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Abstract: 

This document describes the early applications of the six Human Brain Project Platforms, 
to be implemented during the Project’s Ramp-Up Phase. The structure of the 
Applications Subproject corresponds to the three main research areas of the HBP, Future 
Neuroscience, Future Medicine and Future Computing, with one Work Package for each 
research area. Because these applications are being developed during the Ramp-Up 
Phase, they will not be able to use fully developed versions of the HBP Platforms. They 
will, however, influence the final design of the Platforms and make use of their 
preliminary software and hardware components. As a result, the applications will have to 
be closely integrated into the Project. After completion of the Ramp-Up Phase, the 
application work will be transferred to the Partnering Projects envisaged under the 
Framework Partnership Agreement (FPA), which defines the HBP’s Operational Phase. 
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1. Executive Summary 

This document describes the early applications of the six Human Brain Project (HBP) 
Platforms, to be implemented during the Project’s Ramp-Up Phase. The structure of the 
Applications Subproject (SP11) corresponds to the three main research areas of the HBP, 
Future Neuroscience, Future Medicine and Future Computing, with one Work Package for 
each research area. Because these applications are being developed during the Ramp-Up 
Phase, they will not be able to use fully developed versions of the HBP Platforms. They 
will, however, influence the final design of the Platforms and make use of their 
preliminary software and hardware components. As a result, the applications will have to 
be closely integrated into the Project. After completion of the Ramp-Up Phase, the 
application work will be transferred to the Partnering Projects envisaged under the 
Framework Partnership Agreement (FPA), which defines the HBP’s Operational Phase. 

The primary objective of the Future Neuroscience Work Package is to provide an initial 
demonstration of the value of the Neurorobotics Platform for experimental cognitive 
neuroscience and to provide feedback to refine the design of the Platform. Specifically, 
the models, frameworks, and ideas of the Human Brain Project are here used to connect 
theories of brain computing to psychophysical data that measure human performance in 
terms of the well-known Weber-Fechner Law. We will also prepare a study of different 
brain or subsystem capabilities such as perception, attention, coordinated movements, 
core knowledge, spatial cognition, motivation, emotions, and consciousness. We will 
emphasise how these capabilities can be developed in a robot designed for behavioural 
experiments. 

The HBP’s Medical Informatics Platform will federate imaging, genetic and other clinical 
data currently stored in archives and databases of hospitals and research institutes. It will 
provide the tools for epidemiological exploration, numerical and statistical analysis, data 
visualisation and data mining. In the Future Medicine Work Package, we will use these 
resources to identify unique biological signatures of brain diseases. Specifically, we will 
characterise the target population of Alzheimer’s patients, scale up a pilot study (200 
subjects’ records) to a large-scale level (c. 2-4,000 subjects’ records), apply novel data- 
mining approaches in High Performance Computing facilities, and demonstrate that rule-
based disease signatures provide comprehensive models that explain the variability among 
patients and aged healthy subjects in a reduced multidimensional space. 

Applications in the Future Computing Work Package will prepare for the implementation of 
neural circuit models on the two hardware systems provided by the Neuromorphic 
Computing Platform. The initial network architectures are compatible with the constraints 
given by the HBP hardware architectures described in the SP9 Platform specification 
document, and will all be formulated in the network description language PyNN. The Work 
Package has six Tasks corresponding to six application cases. The first Task was part of the 
original HBP proposal, whereas the other five applications were brought in subsequently 
via a Competitive Call process during the first six months of the HBP, along with new 
Partners to implement them. The applications range from the implementation of reverse 
engineered biological circuits, through applications in computer vision, to the mining of 
abstract business data. 
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2. The Applications Subproject 

2.1 The Human Brain Project (HBP) 

The Human Brain Project (HBP) is a major international scientific research project, 
involving over 100 academic and corporate entities in more than 20 countries. Funded by 
the European Commission (EC), the ten-year, EUR 1 billion Project was launched in 2013 
with the goal "to build a completely new ICT infrastructure for neuroscience, and for 
brain-related research in medicine and computing, catalysing a global collaborative effort 
to understand the human brain and its diseases and ultimately to emulate its 
computational capabilities." 

The fields of neuroscience, medicine and information technology each have important 
roles to play in addressing this challenge, but the knowledge and data that each is 
generating have been very fragmented. The HBP is driving integration of these different 
contributions. 

During the Ramp-Up Phase, the HBP will collect strategic data, develop theoretical 
frameworks, and perform technical work necessary for the development of six Information 
and Communication Technology (ICT) Platforms during the Operational Phase. The ICT 
Platforms, offering services to neuroscientists, clinical researchers and technology 
developers, comprise Neuroinformatics (a data repository, including brain atlases and 
analysing tools); Brain Simulation (building ICT models and multi-scale simulations of 
brains and brain components); Medical Informatics (bringing together information on brain 
diseases); Neuromorphic Computing (ICT that mimics the functioning of the brain); and 
Neurorobotics (allowing testing of brain models and simulations in virtual environments). A 
High Performance Computing Platform will support these Platforms. 

2.2 Applications Subproject: Overall Goals and Timing 

The six HBP Platforms aim to provide unique capabilities for research that would not be 
otherwise possible. When the HBP was conceived, it was clear that a set of early 
application ideas should be developed in parallel with the building of the Platforms, and 
that these early application ideas should make use of preliminary versions of the 
Platforms’ software and hardware. Therefore, the overall goal of Subproject 11 is to 
prepare, evaluate and test the early applications of the six HBP Platforms. The Subproject 
is structured into three Work Packages, covering applications of the HBP Platforms in 
Future Neuroscience, Future Medicine and Future Computing. Because the Platforms are 
scheduled to become operational at the end of the Project’s Ramp-Up Phase (Month 30), 
the main application work can only take place afterwards, during the Operational Phase, 
defined by the HBP Framework Partnership Agreement (FPA). This will run from Month 31 
to Month 120. 

Four new Tasks related to Future Computing were added to the Subproject 11 as a result 
of the Competitive Call launched in late 2013. The five new Partners working on the new 
Tasks only joined the Project at the beginning of Month 7, so it was decided to delay 
finalisation of the SP11 research plan (i.e. this document) to allow them sufficient time to 
integrate themselves into the Subproject and define their contributions. 
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2.3 Applications Subproject: Relations to other Platforms 

From the overall Subproject goals, it is evident that close collaboration with all six 
Platform Subprojects is essential. In the area of Future Neuroscience applications, SP11 
interacts primarily with the Neuroinformatics Platform (SP5), the Brain Simulation 
Platform (SP6) and the Neurorobotics Platform (SP10). For Future Medicine applications, 
SP11 works mainly with the Medical Informatics Platform (SP8), but also with the High 
Performance Computing Platform (SP7). Finally, for Future Computing applications, SP11 is 
closely linked to the Neuromorphic Computing Platform (SP9). As a result, SP11 is probably 
the most “connected” scientific Subproject in the entire HBP. 
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3. WP11.1: Future Neuroscience 

3.1 The Overall Future Neuroscience Research Plan 

The objective of this Work Package (WP) is to provide an initial demonstration of the value 
of the Neurorobotics Platform (NRP) for experimental cognitive neuroscience, and to 
provide operational feedback on the design of the Platform. In the Ramp-Up Phase, 
WP11.1 will use the initial capabilities provided by the NRP to perform proof-of-concept 
simulation-based research on the multi-level brain mechanisms responsible for visual 
perception. In addition, this work may contribute to that of SP3’s Task 3.1.2 
(Understanding the circuits linking perceptions to actions, led by Martin Giese at Tübingen 
University in Germany). More broadly, this WP aims to demonstrate that the cognitive 
neuroscience community can use HBP-developed technologies to enhance their scientific 
progress. 

WP11.1 comprises the following Tasks: 

• T11.1.1 - Psychophysics of perception: the Weber-Fechner law (led by Michael 
Herzog at the EPFL, Switzerland, and Eduardo Ros at the University of Granada, 
Spain). 

• T11.1.2 – Integrated brain-body control benchmarks (led by Alois Knoll at the 
Technical University of Munich, Germany). 

3.2 T11.1.1 Psychophysics of Perception: the Weber-Fechner law 

This Task utilises the models, frameworks, and ideas of the HBP to connect theories of 
brain computing to psychophysical data that measure human performance. In close 
cooperation with T11.1.2, it also explores methodologies for benchmarking computational 
neuroscience models by explicitly comparing specific psychophysical data against the 
visual pathway. In a sense, the goal is to provide input to the HBP model systems and 
measure outputs from those model systems for comparison with known properties of 
biological counterparts. The work is guided by two overarching ideas: 

1) The neurophysiological properties of the cortical column identified by the HBP provide 
some guidance about which kinds of computations can be performed in cortical circuits 
for visual perception. 

2) Given the uncertainties about the properties of the cortical circuits (e.g., the model is 
derived from data gathered from the mouse barrel cortex), it is appropriate to 
investigate very robust behavioural data because the model might produce them even 
if many details are wrong. 

Different brain areas behave differently, in part because they receive different sensory 
information. A good cortical model can only behave properly if it receives appropriately 
modelled inputs. For visual perception, the sensory system is the retina of the human eye. 
Embedded within the retina are a variety of complex neural circuits that convert light 
energy into neural responses. These neural responses ultimately project to cortical areas 
as action potentials. The development of a good retinal model is thus crucial to 
understanding the behaviour of the cortical model and to properly relate model properties 
to human behaviour. 

The work involves identification, construction, and testing of models of the retina and 
visual cortex. As much as possible, these models are built using the NEST software 
program, which is also used in other areas of the HBP. 
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3.3  Software/Hardware Functions (Components of Task 11.1.1) 

Development of retina model simulation started at the beginning of the HBP, and is 
expected to continue for several months. The simulator is conceived as a configurable 
software system that can be used to carry out physiological reproductions of different 
retina models. Internal dynamics of neurons are based on published models of a Virtual 
Retina from the INRIA Sophia Antipolis–Méditerannée group. The goal is to implement and 
validate different retinal models that can run in the NEST software. The retinal simulator 
part of the Task breaks down into several key functions: 

Task No: T11.1.1 Partner: UGR 

Function No: 11.1.1.1 Leader: Eduardo Ros 

Function Name: Identification of retinal model properties 

Use Case A: Model developers know which retinal models to implement for retina simulator 

Planned Start Date: October 2013 Planned Completion Date: December 2013 

Requires Functions:  

 

Task No: T11.1.1 Partner: UGR 

Function No: 11.1.1.2 Leader: Eduardo Ros 

Function Name: Adaptation of the INRIA models to the retina simulator 

Use Case A: Model runs in simulator and produces neural output 

Planned Start Date: January 2014 Planned Completion Date: April 2014 

Requires Functions: 11.1.1.1 

 

Task No: T11.1.1 Partner: UGR 

Function No: 11.1.1.3 Leader: Eduardo Ros 

Function Name: Connection of the retina simulator to NEST 

Use Case A: Model runs in NEST and produces neural output 

Planned Start Date: April 2014 Planned Completion Date: May 2014 

Requires Functions: 11.1.1.1, 11.1.1.2 

 

Task No: T11.1.1 Partner: UGR 

Function No: 11.1.1.4 Leader: Eduardo Ros 

Function Name: Refinement of the INRIA models in the retina simulator 

Use Case A: Performance improves, bugs are fixed 

Planned Start Date: May 2014 Planned Completion Date: June 2014 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3 
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Task No: T11.1.1 Partner: UGR 

Function No: 11.1.1.5 Leader: Eduardo Ros 

Function Name: Validation of Simulation Platform against existing neurophysiological data 

Use Case A: Model matches known neurophysiological properties 

Use Case B: Understanding reasons for mismatches with known neurophysiological properties 

Planned Start Date: May 2014 Planned Completion Date: November 2014 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3 

 

Task No: T11.1.1 Partner: UGR 

Function No: 11.1.1.6 Leader: Eduardo Ros 

Function Name: Connection of the retinal model to LGN model and then to cortical model 

Use Case A: Model expanded to include LGN processing 

Use Case B: Model connects to cortical model. 

Planned Start Date: May 2014 Planned Completion Date: November 2014 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.9 

 

Task No: 
T11.1.1, 
T11.1.2 Partner: UGR, TUM 

Function No: 11.1.1.7 Leader: Eduardo Ros, 
Florian Röhrbein 

Function Name: Integration of retinal model with simulation environment developed in SP10 

Use Case A: Model receives input from simulation environment.  

Planned Start Date: December 2014 Planned Completion Date: March 2016 

Requires Functions: 11.1.1.0, 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.9 

The second major part of the Task is to develop and implement a model of visual areas of 
cortex. As a starting point, a version of the published LAMINART model will be 
implemented in NEST. The cortical model part of the Task breaks down into several key 
functions: 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.8 Leader: Michael Herzog 

Function Name: Identification of cortical model properties 

Use Case A: Model developers know which cortical model to implement. 

Planned Start Date: October 2013 Planned Completion Date: April 2014 

Requires Functions:  
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Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.9 Leader: Michael Herzog 

Function Name: Implementation of the LAMINART model in NEST 

Use Case A: Simulation runs in simulator and produces model neural output. 

Planned Start Date: April 2014 Planned Completion Date: September 2014 

Requires Functions: 11.1.1.8 

 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.10 Leader: Michael Herzog 

Function Name: Refinement of the LAMINART model in NEST 

Use Case A: Performance improves; bugs are fixed. 

Planned Start Date: September 2014 Planned Completion Date: November 2014 

Requires Functions: 11.1.1.8, 11.1.1.9 

 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.11 Leader: Michael Herzog 

Function Name: Validation of NEST implementation computational properties against model aims 

Use Case A: Model behaviour shown to match previously published simulations 

Use Case B: Understanding reasons for mismatches with previously published simulations 

Planned Start Date: October 2014 Planned Completion Date: December 2014 

Requires Functions: 11.1.1.8, 11.1.1.9, 11.1.1.10 

 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.12 Leader: Michael Herzog 

Function Name: Model refinement to match HBP cortical column statistics 

Use Case A: Model behaviour shown to match columnar statistics 

Use Case B: Model revised to agree with columnar statistics 

Use Case C: Model concluded to be incompatible with columnar statistics 

Planned Start Date: October 2014 Planned Completion Date: March 2016 

Requires Functions: 11.1.1.8, 11.1.1.9, 11.1.1.10, 11.1.1.11 

The third part of the Task’s research plan is to use the model to account for behavioural 
data that have previously been measured with psychophysical experiments. For each 
function, the strategy is to identify relevant psychophysical measurements, generate 
equivalent visual stimuli for input to the model retina, and identify appropriate model 
measures for comparison with the psychophysical data. When possible, the model 
behaviour will also be compared with published neurophysiological measurements. These 
investigations will be run in parallel as much as possible. By necessity, Functions 1, 2, 5, 6, 
8 and 9 must be completed before Functions 13-20, but there is no required order for the 
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other Tasks. When the simulation environment in SP10 becomes available, Function 7 will 
be initiated and Functions 13-20 will make use of the environment. 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.13 Leader: Michael Herzog 

Function Name: Model emulation of Weber’s law for brightness perception 

Use Case A: Model matches experimental data 

Use Case B: Reasons for non-matching experimental data are understood. 

Planned Start Date: October 2014 Planned Completion Date: May 2015 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.8, 11.1.1.9, 11.1.1.10, 11.1.1.11 

 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.14 Leader: Michael Herzog 

Function Name: Model emulation of Weber’s law for line length 

Use Case A: Model matches experimental data 

Use Case B: Reasons for non-matching experimental data are understood 

Planned Start Date: October 2014 Planned Completion Date: May 2015 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.8, 11.1.1.9, 11.1.1.10, 11.1.1.11 

 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.15 Leader: Michael Herzog 

Function Name: Model emulation of Bloch’s law for brightness perception. 

Use Case A: Model matches experimental data. 

Use Case B: Reasons for not matching experimental data are understood. 

Planned Start Date: October 2014 Planned Completion Date: March 2016 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.8, 11.1.1.9, 11.1.1.10, 11.1.1.11 

 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.16 Leader: Michael Herzog 

Function Name: Model emulation of illusory contours 

Use Case A: Model matches experimental data 

Use Case B: Reasons for non-matching experimental data are understood 

Planned Start Date: October 2014 Planned Completion Date: March 2016 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.8, 11.1.1.9, 11.1.1.10, 11.1.1.11 
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Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.17 Leader: Michael Herzog 

Function Name: Model emulation of brightness contrast 

Use Case A: Model matches experimental data. 

Use Case B: Reasons for not matching experimental data are understood. 

Planned Start Date: October 2014 Planned Completion Date: March 2016 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.8, 11.1.1.9, 11.1.1.10, 11.1.1.11 

 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.18 Leader: Michael Herzog 

Function Name: Model emulation of visual persistence 

Use Case A: Model matches experimental data. 

Use Case B: Reasons for not matching experimental data are understood. 

Planned Start Date: October 2014 Planned Completion Date: March 2016 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.8, 11.1.1.9, 11.1.1.10, 11.1.1.11 

 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.19 Leader: Michael Herzog 

Function Name: Model emulation of backward masking 

Use Case A: Model matches experimental data. 

Use Case B: Reasons for not matching experimental data are understood. 

Planned Start Date: October 2014 Planned Completion Date: March 2016 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.8, 11.1.1.9, 11.1.1.10, 11.1.1.11 

 

Task No: T11.1.1 Partner: EPFL 

Function No: 11.1.1.20 Leader: Michael Herzog 

Function Name: Model emulation of visual afterimages 

Use Case A: Model matches experimental data. 

Use Case B: Reasons for not matching experimental data are understood. 

Planned Start Date: October 2014 Planned Completion Date: March 2016 

Requires Functions: 11.1.1.1, 11.1.1.2, 11.1.1.3, 11.1.1.8, 11.1.1.9, 11.1.1.10, 11.1.1.11 
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Figure 1: Timeline of Functions in Task 11.1.1 

3.4 T11.1.2 Integrated Brain-Body Control Benchmarks 

This Task will study selected brain capabilities such as perception, coordinated movements 
and spatial cognition. It will specifically look at how these capabilities can be replicated in 
behavioural experiments using robots in closed-loop systems that link brain simulations to 
simplified demonstrators and/or virtual environments. In the beginning, a robotic arm with 
limited degrees of freedom will serve as a demonstrator. As soon as we arrive at more 
complex set-ups, quantitative data on behaviour and cognitive performance can serve as 
benchmarks for the validation of future brain simulations and simplified brain models. In 
the long run, Task 11.1.2 will provide benchmarks for replicating classical cognitive 
neuroscience experiments using neurorobots, and will make comparisons between artificial 
and living animals. The results of these experiments will help validate brain/cognition 
models, and explore the structure and function of cognitive abilities for use in robots and 
other devices. More specifically, this Task will: 

• Collaborate with the Cognitive Neuroscience Subproject (SP3) in designing and 
performing cognitive neuroscience experiments. 

• Initially use realistic, physics-based simulations and virtual robots to perform the 
experiments, and then focus on physical robots after the Ramp-Up Phase. 

• Support the construction of experimental setups of increasing complexity, starting with 
simple experiments that explore and validate cognitive models of perception. 

For the Ramp-Up Phase, a musculoskeletal toolkit will be chosen as a robotic platform. It 
should provide a modular, reconfigurable design based on variable-stiffness joints with 
motors, links, and sensors for joint position and torque. We will select a real-time model 
of the cerebellum as a motor controller, and port it to PyNN so that it can be used as 
front-end for neuronal simulators, including the SpiNNaker system (SP9). 

The initial setup will be designed to control a robot with only one joint to follow a simple 
trajectory, in which the emulated cerebellum can take over control. The cerebellum 
model should run in real-time on the SpiNNaker system enabling a closed loop. After this 
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proof-of-concept implementation, we will scale up the robot kinematic complexity 
including more hardware parts. 

3.5 Software/Hardware Functions (Components of Task 11.1.2) 

Development of retina model simulation started at the beginning of the HBP, and is 
expected to continue for several months. The simulator is conceived as a configurable 
software system that can be used to carry out physiological reproductions of different 
retina models. Internal dynamics of neurons are based on published models of a Virtual 
Retina from the INRIA Sophia Antipolis–Méditerannée group. The goal is to implement and 
validate different retinal models that can run in the NEST software. The retinal simulator 
part of the Task breaks down into several key functions: 

Task No: T11.1.2 Partner: TUM 

Function No: 11.1.2.1 Leader: Alois Knoll 

Function Name: Development of suitable set of benchmarks 

Use Case A: Contribution to MS200 “Sensor and motor models” reached 

Planned Start Date: January 2014 Planned Completion Date: March 2014 

Requires Functions:  

 

Task No: T11.1.2 Partner: TUM 

Function No: 11.1.2.2 Leader: Alois Knoll 

Function Name: Development of suitable set of benchmarks 

Use Case A: Contribution to MS201 “Initial experimental design” reached 

Planned Start Date: April 2014 Planned Completion Date: September 2014 

Requires Functions: 11.1.2.1 

 

Task No: T11.1.2 Partner: TUM 

Function No: 11.1.2.3 Leader: Alois Knoll 

Function Name: Development of suitable set of benchmarks 

Use Case A: Contribution to MS202 “Robot, environment and experiment implemented” 
reached 

Planned Start Date: October 2014 Planned Completion Date: March 2015 

Requires Functions: 11.1.2.2 

 

Task No: T11.1.2 Partner: TUM 

Function No: 11.1.2.4 Leader: Alois Knoll 

Function Name: Development of suitable set of benchmarks 

Use Case A: Contribution to MS203 “First experiment completed” reached 

Planned Start Date: April 2015 Planned Completion Date: March 2016 

Requires Functions: 11.1.2.3 
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Figure 2: Timeline of Functions in Task 11.1.2 

3.6 Scientific Key Performance Indicators for WP11.1 

Progress will be measured by assigning a “status” to each function in the research plan. 
Functions involving the development of model frameworks require more work, and so they 
are assigned a larger number of statuses than functions that utilise those frameworks to 
explore relations between the models and human behaviour. Table 1 summarises the 
possible statuses for each function. 
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Function Function Name Possible KPI statuses 
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11.1.2.1 Development of suitable set of 
benchmarks 

1. Initial set of benchmarks 
2. Refined set of benchmarks 1 

11.1.1.1 Identification of retinal model 
properties 

1. Candidates considered 
2. Properties selected 2 

11.1.1.2 Adaptation of the INRIA models to 
the retina simulator 

1. Define simulator architecture 
2. Define retinal structure 
3. Construct model neurons 

3 

11.1.1.3 Connection of the retina simulator 
to NEST 

1. Define simulator NEST interface 
2. Define NEST retina interface 2 

11.1.1.4 Refinement of the INRIA models in 
the retina simulator 

1. Speed up code 
2. Identify and fix bugs 0 

11.1.1.5 
Validation of the Simulation 
Platform against existing 
neurophysiological data 

1. Identify benchmark neurophysiological data 
2. Create model stimuli 
3. Run simulation on model stimuli 
4. Compare model behaviour to data 
5. Refine model as needed 

0 

11.1.1.6 
Connection of the retinal model to 
a LGN model and then to the 
cortical model 

1. Define LGN properties 
2. Create LGN simulator 
3. Develop interface for retina to LGN models 
4. Develop interface for LGN to cortical models 

0 

11.1.1.7 
Integration of the retinal model 
with the simulation environment 
being developed in SP10 

1. Define retina interface 
2. Verify that stimuli give appropriate model 

responses 
0 

11.1.1.8 
Identification of cortical model 
properties 

1. Candidates considered 
2. Properties selected 2 

11.1.1.9 Implementation of the LAMINART 
model in NEST 

1. Define cortical column architecture as pixels 
2. Define neural layers within a column 
3. Define individual neurons within a layer 
4. Connect neurons within and between layers 

0 

11.1.1.10 Refinement of the LAMINART 
model in NEST 

1. Speed up code 
2. Identify and fix bugs 0 

11.1.1.11 

Validation of the computational 
properties of the NEST 
implementation with regard to the 
model aims 

1. Identify key computational properties. 
2. Run model for appropriate stimulus inputs 
3. Compare model behaviour to desired behaviour 

0 

11.1.1.12 Model refinement to match HBP 
cortical column statistics 

1. Identify useful HBP statistics 
2. Measure statistics in current model 
3. Compare HBP statistics and model statistics 
4. Refine model as appropriate 

0 

11.1.1.13 Model emulation of Weber’s law 
for brightness perception 

1. Identify representative empirical measure of effect 
2. Identify stimuli to induce the effect 
3. Construct simulated stimuli 
4. Identify model behaviour that corresponds to 

experimental measurement 
5. Run model with simulated stimuli 
6. Measure model behaviour 
7. Compare model behaviour to empirical data 

3 
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Function Function Name Possible KPI statuses 
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11.1.1.14 Model emulation of Weber’s law 
for line length 

1. Identify representative empirical measure of effect 
2. Identify stimuli to induce the effect 
3. Construct simulated stimuli 
4. Identify model behaviour that corresponds to 

experimental measurement 
5. Run model with simulated stimuli 
6. Measure model behaviour 
7. Compare model behaviour to empirical data 

2 

11.1.1.15 Model emulation of Bloch’s law for 
brightness perception 

1. Identify representative empirical measure of effect 
2. Identify stimuli to induce the effect 
3. Construct simulated stimuli 
4. Identify model behaviour that corresponds to 

experimental measurement 
5. Run model with simulated stimuli 
6. Measure model behaviour 
7. Compare model behaviour to empirical data 

0 

11.1.1.16 
Model emulation of illusory 
contours 

1. Identify representative empirical measure of effect 
2. Identify stimuli to induce the effect 
3. Construct simulated stimuli 
4. Identify model behaviour that corresponds to 

experimental measurement 
5. Run model with simulated stimuli 
6. Measure model behaviour 
7. Compare model behaviour to empirical data 

0 

11.1.1.17 Model emulation of brightness 
contrast 

1. Identify representative empirical measure of effect 
2. Identify stimuli to induce the effect 
3. Construct simulated stimuli 
4. Identify model behaviour that corresponds to 

experimental measurement 
5. Run model with simulated stimuli 
6. Measure model behaviour 
7. Compare model behaviour to empirical data 

0 

11.1.1.18 Model emulation of visual 
persistence 

1. Identify representative empirical measure of effect 
2. Identify stimuli to induce the effect 
3. Construct simulated stimuli 
4. Identify model behaviour that corresponds to 

experimental measurement 
5. Run model with simulated stimuli 
6. Measure model behaviour 
7. Compare model behaviour to empirical data 

0 

11.1.1.19 Model emulation of backward 
masking 

1. Identify representative empirical measure of effect 
2. Identify stimuli to induce the effect 
3. Construct simulated stimuli 
4. Identify model behaviour that corresponds to 

experimental measurement 
5. Run model with simulated stimuli 
6. Measure model behaviour 
7. Compare model behaviour to empirical data 

0 
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Table 1: KPI Status Values Assigned to the Functions in WP11.1 
  

Function Function Name Possible KPI statuses 
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11.1.1.20 Model emulation of visual 
afterimages 

1. Identify representative empirical measure of effect 
2. Identify stimuli to induce the effect 
3. Construct simulated stimuli 
4. Identify model behaviour that corresponds to 

experimental measurement 
5. Run model with simulated stimuli 
6. Measure model behaviour 
7. Compare model behaviour to empirical data 

0 

11.1.2.1 Development of suitable set of 
benchmarks for MS200 

Set of benchmarks 1 

11.1.2.2 Development of suitable set of 
benchmarks for MS201 Set of benchmarks 0 

11.1.2.3 Development of suitable set of 
benchmarks for MS202 Set of benchmarks 0 

11.1.2.4 Development of suitable set of 
benchmarks for MS203 Set of benchmarks 0 

Total   16 
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4. WP11.2: Future Medicine 

4.1 The Overall Future Medicine Research Plan 

Today, medical researchers lack data and tools to help them understand how to identify 
the biological mechanisms that explain the complex nature of brain diseases. Current 
studies on the diagnosis and treatment of brain diseases often result in dead-end research 
or weak conclusions, because they face great challenges that stem from a failure to 
comprehend significant population heterogeneity. In addition, diagnosing brain diseases in 
terms of symptoms and syndromes makes it very difficult to produce correct diagnoses, or 
even to select patients for clinical trials.  

To address these issues, the Medical Informatics Platform of SP8 will federate imaging, 
genetic and other clinical data that are currently stored in hospital/research archives and 
databases, but are unavailable to the wider medical research community. SP8 will also 
provide tools for epidemiological exploration, numerical and statistical analysis, data 
visualisation and data mining. WP11.2 will use these resources to identify unique biological 
signatures of brain diseases. 

The biological signatures of diseases are deterministic mathematical constructs that 
describe variability at the phenomenological level (clinical features with symptoms and 
syndromes) and at the biological level (genetic, proteomic, etc.). The key property of a 
biological signature of disease is that it accounts for the fact that a symptom of brain 
dysfunction can be due to many biological causes (one-to-many symptom mapping) and 
that a biological cause can be present with many symptoms (many-to-one symptom 
mapping). In reality, the situation is often one of many-to-many mappings between 
symptoms and biological causes. 

With advanced computing power and data-mining, nearly exhaustive searches of a data 
space can be performed to identify sets of rules that describe homogeneous populations, 
to explain their biological data, and to predict patterns of symptoms. Biological signatures 
of diseases result from a continuous, dynamic data-mining process of clinical data in local 
data sources. These will be used for diagnosis, more accurate prognosis and new 
approaches to drug discovery for the development of new medicines. The biological 
signatures of brain diseases will form the basis for a new multi-dimensional brain disease 
space, facilitating scientific investigation and permitting personalised medicine. The 
advantage of disease signatures is that they are based on mechanistic, deterministic and 
predictive rules, as opposed to purely descriptive (phenomenological or clinical) features. 

4.2 T11.2.1 Biological Signatures of Diseases 

There is a great amount of uncertainty regarding the accuracy of diagnostic classification 
in the early stages of AD, because of the underlying heterogeneity in etiologies leading to 
similar phenotypes. Even with common Alzheimer's disease, the clinical syndromic 
diagnoses are wrong in 20% of cases. Research in this Task is designed to show that with 
modern mathematics, powerful information technology, and a large data set, it is possible 
to identify homogeneous groups of patients characterised by a set of parameterised latent 
causes, which constitute what we call "disease signatures". The Task will rely on data that 
are accessible through the Medical Informatics Platform, including data on the longitudinal 
study of the large cohort of ‘control’ Alzheimer’s patients. To explain the observed 
heterogeneity, we will use a rule-based clustering algorithm to identify homogeneous 
subgroups of patients. The hypothesis is that such subgroups are due to the same 
underlying causes. 
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4.2.1 Databases  

We will use 329 anonymised MRI scans with ancillary clinical and demographic data on 
patients with dementia from pharmaceutical trials, and the combined longitudinal data 
sets of 2-3,000 MRI scans with cognitive scores and associated genotyping single nucleotide 
polymorphism (SNPs) from the 3C-cohort (France). Data storage and pre-processing will be 
performed at the Laboratoire de Recherche en Neuroimagerie (LREN) under the direction 
of Ferath Kherif. 

4.2.2 Methodology 

Our methods will be based on the state-of-the-art machine learning algorithms. Classical 
univariate methods based on brain morphometry compare sample means and use 2-sample 
t-tests to assess the significance of the differences, therefore averaging across subjects 
and ignoring individual differences. When variability between subjects is high, classical 
tests will fail to show possible true differences. In addition, classical univariate methods 
do not take into account the rich sources of information that arise from interactions 
between brain regions. Identification of different combinations of brain areas that are 
predictive of disease requires complex analyses that also lie beyond currently used 
multivariate linear methods (e.g. support vector machines, or SVM). With current 
neuroimaging methods, such network-based analyses result in an intractable problem 
because of the combinatorial explosion that occurs when taking into account more than 
one region at a time. With a total of 90 regions from a standard human atlas (e.g., 
Automated Anatomical Labelling AAL) in this pilot experiment, the number of possible 
combinations that involve two regions is 4.5*103; for five regions, it is 5.72*1012 (for the 
exact number, see Equation 1 below). Multivariate methods like SVM solve this issue by 
using kernel approaches, but at the expense of massive data reduction and potential loss 
of information. By contrast, use of an efficient algorithm and powerful computational 
resources, such as rule-based clustering, results in exhaustive searches of the data without 
the same loss of information. The algorithm performs an exhaustive search (100% of the 
data are explained) to predict multiple inputs. The outputs are explicit formal rules that 
are easy to interpret and allow computer simulation experiments. 

 

𝐶!! =
𝑛!

𝑘! (𝑛 − 𝑘)!
 

 

Equation 1: Number of Combinations Involving n Regions 

In summary, we will develop a model for the identification of biological signatures of 
neurological and psychiatric disease, and demonstrate its validity for the case of 
dementia. The model will be: (1) comprehensive, describing the main characteristics of 
each disease (at this stage dementia) in the simplest possible form; (2) complex, capturing 
non-linear interactions, confounding factors and hitherto undocumented and unknown 
inter-individual differences; and (3) causal, making specific predictions about the 
mechanisms and time onset of disease. For this purpose, we will: 

• Scale up a pilot study (200 subjects’ records) to a large-scale level (c.a. 2-4,000 
subjects’ records) from existing data sources (research databases, hospital data, 
epidemiological studies, and clinical trial data). 

• Apply novel data mining approaches in High Performance Computing facilities to 
extract disease signatures. 
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4.2.3 Objectives  

• Characterise the target population of dementia patients using brain structure 
information from magnetic resonance imaging (MRI) as well as genotyping, 
neuropsychological, biological and clinical measures. 

• Demonstrate that the rule-based disease-signatures provide comprehensive models that 
explain the variability among patients and aged healthy subjects in a reduced set of 
factors than can be interpreted by clinicians. 

 
Figure 3: Biological Signature of Brain Diseases/Continuous Data Mining Process 

4.3 Software/Hardware Functions (Components of Task 11.2.1) 

Task No: T11.2.1 Partner: CHUV 

Function No: 11.2.1.1 Leader: Ferath Kherif 

Function Name: Description format for the biological signature of the disease. 

Use Case A: Feature selection for data mining algorithm 

Use Case B: Feature description for interpretation of results 

Planned Start Date: October 2013 Planned Completion Date: October 2014 

Requires Functions: None 

 
  



 

Co-funded by the 

 
 

 
HBP_SP11_ApplicationsResearchPlan_D11.4.1_Final.docx 30-Oct-2014 Page 23 of 68 

 

Task No: T11.2.1 Partner: CHUV 

Function No: 11.2.1.2 Leader: Ferath Kherif 

Function Name: Informatics based model for generating biological signature of a disease. 

Use Case A: Model configuration 

Use Case B: Model training 

Planned Start Date: April 2014 Planned Completion Date: April 2015 

Requires Functions: 11.2.1.1 

 

Task No: T11.2.1 Partner: CHUV 

Function No: 11.2.1.3 Leader: Ferath Kherif 

Function Name: Biological signature of major dementia. 

Use Case A: Internal validation 

Use Case B: Model prediction 

Planned Start Date: October 2015 Planned Completion Date: October 2016 

Requires Functions: 11.2.1.2 

 

Task No: T11.2.1 Partner: CHUV 

Function No: 11.2.1.4 Leader: Ferath Kherif 

Function Name: Causal mechanisms for major dementias. 

Use Case A: Bottom-up generative model 

Use Case B: Model prediction 

Planned Start Date: April 2015 Planned Completion Date: April 2016 

Requires Functions: 11.2.1.3 

 

 
Figure 4: Timeline of Functions in WP11.2 
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4.4 Scientific Key Performance Indicators for WP11.2 

Each function will be implemented according to the timeline given in Figure 4 (above). 
Progress within a function will be measured by assigning it a “status”, as per  

Table 2 below. 

Table 2: KPI Status Values Assigned to the Functions in WP11.2 
  

Function Function Name Possible KPI statuses 

Cu
rr

en
t 

K
PI

 
st
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Ta
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at
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11.2.1.1 Description format for the 
biological signature of the disease 

Identify multimodal clinical data 
Data pre-processing 
Data aligned 
Feature selection 

3 

M3 
M6 
M9 
M12 

11.2.1.2 
Informatics based model for 
generating biological signature of 
a disease 

Implement test different algorithms 
Model configuration 
Benchmark algorithms  
Select algorithms 

3 

M12 
M18 
M18 
M18 

11.2.1.3 
Biological signature of major 
dementia 

Scale up a pilot study to a large-scale level 
Apply algorithm 
Clinical interpretation 
Internal validation 
Model prediction 

0 

M18 
M24 
M24 
M24 
M24 

11.2.1.4 Causal mechanisms for major 
dementias 

Define multi-scale description of the data 
Build an a priori bio-physiological model 
Compare model behaviour to data 
Identify the pathways 

0 

M24 
M24 
M30 
M30 

Totals   6  
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5. WP11.3: Future Computing 

5.1 The Future Computing Overall Research Plan 

Applications in Future Computing will prepare for the implementation of neural circuit 
models on the hardware systems provided by the Neuromorphic Computing Platform. The 
initial network architectures are compatible with the constraints given by the HBP 
hardware architectures, as described in the SP9 Platform specification document, and will 
all be formulated in the network description language PyNN. 

The HBP will offer a unique Neuromorphic Computing Platform to explore the 
computational capabilities of spiking neural networks. Two complementary hardware 
systems will be constructed, in Manchester (NM-MC-1) and Heidelberg (NM-PM-1). 

The NM-MC-1 system will consist of 0.5 million ARM cores, 18 per chip. The cores provide 
integer operation capability and each chip has six bi-directional links with a bandwidth for 
6 million spikes per second per link. Networks simulated on this system will operate in real 
time. The NM-PM-1 system will be a physical model based on analogue neurons and 
synapses with binary, asynchronous and continuous time spike communication. NM-PM-1 
will provide 20 individual wafer systems, replicating a total of 4 million neurons and 1 
billion synapses. Networks simulated on this system will operate 10,000 times faster than 
real time. 

Both systems are expected to commence hardware operation towards the end of the HBP’s 
Ramp-Up Phase. Preparatory studies to implement network architectures in this Subproject 
start earlier than this using simulation tools or smaller test set-ups. Initial experiments are 
restricted to networks with a maximum of a few tens of thousands of neurons and do not 
yet rely on the availability of spike-timing-depended-plasticity. Special emphasis is given 
to the specific features of the two complementary systems, i.e. the real-time operation 
with algorithm-based neural models in NM-MC-1 and the accelerated operation with 
diverse, analogue neural models in NM-PM-1. 

The Work Package has six Tasks, each of which corresponds to a specific application. One 
Task/application was part of the original HBP proposal: 

• T11.3.1 - Neuromorphic data mining systems (led by Frank Gottfried, SAP, Germany) 

After selection by independent reviewers through the Competitive Call process, five more 
Tasks/applications were added. The research groups concerned were not involved in the 
design and construction of the hardware systems, but they are typical of the future user 
community. 

• T11.3.2 - Port CABot3 to neuromorphic chips and extend (led by Christian Huyck and 
Michael Butterworth, Middlesex University, UK). CABot3 is an existing simulation 
system for learning cell assemblies. 

• T11.3.3 - Exploitation of feedback in ultra-fast spiking visual architectures (led by 
Bernabe Linares-Barranco, Instituto de Neurociencias, Valencia, Spain – part of the 
Consejo Superior de Investigaciones Cientificas or CSIC). This Task will develop spike-
based, multi-layer visual circuits for high-level object recognition. 

• T11.3.4 - Spiking associative networks for neuromorphic computing system (led by 
Ulrich Rückert, Bielefeld University, Germany). This Task will implement large-scale 
associative memory models using spiking neurons. 

• T11.3.5 - Asynchronous computational retina (led by Ryad Benosman, Pierre and Marie 
Curie University, Paris, France). This Task will develop a pure, event-driven visual 
computation approach that uses precise timing mechanisms to design new computation 
techniques in visual processing. 
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• T11.3.6 - Implementing a spiking classifier network on HiCANN (led by Thomas 
Nowotny, University of Sussex, UK). This Task will implement a scalable spiking neural 
network for multivariate classification. 

The five new groups are part of the Applications Subproject SP11, but it is crucial that 
they be integrated with the Neuromorphic Subproject (SP9), which provides the tools for 
their research. For this reason, the groups in WP11.3 take part in all SP9 teleconferences, 
videoconferences and face-to-face meetings. They have access to all tools developed in 
SP9 for the operation of the hardware systems and they participate in the training events. 
Initial feedback has shown that this integration approach is working very well. 

5.2 T11.3.1 Neuromorphic Data Mining Systems 

Very large, open-ended data streams are generated by real-time transaction systems in 
various industrial settings such as retail, utilities, surveillance and many more. In contrast 
to traditional data sets, stream data flow in and out of a computer system, and it may be 
impossible to store the entire stream due to the large volume. Even when the data are 
actually stored, multiple scans are getting very expensive so that single-scan analysis 
methods need to be applied [1]. 

Within this continuous stream of data, the most important task is the identification of 
spatial-temporal patterns. Although this has been an active research field for many years, 
and many researchers in the cognitive and computer sciences have attempted to tackle 
the problem [2-13], no general-purpose solution is currently available. Therefore, the goal 
of this activity is to contribute to this active research field through the 
adaption/modification of existing algorithms. A requirement for the algorithm is the ability 
to detect hidden patterns and causal relationships. A software implementation with non-
spiking neurons first will be developed as a proof-of-concept. Next, the algorithm will be 
extended to a spiking network system. Finally, the implementation will be migrated to the 
Neuromorphic Computing Platform provided by the Human Brain Project (HBP). The final 
proof point will be the ability of the algorithm to handle real-world, business-relevant data 
sets, and to demonstrate the validity of the Neuromorphic Computing Platform as a tool 
for implementing a data mining system. 

5.2.1 Objectives 

The main goal of Task is to demonstrate the validity of the Neuromorphic Computing 
Platform as a tool for producing and prototyping cognitive devices and systems outside the 
realm of biology, and in particular, to validate the possibility of developing cognitive 
business information systems. Basic features of such a cognitive business information 
system will be the ability to identify and recall spatial-temporal patterns in data streams, 
and the ability to predict future elements of the sequence. 

We will review conventional state-of-the machine learning techniques to identify 
algorithms that are suitable for implementation in an automated, self-learning computer 
system that allows for the analysis of (massive) business data. SAP will identify, modify 
and adapt the algorithm within this Task, while the University of Heidelberg will provide 
the NM-PM system as part of the HBP. 

The major success criterion for this Task will be the demonstration that non-biological 
data can be processed on the Neuromorphic Computing Platform. We will evaluate several 
business scenarios as possible test cases. Candidates include business process 
management/complex event processing, supply chain management, predictive analytics or 
in-memory database management. 

The expected outcome of this activity is a prototypical implementation of an appropriate 
data-mining algorithm on the Neuromorphic Hardware System, as well as an in-depth 
understanding of the potential application areas of such a system. 
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5.2.2 Possible Architecture 

We have investigated several different architectures, and most of them address very 
specific use cases and cannot be easily generalised. A possible architecture inspired by 
biological principles—like axonal transmission delays [14, 15] and Hebb’s learning rule for 
the creation of cells assemblies—shows promise and has been implemented as a proof-of-
concept. The order and ordinal structure of a sequence is reflected in this architecture, as 
a columnar and horizontal (layered) organisation of cells. The cells form regions and 
several regions are connected to each other and organised within a hierarchical model. 
The learning process within the model leads to the establishment of lateral connections 
between cells (within a region) and feedforward connections between cells of different 
regions. The learning rule leads to groups of cells (cell assemblies) representing a specific 
input sequence with appropriate axonal time delays, so that the occurrence of a previously 
learned sequence triggers the firing of a neuron (group of neurons) of a higher region. This 
is very similar to the concept of polychronisation described by Izhikevich [2]. The lateral 
connections between cells within a region are used to establish predictions for the next 
time step. If a lateral connection becomes active, we expect the cell to be activated by 
feedforward input in the next time step. A sequence is detected by a number of successful 
lateral predictions. Sequences in higher layers represent more complex sequences 
(sequences of sequences), and the output of one layer is the input to the next layer. 
Therefore, the model implements a separation of different time scales trigged by events 
from a lower region. 

An input layer is randomly connected to the cells of the lowest region. A local winner-
take-all (WTA) or a soft WTA method is applied to generate a sparse and distributed 
representation of the input data within the lowest region. Several authors have previously 
described this process [6]. The stream of input signals is either 0 or 1. 

Several of these building blocks can be connected side-by-side, allowing for parallel 
learning of multiple dimensions. For instance, the melody and the rhythm of a piece of 
music can be learned in parallel with connections synchronising the two aspects. The 
following figure depicts the current scope of the implementation. 

 
Figure 5: Possible Architecture 

The algorithm is currently available as a proof-of-concept software implementation based 
on static neurons, which rely on internal states rather than on spiking neurons. Preliminary 
tests with various data streams (time series) have been performed, and initial results look 
promising. However, compared to existing hardware implementation on the neuromorphic 
hardware [1], the proposed architecture may turn out to be too complex for hardware 
implementation during the Ramp-Up Phase, especially since it relies on precise axonal 
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time delays. Therefore, selected computing motives that constitute building blocks of the 
proposed architecture will have to be implemented as a first step. We will also investigate 
alternative architectures, particularly in the area of Hidden Markov Models. 

5.2.3 Work Plan 

The Work Plan describes the various activities for further implementation of the proposed 
architecture using non-spiking and spiking cell assemblies, extensive testing, migration to 
the Neuromorphic Computing Platform and an analysis of the underlying theoretical 
methods and concepts. 

The proposed architecture from the previous section will be further analysed. Applying 
data sets from a relevant business scenario will allow us to evaluate and assess the 
potential for future use. In parallel, we will investigate the required adaption and 
modification of the algorithm necessary for an implementation as a spiking neural network 
(SNN). The implementation will be performed using the PyNN framework [2]. A key 
advantage of the PyNN framework is that it provides an interface to the Neuromorphic 
Computing Platform, and therefore facilitates fast migration to the neuromorphic 
hardware system. 

We will perform a detailed investigation of current alternative approaches. In particular, 
we will compare the recently developed online approximation schemes with Hidden Markov 
Models (HMM) using sampling techniques [3, 4]. Other online versions of the Baum-Welch 
Algorithms will also be included in the investigation. This work will be part of the 
algorithm development/theory activities. Depending on the outcome of these 
investigations, major changes and modifications to the proposed architecture may be 
required. 

A total of 30 PM is available for the full duration of the Task. This includes the activities 
required for the current implementation of the proposed architecture, the comparison to 
existing state-of-the-art implementation and the activities described in this section. The 
Task team is staffed with two senior researchers (part-time). A job posting for a master 
thesis student has been published. At a later stage, an opening for a second master 
student dedicated to the migration to the Neuromorphic Computing Platform will become 
available. 

5.2.4 Software/Hardware Functions (Components of Task 11.3.1) 

The function boxes and timetable below depicts the envisaged start and end dates of the 
planned activities. These estimates are based on the current status, but are subject to 
change if new knowledge becomes available. 
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Task No: T11.3.1 Partner: SAP 

Function No: 11.3.1.1 Leader: Frank Gottfried 

Function Name: Evaluation of potential use cases and possible algorithms including PoC 
software implementations  

Use Case A: Algorithm identified and possible architecture selected 

Planned Start Date: October 2013 Planned Completion Date: Jan 2015 

Requires Functions:  

 

Task No: T11.3.1 Partner: SAP 

Function No: 11.3.1.2 Leader: Frank Gottfried 

Function Name: PyNN implementation and migration to Neuromorphic Computer Platform of 
selected computing motives 

Use Case A: Architecture runs on simulator package and HW 

Planned Start Date: Jan 2015 Planned Start Date: Jan 2015 

Requires Functions: 11.3.1.1 

 

Task No: T11.3.1 Partner: SAP 

Function No: 11.3.1.3 Leader: Frank Gottfried 

Function Name: Recruiting of a master student for implementation and testing 

Use Case A: In-depth analysis performed and potential business applications understood 

Planned Start Date: Oct 2014 Planned Start Date: Oct 2014 

Requires Functions:  

 

Task No: T11.3.1 Partner: SAP 

Function No: 11.3.1.4 Leader: Frank Gottfried 

Function Name: Evaluation/test with real-world business data 

Use Case A: Test with relevant data sets can be performed 

Planned Start Date: October 2015 Planned Start Date: October 2015 

Requires Functions: 11.3.1.2 
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Figure 6: Timeline of Functions in T11.3.1 

 
5.2.5 Scientific Key Performance Indicators for Task 11.3.1 

During the Task, we envisage reviewing 2-4 data sets from different business scenarios 
(some of them mentioned above) as potential application areas. A Key Performance 
Indicator (KPI) will therefore be the number of data sets evaluated. A second indicator will 
be the migration of the selected algorithm (or part thereof) to the neuromorphic 
hardware. Finally, if an appropriate data set is identified and a successful migration to the 
hardware is performed, a third KPI will be the relative performance improvements 
compared to available conventional solutions. Details will depend on the specific test case. 
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5.3 T11.3.2 Port CABot3 to Neuromorphic Chips and Extend 

NEAL will implement a novel computing paradigm: an embodied agent in spiking neurons 
on the neuromorphic systems. The earliest phase will use the Neuromorphic Platform to 
implement a simplified version of a brain model by translating the existing CABot3 system 
to PyNN, and then onto the neuromorphic chips. This relies on the existing CABot3 code, 
written in Java, but also on PyNN, and eventually on SpiNNaker and HICANN (SP9).  
 
CABot3 is implemented entirely in our own Fatiguing Leaky Integrate and Fire (FLIF) neural 
model written in Java. It uses over 100,000 neurons, but simulates the entire system in 
roughly real-time on a PC, since the discrete time steps correlate with 10ms. CABot3 is 
broken into 46 subnets, enabling some degree of modularity. We have already 
implemented the model without fatigue in PyNN. As several of the subnets do not take 
advantage of fatigue, several subsystems (e.g., the planning subnets) can be implemented 
immediately. We expect that the fatigue model will be relatively easy to implement in 
standard PyNN neural models. Moreover, as part of cell assembly (CA) learning, a different 
fatigue model will be used.  
 
Learning is a similar problem because CABot3 uses both long and short-term synaptic 
modification (Huyck, 2009). We expect long-term learning to be relatively straightforward, 
but short-term plasticity may be more of a challenge. Moreover, these challenges may 
need a different solution for each of the chips. These proposed initial experiments will use 
up to 100,000 neurons, but this should not exceed the “maximum of a few tens of 
thousands of neurons” mentioned in the call, because the time constant is so large. 
Similarly, the proposed system does not take advantage of STDP; learning is based entirely 
on co-firing in a given 10ms cycle. 
 
The second phase will explore CAs, a generic circuit concept. This will meet the 
theoretical foundations objective by furthering generic CA models. CAs are a long-standing 
and well-supported theory linking psychology and biology (Hebb, 1949; Huyck & Passmore, 
2013). During the development of CABot3, we showed that a sufficiently large spiking 
neural network is Turing complete (Byrne & Huyck, 2010), and implemented an embodied 
agent solely in spiking neurons. During development, it became clear that the difficult 
question was not how to program a neural system to function; rather, the question was 
which neural model, network and topology were needed so that it could learn to function. 
Prior to CABot and since finishing, we have studied learning with these systems. Our 
earlier learning work (Huyck & Orengo, 2005; Huyck, 2007; Nadh & Huyck, 2012) focused 
on nets where all neurons were stimulated by the environment. The extension of our FLIF 
model to allow spontaneous firing from hypo-fatigue has enabled the growth of neural 
circuits in areas that are not directly stimulated from the environment (Huyck & Mitchell, 
2013). This is essentially still a sensory task, since firing stops when the stimulus stops. 
CABot3 needed CAs to persist mainly for relatively precise times to support natural 
language parsing dynamics, but also for planning. In CABot3, CAs were mostly programmed 
by setting synaptic weights. Some progress has been made using small world topologies, so 
that the CAs persistently fire longer when they are activated more strongly, and when they 
are reactivated. NEAL will combine these two strands so that CAs, which persist for 
psychologically realistic times, can be learned. 
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Neuromorphic Computing Systems Objective: Achieved by: 

Implement novel computing paradigms Implement an embodied agent in spiking 
neurons. 

Generic circuit concepts of spiking neurons Develop improved cell assembly models. 

Operational Objective Area: Achieved by: 

Neuromorphic Platform Implementing simplified versions of brain 
models. 

Theoretical foundations Furthering generic CA models. 

Brain Simulation Platform Building point models for simulating brain 
areas. 

Cognitive Architecture 
Building neuro-cognitive models to extract 
principles. 

Table 3: Objectives and Approach of T11.3.2 
 
Some of the evaluations of NEAL will meet the cognitive architecture objective by building 
neuro-cognitive models to extract generic principles. CABot3 already has a cognitive model 
of parsing and one of rule learning. The new simulations will learn novel categories of 
visual items from the environment. There will be a range of 3D shapes with a range of 
visual textures. These will initially be linked to labels, but later they will be learned in an 
entirely unsupervised fashion. Categories will have a special behaviour in the environment. 
We have a neuro-cognitive model of a rule-learning system that makes use of 
reinforcement learning from environmental feedback (Belavkin & Huyck, 2010), and this 
mechanism will be used to determine the categories. A classic experiment (Shepard, 
Hovland, & Jenkins, 1961) will be used as a cognitive test.  
 
CABot3 plans to use a Maes net (Maes, 1989) that has been programmed (in FLIF neurons), 
but NEAL will learn new plans. Initially, we will accomplish this by integrating our 
reinforcement mechanism with the Maes net, and by direct user instruction. The existing 
net is made of orthogonal CAs (sharing no neurons), and the reinforcement mechanism will 
modify the strength of associations between CAs. The user instructions will create new 
CAs. An overlapping model will then replace this approach, in which basic units will be 
learned associating goals, actions, and facts from the environment. This will include extra 
subnets to generate and evaluate plans supporting the generation of more complex plans. 
NEAL will also take advantage of the larger number of neurons. We are looking for long-
term systems that last for days, and that learn throughout. This is a developmental neuro-
psychology problem. A comparison of the two systems using STDP combined with a 
compensatory mechanism for the CA formation problem is particularly promising. The 
variability of analogue neurons and synapses may lead to particularly powerful attractors, 
and CAs are attractors. 

The system meets an objective of the Brain Simulation Platform: it is a brain model based 
on a point model level of description. The Task will contribute to the HBP by providing an 
extensible agent that can be used in a 3D environment, and by providing advancements for 
the HBP’s neuromorphic systems to learn CAs. The agent will be useful for researchers to 
use during and after the Ramp-Up Phase. It will be a working embodied agent in a 
simulated environment, implemented entirely in simulated neurons, that provides a 
modifiable early link in the Project between robotic systems, cognitive architectures, 
brain data, and neuromorphic hardware. It will provide existing neural language, vision, 
planning, and action modules, which have a reasonable degree of modularity. Improved 
models of CA learning will provide insight into the theoretical problem of concept 
formation in neural systems. This will be linked to the environment, psychology and known 
and posited neural behaviour, leading to a significant impact in both the short and longer 
term. 
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CA learning really is open-ended research. We will develop a working system that 
generalises; we will explore the space of working systems, and work in promising areas. 
We will explore ranges of options by exploiting the variability of both analogue and 
discrete neurons and synapses. We will interact with the HBP community to learn what is 
neuro-psychologically plausible, and what can be implemented. 

5.3.1 Methodology and Associated Work Plan 

The overall strategy is to build working systems. Initially, we will build agents functioning 
in an environment (sub-Task 1 (ST1) and ST2). Later, we will expand these agents (ST3 and 
ST4) so that they can learn more about their environment, and thus be more effective in 
that environment. While doing this, working agents will perform tasks as cognitive models; 
this will have some correlation with biological data, though anything that is particularly 
solid may be beyond the scope of this Task. 

We have discussed SpiNNaker with Furber for several years now, and have planned on 
putting our model onto it from our first conversation. Consequently, ideas of working on 
SpiNNaker are more fully formed than those for working on HICANN, and though the plan 
reflects this bias, we are confident that the agent will run on HICANN, and that it will 
provide useful variance for exploration of CA dynamics. 

NEAL consists of one Task that is broken into four sub-Tasks (see Table 4 below). 

5.3.1.1 Sub-Task 1: Transfer FLIF model to PyNN and neuromorphic chips 

We have already translated the Leaky Integrate and Fire component of our neural model to 
PyNN, and will immediately begin translating some of the CABot3 components (e.g. early 
vision and planning) to PyNN. Later, we will add the fatigue component to the model. A 
standard PyNN model should be sufficient. There are two variants of fatigue, and only the 
first, waypoint 1.1 (M1.1), needs to be implemented for CABot3. The second will be 
translated after Month 9. 

Learning will be included in the system. PyNN has good support for LTP, and it will be 
included in the first few months. A critical component of the CABot3 model is binding via 
STP (M1.2). This should work in PyNN, and all basic neural and synaptic components will 
run on both chips (M1.3). 

Finally, parts of CABot3 require precise timing and it is not clear how readily this will 
translate to either chip. We are hopeful that the 10ms integration constant will solve the 
problems, but we may need to increase the number of neurons for CABot3. Even if CABot3 
does not require more neurons, there is scope for exploration of the dynamics and 
robustness of neural processing circuits with more neurons. That is, by using more neurons, 
the systems will be more effective, and cope with more hardware failures. 

5.3.1.2 Sub-Task 2: Transfer CABot3 

CABot3 runs in a virtual 3D environment with a mobile avatar in the environment. Input 
from the environment is a pixel image from the avatar’s camera, and text commands are 
issued from a user. We will begin by translating the vision, control, and planning subnets of 
CABot3 into PyNN. These are not dependent on real-time behaviour, or on the fatigue 
model. We will integrate the environment via Python, and the agent will provide both 
input to and symbolic motion output from the PyNN based CABot3 (M2.1). 

LTP and STP primitives will be implemented as the fatigue (ST1). The language and 
learning subnets will be integrated into the PyNN agent, then into the SpiNNaker agent 
(M2.2), and finally into the HICANN agent. All three agents will be tested and compared. 
Tests will include the ability to parse commands, view the environment, build a simple 
spatial cognitive map of the environment, and learn which rule is a correct rule. These will 
be compared with the existing Java-based system and each other. We expect that all will 
behave almost identically; the neuromorphic agents could use extra neurons. 
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5.3.1.3 Sub-Task 3: Learn CAs 

We will use the PyNN model to learn simple categories, and then use the modified fatigue 
model to include spontaneous activation from the new fatigue model. This will bring us to 
the current state of the Java model on PyNN and the chips. We will then add new subnets 
replacing the higher-level vision subnets, and the system will learn the visual categories by 
exploring. Instances of categories will be co-presented with labels so the system can learn 
words. Labelling provides a ready test and links to the language system. 
 
We will then develop a system that learns CAs that persist for the time that psychological 
short-term memories persist (M3.1). If there is more evidence for a CA, it will persist 
longer. If a CA is reactivated, by for instance being presented a gain, it will persist longer 
the second time. Our current idea is that our existing sensory-like learning mechanism can 
be integrated with subnets that support persistence and top-down effects – an extension of 
the tripartite theory. Persistence will be compared to the ACT-R memory model. A new 
environment will then be used; it is quite easy to develop new 3D environments using 
video game technology. There will be more sophisticated tasks, such as searching for 
particular types of objects to fulfil current goals or needs. Environmental feedback will 
enable the system to learn things that will help its performance. We will test this on 
categories with varying degrees of feature overlap (Shepard, Hovland, & Jenkins, 1961) to 
allow a cognitive test (M3.2). Its performance in the environment will also improve. 

5.3.1.4 Sub-Task 4: Learn Plans  

We will change associations within Maes net elements to improve an existing plan driven 
by reinforcement learning. This will involve the modification of associations between 
existing CAs, which implement the Maes net. Similarly, new elements within the net will 
be created and linked in response to user commands, and the associations between these 
will be modified to improve the overall plan. Together, these constitute M4.1. 

Next, we will learn overlapping CAs for plans. The earlier plans, including the learned 
plans, will use CAs that do not share neurons. The new plan will take advantage of shared 
neurons to learn more sophisticated and neuro-psychologically plausible plans. This will be 
driven by separate plan generation subnets, and we will consider turning learning on and 
off by neuromodulators. This is a speculative venture, so it does not have a waypoint. The 
system will be tested on the new 3D environment, which is not a cognitive test (M3.3 and 
M4.2). 

5.3.2 Waypoint Descriptions (see Table 4 below) 

Waypoints are directly linked to Tasks, and proceed sequentially through the Task. ST1 has 
three waypoints. M1.1 is to put the CABot3 FLIF model onto PyNN by Month 2. M1.2 is to 
include the STP model in PyNN by Month 6. M1.3 is to have both FLIF models, and long and 
short-term synaptic modification on PyNN and both chips. M1.1 and M1.2 are necessary to 
move the Task forward; M1.3 is more difficult but is also largely non-blocking. 

ST2 has two waypoints. M2.1 is a simple version of the agent in PyNN by month 3; this will 
support movement onto SpiNNaker and HICANN. M2.2 has the complete agent on SpiNNaker 
via PyNN; it takes advantage of the first Task. CABot3 will then be implemented on 
HICANN. 

The largest sub-Task is ST3: Learning CAs. This is much more exploratory than ST1 and ST2, 
but at least these three waypoints will be met. M3.1 is properly persistent learned 
categories. M3.2 is a cognitive model of a classification task, and M3.3 improves the 
overall agent’s performance.  

Sub-Task ST4 is learning plans, and thus is learning process. M4.1 is relatively 
straightforward, porting our existing reinforcement learning to the Maes net, and 
responding to user commands to add new elements to that net. M4.2 is a catchall for the 



 

Co-funded by the 

 
 

 
HBP_SP11_ApplicationsResearchPlan_D11.4.1_Final.docx 30-Oct-2014 Page 36 of 68 

 

Task, allowing the Task to wrap up with one agent, or a variant for each chip; this could 
include the more sophisticated planning system. 

The functions map to these sub-Tasks in a straightforward manner. Functions 11.3.2.1, 
11.3.2.2 and 11.3.2.5 are part of ST1. Functions 11.3.2.3, 11.3.2.4, 11.3.2.6, and 11.3.2.8 
are part of ST2; the key function is 11.3.2.6 is getting CABot3 running on SpiNNaker. Once 
the agent is running on SpiNNaker in a closed loop we can explore the system using many 
more neurons. Functions 11.3.2.7, 11.3.2.9, 11.3.2.10, 11.3.2.11, 11.3.2.12, 11.3.2.13 and 
11.3.2.15 will all be used to help us develop systems that learn better cell assemblies, 
ST3. Knowledge gained along the way will inform ST4, but functions 11.3.2.14 and 
11.3.2.16 are fully in ST4 - learning plans. 

Objectives 

Provide an embodied cognitive agent in spiking neurons on SpiNNaker and HICANN that can be 
readily modified and extended. 
Extend the agent to learn environmentally useful and neuro-psychologically realistic Cell 
Assemblies. 

Description of Work and Role of the Partners 

ST1: Transfer FLIF model to PyNN and neuromorphic chips (Months 1-12) 
Middlesex (MU) will execute all. T1.1 will take 4 person months, and use Huyck and the RA. 
Translate both variants of the fatiguing FLIF model to PyNN and SpiNNaker and HICANN. Integrate 
LTP, and STP models with PyNN and the chips. 
ST2: Transfer CABot3 (Months 1-9) 
MU: T1.2 will take 4 person months, and use the RA, Mitchell, and Huyck. 
Take existing CABot3 Java code and move portions based on LIF model to PyNN. Integrate the 3D 
environment with PyNN and the chips. Translate the full CABot3 system to PyNN and chips. As soon 
as the chips become available, the PyNN agent will be integrated with SpiNNaker, and then with 
HICANN. 
ST3: Learn CAs (Months 6-24) 
MU: The most time will be spent on this Sub-Task, requiring 7 person-months by Huyck and the RA. 
Explore the short and long-term dynamics of CA persistence and creation. Use compensatory 
Hebbian learning with subnets of differing topologies. Explore varying neural models and STDP. A 
new 3D environment and task will support the development of a more sophisticated agent that can 
learn a wider range of semantics. 
ST4: Learn Plans (Months 13-24)  
MU: T1.4 will take 4 person months by Mitchell, the RA, and Huyck. 
Modify existing plans in response to environmental feedback. Create new plans and plan elements 
from user instruction. Expand plan capability by learning overlapping CAs for plan elements. 

Table 4: Sub-Task Descriptions 
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Waypoint 
number 

Waypoints  
name 

Lead proposer 
short name  
& number 

Delivery  
month Comments 

1.1 FLIF in PyNN MU 1 2  

1.2 STP in PyNN MU 1 6  

1.3 Model on Chips MU 1 12 Both Chips 

2.1 Simple Agent on PyNN MU 1 3  

2.2 CABot3 on SpiNNaker MU 1 9 HICANN date flexible 

3.1 Learned CAs persist like STM MU 1 15 Based on ACT-R model 

3.2 Classification Cognitive Model MU 1 18 Based on Shepard et al. 

3.3 Learned CAs help the agent MU 1 21 Game based evaluation 

4.1 Weight plans and cache commands MU 1 18  

4.2 Agent complete MU 1 24 Possibly 1 version for each chip 

 
Table 5: Waypoint Descriptions 

 
5.3.3 Software/Hardware Functions (Components of Task 11.3.2) 

The function boxes and timetable below depicts the envisaged start and end dates of the 
planned activities. These estimates are based on the current status, but are subject to 
change if new knowledge becomes available. 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.1 Leader: Chris Huyck 

Function Name: Transfer FLIF model (variant 1) to PyNN  

Use Case A: PyNN 

Planned Start Date: 01/04/2014 Planned Completion Date: 30/05/2014 

Requires Functions: None 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.2 Leader: Chris Huyck 

Function Name: Transfer FLIF model (variant 2) to Manchester neuromorphic system (NM-
MC-1) 

Use Case A: SpiNNaker chip 

Planned Start Date: 01/03/2015 Planned Completion Date: 31/03/2015 

Requires Functions: None 
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Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.3 Leader: Chris Huyck 

Function Name: Translate CABot1 to PyNN) 

Use Case A: PyNN 

Planned Start Date: 01/05/2015 Planned Completion Date: 29/05/2015 

Requires Functions: 11.3.2.1 

 
Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.4 Leader: Chris Huyck 

Function Name: Translate CABot1 to Manchester emulator and SpiNNaker chip 

Use Case A: SpiNNaker chip 

Planned Start Date: 01/08/2014 Planned Completion Date:  31/10/2014 

Requires Functions: 11.3.2.1 and 11.3.2.3 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.5 Leader: Chris Huyck 

Function Name: Translate STP binding mechanism to PyNN and SpiNNaker 

Use Case A: SpiNNaker chip  

Planned Start Date: 01/10/2014 Planned Completion Date: 31/10/2014 

Requires Functions: 11.3.2.1 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.6 Leader: Chris Huyck 

Function Name: Translate the 3D environment to PyNN and integrate it to SpiNNaker chip 

Use Case A: SpiNNaker chip 

Planned Start Date: 01/11/2014 Planned Completion Date: 15/11/2014 

Requires Functions: SpiNNaker chip (we need to sort this problem out with Manchester). SP10 
will eventually give us an environment but not for quite some time. 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.7 Leader: Chris Huyck 

Function Name: Implement CABot3 on SpiNNaker 

Use Case A: SpiNNaker 

Planned Start Date: 01/09/2014 Planned Completion Date: 31/12/2014 

Requires Functions: 11.3.2.4, 11.3.2.5, and 11.3.2.6 
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Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.8 Leader: Chris Huyck 

Function Name: Translate CABot3 to Heidelberg system (NM-PM-1) 

Use Case A: HICANN 

Planned Start Date: 5/01/2015 Planned Completion Date: 31/03/2015 

Requires Functions: 11.3.1 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.9 Leader: Chris Huyck 

Function Name: Learn Visual Objects in the Environment 

Use Case A: SpiNNaker 

Planned Start Date: 05/01/2015 Planned Completion Date: 31/03/2015 

Requires Functions: 11.3.2.6 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.10 Leader: Chris Huyck  

Function Name: Explore the short- and long-term dynamics of CA persistence and creation 

Use Case A: PyNN, SpiNNaker, and HICANN 

Planned Start Date: 01/02/2015 Planned Completion Date: 30/06/2015 

Requires Functions: None 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.11 Leader: Chris Huyck 

Function Name: Use compensatory Hebbian learning with subnets of different topologies 

Use Case A: PyNN, SpiNNaker, and HICANN 

Planned Start Date: 01/02/2015 Planned Completion Date: 30/06/2015 

Requires Functions: None 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.12 Leader: Chris Huyck 

Function Name: Explore varying neural models and spike-timing dependent plasticity 

Use Case A: PyNN, SpiNNaker, and HICANN 

Planned Start Date: 01/07/2015 Planned Completion Date: 30/10/2015 

Requires Functions: None 
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Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.13 Leader: Chris Huyck 

Function Name: Cognitive model for categorisation 

Use Case A: PyNN, SpiNNaker, and HICANN 

Planned Start Date: 01/04/2015 Planned Completion Date: 30/09/2015 

Requires Functions: 11.3.2.9 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.14 Leader: Ian Mitchell 

Function Name: Cache plans 

Use Case A: PyNN, SpiNNaker, and HICANN 

Planned Start Date: 01/04/2015 Planned Completion Date: 30/09/2015 

Requires Functions: 11.3.2.6 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.15 Leader: Chris Huyck 

Function Name: Cognitive model of Wisconsin Card Sorting Task 

Use Case A: PyNN, SpiNNaker, and HICANN 

Planned Start Date: 01/11/2015 Planned Completion Date: 31/03/2016 

Requires Functions: 11.3.2.6 

 

Task No: T11.3.2 Partner: MU 

Function No: 11.3.2.16 Leader:  Ian Mitchell 

Function Name: Learn plans dynamically 

Use Case A: PyNN, SpiNNaker, and HICANN 

Planned Start Date: 01/10/2015 Planned Completion Date: 31/03/2016 

Requires Functions: 11.3.2.6, and 11.3.2.14 

 
5.3.4 Scientific Key Performance Indicators for Task11.3.2 

One easily measurable indicator is the number of sub-networks completed. The original 
CABot3 was broken into 46 subnets, and this should be roughly the number needed for the 
translated version for, e.g., M2.2. The measure can be for translation to PyNN, to the 
SpiNNaker simulator or chip, and to the HICANN simulator or chip. It is not entirely clear 
how new subnets will be added for the learning tasks, but it is likely that several will be 
added. 

An additional indicator is the comparison of our existing Java FLIF CABot3 system with the 
newly created agents on SpiNNaker, HICANN and simulated in PyNN. The comparison will 
be complex, but for instance, the neuromorphic agents should perform much faster. 
Another set of indicators comes with the cognitive models. The system will learn visual 
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categories in a cognitively viable way, and it should duplicate human results in the 
Wisconsin Card Sorting task. 

 
Table 6: Timeline of Functions in T11.3.2 

5.4 T11.3.3 Exploiting of Feedback in Ultra-Fast Spiking Visual 
Architectures 

In this Task, we will port architectures for spike-based visual object recognition to PyNN, 
and begin preliminary simulations on the HBP Platforms. The feedforward architectures 
will be similar to those simulations recently reported by IMSE [Perez13], where recognition 
was performed with delays in the range of 1-2ms. 

We will perform exhaustive optimisations, both on system parameters (such as synaptic 
values, neurons thresholds, delays, etc.) and structural properties (such as number of 
layers, number of feature extractors per layer, number of neurons per feature extractor, 
etc.). We will add Gradual Attentional Feedback to the architectures to carefully assess 
performance variations in object recognition, while degrading the visual stimuli. We will 
implement additional hardware interfaces between Address Event Representation (AER) 
sensors and processing modules with the Neuromorphic systems. Finally, we will analyse 
mismatch impact on performance. 

Summary of Objectives: port object recognition architecture to NM-MC platform, perform 
exhaustive parameter optimisations, explore impact of feedback, and assess effect 
mismatch of NM-PM through NM-MC simulations. 

5.4.1 Detailed Task Description 

Step A.1: Feedforward Architecture. It is widely established that visual processing in 
brains is structured in sequential layers. Early layers extract very simple features (like 
oriented edges in V1), while subsequent layers combine features from previous layers to 
detect gradually more complex shapes, forms, and figures. Full object recognition and 
scene analyses are performed in later layers [LeCun98, Riesenhuber99, Serre07]. However, 
such models are usually not implemented with spiking neurons, but with continuous 
neurons fed by input images from commercial cameras. The recent availability of spiking 
retina sensors [Lichsteiner08, Posch11, Lenero11, Serrano13a] and hardware spiking 
processing modules [Serrano06, 08, Camunas11, 12] has revealed interesting computational 
capabilities of spiking neural networks. In multi-layer spiking systems, computations are 
performed spike-by-spike (event-by-event) as soon as they become available. Thus, when a 
stream of spikes (representing a collection of visual features) is fed to an event-driven 
processing layer, events at the output become available shortly after the onset of the 
input stream, making both input and output streams almost simultaneous [Farabet12]. This 
extends to multi-layer systems, and we call it the pseudo-simultaneity property of multi-
layer visual spiking processing [Farabet12, Perez13]. Recently, extremely fast (1-2ms from 
stimulus onset) and effective object recognition in multi-layer feedforward spiking vision 
systems has been demonstrated through simulations for very small scale systems (of about 
5k neurons) with retina inputs of 32x32 pixels [Perez13]. In this Task, a first goal is to port 
such multi-layer vision systems to the Neuromorphic Platform (SP9) providing their 
description in the PyNN language, while scaling them up (initially) to several tens of 
thousands of neurons with retina inputs of up to 128x128 pixels. 
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Step A.2: Optimisations. The real-time and accelerated-time capabilities of the two 
neuromorphic systems is a unique feature that allows for exhaustive parameter search and 
optimisation of the architectures. Search/optimisation for small variations in the structure 
of the networks—such as the number of feature maps per layer, size of layers, size of 
feature maps, fan-out of neurons, etc.—is also viable. Such exhaustive search/optimisation 
is absolutely unviable using conventional simulation tools, if one wants to simulate 
reasonably long vision sequences while iterating them thousands of times for exhaustive 
parameter optimisations. In this sense, the two systems are interestingly complementary. 
The Manchester system (NM-MC), which works in real time, allows for much finer 
parameter adjustments and even different neural models, as it is based on digital 
computations with 32-bit integer precision. The Heidelberg system (NM-PM), although 
much faster, has a fixed physical model. However, both allow for large degrees of freedom 
in adjusting parameters. The goal is to define a set of figures of merit to characterise the 
performance of each visual processing iteration (e.g., improvement of success rate in 
object recognition), and run conventional optimisation routines that propose parameter 
variations for each iteration. Spiking neural networks have extra (timing) parameters 
[Perez13] normally unavailable in conventional vision processing neural networks, which 
allow for extra optimisation capabilities and possibly improved final performance. 

Step A.3: Feedback. In a next step, the objective is to analyse the impact of gradually 
adding pseudo-simultaneous attentional feedback to the computing structures for 
enhancing object recognition capability when stimuli degrade. This is one of the most 
challenging goals of this Task. It relies on the fact that having the pseudo-simultaneity 
property allows to naturally inserting instantaneous feedback paths. This contrasts strongly 
with conventional image processing structures in computer vision, where all processing is 
feedforward (it is not viable to take an output image from a late stage and combine it with 
an input image of an early stage, and to iterate this feedback until convergence to find the 
solution). However, in multi-layer spiking visual systems, later layers begin to produce 
spikes while the input receives the first front of spikes. Thus, feedback connections 
translate immediately the effect of later layers’ activity back to early layers. This can be 
used to explore immediate attentional feedback mechanisms to assess how the visual 
recognition capability of the network is enhanced, while providing gradually degraded 
visual stimuli.  

Ultimately, we will be able to analyse stability effects, identify feedback paths for 
stability compensation, and monitor the attentional capabilities of the system. The 
availability of the neuromorphic systems is a unique opportunity for this study, since such 
simulations would otherwise be very slow given the complexity of the structures being 
analysed (multi-layer vision systems), and given the difficulty of searching for optimum 
parameters. Furthermore, very long simulation times may be required to identify 
instability in connectivity. However, in a real-time or accelerated-time system, 
instabilities become apparent immediately. Benchmarks would be the improvement factor 
of success rate in object recognition. 

Step B: Interfacing. This Task will also interface the neuromorphic system(s) with existing 
AER (Address Event Representation) spiking visual sensory and pre-processing hardware. 
The proposing group has a number of AER retina sensors [Costas07, Lenero10, 12, 
Serrano13] as well as visual filtering modules implemented on dedicated chips [Serrano06, 
08, Camunas11, 12] or Field Programmable Gate Arrays (FPGAs) [Zamarreno13], all of 
them communicating through the AER protocol. The NM-MC preliminary boards (4-chip and 
48-chip SpiNNaker boards [Painkras13]) allow for AER interfacing either through lower 
speed parallel connectors and/or high-speed gigabits-per-second serial connections. 
Parallel interfaces are already available. Here, we plan to directly interface retinas and 
filtering modules with the NM-MC system, which operates in real time, and which 
consequently interfaces naturally with sensory devices. For the NM-PM system, since it 
operates in accelerated-time, interfacing must be done by providing recordings and define 
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them as stimuli in PyNN descriptions for the accelerated simulations. Thus, here we will 
provide a nice interactive demonstrator for live visual object recognition. 

Note that bio-inspired visual processing is very neuron-hungry. For example, if the input 
retina has 128x128 (16384) pixels, and we have a V1 layer with 8 orientations and 5 scales, 
this V1 layer would already consume 655360 neurons. However, by relaying the initial 
layers to external hardware, we could limit the number of neurons within the HBP 
Platform to the “more intelligent” and less numerous neurons of later layers, while still 
studying larger scale visual systems. 

At a more advanced stage, we will use depth clues for improved object segmentation to 
extend the visual architectures with stereovision capability for combined depth perception 
and object recognition. The group has some initial experience with event-driven 
stereovision exploiting event-driven filters [Serrano13b, Camunas14]. The idea is to test 
depth performance by using architectures that perform event-driven processing on two 
parallel channels (one per retina) while inserting cross-coupling filters, following the bio-
inspired proposals of Qian [Qian94] and Shi [Wang10].  

Step C. Variability. Parameter variability is natural in physical systems like the brain or 
the NM-PM system. The NM-MC system is based on digital ARM processors and a powerful 
digital interconnect AER mesh; consequently, it does not suffer from parameter variability. 
However, since parameters can be programmed with 32-bit precision, it is possible to 
artificially add highly controlled variability into all network parameters. This approach 
allows us to study the impact of variability, and to analyse how the systems degrade (if 
they degrade) when incrementally increasing variability. It also allows us to identify 
critical parameters, the variability of which degrades performance. On the other hand, the 
NM-PM system has the natural variability of its analogue components. When performing 
exhaustive parameter optimisations, we will be able to assess whether this variability is 
helpful by comparing the situations with and without mismatch. Also, by making 
comparisons with the gradual variability analyses from the NM-MC system, we can 
determine at which point the NM-PM system lies. We can also determine how its variability 
changes the system with respect to the ideal mismatch-less case. 

5.4.2 Software/Hardware Functions (Components of Task 11.3.3) 
Task No: T11.3.3 Partner: CSIC 

Function No: 11.3.3.1 Leader: Bernabe Linares-Barranco  

Function Name: Step A.1. Description of multi-layer vision systems in PyNN 

Use Case A: PyNN for feedforward architecture 

Planned Start Date: April 2014 Planned Completion Date: October 2014 

Requires Functions:  
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Task No: T11.3.3 Partner: CSIC 

Function No: 11.3.3.2 Leader: Bernabe Linares-Barranco  

Function Name: Step A.2. Simulations with exhaustive parameter optimisations 

Use Case A: Maximisation of recognition performance 

Planned Start Date: November 2014 Planned Completion Date: October 2015 

Requires Functions: 11.3.3.1 

 

Task No: T11.3.3 Partner: CSIC 

Function No: 11.3.3.3 Leader: Bernabe Linares-Barranco  

Function Name: Step A.3. Exploring immediate attentional feedback mechanisms 

Use Case A: PyNN for feed-back architecture 

Planned Start Date: Nov 2014 Planned Completion Date: March 2016 

Requires Functions: 11.3.3.1 

 

Task No: T11.3.3 Partner: CSIC 

Function No: 11.3.3.4 Leader: Bernabe Linares-Barranco  

Function Name: Step B: Characterisation of interfaces 

Use Case A: Allow interfacing between AER PCBs and SpiNNaker 

Planned Start Date: April 2014 Planned Completion Date: October 2014 

Requires Functions: None 

 

Task No: T11.3.3 Partner: CSIC 

Function No: 11.3.3.5 Leader: Bernabe Linares-Barranco  

Function Name: Step B. Integrate multi-layer vision systems to the Neuromorphic Platform 

Use Case A: Verify object recognition with visual sensor 

Planned Start Date: October 2014 Planned Completion Date: Oct 2015 

Requires Functions: 11.3.3.4 

 

Task No: T11.3.3 Partner: CSIC 

Function No: 11.3.3.6 Leader: Bernabe Linares-Barranco  

Function Name: Step B. PyNN for stereo architecture 

Use Case A: Combined depth perception and object recognition 

Planned Start Date: Nov 2015 Planned Completion Date: March 2016 

Requires Functions: 11.3.3.1, 11.3.3.2, 11.3.3.4, 11.3.3.5 
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Task No: T11.3.3 Partner: CSIC 

Function No: 11.3.3.7 Leader: Bernabe Linares-Barranco  

Function Name: Step C. PyNN for mismatch 

Use Case A: Prepare PyNN for mismatch study 

Planned Start Date: Nov 2014 Planned Completion Date: March 2015 

Requires Functions: 11.3.3.1 

 

Task No: T11.3.3 Partner: CSIC 

Function No: 11.3.3.8 Leader: Bernabe Linares-Barranco  

Function Name: Step C. Exhaustive mismatch analysis on SpiNNaker 

Use Case A: Explore impact of random mismatch on object recognition performance 

Planned Start Date: April 2015 Planned Completion Date: Dec 2015 

Requires Functions: 11.3.3.1, 11.3.3.7 

 

Task No: T11.3.3 Partner: MU 

Function No: 11.3.3.9 Leader: TBD 

Function Name: Step C. Mismatch characterisation and assessment for NM-PM system  

Use Case A: To explore the effect of NM-PM natural mismatch, but with NM-MC 

Planned Start Date: Jan 2016 Planned Completion Date: March 2016 

Requires Functions: 11.3.3.2, 11.3.3.8 

 

 
Figure 7: Timeline of Functions in T11.3.3 
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5.4.3 Scientific Key Performance Indicators for Task11.3.3 

Step A.1: six-month duration. Each month: 20% completion (except first month). 

Step A.2: 12-month duration. Each month: 8.3% completion. 

Step A.3: 18-month duration. Each month: 5.5% completion. 

Step B: 24-month duration. Each month: 4.17% completion. 

Step C: 18-month duration. Each month: 5.5% completion. 
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5.5 T11.3.4 Spiking Associative Networks for Neuromorphic 
Computing Systems 

The goal of this Task is to explore the computational capabilities of spiking neural 
networks for associative memory (SAM: spiking associative memory) with the help of the 
two complementary HBP hardware systems in Heidelberg and Manchester. Neural 
associative memories can be seen as models for local networks in the cerebral cortex [1] 
and are closely related to assembly theory [2]. Furthermore, they offer efficient methods 
for fault-tolerant information retrieval in technical cognitive systems, with possibly better 
performance than classical algorithms of computer science like content addressable 
memories, search-trees, or hash-tables [3]. 

5.5.1 Objectives and Approach 

We start with the classical binary associative net with binary neurons and synapses 
proposed by Steinbuch [4], and theoretically analysed by Willshaw et al. [5] and Palm [6], 
hereafter referred to as the BiNAM (binary neural associative memory). There are a 
number of alternative models for associative memory; the most prominent is the Hopfield 
model [7]. However, the BiNAM is the simplest architecture to start with. It has a number 
of advantages over other models both for brain modelling and technical application, and is 
theoretically well understood [8]. To achieve a high storage capacity, the BiNAM requires 
sparse representation of patterns (sparse coding). This gives excellent support for the 
address event representation (AER) of spikes used in both HBP hardware systems, and 
relaxes the requirements for analogue computation in neurons implemented in the 
Heidelberg neuromorphic system. Furthermore, our group has implemented resource-
efficient VLSI hardware for BiNAMs in the past [9, 10]. 

In its basic form, the BiNAM can already be interpreted as a spiking model for associative 
memory since the neuron inputs and outputs are binary, and could be interpreted as single 
spikes. However, the input-output mapping (association) is done in one step and assumes 
perfect synchronisation for all “spikes” in the input pattern and for all neurons receiving 
this input pattern. The temporal aspect of spike trains is almost neglected. Hence, we 
want to extend the basic BiNAM with the temporal aspect of spikes (SAM), which will be 
investigated on a local level (the main focus of this Task) and a global level (for future 
research). On the local level, the role of spikes for separation of superimposed output 
patterns will be analysed. Superposition of output patterns is a well-known problem of 
distributed information storage in neural associative memories and can be solved partly by 
spikes as demonstrated in [11], [12], [13]. On the global level, we will study 
synchronisation aspects (binding and competition of distributed representations) in 
networks of SAMs (spiking associative networks, or SANs). Of course, both levels are highly 
interdependent. However, local synchrony is the prerequisite for global interaction of 
locally spiking populations. 

As a thorough mathematical analysis for spiking networks is still out of reach, we have to 
apply simulations for verification of the SAM models. We will use the Heidelberg 
neuromorphic system for fast design space exploration of selected parameters of basic 
associative memory architectures. The aim is to approximate by simulations the set of 
pareto-optimal system configurations (pareto-set). The performance measures will be 
storage capacity, retrieval time, energy consumption, and robustness to internal as well as 
external noise. Based on a PyNN description, we will use the Heidelberg neuromorphic 
system because of its “faster than real-time simulation capabilities”. This system allows 
configuration of at least 8 out of the 24 electrical parameters, which translate to 
biological parameters from the PyNN description [14]. Hence, even if the Heidelberg 
neuromorphic system does not offer the full flavour of configurable SAM model 
parameters, the design space for parameter optimisation is huge. 
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An important issue in spiking neural networks is pattern binding or synchronisation, which 
has a high impact on SAM performance. Synchronisation is important for combining several 
SAMs to form a network of SAMs (SAN: spiking associative network) or to embed SAMs into 
cognitive architectures. For the spiking model, the spikes may arrive asynchronously, and 
the following questions arise: what spike delay for a given input pattern is acceptable and 
manageable by the system? How precisely can the outputs of neurons be synchronised in 
the context of AER and serial communication in both HBP hardware systems? Are special 
synchroniser units beneficial as suggested in [15]? We want to figure out minimal 
requirements for synchronisation in SAMs.  

As the Heidelberg system has restrictions with respect to the accuracy of synapses (4 Bit) 
and neuron internal analogue computation, we will use the Manchester system to analyse 
the effect of more sensitive synapses (32 Bit). We will also use the Manchester system to 
analyse the effect of higher computational accuracy (fixed-point arithmetic) on 
synchronisation and the considered performance measures. At the end of this Task, we 
want to be able to connect basic SAMs to form large spiking associative networks (SANs), as 
the cortex might not be one huge associative memory but a network of interconnected 
(auto- and hetero-associative) SAMs (in addition to other functions of specific cortical 
areas).  

The spiking BiNAM should be seen only as a very abstract model of a local cortical network 
[16]. Because of its reduced complexity, it is a good model to start with, but it only 
accounts for a small number of neurophysiological facts (e.g., binary pattern vector 
represents the binary nature of spikes, binary synaptic matrix reflects the assumption that 
synapses are either excitatory or inhibitory, sparse activation patterns). Nevertheless, it is 
still a challenge to find resource-efficient implementations in the sense of pareto-optima. 
Once this simple model has been successfully implemented, we can extend this model 
step-by-step—e.g. with non-binary synapses, inhibitory neurons, and more complex 
feedback structures—and we can study the effects on SAM behaviour quantified by the 
performance measures. This will give us some hints about the purpose or the advantages of 
spikes and corresponding system parameters for SAMs based on quantitative performance 
measures. 

Due to their intuitive architecture and interpretable input/output behaviour, SAMs could 
also be used for hardware evaluation and tests. We will do a first evaluation of the 
applicability of this alternative automatic test procedure based on specially defined SAM 
test patterns for the neuromorphic hardware used in the HBP. Besides hardware defects, 
architectural bottlenecks could be detected and reported for the next HBP hardware 
revisions. 

5.5.2 Methodology and Associated Work Plan 

The Task will have two Work Packages (modelling SAMs with PyNN and HBP hardware; SAM 
design space exploration). First, we will focus on the implementation of SAMs in the 
simulator-independent network description language PyNN, and their mapping onto the 
HBP hardware. The first SAM version will be based on the leaky integrated-and-fire neuron 
as implemented in the Heidelberg hardware [14] and the spiking associative memory based 
on BiNAM as implemented by Knoblauch et al [13,17]. Step-by-step, we will extend this 
model, e.g. with non-binary synapses, inhibitory neurons, and more complex feedback 
structures. We will study the effects on SAM behaviour quantified by the performance 
measures (storage capacity, retrieval time, energy consumption, and robustness). For 
functional verification, we will use a software simulator (e.g. Neuron, Nest, PCSIM). We 
will coordinate the selection of the simulator with Heidelberg and Manchester to maintain 
compatibility between the HBP’s hardware suppliers.  

The next step will be the mapping of the SAM to the virtual hardware simulator of the 
Heidelberg group, which is a detailed simulation of the final wafer-scale hardware system 
implemented in C++/SystemC [14]. The virtual hardware offers an early modeller’s 
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perspective on the capabilities of the future wafer-scale system. The last step will be the 
mapping to the hardware systems (Heidelberg, Manchester) as soon as they are available 
for this Task. For a smooth transition from simulation to real hardware, we intend to use 
the HICANN prototype in Heidelberg. The Key Performance Indicator (KPI) for this work is 
the number of implemented SAMs in PyNN. We will implement four SAM models in this Task 
(one model every six months). 

For the performance evaluation and system optimisation, we need benchmark data sets. 
Because SAMs can store a huge number of sparsely coded patterns (about n²/log²n, n is the 
number of neurons), these pattern sets have to be automatically generated. For testing 
purposes, the characteristics of these pattern sets have to be configurable (e.g., the 
degree of correlation between spikes, sparseness, distribution of the activated inputs, 
noise level, distortion grade of patterns, spike delay, asynchronism, etc.). Basically, we 
need three benchmark pattern sets: a set for testing the normal association functionality 
without errors or noise; a set with noisy and erroneous patterns for testing the robustness 
of the associative functionality; and a set for testing the correct functionality of the 
computing hardware. The last pattern set is especially interesting for the two HBP 
hardware systems, and must be individually designed for them. This Task focuses on the 
first two benchmark data sets. The researcher financed by this Task will be responsible for 
this Work Package (19 PM financed by the requested Task budget; 5 PM financed using own 
resources). The KPI for this work is the number of generated benchmark pattern sets. We 
will implement two pattern sets: the first after 12 months and the second after 18 months. 

Once we have a first functional version of the SAM, we will prepare the design space 
exploration for SAM architectures (second Work Package). The parameter spaces have to 
be systematically swept to approximate the set of pareto-optimal SAM configurations. We 
have to distinguish the biologically motivated parameter set from the theoretical model 
(or the PyNN description), and the electrical parameter set given by the hardware system 
(especially from the neuromorphic Heidelberg system). Both should be considered and 
optimised. At this point, it is not clear how to organise the optimisation. One option is to 
optimise the biological parameters first, translate them into the electrical parameter 
space, and continue the optimisation. The other option is to do it the other way around. As 
there is no bijective mapping between both parameter sets (to our knowledge), both 
approaches may lead to implausible results.  

As soon as the HBP hardware is available, the Heidelberg wafer-scale system can be used 
for a fast search in the parameter space for narrowing the space down to an interesting 
region, which can then be investigated using the SpiNNaker system from Manchester [18] 
or a software simulator with higher precision. The strategy for approximating the pareto-
set will be based on a combination of two optimisation techniques that we have already 
used in the context of circuit optimisation [19]. It is a combination of evolutionary 
optimisation and a set-oriented numerical method. A senior researcher from our research 
group will execute this Work Package in close cooperation with the researcher financed by 
the Task budget. In the long term, we want to come up with a tool chain for automatic 
multi-objective optimisation of SAN architectures. The KPI for this work is the number of 
simulated SAMs on the HBP hardware systems, which should increase linearly each month 
starting from Month 24. 

Within this Task, close cooperation with the research groups from Heidelberg (WP9.1) and 
Manchester (WP9.2) is of course mandatory. We know both groups and their hardware 
systems quite well. In addition, we will cooperate closely with the research group of Prof. 
Anders Lansner (Stockholm University and Royal Institute of Technology, Sweden) as this 
group is working on bio-inspired associative memory models in the HBP (WP9.3). Last but 
not least, our research on SAMs will contribute to principles of brain computation and the 
integration of the SAM models into HBP hardware systems (WP9.6). 
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5.5.3 Progress to Date 

Task 11.3.4 started in April 2014 with the implementation of a first version of a spiking 
associative memory (SAM) in PyNN based on leaky integrate-and-fire (IaF) neurons. The 
SAM has a single layer structure and the synapses of the IaF neurons are binary. For an 
automatic generation of SAM benchmark sets (input/output spike patterns) we specified a 
generic program package as well as a tool for analysing the simulation outputs (spike 
trains) for comprehensive reporting of the performance evaluation. 

5.5.4 Software/Hardware Functions (Components of Task 11.3.4) 
Task No: T11.3.4 Partner: UNIBI 

Function No: 11.3.4.1 Leader: Ulrich Rückert  

Function Name: Implementation of SAM architectures in PyNN 

Use Case A: Modelling of different SAM architectures in Software 

Planned Start Date: April 2014 Planned Completion Date: June 2015 

Requires Functions: None 

 

Task No: T11.3.4 Partner: UNIBI 

Function No: 11.3.4.2 Leader: Ulrich Rückert  

Function Name: Automatic performance evaluation  

Use Case A: Tools for analysing the simulation outputs (spike trains) and for 
comprehensive reporting of the performance 

Planned Start Date: October 2014 Planned Completion Date: March 2015 

Requires Functions: 11.3.4.1 

 

Task No: T11.3.4 Partner: UNIBI 

Function No: 11.3.4.3 Leader: Ulrich Rückert  

Function Name: Automatic generation of benchmark data sets 

Use Case A: Tool for automatic generation of SAM benchmark sets with specified 
characteristics 

Planned Start Date: January 2015 Planned Completion Date: June 2015 

Requires Functions: 11.3.4.1 

 

Task No: T11.3.4 Partner: UNIBI 

Function No: 11.3.4.4 Leader: Ulrich Rückert  

Function Name: Mapping SAM architectures on the virtual hardware simulator  

Use Case A: Implementation of SAM architectures on the virtual hardware simulator of 
the Heidelberg group 

Planned Start Date: January 2015 Planned Completion Date: March 2015 

Requires Functions: 11.3.3.1 
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Task No: T11.3.4 Partner: UNIBI 

Function No: 11.3.4.5 Leader: Ulrich Rückert  

Function Name: Mapping SAM architectures on HBP hardware platform NM-PM 

Use Case A: Transition from hardware emulation to SAM implementation on the 
Heidelberg hardware platform NM-PM 

Planned Start Date: July 2015 Planned Completion Date: March 2016 

Requires Functions: 11.3.4.4 

 

Task No: T11.3.4 Partner: UNIBI 

Function No: 11.3.4.6 Leader: Ulrich Rückert  

Function Name: Mapping SAM architectures on HBP hardware platform NM-MC 

Use Case A: Transition from the simulation to SAM implementation on the Manchester 
hardware platform NM-MC 

Planned Start Date: October 2015 Planned Completion Date: March 2016 

Requires Functions: 11.3.4.1 

 
5.5.5 Waypoints and Scientific Key Performance Indicators for Task11.3.4 

This Task has two Milestones: MS313 - the SAM emulation on the virtual hardware (delivery 
Month 19), and MS314 - SAM implementation on the HBP hardware (delivery Month 30). The 
KPIs for this Task are the number of implemented SAM models (up to four), the number of 
generated benchmark sets (up to two), and the number of simulations on the HBP 
hardware systems (more than six). 

Milestones Delivery Month 

MS313: Emulation of SAM on virtual Hardware 19 
MS314: Implementation of SAM on HBP Hardware 30 

Key Performance Indicators Delivery Month 

Number of implemented SAMs in PyNN: 1 - 4: 12, 18, 24, 30 
Number of generated benchmark pattern sets 1 - 2: 18, 24 
Number of simulated SAMs on HBP hardware: 1 - 6 24, 25, 26, 27, 28 29, 30 

 
Table 7: Timeline of T11.3.4 
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5.6 T11.3.5 Asynchronous Computational Retina 

5.6.1 Objectives 

This Task will develop a pure, event-driven visual computation approach that will use 
precise timing mechanisms to design new computation techniques in visual processing. The 
Task will produce a full event-driven visual processing system linking a neuromorphic 
retina directly to the SpiNNaker system by an Asynchronous Event Representation (AER) 
bus. The architecture will allow the first real-time development and implementation of 
new, visual, event-driven computation techniques. We will implement event-driven early 
vision models and 3D stereovision in the SpiNNaker board using a precise timing 
mechanism. They will be fed directly by the output of a neuromorphic retina, ATIS 
(Asynchronous Time-based Image Sensor), developed by the UPMC’s research team. The 
consistency and the robustness of the implemented models and algorithms will be 
constantly analysed via extensive evaluations conducted throughout the Task. 

5.6.2 Components 

The ATIS used in this work is an event-based time-domain, developed by members of the 
team, which encodes image sensors with 304x240 pixel resolution. The sensor contains an 
array of fully autonomous pixels that combines a luminance change detector circuit and a 
conditional exposure measurement block. These sensors are novel vision devices that, like 
their biological counterparts, are driven by “events” occurring within the scene—as 
opposed to conventional image sensors that are driven by artificial timing and control 
signals (e.g., a frame clock) with no relation to the source of the visual information. The 
ATIS output fits the SpiNNaker massively parallel multi-core architecture. It will benefit 
from SpiNNaker’s ability to simulate millions of neurons, and make use of its computing 
power to develop and map event-driven computation architecture. 

Existing work that uses neuromorphic silicon retina visual information based on the event-
driven paradigm is still rare. The most-used approaches map multidimensional raw data, 
obtained from images or videos taken using conventional cameras, into a temporal space 
before feeding the data to spiking networks. Bohte et al. (2002) proposed a population 
coding method that encodes an input variable using multiple overlapping Radial Basis 
Functions (RBFs). The bank of RBFs is designed to cover the whole data range. Coarsely, 
each RBF is associated with a neuron that fires with a delayed time proportional to the 
response of the real value to the RBF.  

Wu et al. (2007) and Kerr et al. (2011) consider a rate-based spiking encoding method that 
converts the responses of convolutional filters (like Difference of Gaussians, or DoG) 
applied on images into spike trains, for which the spiking frequency is proportional to the 
responses. Masquelier and Thorpe (2007), Weidenbacher and Neumann (2008) and Wysoski 
et al. (2008) applied similar spike timing encoding schemes. A grey-scale intensity image is 
filtered with DoG or/and Gabor filters. The obtained feature maps are converted into spike 
ranks by sorting all activities over all feature maps in descending order. This time-to-first-
spike coding framework corresponds to the rank coding that was introduced in Thorpe and 
Gatrais (1998) and efficiently encodes image information in VanRullen and Thorpe (2001).  

Escobar et al. (2009) proposed a similar two-step approach using an energy-based V1 
model (Adelson and Bergen, 1985). First, analogue processing is done on blocks of frames 
(from a video) through spatiotemporal energy filters in order to emulate V1 simple cells. 
Second, the complex cells are modelled as conductance-driven integrate-and-fire neurons, 
where the external input current is associated with a V1 complex cell response. 

In their early stages, these proposed systems present strong assumptions about the time 
encoding of the visual information in the visual cortex functional structure they emulate. 
These approaches demonstrate the efficiency of integrating such theoretical temporal 
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encoding into experimental frameworks, e.g., the rank coding in VanRullen and Thorpe 
(2001) and Masquelier and Thorpe (2007). In addition, the introduced spike latencies (or 
frequencies) were often derived from empirical or statistical settings, which are rarely 
correlated with biological observations. These implementations rely on visual scene 
acquisition based on conventional synchronous cameras. The precision of the spike firing is 
limited at least by the frame rate of the acquisition system, which is inconsistent with 
biological observations. 

As reviewed in Panzerri et al. (2010), the precision of neural codes is indeed influenced by 
the stimulus dynamics. Butts et al. (2007) have demonstrated that the temporal precision 
of the neuronal responses in the visual thalamus is significantly greater when movies are 
displayed at much higher frame rates than normal. In addition, their data demonstrate 
that millisecond precision of spike times is required to decode spatial image details. 
Although Panzerri et al. (2010) also suggest that the brain might encode the visual 
information in a multiplexed manner at different timescales, it appears to be important 
that the visual information is encoded with the greatest temporal precision, as close as 
possible to the native visual information provided by the human retina. 

5.6.3 Plan 

This Task will provide the data, techniques, models and methods needed to produce 
realistic vision-based information (outputs of retina ganglion cells, optical flow, etc.) in 
real time. The research community could use this information to propose, test, and 
validate more realistic computational models of the brain’s visual function and operation. 
A hardware system exploiting the advantages of event-driven computation in object 
classification was recently proposed in Perez-Carasco et al. (2013). A spike-based 
convolutional neural network performing real-time classification from high-speed input 
was implemented on a custom AER-based system. Recognition occurred as soon as the 
convolution layers received enough events, outperforming standard frame-based 
techniques. The use of such custom solutions demonstrates the capabilities of event-driven 
computation. We propose a system that increases the flexibility of such paradigms while 
maintaining precise timing information. 

In this Task, we will feed the event-driven retina sensor’s outputs directly into SpiNNaker 
to make use of the temporal dynamics of these sensors. This will allow us to build a 
neuromorphic sensory architecture capable of processing and interpreting visual 
information the moment it is acquired, thus maintaining the relative time between events. 
To reach this goal, we are using the ATIS silicon retina (Posch et al., 2011). The ATIS is 
sensitive to scene contrasts, and encodes scene changes and luminance as spikes with 
timing precision of less than 1 microsecond, using the Address Event Representation (AER) 
that is compatible with the SpiNNaker. This fully event-driven vision system will implement 
two fundamental, asynchronous vision-processing tasks to outline the importance of 
precise timing in visual information. It will also provide valuable information for further 
developments in robotics and cognitive task modelling, thus facilitating interactions with 
other research areas within the HBP. 

The approaches will use direct output from the retina, but also spikes from a 
neuromorphic retina model developed by the Vision Institute that we plan to implement on 
SpiNNaker (Lorach et al., 2012). Currently, the model is running in real time on a 
conventional computer. It is based on an asynchronous convolutional methodology that 
matches with the SpiNNaker architecture. This will provide the HBP with a realistic real-
time retina model with temporal resolutions similar to biological retinas. 

The proposed approach will be organised as follows: 

Interfacing the ATIS with SpiNNaker: This primary task is mandatory to allow SpiNNaker to 
process the retina’s inputs as directly as possible from the silicon retina. Both devices are 
already using the same event-driven data format (AER). However, their designs do not 
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include their native connection. The interfacing will also be extended to allow the 
integration of two ATIS in order to get the basis of an event-driven stereovision system.  

The event-driven computation paradigm for artificial and asynchronous retina models: This 
Task’s objective is to implement the retina model developed in Lorach et al. (2012), in 
which ganglion cells’ behaviour is reproduced on the SpiNNaker board. The higher 
temporal and spatial accuracy of the ATIS outlines the impact of precise timing; e.g., the 
event-driven optical flow developed in Benosman et al. (2012) and the event-driven 3D 
reconstruction algorithm that triangulates points from the stereovision system (Rogister et 
al., 2012; Carneiro et al., 2013). The implementation of these algorithms in SpiNNaker 
achieves the asynchronous processing of the flows of events at the rate of their arrival, 
using an event-driven methodology. 

5.6.4 Software/Hardware Functions (Components of Task 11.3.5) 
Task No: T11.3.5 Partner: UPMC 

Function No: 11.3.5.1 Leader: Ryad Benosman  

Function Name: 
Hardware implementation: Interface to connect one ATIS camera into 
SpiNNaker 

Use Case A: Feed data into SpiNNaker for computational models 

Planned Start Date: April 2014 Planned Completion Date: May 2015 

Requires Functions: None 

 

Task No: T11.3.5 Partner: UPMC 

Function No: 11.3.5.2 Leader: Ryad Benosman  

Function Name: Hardware implementation: Interface to connect two ATIS cameras into 
SpiNNaker 

Use Case A: Feed data into SpiNNaker for computational models 

Planned Start Date: April 2014 Planned Completion Date: May 2015 

Requires Functions: 11.3.5.1 

 

Task No: T11.3.5 Partner: UPMC 

Function No: 11.3.5.3 Leader: Ryad Benosman  

Function Name: Hardware implementation: Stimulation platform 

Use Case A: Generate input stimulus for acquisition with ATIS cameras 

Planned Start Date: April 2014 Planned Completion Date: May 2015 

Requires Functions: None 
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Task No: T11.3.5 Partner: UPMC 

Function No: 11.3.5.4 Leader: Ryad Benosman  

Function Name: Hardware implementation: Database platform 

Use Case A: Generate datasets for tests and evaluation of computational models 

Planned Start Date: April 2014 Planned Completion Date: May 2015 

Requires Functions: 11.3.5.1, 11.3.5.3 

 

Task No: T11.3.5 Partner: UPMC 

Function No: 11.3.5.5 Leader: Ryad Benosman  

Function Name: Computational model: Visual motion 

Use Case A: Real-time implementation on SpiNNaker of the Visual motion model 

Planned Start Date: January 2015 Planned Completion Date: May 2016 

Requires Functions: 11.3.5.1, 11.3.5.3, 11.3.5.4 

 

Task No: T11.3.5 Partner: UPMC 

Function No: 11.3.5.6 Leader: Ryad Benosman  

Function Name: Computational model: Retina model 

Use Case A: Real-time implementation on SpiNNaker of the Retina model 

Planned Start Date: January 2015 Planned Completion Date: May 2016 

Requires Functions: 11.3.5.1, 11.3.5.3, 11.3.5.4 

 

Task No: T11.3.5 Partner: UPMC 

Function No: 11.3.5.7 Leader: Ryad Benosman  

Function Name: Computational model: Stereovision 

Use Case A: Real-time implementation on SpiNNaker of the Stereovision model 

Planned Start Date: January 2015 Planned Completion Date: May 2016 

Requires Functions: 11.3.5.2 

 
5.6.5 Scientific Key Performance Indicators for Task 11.3.5 

Progress within functions 11.3.5.1, 11.3.5.2, 11.3.5.3 and 11.3.5.4 will be measured by 
assigning it a “status”, as per the table below. 
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Table 8: Key Performance Indicators for T11.3.5, Step 1 

 

Function 11.3.5.4 will provide a database. The obtained sequences will be evaluated based 
on the number of events per second (mean, maximum, etc.). The sequences will be 
clustered into a set of data classes. The capability of the developed and implemented 
methods to process them will be established using benchmarks defined by selecting at 
least five reference sequences per class. The benchmarks will be used to evaluate the 
performance (in terms of number of events processed per second) of the three developed 
models (visual motion, retina model, stereovision). The expected value is 1k events/sec 
for comparison with the temporal precision observed in the biological retina. This 
performance will be considered the scientific KPI used in functions 11.3.5.5, 11.3.5.6 and 
11.3.5.7. 

Function Function Name Scientific KPI KPI model 
type Target Values 

11.3.5.5 
Computational Model: 
Visual motion 

Number of events 
processed per second 

More is 
better 

M32: 1,000 
events/sec 

11.3.5.6 Computational Model: 
Retina Model 

Number of events 
processed per second 

More is 
better 

M32: 1,000 
events/sec 

11.3.5.7 Computation Model: 
Stereovision 

Number of events 
processed per second 

More is 
better 

M32: 1,000 
events/sec 

 
Table 9: Key Performance Indicators for T11.3.5, Step 2 

Function Function Name Possible KPI statuses 

Cu
rr

en
t 

K
PI

 
st

at
us

 

11.3.5.1 

Hardware 
implementation: 
Interface to connect 
one ATIS camera into 
SpiNNaker 

1. Electronic Design & Components Selection 
2. Fabrication & Assembly 
3. Software Implementation (driver, SW interface) 
4. Test & Evaluations 
5. Final validation (redaction of technical reports) 

4 

11.3.5.2 

Hardware 
implementation: 
Interface to connect 
two ATIS cameras 
into SpiNNaker 

1. Electronic Design & Components Selection 
2. Fabrication & Assembly 
3. Software Implementation (driver, SW interface) 
4. Test & Evaluations 
5. Final validation (redaction of technical reports) 

2 

11.3.5.3 
Hardware 
implementation: 
Stimulation platform 

1. Electronic Design & Components Selection 
2. Fabrication & Assembly 
3. Software Implementation (driver, SW interface) 
4. Test & Evaluations 
5. Final validation (redaction of technical reports) 

1 

11.3.5.4 
Hardware 
implementation: 
Database platform 

1. Electronic Design & Components Selection 
2. Fabrication & Assembly 
3. Software Implementation (driver, SW interface) 
4. Test & Evaluations 
5. Final validation (redaction of technical reports) 

2 

Totals   9 
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5.7 T11.3.6 Implementing a Spiking Classifier Network on HiCANN 

Our goal is to implement spiking neuromorphic networks for multivariate data 
classification that exploit the properties of large-scale neuromorphic systems, and that 
solve real-world computing problems. Our networks harness the massively parallel 
architecture of brain circuits to efficiently process high-dimensional data. Our network 
design takes inspiration from the olfactory system, mimicking the general blueprint of 
parallel feature encoding, processing and classification in feedforward networks with 
lateral inhibition. To achieve our overall goal, we must first achieve the following 
objectives: 

• To develop a scalable implementation targeting the large-scale system provided by the 
Heidelberg group. 

• To implement this solution on the Heidelberg system and test it on large multivariate 
classification problems.  

5.7.1 Previous Work 

We previously designed a framework for bio-inspired classification of multivariate data, 
which is based on a three-stage architecture (Figure 8). In the first stage, multivariate 
data are encoded into a firing-rate representation by virtual receptors (VRs, “Input” in 
Figure 8) with large, overlapping receptive fields. In the second stage, the firing-rate 
correlations between VR output channels are reduced by lateral inhibition (“Decorrelation” 
in Figure 8). The third stage consists of a linear classifier that is trained in a supervised 
fashion to perform classification (“Association” in Figure 8). Recently, we completed a 
spiking implementation of this network scheme in PyNN that runs on the Spikey hardware. 

5.7.1.1 Virtual Receptors 

The first challenge to developing a generic neuromorphic framework for multivariate data 
classification with spiking neural networks is to achieve a universally valid transformation 
from the domain of real numbers into the domain of spike trains. This transformation must 
provide bounded, positive numbers (spike rates) from the unbounded space of real 
numbers. We use the approach of virtual receptors (VRs) defined as linear radial basis 
functions with large, overlapping receptive fields. The response r of a VR located at point 
p (in data space coordinates) to stimulus s is given by: 𝑟 = 1 − 𝑑 𝐬,𝐩 −   𝑑!"# / 𝑑!"# −
𝑑!"# , where d(s,p) is the Euclidean distance between s and p in data space, and dmin, dmax 

are the minimal and maximal distance observed across all data points s in the data set.  

The VR positions (i.e., the RBF centroids) are placed in the data space using an 
unsupervised, self-organising approach like a neural gas [3] to ensure good coverage of the 
data manifold in high-dimensional space. Large overlapping receptive fields ensure full 
coverage of the data space without supervised tuning, though they induce correlations 
between VR outputs. The number nVR of VRs determines whether the dimensionality ndim of 
the original data is inflated (nVR > ndim) or reduced (nVR < ndim). In the spiking version of the 
model, VR output is transformed using a gamma process to obtain spike trains, which 
constitute the input to the network (receptor neurons, or RNs, in Figure 8). 

5.7.1.2 Lateral Inhibition 

In the original, rate-coded model, the vector r of all VR responses is transformed by lateral 
inhibition according to 𝑟! =   𝑟 − 𝑞 · 𝐶 · 𝑟!/𝑛!", where r’ denotes the output of projection 
neurons (PNs) in the firing rate model, nVR the number of VRs, C a zero-diagonal weight 
matrix, and q a weight factor to adjust the overall strength of lateral inhibition. Lateral 
inhibition is implemented by lateral inhibitory connections (LN connections in Figure 8). 
Lateral inhibition effectively reduces the correlation between VRs’ outputs that is due to 
their overlapping receptive fields [1,4]. 
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Figure 8: Network Schematic 

Key for Figure 8: RN: Receptor neurons, PN: projection neurons, AN: Association neurons. 

5.7.1.3 A Spiking Circuit for Supervised Classification 

It has been shown that Bayesian inference can be implemented with a simple winner-take-
all (WTA) circuit and a supervised Hebbian learning rule [5]. Our classifier stage 
implements these concepts in a spiking network (termed “association layer” in Figure 8). 
PNs in the network converge onto association neurons (ANs) in the WTA circuit. Each class 
label that is present in the data set is assigned a corresponding population of ANs. The 
classifier system is trained iteratively: in each step, a data point is presented to the 
network and the resulting output of the WTA circuit is evaluated off-chip. The winner 
population (i.e., the AN population with the highest spike count) determines the 
classification output of the network. The weight updates are computed using a Hebbian 
learning rule: only PN-AN synapses with pre- and postsynaptic activity above a fixed 
threshold are changed. The change is positive (potentiation) if classification was correct, 
or negative (depression) if incorrect. The weights are then updated on the chip and the 
next data point from the training set is presented. 

5.7.1.4 Proof-of-Concept 

We have completed and tested an implementation of the spiking classifier network on the 
Spikey neuromorphic hardware system. Figure 9 demonstrates the network functionality 
for Fisher’s classic Iris data set (Figure 9A). The depicted spiking activity (Figure 9B) was 
recorded at the end of the training phase. The network achieved a classification 
performance comparable to that of a Naïve Bayes (NB) classifier on the VR-transformed 
input data (not shown). A more challenging problem was posed by classification of a subset 
of the 784-dimensional MNIST data set that contains 28x28 pixel grey-scale images of 
handwritten digits (Figure 9C) [6]. We trained the network to differentiate the digits ‘5’ 
and ‘7’. The spiking network clearly outperformed the NB classifier (Figure 9D, cols. ‘NB’ 
vs ‘hw’). Importantly, when training the Naïve Bayes classifier on the PN firing rates (i.e., 
on the data representation after filtering by lateral inhibition), the spiking network 
performs at the same level as the full spiking implementation (Figure 9D, col. NB/PN). This 
result indicates that lateral inhibition improves the data representation such that even a 
very simple linear classifier can learn the classification boundaries. 
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Figure 9: Results from the Proof-of-Concept Implementation. 

Key to Figure 9: A) The Iris data set with locations of VRs (2D projection of 4D-space). B) 
Activity (spike dot plot) in the trained network running on the Spikey hardware system in 
response to the data point outlined in grey in A). Orange: excitatory, blue: inhibitory 
populations. C) Subset of the MNIST data set and VRs (2D proj. of 768D space). D) 
Classifier performance on the MNIST data set (discriminating ‘5’ against ‘7’). NB: Naïve 
Bayes. Hw: spiking network on the hardware, NB/PN: Naïve Bayes trained on the PN firing 
rates. RK: Gorodkin’s k-category correlation coefficient. 

5.7.2 Particular Benefits of the Proposed Network for the Neuromorphic 
Approach 

The pre-processing performed by VRs and lateral inhibition provides a representation of 
data space that can be easily partitioned by a linear classifier. This approach is 
particularly effective because VRs are placed in the data space such that they match the 
distribution of the data. But, while extremely beneficial, this placement alone is not 
sufficient for efficient linear classification – the lateral inhibition step is indispensable for 
good performance (see Figure 9D). The VR encoding essentially implements a soft Voronoi 
tesselation of the input space. While VR-receptive fields are global by design, the lateral 
inhibition step makes VRs “local experts” that represent the distribution of data points in 
their vicinity. Arithmetically, hard Voronoi tessellation is prohibitively expensive in high-
dimensional feature spaces, and is practically infeasible even for data sets with moderate 
dimension counts. However, our lateral inhibition approach delivers this kind of 
tessellation basically for free. Moreover, it scales at no additional computation time cost 
when using larger neuronal systems to fit more VRs. Thus, lateral inhibition perfectly 
exploits the inherent massively parallel architecture of neuromorphic hardware systems.  

Due to the limited neuron count on the Spikey system, we were limited to using 10 VRs to 
represent the data sets. Clearly, using more VRs provides more fine-grained 
representations of data space. Hence, increasing the number of VRs increases classification 
performance, as we have demonstrated in a firing rate model in [1]. Our aim in this 
proposal is therefore to scale the network to use more VRs, using the high neuron counts 
available on the large-scale neuromorphic systems developed by the HBP. 

5.7.3 Proposed Approach 

We will first implement a GPU-accelerated software version of the network to explore the 
effect of anticipated hardware-specific constraints in the large-scale system. These 
constraints include the switch from standard leaky IF on Spikey vs. AdExp IF on the large-
scale system [7], potential limitations of connectivity, and bandwidth limitations for host-
to-system communication. As soon as the next-generation single-chip system (HiCANN) and 
the large-scale systems are available, we will tackle implementation and benchmarking on 
the hardware system. 
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5.7.4 Description of Work 

5.7.4.1 Model 1: Scaling Up Network to HiCANN-Supported Size 

In this Task, we will modify our previous network to use a higher neuron count. This will 
build on preliminary work from a separately financed short project in eFuturesXD (EPSRC), 
in which we are testing different scales of the model in a GPU implementation. The 
immediate benefit of an increased neuron count will be the ability to use more VRs. More 
VRs will improve classification performance for large problems. Hence, in a first step, we 
will increase the number of VRs to cover the whole MNIST data set, instead of being 
restricted to two digits. We will explore the performance that can be achieved by this 
moderate upscaling of network size. A second step in the transition to using the HiCANN 
network will be the switch from standard IF to the AdExp IF neuron model. To identify a 
regime that supports stable network operation, we will use the flexibility of the GPU 
implementation to explore the parameter space of the AdExp model.  

5.7.4.2 Model 2: Implement the Network on HiCANN 

We will port the PyNN-based implementation of the network to use the HiCANN chip as it 
becomes available for PyNN users. Since we will already have explored the effects of 
scaling neuron counts to 512, and changing the neuron model to AdExp-IF in the GPU 
approach (Model 1), the challenge here will lie in dealing with the stochastic variability of 
hardware neurons. Here, we can build on our previous work, from which we know that 
asynchronous activity and population sizes play a crucial role in controlling variability. 

5.7.4.3 Model 3: Implement the Network on the Wafer Scale 

The next challenge will consist of expanding the implementation to use several tens of 
thousands of neurons on the wafer-scale system. The high number of available neurons will 
allow us to dramatically scale up the number of VRs, and thus enable us to process 
complex data sets. The wafer-scale system puts certain constraints on the connectivity 
between individual modules. Potential bottlenecks exist in connections with a large fan-in 
or fan-out, since these entail transmission of many spike events from or to a small group of 
neurons (e.g., connections from LNs to PNs, or from PNs to ANs). We will explore whether 
potential overloads can be remediated by reducing the respective connection probabilities 
without hurting network functionality. Another potential limitation is constrained external 
bandwidth, which may limit the number of spikes that can be monitored, and thus limit 
the operation of off-chip learning rules. These limitations can potentially be worked 
around by representative sampling of subsets of ANs and PNs. 

We will challenge the network with diverse multivariate data sets with high feature 
counts. We expect these data sets to benefit maximally from the ability of the VR/lateral 
inhibition method to process data on high-dimensional manifolds. Examples include the 
“Human Activity Recognition Using Smartphones” (10,299 instances, 561 features); “p53 
Mutants” (16,772 instances, 5,409 features); “Daily and Sports Activities”(9,120 instances, 
5,625 features); and the “Dorothea” drug discovery data set (1,950 instances, 100,000 
features); all of which are available from the UCI repository. 

We will relate the execution time to conventional state-of-the-art machine learning 
approaches. By analysing the amount of time taken in the different stages of model 
execution (data preparation on the host machine, configuration of the hardware system, 
execution of the model, off-chip computation of synaptic weight updates), we will identify 
the major bottlenecks in overall computing time and suggest optimisations to the software 
architecture. Moreover, we expect to gain further insights into the nature of the kind of 
data sets for which the neuromorphic approach will provide the most benefits. 
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5.7.5 Software/Hardware Functions (Components of Task 11.3.6) 

Task No: 11.3.6 Partner: UoS 

Model No: 11.3.6.1 Leader: Thomas Nowotny 

Model Name: Mid-Scale Model (HiCANN size) 

Use Case A: The mid-scale model runs on the IRIS and MNIST data sets (GPU based) 

Planned Start Date: May 2014 (M8) Planned Completion Date: Nov 2014 (M14) 

Requires: None 

 

Task No: 11.3.6 Partner: UoS 

Model No: 11.3.6.2 Leader: Thomas Nowotny 

Model Name: HiCANN mid-scale model 

Use Case A: Mid-scale model classifies IRIS and MNIST data sets running on the HiCANN chip 

Planned Start Date: Dec 2014 (M15) Planned Completion Date: Apr 2015 (M19) 

Requires: 11.3.6.1, HiCANN System available for PyNN users 

 

Task No: 11.3.6 Partner: UoS 

Model No: 11.3.6.3 Leader: Thomas Nowotny 

Model Name: Wafer-scale model 

Use Case A: Large-scale model classifies IRIS and MNIST data sets running on the-wafer-scale 
system 

Planned Start Date: May 2015 (M20) Planned Completion Date: Dec 2015 (M27) 

Requires: 11.3.6.2, Wafer Scale System available for PyNN users. 

 

5.7.6 Scientific Key Performance Indicators for Task 11.3.6 

KPI 1: Number of checked in code revisions on software management system (more is 
better) 

KPI 2: Maximal performance achieved on the IRIS data set (more is better) 

KPI 3: Number of different classifier models tested on IRIS (more is better) 
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6. Glossary 

Term Definition For more Information 

AER 
Address Event Representation. An asynchronous handshaking 
protocol used to transmit signals between neuromorphic 
systems 

http://avlsi.ini.uzh.ch/classwiki/lib/
exe/fetch.php?id=fall07%3Afall07&cac
he=cache&media=fall07:lab11.pdf 

ARM Holdings Manufacturer of processors and embedded CPU processors, 
based in Cambridge, UK. 

http://www.arm.com 

ATIS Asynchronous time-based Image Sensor  
BiNAM Binary Neural Associative Memory  
CA Cell assembly  
CABot Cell Assembly robot  

FLIF Fatiguing Leaky Integrate and Fire. A point neural model. http://citeseerx.ist.psu.edu/viewdoc
/summary?doi=10.1.1.217.3900 

FPGAs Field Programmable Gate Arrays http://en.wikipedia.org/wiki/Field-
programmable_gate_array 

IMSE Instituto de Microelectrónica de Sevilla (Partner responsible 
for Task 11.3.3) 

http://www.imse-cnm.csic.es 

KPI Key Performance Indicator  

LTP 
Long-term potentiation. A long-lasting enhancement in signal 
transmission between two neurons that results from 
stimulating them synchronously. 

http://en.wikipedia.org/wiki/Long-
term_potentiation 

PCSIM Parallel neural Circuit SIMulator http://www.lsm.tugraz.at/pcsim/ 

PM Person Month  

PyNN Simulator-independent Python programming language for 
building neuronal network models. 

http://neuralensemble.org/PyNN/ 

RBF Radial Basis Function  

SAM Spiking associative memory  

SAN Spiking associative network  

SpiNNaker 

Spiking Neural Network Architecture. A UK-funded research 
project whose goal is to build neuromorphic computing 
systems based on many-core chips with efficient bi-
directional links for asynchronous. 

http://apt.cs.manchester.ac.uk/proj
ects/SpiNNaker/ 

STP Short term potentiation http://www.ncbi.nlm.nih.gov/pubme
d/9242283 

STDP 
Spike-timing Dependent Plasticity. A process that adjusts the 
strength of connections between neurons based on relative 
timings of inputs and output signals. 

http://en.wikipedia.org/wiki/Spike-
timing-dependent_plasticity 

V1 First cortex layer of the primate visual cortex 
http://en.wikipedia.org/wiki/Visual_
cortex#Primary_visual_cortex_.28V1.
29 

VLSI 

Very Large Scale Integration. The integration of very large 
numbers of transistors on a single silicon chip. VLSI devices 
were initially defined as chips with more than 10,000 
transistors. Current systems may contain more than 
2,000,000. 

http://en.wikipedia.org/wiki/Very-
large-scale_integration 

 


