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Tool for Morphological classification of neurons 
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Figure 1: A pipeline for automatic segmentation and counting of neurons. 

Left: slice of human brain cortex acquired with the Two Photon Fluorescence Microscope, stained with anti-NeuN 
antibodies. Centre: Result of automatic segmentation from the trained CNN model. Right: neurons classified based on 
their size.
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1. Summary 
In this document, we present the progress on the development of our neural network model for 
segmentation of neurons in 3D images of the human brain cortex acquired with a Two-Photon 
Fluorescence Microscope (TPFM). The developed method is not specific to TPFM but can be used on 
different imaging modalities (e.g. Confocal Microscopy, Light Sheet Fluorescence Microscopy - LSFM) 
after retraining with specific ground truth. The aim of this work is to automatically analyse large 
quantities of information, such as the big data produced with advanced microscopy performing high-
resolution three-dimensional reconstruction.  

This analysis method is part of a framework with as aim to map large portions of the human brain at 
sub-cellular resolution. During HBP - SGA2 various tasks were dedicated to achieve this challenging 
goal. In particular, specific sample preparation optimisations (clearing and staining procedures) have 
been performed (Component C2347: “Multiple staining for characterisation of different neuronal 
types”), as well as advanced microscopy development (Component C2349: “Integration of ultra-fast 
large area fluorescence microscope with Switch clearing techniques”). After that, the automatic 
segmentation step (Component C2354: “Morphological classification of neurons with 
immunohistological staining”), which we describe here, provides new possibilities to investigate the 
cytoarchitecture of human brain tissue at mesoscale. Once the 3D meshes of identified neurons are 
automatically extracted, it is possible to evaluate quantitative parameters such as neuronal density 
and mean volume, as well as neuron morphology, we have already performed this analysis on mouse 
brain samples (Component C1745: “Whole-brain maps of different neuronal types”). 

The automatic segmentation approach that we present here consists of a Convolutional Neural 
Network that actually performs pixel-based classification, i.e. pixels are assigned to two classes 
depending on whether they belong to the visual pattern of a neuron or to the background. After 
pixel classification, standard segmentation algorithms (e.g. isosurface search algorithms such as 
Marching Cubes) can then be employed to extract the 3D meshes of identified neurons. Once the 3D 
meshes are available, all other forms of processing and quantitative evaluation are left to a relatively 
simple post-processing step, where neuron morphology, volume and density can be extracted. In 
practice, our approach for automatic neuron segmentation not only leads to cell counting but, more 
importantly, to the volumetric assessment of neuronal size and shape that was simply impossible to 
obtain with state-of-the-art technologies.  

We tested our method on four samples of human brain cortex originating from individuals with 
different health conditions (healthy and pathological) and different age groups. From these samples, 
we were able to observe the cortical layers, which can be clearly distinguished because of their 
different neuronal density and volume. 

The current version of the neural network model that we have developed — together with our 
ongoing effort to port it to TensorFlow and Python — is available on GitHub at this link: 
https://github.com/lens-biophotonics/neuron_segmentation_model_hbp (under curation 
https://github.com/bweyers/HBPVisCatalogue/issues/414). The raw images acquired with TPFM on 
four samples of human brain cortex, together with the corresponding ground truth that was manually 
annotated to train the neural network, have been curated and are available on EBRAINS at this link: 
https://doi.org/10.25493/SNWB-YQR. Finally, the whole experimental and segmentation pipeline is 
described in detail in our comprehensive paper which is in the process of being published in a peer-
reviewed journal and is available as a preprint on bioRxiv at this link: 
https://doi.org/10.1101/2020.08.06.219444. 

  

https://github.com/lens-biophotonics/neuron_segmentation_model_hbp
https://github.com/bweyers/HBPVisCatalogue/issues/414
https://doi.org/10.25493/SNWB-YQR
https://doi.org/10.1101/2020.08.06.219444
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2. Introduction 
The reconstruction of the cellular and molecular architecture of the human brain cortex is one of 
the main goals of the HBP. From a technological perspective, the production of such a map is highly 
challenging for at least three reasons: a) the intact brain tissue must be properly labelled with 
specific probes for different cell types; b) a macroscopic specimen must be imaged with micrometric 
resolution in a reasonable time; and c) imaging data must be analysed in an automatic fashion to 
extract quantitative information about the sample. Quantitative analysis of brain cytoarchitecture 
requires effective and efficient segmentation of the raw images. This task is highly demanding from 
an algorithmic point of view, because of the inherent variations of contrast and intensity in the 
different areas of the specimen, and of the very large size of the datasets to be processed. To 
achieve this goal, we have trained a Convolutional Neural Network (CNN) for the near real-time 
segmentation of neurons in three-dimensional images. This method, together with high-throughput 
sample preparation and imaging, lay the basis for a quantitative revolution in neuroanatomical 
studies. 

3. Materials and Methods 

3.1 Human brain specimens 
We developed our method on images obtained from different samples, we selected four specimens 
of human brain cortex, originating from individuals with different health conditions and ages, as 
specified below: 

• Two portions of the left prefrontal cortex of an adult (male, sample 1) and an elderly subject 
(female, 99 years old, no Alzheimer’s disease but initial cognitive decline, no hypertension; 
sample 2). These are the healthy control subjects. 

• One dysplastic brain sample of the left temporo-occipital cortex of an adult (male, 29 years old, 
operated to treat drug resistant epilepsy due to focal cortical dysplasia Type IIa (FCDIIa); sample 
3). 

• One dysplastic brain sample of the left temporo-parietal cortex of a child (male, 8 years old, 
operated to treat drug resistant epilepsy due to hemimegalencephaly (HME); sample 4). 

The samples were treated following the SWITCH/TDE protocol (implemented in SGA2, C2347) to 
clear and label the human brain tissues with anti-NeuN antibodies. Following the clearing protocol, 
Two-Photon Fluorescence Microscopy (TPFM) was used to perform 3D mesoscopic reconstruction of 
the different samples. Detailed information on the procedures is available in the bioRxiv preprint. 

After imaging with TPFM, the acquired 3D tiles have been stitched together using ZetaStitcher, a 
software that we developed to deal with large-volume tomographies and made available on GitHub 
at https://github.com/lens-biophotonics/ZetaStitcher (under curation 
https://github.com/bweyers/HBPVisCatalogue/issues/402). The resulting stitched volumes 
consisted of several GB of data. In particular, the fused volumes of the four samples acquired in this 
work were sized 19, 50, 57 and 52 GB. To generate the ground truth, manual annotation was 
performed by two distinct operators. The training dataset was composed of 112 images of 512 x 512 
px, corresponding to 450 x 450 µm2, for a total of 7,312 manually annotated neurons; 14 images 
(1,505 neurons) were used to validate the CNN and 14 (1,208 neurons) to test it. The raw stitched 
images and the manually annotated ground truth are available for download from EBRAINS 
(https://doi.org/10.25493/SNWB-YQR). 

3.2 The machine learning method 
The developed 2D Convolutional Neural Network model, (available here: https://github.com/lens-
biophotonics/neuron_segmentation_model_hbp), performs pixel-based classification. 32 x 32 x 2 

https://github.com/lens-biophotonics/ZetaStitcher
https://doi.org/10.25493/SNWB-YQR
https://github.com/lens-biophotonics/neuron_segmentation_model_hbp
https://github.com/lens-biophotonics/neuron_segmentation_model_hbp
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sized patches (i.e. considering red and green channels, corresponding to NeuN and DAPI respectively) 
are extracted from the stitched volume, and fed to the CNN model after a preprocessing step 
consisting of a single 5 x 5 Gaussian kernel filtering stage with σ = 3. This operation replicates the 
intrinsic blurring caused by resampling during data augmentation in the training phase of the CNN. 
The neural network architecture consists of three convolutional layers, the first two of which are 
followed by 2 x 2 max-pooling downsampling, and three fully connected layers, the last of which 
makes use of a two-class softmax activation function. More detailed information, such as trainable 
parameters and the block diagram of the overall network structure, is available in the bioRxiv 
preprint.  

The neural network was developed on top of the ALIQUIS framework for Machine Vision, which has 
proven to be particularly suitable for rapid prototyping of CNN architectures. ALIQUIS is developed 
by Bioretics srl, a private company (SME) involved in this project, and is freely available for research 
purposes (https://www.bioretics.com/aliquis). Efforts to port the network to TensorFlow and 
Python are ongoing and available on GitHub (https://github.com/lens-
biophotonics/neuron_segmentation_model_hbp/tree/master/tensorflow_2.5D_model). The trained 
neural network model as well as the CNN structure, described in the ALIQUIS™ language, and the 
ground truth used for training are available for download from EBRAINS 
(https://doi.org/10.25493/SNWB-YQR).  

Compared to a previous preliminary version of the neural network, several improvements have been 
introduced during SGA2. In particular, in the previous version of the CNN described above, only the 
red channel (NeuN staining) was used for the purposes of pixel classification and segmentation. In 
the new version of the network, we also take the green channel (DAPI staining) into consideration. 
This improves the performance of the network and increases its segmentation capabilities in the 
presence of clusters of neurons that were previously segmented as a single entity and are now 
correctly segmented as separate cells (Figure 2). From a more quantitative point of view, the 
performance of the new model can also be inferred from the FROC (Free-response Receiver 
Operating Characteristic) curves (Figure 3) which show how the new model achieves a higher 
sensitivity (or recall) with fewer cases of false positives. 

 

Figure 2: Segmentation in the presence of neuron clusters. 
Left: results of neuron segmentation using the old neural network (only red channel). Right: result of neuron 
segmentation using the new improved version of the neural network (red and green channels). The blue arrow 
highlights a region of clustered neurons that are correctly segmented with the new version of the CNN. Blood vessels 
are segmented as well, shown here with a purple contour. 

https://www.bioretics.com/aliquis
https://github.com/lens-biophotonics/neuron_segmentation_model_hbp/tree/master/tensorflow_2.5D_model
https://github.com/lens-biophotonics/neuron_segmentation_model_hbp/tree/master/tensorflow_2.5D_model
https://doi.org/10.25493/SNWB-YQR
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Figure 3: Comparison of FROC curves between old and new version of the neural network. 

3.3 3D reconstruction using the 2.5D approach 
The CNN model independently processes 2-channel acquisition frames and produces probability 
heatmaps. These two-dimensional maps are reassembled back into a 2.5D stack to obtain an estimate 
of the three-dimensional probability distribution of neuronal soma presence. On these reassembled 
3D heatmaps, we apply isosurface search algorithms (such as Marching Cubes) to obtain the 
volumetric representation of identified neurons in the form of 3D meshes. 

In practice, the neural network actually performs pixel classification in 2D. After extraction of the 
3D objects using standard algorithms, the evaluation of whichever quantitative parameter and 
neuron morphology is left to a relatively simple post-processing step. In Section 4, we demonstrate 
that neuronal morphology, volume and density can be evaluated from the vectorial data. We chose 
this approach because it is easier to implement, requires less ground truth and is more general. 
Indeed, the neural network need only be trained once (for neuron segmentation), and then all sorts 
of data can be extracted at a later time (including, but not limited to, neuron morphology). Overall, 
this approach allows us to retrieve a three-dimensional vectorial reconstruction of the segmented 
objects in the entire z-stack. 

All 2.5D computations have been performed on a standard Linux-based workstation by the ALIQUIS™ 
software ecosystem with Google TensorFlow as CNN back end. 

4. Validation and Impact 

4.1 Actual Use of Output(s) / Exploitation  
We applied our neural network model for neuron segmentation (C2354) on all four samples 
mentioned above. The resulting 3D meshes of the segmented neurons of the four samples are 
available for download from EBRAINS (https://doi.org/10.25493/SNWB-YQR). Three-dimensional 
renderings - which were prepared using Fiji - are shown in Figure 4.  

From a more quantitative point of view, and to further demonstrate the full extent of the 
applicability of the techniques described in this report, we analysed the automatically segmented 
neurons of the mesoscopic reconstruction to extract anatomical information. In particular, we 
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obtained the average mean volume and density distributions of neurons in healthy vs pathological 
and young vs elderly individuals (detailed information is available in the bioRxiv preprint).  

 
Figure 4: 3D rendering of the masks of segmented neurons in the 4 samples. 

The neuronal segmentation made it possible to distinguish the different cortical layers through the 
cortex thanks to their different neuronal volume and density. Figure 5, obtained with Blender 
(www.blender.org), shows a 3D rendering of the neurons of sample 1. The objects are colour-coded 
depending on their volume. It is apparent that the different cortical layers can be clearly 
distinguished (from left to right of the figure: layer 1,2,3,4,5,6 and white matter). Indeed, the inner 
anatomical architecture of the six cortical layers can be reconstructed, with the different layers 
exhibiting different neuron morphologies and densities. 

 
Figure 5: Colour-coded neuronal rendering of sample 1.  

Volumes: Blue 400-2,500 µm3, light blue 2,500-4,500 µm3, green 4,500-8,500 µm3, yellow 8,500-12,000 µm3, red 
≤12,000 µm3 

4.2 Potential Use of Output(s)  
With respect to the results presented in the previous section and from a broader perspective, the 
workflow presented here, based on the machine learning approach, allows to scale up and create 
many more maps of cytoarchitectonic areas over the coming years, working towards a full mapping 
of the brain. While our approach was developed with fluorescence images, it is not restricted to 

1 2 3 4 

http://www.blender.org/
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TPFM. It could be adapted to analyse images from different modalities (e.g. Confocal Microscopy, 
Light Sheet Fluorescence Microscopy) after proper re-training with specific ground truth. For 
example, this workflow could be applied to analyse the images obtained with the Dual-View Inverted 
Confocal Light-Sheet Fluorescence Microscope (di2CLSFM) optimised during HBP SGA2 (Component 
C2349: “Integration of ultra-fast large area fluorescence microscope with Switch clearing 
techniques”). Indeed, it could be used to analyse the hippocampal region acquired during SGA2 with 
the di2CLSFM (Component C2293: “Layer-specific excitatory and inhibitory neuronal maps of 
hippocampus”). 

The 3D reconstruction of the neuronal volume enables extracting morphological information that 
allows discriminating cell types using a general staining such as NeuN, reducing the number of labels 
necessary for the analysis (a critical point in human tissue preparation). Moreover, in the future, 
variability in volume could be used in pathological analyses to assess, more reliably and without 
visual artefacts (different orientation or distribution), the morphological alteration of neurons, even 
in the presence of sparse features. Indeed, the 3D evaluation increases the statistical accuracy and 
the sensitivity of the assessment, as already demonstrated for other tissues in tumour diagnostics 
and in stratifying patient prognosis (Tanaka et al. Nat Biomed Eng 2017). 

Given the extent of the imaged samples and the number of cells involved, automated approaches 
such as the one presented here are the only possibility for performing quantitative analysis in a 
systematic fashion at a large scale. What was achieved here is a fundamental first step in what we 
envision as “3D digital histology”. The data obtained will provide new and more complete 
information of the cellular organisation of the tissue at high resolution that could be used in brain 
models and simulation. 
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Annex: Components  
List of components mentioned in the text:  

• C2347: “Multiple staining for characterisation of different neuronal types”, Task T2.3.2, WP2.3. 
The component aims at implementing a new clearing protocol to perform 3D staining of 
volumetric human brain tissue sample.  

• C2349: “Integration of ultra-fast large area fluorescence microscope with Switch clearing 
techniques, Task T2.3.2, WP2.3. Development of a new custom-made light-sheet fluorescence 
microscopy apparatus to perform 3D reconstruction of volumetric cleared samples.  

• C2354: “Morphological classification of neurons with immunohistological staining”, Task T2.6.4, 
WP2.6. Development of a neural network model for segmentation and morphological 
classification of neurons. The topic of this deliverable.  

• C1745: “Whole-brain maps of different neuronal types”, Task T1.3.1, WP1.3. Production of maps 
of different neuronal types across the entire mouse brain. Different types of neurons are 
discriminated based on the molecular marker expressed by the transgenic line.  

• C2293: “Layer-specific excitatory and inhibitory neuronal maps of hippocampus”, Task T2.3.1, 
WP2.3. Acquisition of a human brain hippocampus with an advanced fluorescent microscope to 
perform acquisition of excitatory and inhibitory neurons in 3D in combination with specific 
clearing and staining techniques. 


	1. Summary
	2. Introduction
	3. Materials and Methods
	3.1 Human brain specimens
	3.2 The machine learning method
	3.3 3D reconstruction using the 2.5D approach

	4. Validation and Impact
	4.1 Actual Use of Output(s) / Exploitation
	4.2 Potential Use of Output(s)

	5. Dissemination
	5.1 Publications
	5.2  Posters, Lectures, Presentations and Talks

	Annex: Components

