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NEST = NEURAL SIMULATION TOOL
Point neurons and neurons with few electrical compartments
Phenomenological synapse models (STDP, STP)
+ gap junctions, neuromodulation and structural plasticity

Frameworks for rate models and binary neurons
Support for neuroscience interfaces (MUSIC, libneurosim)

Highly efficient C++ core
with a Python frontend
Hybrid parallelization
(OpenMP+MPI)
Same code from laptops to
supercomputers
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NEST DESIGN GOALS
High accuracy and flexibility

Each neuron model is assigned an appropriate solver
Exact integration is used for suitable neuron models
Spikes are usually restricted to the computation time grid
Spike interaction in continuous time for some models

Constant quality assurance
Automated unittest suite included in NEST build
Continuous integration for all repository checkins
Code review for all code contributions

NEST’s development is always driven by scientific needs
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WHEN TO USE NEST?
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OBTAINING NEST

Download from http://nest-simulator.org

Source code for official releases
Virtual machine images (e.g. for use on Windows)

Open source development:
https://github.com/nest/nest-simulator

Direct access to current and future development
Ability to fork and develop locally
Pull requests for merging into the official version

From your distribution’s package repository:
PPA for Ubuntu and Debian
Package in Neuro-Fedora
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INSTALLING FROM SOURCE (LINUX)

1 Download NEST and unpack (in $HOME folder):
wget https://git.io/vFxDo
tar -xzvf nest-2.18.0.tar.gz

2 Create and enter build directory:
mkdir nest-2.18.0-bld
cd nest-2.18.0-bld

3 Configure, compile and install build:
cmake -DCMAKE_INSTALL_PREFIX=$HOME/nest-2.18.0-inst ../nest-2.18.0
make -j4
make install

4 Update environment (in $HOME/.bashrc or similar file):
. $HOME/nest-2.18.0-inst/bin/nest_vars.sh
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NEST LIVE MEDIA USING VIRTUALBOX
1 Download and install VirtualBox: http://virtualbox.org

2 Download NEST live media: http://nest-simulator.org/download

Includes NEST, NEURON, Brian, PyNN, ...

3 Start VirtualBox:

File→ Import Appliance→ Appliance to import→ Open
4 Start VM, install VirtualBox Guest Additions CD image

(Devices→). Follow instructions and restart guest OS

5 Set up shared folders (between host and guest):

Create shared folder in host OS, e.g. vb_shared
Devices→ Shared Folders→ Settings: add new
Uncheck ’Auto-mount’ and ’Make permanent’→ OK→ OK
Create mount point in guest OS:
mkdir sharedir
sudo mount t vboxsf o uid=999,gid=999 vb_shared sharedir

Member of the Helmholtz Association November 25, 2019 Slide 8

http://virtualbox.org
http://nest-simulator.org/download


H E L P !
Within Python:
nest.help()
nest.helpdesk()
nest.help('iaf_psc_exp')
nest.help('Connect')

Online documentation:
http://nest-simulator.org/documentation

Community:
NEST user mailing list
Bi-weekly open video conference
http://nest-initiative.org/community
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HOW TO USE NEST?

Different user interfaces for maximum flexibility
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HOW TO USE NEST?

Two different command line user interfaces:

The built-in simulation language interpreter SLI
/n iaf_psc_alpha << /V_m -50.0 >> 5 Create def
/sd spike_detector Create def
n sd Connect

The Python interface PyNEST
n = nest.Create("iaf_psc_alpha", 5, {"V_m": -50.0})
sd = nest.Create("spike_detector")
nest.Connect(n, sd)

NEST is also supported by the multi-simulator interface PyNN
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NEURONAL SIMULATIONS IN NEST

A simulation in NEST mimics a neuroscientific experiment
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NEURONAL SIMULATIONS IN NEST
The network in NEST comprises a directed, weighted graph

Nodes represent either neurons or devices
Edges represent synapses between nodes

Nodes are updated on a fixed-time grid, while spikes can also be
in continuous time

Neurons can be arbitrarily complex, not just point neurons

Devices for stimulating neurons and recording their activity

Synapse models to establish connections between nodes

Parallelization and inter-process communication is handled
transparently by NEST
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NEURON MODELS

Integrate-and-fire models (iaf_)
Current-based (iaf_psc)
Conductance-based (iaf_cond)
Different post-synaptic shapes (_alpha, _exp, _delta)

Single compartment Hodgin-Huxley models (hh_)
Adaptive exponential integrate-and-fire models (aeif_)
MAT2 neuron model (Kobayashi et al. 2009)
Neuron models with few compartments

Creation of neurons using the Create command:

Create(<model>, <num>, <params>)
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STIMULATION DEVICES

Spike generators:
spike_generator spikes at prescibed points in time
poisson_generator spikes according to a Poisson distribution
gamma_sup_generator spikes according to a Gamma distribution

Current generators
ac_generator provides a sine-shaped current
dc_generator provices a constant current
step_current_generator provides a step-wise constant current
noise_generator provides a random noise current
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RECORDING DEVICES

spike_detector records incoming spikes
multimeter records analog quantities (potentials, conductances,
...)
voltmeter records the membrane potential
correlation_detector records pairwise cross-correlations
between the spiking activity of neurons

weight_recorder records the weight of connections
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GENERAL PARAMETER ACCESS

All parameter access in NEST is carried out via dictionaries

Retrieving the status of an element:
GetStatus(<element(s)>)
GetStatus(<element(s)>, <key(s)>)

Setting properties of an element:
SetStatus(<element(s)>, <dict(s)>)
SetStatus(<element(s)>, <key(s)>, <value(s)>)
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SPECIFICATION OF CONNECTIVITY

The Parameter conn_spec:
defines the connection rule
defines rule-specific parameter
can be a string or a dictionary

A = Create('iaf_psc_alpha', n)
B = Create('spike_detector', n)
Connect(A, B, 'one_to_one')

A = Create('iaf_psc_alpha', n)
B = Create('iaf_psc_alpha', m)
Connect(A, B)
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SPECIFICATION CONNECTIVITY

A = Create("iaf_psc_alpha", n)
B = Create("iaf_psc_alpha", m)
conn_dict = {'rule': 'fixed_indegree',

'indegree': N}
Connect(A, B, conn_dict)

Further rules and their keys:
’fixed_outdegree’, ’outdegree’
’fixed_total_number’, ’N’
’pairwise_bernoulli’, ’p’
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SPECIFICATION OF SYNAPSE PROPERTIES
Using customized synapse model:
A = Create('iaf_psc_alpha', n)
B = Create('iaf_psc_alpha', n)
CopyModel('static_synapse','excitatory',

{'weight':2.5, 'delay':0.5})
Connect(A, B, syn_spec='excitatory')

Insert synapse parameter directly into Connect():
syn_dict = {'model': 'static_synapse',

'weight': 2.5, 'delay': 0.5}
Connect(A, B, syn_spec=syn_dict)

syn_spec defines the synapse model and synapse-specific parameters and can be a
string or a dictionary
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RANDOMIZATION OF SYNAPSE PROPERTIES

specify distributed parameters as dictionaries
delay_dist = {'distribution': 'uniform',

'low': 0.8, 'high': 2.5}

alpha_dist = {'distribution': 'normal_clipped',
'low': 0.5, 'mu': 5.0,
'sigma': 1.0}

syn_dict = {'model': 'stdp_synapse',
'weight': 2.5,
'delay': delay_dist,
'alpha': alpha_dist}
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DISTRIBUTIONS

Distributions Keys
’normal’ ’mu’, ’sigma’

’normal_clipped’ ’mu’, ’sigma’, ’low ’, ’high’
’lognormal’ ’mu’, ’sigma’

’lognormal_clipped’ ’mu’, ’sigma’, ’low’, ’high’
’uniform’ ’low’, ’high’

’uniform_int’ ’low’, ’high’
’binomial’ ’n’, ’p’

’binomial_clipped’ ’n’, ’p’, ’low’, ’high’
’exponential’ ’lambda’

’exponential_clipped’ ’lambda’, ’low’, ’high’
’gamma’ ’order’, ’scale’

’gamma_clipped’ ’order’, ’scale’, ’low’, ’high’
’poisson’ ’lambda’

’poisson_clipped’ ’lambda’, ’low’, ’high’
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A FULL EXAMPLE
import nest # import NEST module
neuron = nest.Create('iaf_psc_exp') # create a neuron
voltmeter = nest.Create('voltmeter') # create a voltmeter
spikegenerator = nest.Create('spike_generator') # create a spike generator
nest.SetStatus(spikegenerator, {'spike_times': [10., 50.]}) # let it spike

# connect spike generator and voltmeter to the neuron
nest.Connect(spikegenerator, neuron, syn_spec={'weight' : 1E3})
nest.Connect(voltmeter, neuron)

nest.Simulate(100.) # run the simulation

# read out recording time and voltage from voltmeter and plot them
times = nest.GetStatus(voltmeter)[0]['events']['times']
voltage = nest.GetStatus(voltmeter)[0]['events']['V_m']
pl.plot(times, voltage)
pl.xlabel('time (ms)'); pl.ylabel('membrane potential (mV)')
pl.show()
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A FULL EXAMPLE
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SIMULATION LOOP

Simulation starts at t = 0

We simulate for Tstopms
U(St) propagates the neuron
state S to time t

VPs are virtual processes
∆ is the minimal delay in the
network

parallel on all threads
parallel on all processes
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NETWORK UPDATE

Neurons and devices are updated in the order of their creation

During the run of the update function, all previous events are
taken care of, and new events are created
Spikes are buffered for local and remote delivery in the next time
slice
All other events are delivered immediately to local nodes

Devices for stimulation and recording are replicated on each VP,
which also deliver locally
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NODE UPDATE
During an interval of the minimal transmission delay in the network (∆),
neurons are effectively decoupled.

h
∆

time

T
0

0 T
∞

0 = T
0

1

The update function of nodes (U ) is called every ∆ steps
The nth time slice of length ∆ starts at T 0

n = n ·∆ and ends at
T∞
n = (n + 1) ·∆

Internally, nodes use a time step of h (e.g. for solvers)
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STRUCTURED NETWORKS USING TOPOLOGY

Invoke the topology module:
from nest import topology

Functionality:
Set node positions on grids or arbitrary points in space (1D,2D,3D)
Nodes can be neurons or combinations of neurons and devices
Connect nodes in a position- and distance-dependent manner
Set boundary condition (periodic or not)
Enable/disable self-connections (autapses) or
multiple connections (multapses)

Further reading:
www.nest-simulator.org/documentation
→ NEST user manual→ Topological connections
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GAP JUNCTIONS: IMPLEMENTATION
at each time point neuron i needs
membrane potential of neuron j
large system of differential equations
naïve: communication of V in each
step
better: Jacobi waveform relaxation

Hahne et al. (2015). A unified framework for spiking and gap-junction interactions in distributed
neural network simulations. Frontiers in Neuroinformatics. 9:22
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GAP JUNCTIONS: EXAMPLE

nest.SetKernelStatus({'max_num_prelim_iterations': 15,
'prelim_interpolation_order': 3,
'prelim_tol': 0.0001})

neuron = nest.Create('hh_psc_alpha_gap', 2, {'I_e': 100.})
nest.SetStatus([neuron[0]], {'V_m': -10.})
vm = nest.Create('voltmeter', { 'interval': 0.1})

syn_dic = {'model': 'gap_junction', 'weight': 0.5}
nest.Connect(neuron, neuron, syn_spec=syn_dic)
nest.Connect(vm, neuron)

nest.Simulate(351.)

vm_dict = nest.GetStatus(vm, 'events')
times_vm = vm_dict[0]['times']
V_vm = vm_dict[0]['V_m']
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GAP JUNCTIONS: EXAMPLE
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PARALLELIZATION IN NEST

Model developers and users (mostly) don’t have to care about
parallelization.

A neuron n is created on the virtual process p, where
gid(n) mod NMPI == p

On all other VPs, a light-weight proxy is created
Devices are replicated on each VP to distribute load

There is one random number generator (RNG) per thread
In addition, there is a global RNG that is kept synchronized
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REPRESENTATION OF NETWORK STRUCTURE:
SERIAL

Each neuron and synapse maintains its own parameters
Aynapses save the index of the target neuron
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REPRESENTATION OF NETWORK STRUCTURE:
DISTRIBUTED

neurons are distributed
round robin onto processes
one target list for every
neuron on each machine
synapse stored on machine
that hosts the target neuron
wiring is a parallel operation
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COMMUNICATION OF EVENTS
communication only required in intervals of the minimal delay
between neurons

communication frequency independent of step size h

less communications containing more data is more efficient due
to overhead of communication between machines
buffer sent to all machines (MPIAllgather)
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EVENT-DRIVEN VS. TIME-DRIVEN

Event-driven simulation:
Visit a neuron only when it receives an event (e.g. a spike)
From y(ti), calculate y(ti+1)

Time-driven simulation:
Visit each neuron in each time step h

From y(ih), calculate y([i + 1]h)
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EVENT-DRIVEN VS. TIME-DRIVEN

Event-driven Time-driven

Pros more efficient for low input
rates
’correct’ solution for
invertible neuron models

more efficient for high input
rates
works for all neuron models
scales well

Cons only works for neurons with
invertible dynamics
event queue does not scale
well

only ’approximate’ solution
even for analytically
solvable models
spikes can be missed due to
discrete sampling of
membrane potential
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EVENT-DRIVEN VS. TIME-DRIVEN
NEST uses a hybrid approach to simulation

input events to neurons are frequent: time-driven algorithm
If the dynamics is nonlinear, we need a numerical method to solve
it, e.g.:

– Forward Euler: y([i+ 1]h) = y(ih) + h · ẏ(ih)
– Runge-Kutta (kth order)
– Runge-Kutte-Fehlberg with adaptive step size
– . . .

→ Use a pre-implemented solver, for example, from the GNU
Scientific Library (GSL).

If the dynamics is linear (e.g. LIF or MAT), we can solve it exactly.

events at synapses are rare: event driven component
Exception: gap junctions
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NESTML
NESTML is a domain-specific language for neuron and synapse
models.

Using PyNEST, you instantiate and connect the models that you
define in NESTML.
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NESTML: DESIGN PRINCIPLES

Concise; low on boilerplate
Speak in the vernacular of the neuroscientist (keywords such as
neuron, synapse)
Easy (dynamical) equation handling coupled with
imperative-style programming (if V_m >= threshold: ...)

NESTML comes with a code generation toolbox.
Code generation (model definition but not instantiation)
Automated ODE analysis and solver selection
Flexible addition of targets using Jinja2 templates
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NESTML: EXAMPLE

neuron iaf_psc_exp:
state:
V_abs mV = 0 mV

end

equations:
shape G = exp(-t / tau_syn)
V_abs' = -V_abs / tau_m

+ (I_ext + convolve(G, spikes)) / C_m
end

parameters:
C_m pF = 250 pF
tau_m ms = 10 ms
tau_syn ms = 2 ms
V_threshold mV = 40 mV # w.r.t. zero!

end

input:
spikes pA <- spike
I_ext pA <- current

end

update:
integrate_odes()
if V_abs > V_threshold:

V_abs = 0
emit_spike()

end
end

end
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NEST PERFORMANCE

Maximum network size and corresponding run time as function of number of virtual
processes on the K computer (red) and JUQUEEN (blue). Taken from Kunkel et al.,
(2014), Front Neuroinf. DOI: 10.3389/fninf.2014.00078
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REFERENCES AND FURTHER READING

The NEST Simulator homepage at https://www.nest-simulator.org

Scientific publications about the technical side of the simulator
⇒ nest-simulator.org/publications

Our user mailing list for support and discussions
⇒ nest-simulator.org/community.

A bi-weekly open video conference
⇒ nest-simulator.org/videoconference.

An annual user and developer conference
⇒ nest-simulator.org/conference.

Please tell us about problems. We only can fix what we know of!
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MORE NEST IN HEIDELBERG

News and Features by Dennis Terhorst
Wednesday, November 27, 09:30-10:00

PyNEST tutorial by Håkon Mørk and Stine Brekke Vennemo
Wednesday, November 27, 13:30-14:30

NESTML tutorial by Charl Linssen
Wednesday, November 27, 16:00-16:30

Coupling NEST and TVB by Sandra Diaz
Wednesday, November 27, 16:30-17:00

NEST Desktop by Stefan Rotter and Sebastian Spreizer
Thursday, November 28, 09:00-10:30
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