documentation, Release 1.9.3

• Children
• Description

Children

Description

A singleton tomanage clb-usercard-popover instances

Description

Provides UI widgets around user and groups.

Function: clbUsercard

Display general user informations.

Attributes

Name Description
clb-user The ClbUser instance to display
clb-template URL of a custom template to use

clbUsercard(lodash)
Arguments

• lodash (object) – Angular DI
Return object Directive Descriptor

Module: clb-ui-loading

Local Navigation
• Children
• Description
• Function: clbLoading

– Attributes

92 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Children

Namespace: clbPerformAction

Local Navigation
• Children
• Description
• Examples

Children

Description

clbPerformAction directive run an action when the given control is clicked. it can be added as an
attribute. While the action is running, the control is disabled.

Examples

Listing 3.42: use perform action to disable a button while code is running
<div ng-controller="myController">
<input class="btn btn-primary" type="submit" clb-perform-action="doSomething()">
</div>

Description

Provides a simple loading directive.

Function: clbLoading

The directive clbLoading displays a simple loading message. If a promise is given, the loading
indicator will disappear once it is resolved.

Attributes

Name Description
{Promise} [clb-promise] Hide the loadingmessage upon fulfilment.
{string} [clb-message] Displayed loading string (default=‘‘’loading...’‘‘)

clbLoading()

Return object Angular directive descriptor

3.8. angular-hbp-collaboratory 93

HBPCollaboratory Documentation, Release 1.9.3

Module: clb-ui-storage

Local Navigation
• Children
• Description

– Featured Component

Children

Namespace: clbFileBrowser

Local Navigation
• Children
• Description

– Attributes
– Events

• Examples

Children

Namespace: clbFileBrowserFolder

Local Navigation
• Children
• Description
• Examples

Children

Description

clbFileBrowserFolder directive is a child directive of clbFileBrowser that render a folder item
within the file browser view.
Available attributes:

94 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

• clb-ui-storage-folder: the folder entity
• [clb-ui-storage-folder-icon]: a class name to display an icon
• [clb-ui-storage-folder-label]: a label name (default to folder._name)

Examples

<!-- minimal -->
<div clb-ui-storage-folder="folderEntity"></div>
<!-- all wings out -->
<div clb-ui-storage-folder="folderEntity"

clb-ui-storage-folder-icon="fa fa-level-up"
clb-ui-storage-label="up"></div>

Namespace: clbFileBrowserPath

Local Navigation
• Children
• Description
• Examples

Children

Description

clbFileBrowserPath directive is a child of clbFileBrowser directive that renders the breadcrumb
according to the file browser setup.

Examples

<clb-file-browser-path></clb-file-browser-path>

Namespace: FileBrowserViewModel

MemberOfNamespace: clbFileBrowser

Local Navigation
• Children
• Description

3.8. angular-hbp-collaboratory 95

HBPCollaboratory Documentation, Release 1.9.3

• Function: handleFocus
• Function: handleNavigation
• Function: loadMoreFiles
• Function: loadMoreFolders

Children

Description

ViewModel of the clbFileBrowser directive. This instance is accessible by all direct children of
the file browser.
It is responsible to handle all the interactions between the user and the services. It does not
update the views directly but sends the relevant events when necessary.

Function: handleFocus

When the user focus on a browser item, emit a ‘clbFileBrowser:focusChanged’ event.
The event signature is (event, newEntity, previousEntity).
handleFocus(entity)

Arguments
• entity (Object) – selected entity

Function: handleNavigation

When the current context change, trigger a navigation update.
This will render the view for the new current entity. All navigations are chained to ensure that
the future view will end in a consistant state. As multiple requests are needed to render a view,
request result would sometimes finish after a new navigation event already occured.
handleNavigation(entity)

Arguments
• entity (Object) – the new current entity

Return promise resolve when the navigation is done.

Function: loadMoreFiles

Load the next page of file entities for the current entity.
loadMoreFiles()

Return Promise resolve when the files are loaded

96 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Function: loadMoreFolders

Load the next page of folder entities for the current entity.
loadMoreFolders()

Return Promise resolve when the folders are loaded

Description

clbFileBrowser Directive
This directive renders a file browser. It handles creation of folder, mutliple file uploads
and selection of entity. Focus selection change can be detected by listening to the event
clbFileBrowser:focusChanged.

Attributes

Parameter Description
{EntityDescriptor} [clb-root] A project or a folder that will be the root of the tree.
{EntityDescriptor} [clb-entity] The selected entity.

Events

clbFileBrowser:focusChanged Emitted when the user focus a new file or folder
clbFileBrowser:startCreateFolder Emitted when the user start to create a new folder

Examples

Listing 3.43: Simple directive usage
<clb-file-browser clb-root="someProjectEntity"

clb-entity="someSubFolderEntity">
</clb-file-browser>

Namespace: clbFileChooser

Local Navigation
• Children
• Description

3.8. angular-hbp-collaboratory 97

HBPCollaboratory Documentation, Release 1.9.3

Children

Description

The clbFileChooser directive let you browse the storage to pick a file.
Name Description
[clb-root] Cannot go beyond this ancestor in the browser
[ng-model] The ngModel to bind to the chosen value
[clb-validate] a string, array of string, regex or function (can be async)
The directive emit the following events:
Name Description
clbFileChooser:fileSelected The second parameter is the EntityDescriptor
clbFileChooser:cancel The second parameter is the initial EntityDescriptor

Namespace: clbFileUpload

Local Navigation
• Children
• Description
• Examples

Children

Description

clbFileUpload directive.
Provide an upload widget where user can stack files that should be uploaded at some point. The
directive doesn’t proceed to upload by itself but rather triggers the onDrop callback.
The directive accepts the following attributes:
• on-drop: a function to call when one ormore files are dropped or selected the callback will
receive an array of File instance.

• on-error: a function to call when an error occurs. It receives an HbpError instance in pa-
rameter.

Examples

<clb-file-upload on-drop="handleFileUpload(files)"
on-error="handleError(error)">

</clb-file-upload>

98 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Description

The clb-ui-storage module provides Angular directive to work with the HBP Collaboratory
storage.

Featured Component

• The directive clb-file-browser provides an easy to use browser which let the user upload
new files, create folder and act as file selector.

Module: clb-ui-stream

Local Navigation
• Children
• Description

Children

Description

Member: clbActivity: clb-activity directive is displays an activity retrieved by the HBP
Stream service in a commonway.
It try to look up for a detailled description of the event and fallback to the summary if he can-
not. Member: clbFeed: clb-feed directive displays a feed of activity retrieved by the HBP
Stream service. It handles scrolling and loading of activities. Each activity is rendered using the
clb-activity directive.

Namespace: angular

Local Navigation
• Children
• Description
• Function: clbBootstrap

Children

Description

3.8. angular-hbp-collaboratory 99

HBPCollaboratory Documentation, Release 1.9.3

Function: clbBootstrap

Bootstrap AngularJS application with the HBP environment loaded.
It is very important to load the HBP environement before starting the application.
This method let you do that synchronously or asynchronously. Whichever method
you choose, the values in your environment should look very similar to the one in
https://collab.humanbrainproject.eu/config.json, customizedwith your own values.
At least auth.clientId should be edited in the config.json file.
clbBootstrap(module, options, options.env)

Arguments
• module (string) – the name of the Angular applicationmodule to load.
• options (object) – pass those options to deferredBootstrap
• options.env (object) – HBP environment JSON (https://collab.
humanbrainproject.eu/config.json)

Return Promise return once the environment has been bootstrapped
Member: clbBootstrap:

README

angular-hbp-collaboratory is a collection of AngularJS module to develop applications for the
HBPCollaboratory.

Install Using Bower
bower install angular-hbp-collaboratory

• angular-hbp-collaboratory.js provides all the needed AngularJSmodule
• angular-hbp-collaboratory.css provides styles for the visual components

Alternatively you can rely on src/angular-hbp-collaboratory/main.scss if you plan to use Sass in your
project.

Contributing
Dependencies:
This project use NodeJS andNPM to test, lint and generating the final library.
Bower, Gulp and ESLint should be installed globally:
npm install -g bower gulp eslint

Install:

100 Chapter 3. AppDeveloperManual

https://collab.humanbrainproject.eu/config.json
https://collab.humanbrainproject.eu/config.json

HBPCollaboratory Documentation, Release 1.9.3

git clone git@github.com:HumanBrainProject/angular-hbp-collaboratory.git
cd angular-hbp-collaboratory
npm install
bower install

Install this pre-commit hook to ensure your code is green before a committing:
cp .git-pre-commit .git/hooks/pre-commit

Running tests on code change:
gulp watch

Migration from angular-hbp-common
Here is a quick (and incomplete) checklist of refactoring to operate to your project if youwant to
migrate from angular-hbp-common to this cleaner library:

Service Refactoring

First, rely on the services from angular-hbp-collaboratory. For this, you need to depends on the
hbpCollaboratoryCoremodule.
If you use bower to install, it will ask you to resolve a conflict about the angular-bootstrap ver-
sion. Stick to the angular-hbp-common declaration at this point. At this point, your code should
still work, that will let you progressively refactor to use the new library instead of the old one:
Add dependency 'hbpCollaboratory'
hbpErrorService -> clbError (from clb-error module)
hbpUtil.ferr -> clbError.rejectHttpError (from clb-error module)
hbpUtil.paginatedResultSet -> clbResultSet.get (from clb-rest module)
hbpIdentityUserDirectory -> clbUser (from clb-identity module)
hbpCollabStore -> clbCollab (from clb-collab module)
hbpCollabStore.context -> clbContext (from clb-collab module)
hbpCollaboratoryNavStore -> clbCollabNav (from clb-collab module)
hbpCollaboratoryAppStore -> clbCollabApp (from clb-collab module)
hbpEntityStore -> clbStorage (from clb-storage module)
hbpFileStore -> clbStorage (from clb-storage module)
hbpProjectStore -> clbStorage (from clb-storage module)
hbpConfigStore -> Manually refactor to clbCtxData (from clb-ctx-data)

The service now use JSON as data format and the method signature
changed from method(config) to method(ctx, data)

In fact, hbpCollaboratoryCore is a shell module that will require many sub-modules as an easy
way to migrate and import everything. It would be even better if your application require only
the needed sub-modules as indicated by the refactoring list above.
Once the refactoring of module is done, there is the refactoring of methods:
clbStorage.getEntityByContext(ctx) -> clbStorage.getEntity({ctx: ctx})
clbStorage.get(-> clbStorage.getEntity(
clbStorage.getChildren now return a ResultSet like other services

3.8. angular-hbp-collaboratory 101

HBPCollaboratory Documentation, Release 1.9.3

clbUser.isHbpMember is nomore because the accreditationmultiply. You should insteadmake a
call like:

clbUser.isHbpMember() -> clbUser.isGroupMember([’hbp-accred-sga1’]);
At this point, your javascript code should rely only on angular-hbp-collaboratory, with the ex-
ception of the UI. Your application should work as previously. If youwere not using any directive
from the beforementioned module, you are done and you can remove the old module import, as
well as their reference in bower.json
// If there is no UI components in use

// before
angular.module('myModule', [

'hbpCollaboratoryCore',
'hbpCommon',
'bbpDocumentClient'

]);

// after
angular.module('myModule', [// some of the following:
'clb-app',
'clb-automator',
'clb-collab',
'clb-env',
'clb-error',
'clb-identity',
'clb-rest',
'clb-storage',
'clb-stream'

]);

If your code is using some of the directive from angular-hbp-common or angular-hbp-document-
client, you need to refactor them as well before being able to cut the old dependencies.

UI Refactoring

UIBootstrap has beenupgraded to the nextmajor version and the components are nowprefixed.
This means you cannot use the UI part of angular-hbp-commonwith angular-hbp-collaboratory.
At this point, you should entirely remove angular-hbp-common from your dependencies and re-
quire the UI package from angular-hbp-collaboratory.
// before
angular.module('myModule', [

'hbpCollaboratoryCore',
'hbpCommon',
'bbpDocumentClient'

]);

// after
angular.module('myModule', [
'hbpCollaboratoryCore',
'hbpCollaboratoryUI',

]);

102 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

You now need to run bower update and resolve the conflict on angular-bootsrap by choosing
the version in angular-hbp-collaboratory.
If your code is using directives from this library, please refer to the angular-bootstrapMigration
Guide <https://github.com/angular-ui/bootstrap/wiki/Migration-guide-for-prefixes>. To find if
and where your code is using such directives, you can run the following command in your source
code folder:
grep -ro '<accordion\|<accordion-group\|<accordion-heading\|<accordionConfig\|<alert\|

→˓<btn-checkbox\|<btn-radio\|<buttonConfig\|<carousel\|<slide\|<collapse\|<dateParser\|
→˓<datepicker\|<datepicker-popup\|<daypicker\|<monthpicker\|<yearpicker\|
→˓<datepickerConfig\|<datepickerPopupConfig\|dropdown=\|dropdown-toggle=\|dropdown-
→˓menu=\|<keyboard-nav\|<dropdownService\|<$modal\|<$modalInstance\|<$modalStack\|<modal-
→˓transclude\|<pagination\|<pager\|<pagerConfig\|<paginationConfig\|popover=\|popover-
→˓template=\|popover-html=\|$position\|<progressbar\|<bar\|<progress\|<progressConfig\|
→˓<rating\|<ratingConfig\|<tabset\|<tab\|<tab-
→˓heading\|timepicker\|timepickerConfig\|tooltip=\|tooltip-template=\|tooltip-html=\|
→˓$tooltip\|typeahead\|typeahead-match\|typeaheadHighlightFilter\|typeaheadParser' .

You can also use the directives provided by this package. Please be sure to check the change in
the directive attributes prefix as well.:
hbp-file-browser -> clb-ui-storage (root -> clb-root, entity -> clb-entity)
hbp-error-message -> clb-error-message (hbp-promise -> clb-promise, hbp-message -> clb-

→˓message)
hbp-usercard -> clb-usercard (hbp-user -> clb-user, hbp-template -> clb-template)
hbp-loading -> clb-loading (hbp-promise -> clb-promise, hbp-message -> clb-message)
hbp-perform-action -> clb-perform-action

If you wrote a usercard custom template (using hbp-template attribute), you should update the
following css classes and probably update the template to conform to the new html structure:
hbp-usercard -> clb-usercard
hbp-usercard-pix -> clb-usercard-pix
hbp-user-avatar -> clb-user-avatar
hbp-usercard-header -> clb-usercard-header
hbp-usercard-institution -> clb-usercard-institution
hbp-usercard-contact -> clb-usercard-contact
hbp-usercard-contact-item -> clb-usercard-contact-item

hbpDialogFactory has been removed, with the exception of hbpDialogFactory.error and
hbpDialogFactory.confirm which are now respectively clbErrorDialog.open (module
clb-ui-error) and clbConfirm.open (module clb-ui-dialog). These two refactoring will
have you covered:
hbpDialogFactory -> clbErrorDialog and/or clbConfirm
hbpDialogFactory.error -> clbErrorDialog.open
hbpDialogFactory.confirm -> clbConfirm.open

If you were using other methods from hbpDialogFactory (e.g.: .alert()), you need to
rewrite them using angular-bootstrap $uibModal (read the documentation <https://angular-
ui.github.io/bootstrap/#/modal>)
Since usage of hbp-generated-icon has been deprecated for anything but userswithout avatars,
it has been replaced by a new directive called clb-user-avatar available in the module clb-ui-
identity. It displays either a generated icon or the user profile picture. This new component is

3.8. angular-hbp-collaboratory 103

HBPCollaboratory Documentation, Release 1.9.3

also easier to customize using pure css.
At the end of the process, your application should only load angular-hbp-collaboratory
angular.module('myModule', [
// some of the following:
'clb-app',
'clb-automator',
'clb-collab',
'clb-env',
'clb-error',
'clb-identity',
'clb-rest',
'clb-storage',
'clb-stream',
'clb-ui-error',
'clb-ui-storage',
'clb-ui-form',
'clb-ui-loading',
'clb-stream'

]);

LICENSE
MIT
Read the project LICENSE file.

HBP Storage
Contents:

Rest APIs
HBP Storage provides project APIs. It is available at the following endpoint: https://services.
humanbrainproject.eu/storage/v1/api/.

Entity endpoint
Get entity details

GET https://services.humanbrainproject.eu/storage/v1/api/entity/(uuid: en-
tity_id)/

Get generic entity by UUID.
Example request:
GET /storage/v1/api/entity/e7c582ce-cb64-43ba-a08a-f1e361df71fa/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN

104 Chapter 3. AppDeveloperManual

https://services.humanbrainproject.eu/storage/v1/api/
https://services.humanbrainproject.eu/storage/v1/api/

HBPCollaboratory Documentation, Release 1.9.3

Content-Type: application/json
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"created_by": "226241",
"created_on": "2017-02-02T14:24:22.785969Z",
"entity_type": "folder",
"modified_by": "226241",
"modified_on": "2017-02-02T14:24:22.786374Z",
"name": "folder_1",
"parent": "68d1971d-7293-422e-81aa-06b9de13a461",
"uuid": "e7c582ce-cb64-43ba-a08a-f1e361df71fa"

}

Parameters
• entity_id (uuid) – folder id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – folder successfully retrieved
• 400 Bad Request – invalid request. More details in the response. Possi-
ble causes are: name already in use, invalid parent type, missing field.

• 403 Forbidden – invalid Oauth2 token provided

Get entity path

GET https://services.humanbrainproject.eu/storage/v1/api/entity/(uuid: en-
tity_id)/path/

Retrieve entity path.
Example request:
GET /storage/v1/api/entity/e7c582ce-cb64-43ba-a08a-f1e361df71fa/path/ HTTP/

→˓1.1
Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{

3.9. HBP Storage 105

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

HBPCollaboratory Documentation, Release 1.9.3

"path": "/12345/folder_1",
}

Parameters
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – entities successfully retrieved
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

Get entity Collab ID

GET https://services.humanbrainproject.eu/storage/v1/api/entity/(uuid: en-
tity_id)/collab/

Retrieve entity Collab ID.
Example request:
GET /storage/v1/api/entity/e7c582ce-cb64-43ba-a08a-f1e361df71fa/collab/␣

→˓HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"collab_id": 12345,

}

Parameters
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – entities successfully retrieved
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

106 Chapter 3. AppDeveloperManual

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

Get entity by query param

GET https://services.humanbrainproject.eu/storage/v1/api/entity/

Retrieve entity by query paramwhich can be either uuid/path/metadata.
Example request:
GET /storage/v1/api/entity/?path=/12345/file_1 HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"content_type": "application/json",
"created_by": "226241",
"created_on": "2017-02-02T14:27:35.621795Z",
"entity_type": "file",
"modified_on": "2017-02-02T14:27:35.621840Z",
"modified_by": "226241",
"name": "file_1",
"parent": "e7c582ce-cb64-43ba-a08a-f1e361df71fa",
"uuid": "77fb486d-21d5-4a24-a48c-af118b1a23e2"

}

Query Parameters
• uuid – (optional) uuid=UUID
• path – (optional) path=/COLLAB/PATH/TO/FILE
• any_matadata_key – (optional) metadata_key=metadata_value. Only
one key can be provided; others will be ignored.

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – entity successfully retrieved
• 400 Bad Request – more than one entity matches the query (metadata
only)

• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity was not found

Project endpoint
Projects are tightly linked to the corresponding Collabs. And Collab permissions propagate to
the project permissions.

3.9. HBP Storage 107

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

It is available at the following endpoint: https://services.humanbrainproject.eu/storage/v1/api/
project/.

Create a project

Please use Collab Service to create the Collab and allocate HBP Storage project.

List projects

GET https://services.humanbrainproject.eu/storage/v1/api/project/

List all the projects the user have access to.
Example request:
GET /storage/v1/api/project/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"count": 1,
"next": null,
"previous": null,
"results": [

{
"collab_id": 1,
"created_by": "253829",
"created_on": "2017-01-31T16:04:23.290458Z",
"entity_type": "project",
"modified_on": "2017-01-31T16:04:23.290499Z",
"modified_by": "253829",
"name": "test1",
"uuid": "68d1971d-7293-422e-81aa-06b9de13a461"

}
]

}

Query Parameters
• hpc – (optional) If ‘true’, the result will contain only the HPC projects
(Unicore projects)

• access – (optional) if provided, the resultwill contain only projectwhere
the user has Admitted values: [’read’, ‘write’]

• page_size – (optional) number of elements per page (default: 100)
• page – (optional) number of the page

108 Chapter 3. AppDeveloperManual

https://services.humanbrainproject.eu/storage/v1/api/project/
https://services.humanbrainproject.eu/storage/v1/api/project/

HBPCollaboratory Documentation, Release 1.9.3

• ordering – (optional) indicate onwhich fields to sort the result. Prepend
‘-‘ to invert order. Multiple values can be provided. Example: ‘order-
ing=name,created_on’. Ordering is supported on: ‘name’, ‘created_on’,
‘modified_on’

• name – (optional) filter on project name
• collab_id – (optional) filter on collab_id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – projects successfully retrieved
• 403 Forbidden – invalid Oauth2 token provided

Get project details

GET https://services.humanbrainproject.eu/storage/v1/api/project/(uuid:
project_id)/

Get project info.
Example request:
GET /storage/v1/api/project/68d1971d-7293-422e-81aa-06b9de13a461/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"collab_id": 1,
"created_by": "253829",
"created_on": "2017-01-31T16:04:23.290458Z",
"entity_type": "project",
"modified_on": "2017-01-31T16:04:23.290499Z",
"modified_by": "253829",
"name": "test1",
"uuid": "68d1971d-7293-422e-81aa-06b9de13a461"

}

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – projects successfully retrieved
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – project id not found

3.9. HBP Storage 109

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

List project content

GET https://services.humanbrainproject.eu/storage/v1/api/project/(uuid:
project_id)/children/

List all files and folders (not recursively) contained in the project.
Example request:
GET /storage/v1/api/project/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/children/␣

→˓HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"count": 2,
"next": null,
"previous": null,
"results": [

{
"content_type": "application/json",
"created_by": "226241",
"created_on": "2017-02-08T15:31:30.421449Z",
"entity_type": "file",
"modified_by": "226241",
"modified_on": "2017-02-08T15:31:30.421488Z",
"name": "file2",
"parent": "17d74c4d-a253-4d6b-b196-a98f03accf04",
"uuid": "00ae94e2-f2bf-445a-8a5f-c65b5b422d7d"

},
{

"content_type": "text/plain",
"created_by": "226241",
"created_on": "2017-02-08T15:31:01.940271Z",
"entity_type": "file",
"modified_by": "226241",
"modified_on": "2017-02-08T15:31:01.940344Z",
"name": "file3",
"parent": "17d74c4d-a253-4d6b-b196-a98f03accf04",
"uuid": "9cfc012a-8cd6-41f9-a303-f77a45fb1e41"

}
]

}

Parameters
• project_id (uuid) – project id

Query Parameters
• page_size – (optional) number of elements per page (default: 100)

110 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

• page – (optional) number of the page
• ordering – (optional) indicate onwhich fields to sort the result. Prepend
‘-‘ to invert order. Multiple values can be provided. Example: ‘order-
ing=name,created_on’. Ordering is supported on: ‘name’, ‘created_on’,
‘modified_on’, ‘content_type’

• name – (optional) filter on entity name
• entity_type – (optional) filter on entity type. Admitted values: ‘file’,
‘folder’

• content_type – (optional) filter on entity content type (only files are re-
turned)

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – entities successfully retrieved
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – project id was not found

Setmetadata

POST https://services.humanbrainproject.eu/storage/v1/api/(string: entity_type)/
uuid: entity_id/metadata/

Set metadata. Warning: it will replace all existingmetadata. Post an empty body
to remove all themetadata.
Example request:
POST /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"foo": "1000",
"bar": "2000"

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"foo": "1000",
"bar": "2000"

}

3.9. HBP Storage 111

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

JSONParameters
• key (string) – key value pairs

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 201 Created –metadata successfully set
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

Getmetadata

GET https://services.humanbrainproject.eu/storage/v1/api/(string: entity_type)/
uuid: entity_id/metadata/

List metadata.
Example request:
GET /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"foo": "1000",
"bar": "2001",
"baz": "3000"

}

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK –metadata successfully retrieved

112 Chapter 3. AppDeveloperManual

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

HBPCollaboratory Documentation, Release 1.9.3

• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

Updatemetadata

PUT https://services.humanbrainproject.eu/storage/v1/api/(string: entity_type)/
uuid: entity_id/metadata/

Updatemetadata. Existingmetadata will not be affected.
Example request:
PUT /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"bar": "2001",
"baz": "3000"

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"foo": "1000",
"bar": "2001",
"baz": "3000"

}

JSONParameters
• key (string) – key value pairs

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK –metadata successfully updated
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

3.9. HBP Storage 113

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

Deletemetadata

DELETE https://services.humanbrainproject.eu/storage/v1/api/(string: en-
tity_type)/uuid: entity_id/metadata/

Deletemetadata by key. To delete all themetadata see ‘Set metadata’.
Example request:
DELETE /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"keys": [

"foo"
]

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"bar": "2001",
"baz": "3000"

}

JSONParameters
• keys (string) – list of keys to be deleted. Posting an empty key list has
no effect.

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK –metadata successfully deleted
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

Folder endpoint

114 Chapter 3. AppDeveloperManual

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

Create a folder

POST https://services.humanbrainproject.eu/storage/v1/api/folder/

Create a new folder.
Example request:
POST /storage/v1/api/folder/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"name": "folder_1",
"parent": "68d1971d-7293-422e-81aa-06b9de13a461"

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"created_by": "226241",
"created_on": "2017-02-02T14:24:22.785969Z",
"entity_type": "folder",
"modified_by": "226241",
"modified_on": "2017-02-02T14:24:22.786374Z",
"name": "folder_1",
"parent": "68d1971d-7293-422e-81aa-06b9de13a461",
"uuid": "e7c582ce-cb64-43ba-a08a-f1e361df71fa"

}

JSONParameters
• name (string) – the name of the folder
• parent (uuid) – the uuid of the entity where the folder will be created.
The parent entity typemust be project or folder.

Request Headers
• Authorization –OAuth2 token

Status Codes
• 201 Created – folder successfully created
• 400 Bad Request – invalid request. More details in the response. Possi-
ble causes are: name already in use, invalid parent invalid type parent

• 403 Forbidden – invalid Oauth2 token provided

3.9. HBP Storage 115

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

HBPCollaboratory Documentation, Release 1.9.3

Get folder details

GET https://services.humanbrainproject.eu/storage/v1/api/folder/(uuid:
folder_id)/

Get folder info.
Example request:
GET /storage/v1/api/folder/e7c582ce-cb64-43ba-a08a-f1e361df71fa/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"created_by": "226241",
"created_on": "2017-02-02T14:24:22.785969Z",
"entity_type": "folder",
"modified_by": "226241",
"modified_on": "2017-02-02T14:24:22.786374Z",
"name": "folder_1",
"parent": "68d1971d-7293-422e-81aa-06b9de13a461",
"uuid": "e7c582ce-cb64-43ba-a08a-f1e361df71fa"

}

Parameters
• folder_id (uuid) – folder id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – folder successfully retrieved
• 400 Bad Request – invalid request. More details in the response. Possi-
ble causes are: name already in use, invalid parent type, missing field.

• 403 Forbidden – invalid Oauth2 token provided

List folder content

GET https://services.humanbrainproject.eu/storage/v1/api/folder/(uuid:
folder_id)/children/

List all files and folders (not recursively) contained in the folder.
Example request:

116 Chapter 3. AppDeveloperManual

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

HBPCollaboratory Documentation, Release 1.9.3

GET /storage/v1/api/folder/e7c582ce-cb64-43ba-a08a-f1e361df71fa/children/␣
→˓HTTP/1.1

Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"count": 2,
"next": null,
"previous": null,
"results": [

{
"created_by": "226241",
"created_on": "2017-02-02T14:26:45.132948Z",
"entity_type": "folder",
"modified_by": "226241",
"modified_on": "2017-02-02T14:26:45.132996Z",
"name": "folder_1",
"parent": "e7c582ce-cb64-43ba-a08a-f1e361df71fa",
"uuid": "098271f4-a073-4125-a738-3dd01ba7e89b"

},
{

"content_type": "application/json",
"created_by": "226241",
"created_on": "2017-02-02T14:27:35.621795Z",
"entity_type": "file",
"modified_by": "226241",
"modified_on": "2017-02-02T14:27:35.621840Z",
"name": "file_1",
"parent": "e7c582ce-cb64-43ba-a08a-f1e361df71fa",
"uuid": "77fb486d-21d5-4a24-a48c-af118b1a23e2"

}
]

}

Parameters
• folder_id (uuid) – folder id

Query Parameters
• page_size – (optional) number of elements per page (default: 100)
• page – (optional) number of the page
• ordering – (optional) indicate onwhich fields to sort the result. Prepend
‘-‘ to invert order. Multiple values can be provided. Example: ‘order-
ing=name,created_on’. Ordering is supported on: ‘name’, ‘created_on’,
‘modifi

• name – (optional) filter on entity name

3.9. HBP Storage 117

HBPCollaboratory Documentation, Release 1.9.3

• entity_type – (optional) filter on entity type. Admitted values: ‘file’,
‘folder’

• content_type – (optional) filter on entity content type (only files are re-
turned)

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – entities successfully retrieved
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – folder id was not found

Delete a folder

DELETE https://services.humanbrainproject.eu/storage/v1/api/folder/(uuid:
folder_id)/

Delete a folder. It will recursively delete all the content.
Example request:
DELETE /storage/v1/api/folder/e7c582ce-cb64-43ba-a08a-f1e361df71fa/ HTTP/1.

→˓1
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 204 OK

Parameters
• folder_id (uuid) – folder id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 204NoContent – folder successfully deleted
• 400 Bad Request – invalid request. More details in the response.
• 403 Forbidden – invalid Oauth2 token provided

Setmetadata

POST https://services.humanbrainproject.eu/storage/v1/api/(string: entity_type)/
uuid: entity_id/metadata/

118 Chapter 3. AppDeveloperManual

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

HBPCollaboratory Documentation, Release 1.9.3

Set metadata. Warning: it will replace all existingmetadata. Post an empty body
to remove all themetadata.
Example request:
POST /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"foo": "1000",
"bar": "2000"

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"foo": "1000",
"bar": "2000"

}

JSONParameters
• key (string) – key value pairs

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 201 Created –metadata successfully set
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

Getmetadata

GET https://services.humanbrainproject.eu/storage/v1/api/(string: entity_type)/
uuid: entity_id/metadata/

List metadata.
Example request:

3.9. HBP Storage 119

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

GET /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/
→˓metadata/ HTTP/1.1

Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"foo": "1000",
"bar": "2001",
"baz": "3000"

}

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK –metadata successfully retrieved
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

Updatemetadata

PUT https://services.humanbrainproject.eu/storage/v1/api/(string: entity_type)/
uuid: entity_id/metadata/

Updatemetadata. Existingmetadata will not be affected.
Example request:
PUT /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"bar": "2001",
"baz": "3000"

}

Example response:

120 Chapter 3. AppDeveloperManual

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

HTTP/1.1 200 OK
Content-Type: application/json

{
"foo": "1000",
"bar": "2001",
"baz": "3000"

}

JSONParameters
• key (string) – key value pairs

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK –metadata successfully updated
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

Deletemetadata

DELETE https://services.humanbrainproject.eu/storage/v1/api/(string: en-
tity_type)/uuid: entity_id/metadata/

Deletemetadata by key. To delete all themetadata see ‘Set metadata’.
Example request:
DELETE /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"keys": [

"foo"
]

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

3.9. HBP Storage 121

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

{
"bar": "2001",
"baz": "3000"

}

JSONParameters
• keys (string) – list of keys to be deleted. Posting an empty key list has
no effect.

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK –metadata successfully deleted
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

File endpoint
Create a file

POST https://services.humanbrainproject.eu/storage/v1/api/file/

Create a new file.
Example request:
POST /storage/v1/api/file/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"name": "file_1",
"content_type": "plain/text",
"parent": "e7c582ce-cb64-43ba-a08a-f1e361df71fa"

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"content_type": "application/json",

122 Chapter 3. AppDeveloperManual

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

"created_by": "226241",
"created_on": "2017-02-02T14:27:35.621795Z",
"entity_type": "file",
"modified_on": "2017-02-02T14:27:35.621840Z",
"modified_by": "226241",
"name": "file_1",
"parent": "e7c582ce-cb64-43ba-a08a-f1e361df71fa",
"uuid": "77fb486d-21d5-4a24-a48c-af118b1a23e2"

}

JSONParameters
• name (string) – the name of the file
• content_type (string) – the file content type
• parent (uuid) – the uuid of the entity where the file will be created. The
parent entity typemust be project or folder.

Request Headers
• Authorization –OAuth2 token

Status Codes
• 201 Created – file successfully created
• 400 Bad Request – invalid request. More details in the response. Possi-
ble causes are: name already in use, invalid parent type, missing field.

• 403 Forbidden – invalid Oauth2 token provided

Get file details

GET https://services.humanbrainproject.eu/storage/v1/api/file/(uuid: file_id)/
Get file info.
Example request:
GET /storage/v1/api/file/77fb486d-21d5-4a24-a48c-af118b1a23e2/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"content_type": "application/json",
"created_by": "226241",
"created_on": "2017-02-02T14:27:35.621795Z",
"entity_type": "file",
"modified_on": "2017-02-02T14:27:35.621840Z",
"modified_by": "226241",

3.9. HBP Storage 123

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

HBPCollaboratory Documentation, Release 1.9.3

"name": "file_1",
"parent": "e7c582ce-cb64-43ba-a08a-f1e361df71fa",
"uuid": "77fb486d-21d5-4a24-a48c-af118b1a23e2"

}

Parameters
• file_id (uuid) – file id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – file successfully retrieved
• 400 Bad Request – invalid request. More details in the response. Possi-
ble causes are: name already in use, invalid parent type, missing field.

• 403 Forbidden – invalid Oauth2 token provided

Upload file content

POST https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:
file_id)/content/upload/

Upload a file content. File entity must exist (see POST
https://services.humanbrainproject.eu/storage/v1/api/file/)
If ETag is provided in the If-Match header the content of the file on the server is
verified against the ETag provided. If it does not match 412 Precondition Failed
is returned. This means client needs to update it’s knowledge of the resource
before attempting to update again. This can be used for optimistic concurrency
control.
Example request:
POST /storage/v1/api/file/77fb486d-21d5-4a24-a48c-af118b1a23e2/content/

→˓upload/ HTTP/1.1
Accept: application/json
If-Match: 0ade138937c4b9cb36a28e2edb6485fc
Authorization: Bearer TOKEN
Content-Length: 151
Content-Type: multipart/form-data;␣

→˓boundary=98c4e0a7bde143acaeafc3e6cd2acd7c
Host: services.humanbrainproject.eu

--98c4e0a7bde143acaeafc3e6cd2acd7c
Content-Disposition: form-data; name="file"; filename="test.txt"

my file content

--98c4e0a7bde143acaeafc3e6cd2acd7c--

Example response:

124 Chapter 3. AppDeveloperManual

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

HBPCollaboratory Documentation, Release 1.9.3

HTTP/1.1 201 OK
ETag: "71e1ed9ee52e565a56aec66bc648a32c"

Parameters
• file_id (uuid) – file id

Request Headers
• Authorization –OAuth2 token

Response Headers
• ETag – file content hash to be used for caching purposes.

Status Codes
• 201 Created – file successfully uploaded
• 400 Bad Request – invalid request. More details in the response.
• 403 Forbidden – invalid Oauth2 token provided
• 412 Precondition Failed – content on the server is defferent from the
one expected by client provided by ETag in If-Match.

Copy file content

PUT https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:
file_id)/content/

Copy file content from file specified by UUID in X-Copy-From header.
File entitymust exist (seePOST https://services.humanbrainproject.eu/storage/v1/api/file/)
Example request:
PUT /storage/v1/api/file/77fb486d-21d5-4a24-a48c-af118b1a23e2/content/␣

→˓HTTP/1.1
Accept: application/json
X-Copy-From: 8961d83a-cca7-42d2-8cad-d1705d465b38
Authorization: Bearer TOKEN
Content-Length: 0
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 204 OK

Parameters
• file_id (uuid) – file id

Request Headers
• X-Copy-From – UUID of the source file
• Content-Length – to perform copy operationmust be set to 0
• Authorization –OAuth2 token

3.9. HBP Storage 125

http://tools.ietf.org/html/rfc7235#section-4.2
http://tools.ietf.org/html/rfc7231#section-2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13
http://tools.ietf.org/html/rfc7230#section-3.3.2
http://tools.ietf.org/html/rfc7235#section-4.2

HBPCollaboratory Documentation, Release 1.9.3

Status Codes
• 204NoContent – file content successfully copied from source
• 400 Bad Request – invalid request. More details in the response.
• 403 Forbidden – invalid Oauth2 token provided

Download file content

GET https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:
file_id)/content/

Download a file content.
If If-None-Match header with ETag value is provided then in case contend did not
change 304 Not Modified is returned. If contend changed the actual content will
be returned along with new ETag
Example request:
GET /storage/v1/api/file/77fb486d-21d5-4a24-a48c-af118b1a23e2/content/␣

→˓HTTP/1.1
Accept: */*
If-None-Match: 0ade138937c4b9cb36a28e2edb6485fc
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Disposition: attachment; filename=file_1
Content-Length: 151
Content-Type: plain/text
ETag: "71e1ed9ee52e565a56aec66bc648a32c"
Last-Modified: Thu, 02 Feb 2017 14:57:31 GMT

--98c4e0a7bde143acaeafc3e6cd2acd7c
Content-Disposition: form-data; name="file"; filename="test.txt"

my file content

--98c4e0a7bde143acaeafc3e6cd2acd7c--

Parameters
• file_id (uuid) – file id

Request Headers
• If-None-Match – ETag
• Authorization –OAuth2 token

Response Headers
• ETag – file content hash to be used for caching purposes.

Status Codes

126 Chapter 3. AppDeveloperManual

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7232#section-3.2
http://tools.ietf.org/html/rfc7235#section-4.2
http://tools.ietf.org/html/rfc7231#section-2.3

HBPCollaboratory Documentation, Release 1.9.3

• 200OK – file successfully downloaded
• 304 Not Modified – file content matched If-None-Match Etag and no
content was returned

• 400 Bad Request – invalid request. More details in the response.
• 403 Forbidden – invalid Oauth2 token provided

Get signed URL

GET https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:
file_id)/content/secure_link/

Get a signedunauthenticatedURL todownload thefile contentwithout theneed
for a token. The signed URL expires after 5 seconds.
Example request:
GET /storage/v1/api/file/77fb486d-21d5-4a24-a48c-af118b1a23e2/content/

→˓secure_link/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"signed_url": "/file/17d74c4d-a253-4d6b-b196-a98f03accf04/9cfc012a-

→˓8cd6-41f9-a303-f77a45fb1e41/content/?expires=1486&hash=eGwevqxqw&
→˓name=file3&content_type=text/plain"

}

Parameters
• file_id (uuid) – file id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK – signed url successfully generated
• 403 Forbidden – invalid Oauth2 token provided

Delete a file

DELETE https://services.humanbrainproject.eu/storage/v1/api/file/(uuid: file_id)/
Delete a file.
Example request:

3.9. HBP Storage 127

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

HBPCollaboratory Documentation, Release 1.9.3

DELETE /storage/v1/api/file/77fb486d-21d5-4a24-a48c-af118b1a23e2/ HTTP/1.1
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 204 OK

Parameters
• file_id (uuid) – file id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 204NoContent – file successfully deleted
• 400 Bad Request – invalid request. More details in the response.
• 403 Forbidden – invalid Oauth2 token provided

Setmetadata

POST https://services.humanbrainproject.eu/storage/v1/api/(string: entity_type)/
uuid: entity_id/metadata/

Set metadata. Warning: it will replace all existingmetadata. Post an empty body
to remove all themetadata.
Example request:
POST /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"foo": "1000",
"bar": "2000"

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"foo": "1000",
"bar": "2000"

}

JSONParameters
128 Chapter 3. AppDeveloperManual

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

HBPCollaboratory Documentation, Release 1.9.3

• key (string) – key value pairs
Parameters

• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 201 Created –metadata successfully set
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

Getmetadata

GET https://services.humanbrainproject.eu/storage/v1/api/(string: entity_type)/
uuid: entity_id/metadata/

List metadata.
Example request:
GET /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Host: services.humanbrainproject.eu

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"foo": "1000",
"bar": "2001",
"baz": "3000"

}

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK –metadata successfully retrieved
• 403 Forbidden – invalid Oauth2 token provided

3.9. HBP Storage 129

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

HBPCollaboratory Documentation, Release 1.9.3

• 404Not Found – entity id was not found

Updatemetadata

PUT https://services.humanbrainproject.eu/storage/v1/api/(string: entity_type)/
uuid: entity_id/metadata/

Updatemetadata. Existingmetadata will not be affected.
Example request:
PUT /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"bar": "2001",
"baz": "3000"

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"foo": "1000",
"bar": "2001",
"baz": "3000"

}

JSONParameters
• key (string) – key value pairs

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK –metadata successfully updated
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

130 Chapter 3. AppDeveloperManual

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

Deletemetadata

DELETE https://services.humanbrainproject.eu/storage/v1/api/(string: en-
tity_type)/uuid: entity_id/metadata/

Deletemetadata by key. To delete all themetadata see ‘Set metadata’.
Example request:
DELETE /storage/v1/api/$ENTITY_TYPE$/8609a4e9-baf5-4cf5-b3c6-7a98b21ceee3/

→˓metadata/ HTTP/1.1
Accept: application/json
Authorization: Bearer TOKEN
Content-Type: application/json
Host: services.humanbrainproject.eu

{
"keys": [

"foo"
]

}

Example response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"bar": "2001",
"baz": "3000"

}

JSONParameters
• keys (string) – list of keys to be deleted. Posting an empty key list has
no effect.

Parameters
• entity_type (string) – possible values: project, folder, file
• entity_id (uuid) – entity id

Request Headers
• Authorization –OAuth2 token

Status Codes
• 200OK –metadata successfully deleted
• 403 Forbidden – invalid Oauth2 token provided
• 404Not Found – entity id was not found

3.9. HBP Storage 131

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

HBPCollaboratory Documentation, Release 1.9.3

Migration fromV0
This goal of themigration guide is to help the user tomigrate a client using document-service v0
apis to use the v1 of the api described in the previous section.
Themain change is the renaming of the properties of the resources. See Properties: V0 > V1map-
ping for more details.

Models: v0 > v1 properties mapping
Project

v0 v1
_uuid uuid
_name name
_createdBy created_by
_createdOn created_on
_description description
_entityType entity_type
_modifiedOn modified_on
_parent -
_contentType -
- collab_id
- modified_by

Folder

v0 v1
_uuid uuid
_name name
_createdBy created_by
_createdOn created_on
_entityType entity_type
_modifiedOn modified_on
_parent parent
- collab_id
- modified_by

132 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

File

v0 v1
_uuid uuid
_parent parent
_name name
_createdBy created_by
_createdOn created_on
_description description
_entityType entity_type
_modifiedOn modified_on
_contentType content_type
_fileSize -
_contentUri -
- modified_by

Project list & Project/Folder content

Endpoints affected:
• /document/v0/api/project/
• /document/v0/api/project/$UUID/children
• /document/v0/api/folder/$UUID/children

v0 v1 notes
result results -
hasMore - replaced by next and previous
- next url of the next page (can be null)
- previous url of the previous page (can be null)
- count total number or elements

Endpoints: v0 > v1mapping
As a general rule, the context path of the API changed from /document/v0/api/ to /stor-
age/v1/api/entity. If an endpoint is not listed in the next section, it means that the nothing
changed, except for the context path.

3.9. HBP Storage 133

HBPCollaboratory Documentation, Release 1.9.3

Entity

methodv0 v1 notes
GET /docu-

ment/v0/api/entity/$UUID
/storage/v1/api/entity/$UUID/
or /stor-
age/v1/api/entity/?uuid=$UUID

GET /docu-
ment/v0/api/entity/?managed_by_collab=$COLLAB_ID

/stor-
age/v1/api/project/?collab_id=$COLLAB_ID

Note the endpoint
change (entity >
project)

GET /docu-
ment/v0/api/entity_path/$UUID

/stor-
age/v1/api/entity/$UUID/path

returns a jsonwith a
single field named
path

Project

methodv0 v1 notes
POST/docu-

ment/v0/api/project/
not supported In v1 projects exist only if

linked to a collab; so the
creation is delegate to the
collab service.

DELETE/docu-
ment/v0/api/project/$UUID/

not supported In v1 projects exist only if
linked to a collab; so deletion
is delegate to the collab
service.

GET /docu-
ment/v0/api/project/?filter=$FIELD=$VALUE

/stor-
age/v1/api/project/?$FIELD=$VALUE

see Project api doc for the list
of supported fields

GET /docu-
ment/v0/api/project/?sort=$FIELD

/stor-
age/v1/api/project/?ordering=$FIELD

see Project api doc for the list
of supported fields

GET /docu-
ment/v0/api/project/?from=$UUID

not supported Replacedwith page size
based pagination. See Project
api doc for more details

GET /docu-
ment/v0/api/project/?until=$UUID

not supported Replacedwith page size
based pagination. See Project
api doc for more details

GET /docu-
ment/v0/api/project/?limit=$PAGE_SIZE

/stor-
age/v1/api/project/?page_size=$PAGE_SIZE&page=$PAGE_NUMBER

see Project api doc for the list
of supported fields

GET /docu-
ment/v0/api/project/$UUID/children/?filter=$FIELD=$VALUE

/stor-
age/v1/api/project/$UUID/children/?$FIELD=$VALUE

see Project api doc for the list
of supported fields

GET /docu-
ment/v0/api/project/$UUID/children/?sort=$FIELD

/stor-
age/v1/api/project/$UUID/children/?ordering=$FIELD

Replacedwith page size
based pagination. See Project
api doc for more details

GET /docu-
ment/v0/api/project/$UUID/children/?from=$UUID

not supported Replacedwith page size
based pagination. See Project
api doc for more details

GET /docu-
ment/v0/api/project/$UUID/children/?until=$UUID

not supported
GET /docu-

ment/v0/api/project/$UUID/children/?limit=$PAGE_SIZE
/stor-
age/v1/api/project/$UUID/children/?page_size=$PAGE_SIZE&page=$PAGE_NUMBER

134 Chapter 3. AppDeveloperManual

HBPCollaboratory Documentation, Release 1.9.3

Folder

methodv0 v1 notes
GET /docu-

ment/v0/api/folder/$UUID/children/?filter=$FIELD=$VALUE
/stor-
age/v1/api/folder/$UUID/children/?$FIELD=$VALUE

see Folder api doc for the
list of supported fields

GET /docu-
ment/v0/api/folder/$UUID/children/?sort=$FIELD

/stor-
age/v1/api/folder/$UUID/children/?ordering=$FIELD

see Folder api doc for the
list of supported ifelds

GET /docu-
ment/v0/api/folder/$UUID/children/?from=$UUID

not supported Replacedwith page size
based pagination. See
Folder api doc for more
details

GET /docu-
ment/v0/api/folder/$UUID/children/?until=$UUID

not supported Replacedwith page size
based pagination. See
Folder api doc for more
details

GET /docu-
ment/v0/api/folder/$UUID/children/?limit=$PAGE_SIZE

/stor-
age/v1/api/folder/$UUID/children/?page_size=$PAGE_SIZE&page=$PAGE_NUMBER

File

method v0 v1 notes
POST /document/v0/api/file/ /storage/v1/api/file/ content_type field is now

required.
POST /docu-

ment/v0/api/file/$UUID/content
/stor-
age/v1/api/file/$UUID/content/

Miscellaneous
• In v1 projects exist only attached to a Collab and each collab can be linked to one project
only. For this reason, the creation and deletion of collabs from the API is not supported
anymore.

• All the v1 endpoints require a trailing slash (‘/’). If not provided, a permanent redirect (301)
is returned.

Introduction
HBP storage provides Collab storage capabilities and access to the HPCUnicore enabled sites.

Related Resources
• HBPCollab Rest Service API Documentation

3.10. Related Resources 135

https://developer.humanbrainproject.eu/docs/hbp-collab-service/latest/

HBPCollaboratory Documentation, Release 1.9.3

136 Chapter 3. AppDeveloperManual

CHAPTER
FOUR

CONTACT& SUPPORT

Contact
Who is in charge of Collaboratory ?
how can I contact them ?

Support
If I have an issue with Collaboratory, who should I contact ?
Is there a bug tracking system ?
Is part of the code open sourced, if yes where can I find it ?

137

HBPCollaboratory Documentation, Release 1.9.3

138 Chapter 4. Contact & Support

CHAPTER
FIVE

LICENSE

What the project license ?

139

HBPCollaboratory Documentation, Release 1.9.3

140 Chapter 5. License

CHAPTER
SIX

FREQUENTLYASKEDQUESTIONS

What are themost common asked questions ?

141

HBPCollaboratory Documentation, Release 1.9.3

142 Chapter 6. Frequently asked questions

BIBLIOGRAPHY

[CIT001] Stream Framework documentation, http://feedly.readthedocs.org/en/latest/
notification_systems.html (2015/12/1)

143

http://feedly.readthedocs.org/en/latest/notification_systems.html
http://feedly.readthedocs.org/en/latest/notification_systems.html

HBPCollaboratory Documentation, Release 1.9.3

144 Bibliography

HTTP ROUTING TABLE

/https:
GET https://services.humanbrainproject.eu/storage/v1/api/(string:entity_type)/(uuid:entity_id)/metadata/,

112
GET https://services.humanbrainproject.eu/storage/v1/api/entity/,

107
GET https://services.humanbrainproject.eu/storage/v1/api/entity/(uuid:entity_id)/,

104
GET https://services.humanbrainproject.eu/storage/v1/api/entity/(uuid:entity_id)/collab/,

106
GET https://services.humanbrainproject.eu/storage/v1/api/entity/(uuid:entity_id)/path/,

105
GET https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:file_id)/,

123
GET https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:file_id)/content/,

126
GET https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:file_id)/content/secure_link/,

127
GET https://services.humanbrainproject.eu/storage/v1/api/folder/(uuid:folder_id)/,

116
GET https://services.humanbrainproject.eu/storage/v1/api/folder/(uuid:folder_id)/children/,

116
GET https://services.humanbrainproject.eu/storage/v1/api/project/,

108
GET https://services.humanbrainproject.eu/storage/v1/api/project/(uuid:project_id)/,

109
GET https://services.humanbrainproject.eu/storage/v1/api/project/(uuid:project_id)/children/,

110
POST https://services.humanbrainproject.eu/storage/v1/api/(string:entity_type)/(uuid:entity_id)/metadata/,

111
POST https://services.humanbrainproject.eu/storage/v1/api/file/,

122
POST https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:file_id)/content/upload/,

124
POST https://services.humanbrainproject.eu/storage/v1/api/folder/,

115
PUT https://services.humanbrainproject.eu/storage/v1/api/(string:entity_type)/(uuid:entity_id)/metadata/,

113
PUT https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:file_id)/content/,

125
DELETE https://services.humanbrainproject.eu/storage/v1/api/(string:entity_type)/(uuid:entity_id)/metadata/,

114

DELETE https://services.humanbrainproject.eu/storage/v1/api/file/(uuid:file_id)/,
127

DELETE https://services.humanbrainproject.eu/storage/v1/api/folder/(uuid:folder_id)/,
118

145

HBPCollaboratory Documentation, Release 1.9.3

146 HTTP Routing Table

INDEX

A
addMetadata() (built-in function), 82
addNode() (built-in function), 73
App.fromJson() (Appmethod), 69
B
buildURLOptions() (built-in function), 86
C
clbBootstrap() (built-in function), 100
ClbCollabModel() (built-in function), 75
ClbContextModel() (built-in function), 75
clbEnv() (built-in function), 76
clbLoading() (built-in function), 93
clbUsercard() (built-in function), 92
context() (built-in function), 59
copy() (built-in function), 83
create() (built-in function), 82
createCollab() (built-in function), 61
createNavItem() (built-in function), 61
createSubtasks() (built-in function), 65
D
deleteMetadata() (built-in function), 82
deleteNode() (built-in function), 73
downloadUrl() (built-in function), 84
E
emit() (built-in function), 59
ensureCached() (built-in function), 71
ensureParameters() (built-in function), 66
extractAttributes() (built-in function), 66
F
findOne() (built-in function), 70
G
get() (built-in function), 75
getAbsolutePath() (built-in function), 81
getById() (built-in function), 70
getChildren() (built-in function), 84
getContent() (built-in function), 83

getEntity() (built-in function), 81
getEntityByUUID() (built-in function), 81
getNode() (built-in function), 72
getNodeFromContext() (built-in function), 72
getRoot() (built-in function), 72
getStream() (built-in function), 86
getUserAccess() (built-in function), 83
H
handleFocus() (built-in function), 96
handleNavigation() (built-in function), 96
I
insertNode() (built-in function), 73
L
list() (built-in function), 70
loadMoreFiles() (built-in function), 96
loadMoreFolders() (built-in function), 97
M
metadataKey() (built-in function), 82
missingDataError() (built-in function), 65
N
NavItem.fromJson() (NavItemmethod), 72
O
open() (built-in function), 59
overview() (built-in function), 62
Q
query() (built-in function), 81
R
registerUrlHandler() (built-in function), 87
run() (built-in function), 64, 65
runOnce() (built-in function), 81
runSubtasks() (built-in function), 64
S
storage() (built-in function), 62

147

HBPCollaboratory Documentation, Release 1.9.3

T
task() (built-in function), 65
toJson() (built-in function), 69, 71
U
update() (built-in function), 71, 73
upload() (built-in function), 84

148 Index

	Table of Contents
	List of Figures and Tables
	Executive Summary
	1. Introduction
	2. The HBP Collaboratory (HBP-COLL)
	2.1 HBP-COLL: Overall Goals
	2.2 HBP-COLL: Refined Use Cases
	2.2.1 Roles
	2.2.2 Low Volume Scientific Data Sharing, Single COLL Project with Upload (HBPCOLL-UC-001)
	2.2.3 Low Volume Scientific Data Sharing, Multi COLL Project (HBPCOLL-UC-002)
	2.2.4 Data Release (HBPCOLL-UC-004)
	2.2.5 Portal Developer Services and Component Reuse (HBPCOLL-UC-005)
	2.2.6 Viewing of Data in HBP-COLL (HBPCOLL-UC-006)
	2.2.7 Collaborative Scientific Analysis (HBPCOLL-UC-007)
	2.2.8 Scientific Developer Iterative Workflow Development (HBPCOLL-UC-008)
	2.2.9 Visualisation Developer Component Reuse (HBPCOLL-UC-009)

	2.3 HBP-COLL: Functional Requirements
	2.3.1 Authentication and Authorisation (HBPCOLL-FR-001)
	2.3.2 Search (HBPCOLL-FR-002)
	2.3.3 COLL Projects (HBPCOLL-FR-003)
	2.3.4 Storage and Data Lifecycle Management (HBPCOLL-FR-004)
	2.3.5 Common Service Interfaces (HBPCOLL-FR-005)
	2.3.6 Web Services (HBPCOLL-FR-006)
	2.3.7 Non-Web Services (HBPCOLL-FR-007)

	2.4 Components
	2.4.1 App Components
	2.4.1.1 COLL Content Apps
	2.4.1.2 COLL Storage App
	2.4.1.3 COLL Chat App
	2.4.1.4 COLL Jupyter Notebook App

	2.4.2 Service Components
	2.4.2.1 COLL Service
	2.4.2.2 HBP Identity Service
	2.4.2.3 COLL Storage Service
	2.4.2.4 COLL Jupyter Notebook Service
	2.4.2.5 COLL XMPP Service

	2.5 HBP-COLL: Architecture
	2.5.1 Architectural Principles
	2.5.2 Standard App Component
	2.5.3 Standard REST Web Service API
	2.5.4 Physical Architecture and Infrastructure Dependencies

	2.6 HBP-COLL: Dependencies
	2.6.1 Required
	2.6.2 Preferred

	3. Common Architecture
	3.1 Considerations for Extensibility
	3.1.1 Overview

	3.2 For SaaS, PaaS and IaaS Software Development
	3.3 Operations Standards
	3.3.1 Overview
	3.3.2 Current Standard - BBP Standard DevOps Stack
	3.3.2.1 BBP Standard Service deployment

	3.3.3 Future Standard - HBP Standard DevOps Stack
	3.3.3.1 HBP Standard Service deployment

	4. Extensibility and Platform Integration
	4.1 Extensibility
	4.2 Brain Simulation Platform
	4.3 Medical Informatics Platform
	4.4 Neuromorphic Computing Platform
	4.5 Neurorobotics Platform

	Annex A: Glossary
	Annex B: HBP Collaboratory Documentation (Release 1.9.3)
	HBPCollaboratoryDocumentation_v1.9.3.pdf
	Introduction
	User Manual
	Introduction
	User Interface
	Access Control
	Software Catalog

	App Developer Manual
	Introduction
	Getting Started
	Security
	HBP Stream API Documentation
	Django Template
	OpenID Connect Client
	Deep Linking
	angular-hbp-collaboratory
	HBP Storage
	Related Resources

	Contact & Support
	Contact
	Support

	License
	Frequently asked questions
	Bibliography
	HTTP Routing Table
	Index

