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Abstract: 

This report describes the Month 18 Deliverable for the HBP Subproject 3, 
Cognitive Architectures. The Deliverable, entitled “Functional mapping data, 
cognitive architectures and models for the HBP Human brain Atlas: package 1” 
aims at identifying and inventorying the data sets that SP3 is delivering in phase 
I of the Ramp-Up Phase of the Human Brain Project. Based on this report, SP3 
will make key contributions to a successful Operational Phase of the HBP. 
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1. Introduction 

This Deliverable identifies and inventories the data sets that Subproject (SP) 3 is delivering 
in phase I of the Ramp-Up Phase of the Human Brain Project. The goal of SP3 is to select 
well defined, challenging cognitive domains already partially studied by cognitive 
neuroscience, and to refine the understanding of their “cognitive architecture” (areas, 
circuits, internal codes, dynamics).  

To this end, the scientists in SP3 review the existing literature on specified cognitive 
functions, and generate data from innovative strategic experimental protocols aimed at 
dissecting the associated patterns of brain activation and response dynamics. The 
generated data provide fundamental constraints on any attempt at modelling the 
corresponding function. By providing top-down constraints that arise from our knowledge 
of behaviour and brain circuits, cognitive neuroscientists in the HBP help create and 
constrain theoretical models, possibly framed in the form of computer simulations that 
capture and reproduce the main facts about a cognitive architecture. 

As detailed further below, in the first 18 months of the HBP Ramp-Up Phase, SP3 has 
delivered or is planning to deliver the following data and models: 

DATA 

2.1.1.2 Dynamics of the internal model of objects and faces (human behaviour and MEG) 

2.1.1.3 Localization and dynamics of spontaneous activity in visual areas (human fMRI) 

2.1.2 Dynamics of attention (non-human primate local-field potentials) 

2.3 Cortical representation of the body (human behaviour, ERPs and fMRI) 

2.3.3 Genetic programming approach to EEG agency related data 

2.5 Map of human inter-areal connectivity and phase lags (human SEEG) 

3.1.2 Human networks involved in computing confidence (human behaviour and fMRI) 

3.1.3 Mouse computation of confidence in action (mice behaviour) 

3.2 Human networks involved in motivation and effort (human behaviour and fMRI) 

3.3 Brainstem modulation of decision processes (human behaviour and fMRI) 

3.4 Human networks for motivation, decision and valuation (intracranial recordings) 

4.1 Brain signatures of procedural memory consolidation (human behaviour and fMRI) 

4.2 Human networks for episodic memory consolidation (human behaviour and fMRI) 

4.3 Human network for conscious and unconscious working memory (human fMRI) 

5.1.2 Perfomance of lesioned and control rats 

6.1 Database of neuronal recordings in primary visual cortex (cat intracellular data) 

6.2 Neural responses to unimodal and multi-modal stimuli (mice two-photon data) 

7.2.2 Human networks encoding syntactic structures (human fMRI) 

7.2.3 Cortical encoding of probabilistic sequences (human behaviour and MEG)  

7.2.4 Brain networks encoding geometrical sequences (human and monkey fMRI) 

7.3 Human networks for social cognition (human fMRI) 

MODELS 
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2.4 Model of gamma oscillations in visual cortex 

2.2.2 Model of visual action recognition (+ stimuli + human behavioural data) 

4.2.3 Neural mass model of the sleeping brain 

5.1 Model of spatial navigation and spatial memory 

7.1 Model of the emergence of human areas responsive to letter and number symbols 

Actual delivery of the data will have to await the opening of the beta version of the 
Neuroinformatics Platform to its users. SP3 users were first contacted by SP5 in late March 
and in early April 2015 to start discussing the practical details of how these data will be 
transferred to the platforms. A specific pipeline to transfer the data still needs to be 
worked out. In agreement with Martin TELEFONT from the Neuroinformatics Platform 
(SP5), SP3 researchers agreed that the next practical steps should be to focus on a few 
selected examples to set up a pipeline that is efficient for the data provider, the platform, 
and most importantly the user. On the SP3 side, we will use the current M18 deliverable 
document to identify these best examples. We also agreed to start by focusing first on 
providing key results of data analysis, instead of the raw data, as the former may be most 
beneficial to a broad community of users. 

Given that the practical details about the delivery of data are still being defined, the Data 
Set Identification Card requested by the Science and Technology Office will be provided 
later, together with the data, after its exact content is defined in coordination with SP5. 
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2. Perception-Action (WP3.1) 

2.1 Study of the Circuits Involved in Non-Conscious and Conscious 
Mechanisms of Visual Recognition (T3.1.1) 

This Task involves the following two sub-Tasks, each of which is reported on separately: 

• Visual Perception 

• Visual attention and the mechanisms of inter-areal communication  

2.1.1 Visual Perception  

2.1.1.1 Overview 

The overall research goal of this task is to achieve a detailed map of both long- and short-
term predictions in visual recognition. While many models of visual recognition operate 
solely in a fast feedforward manner, it is becoming evident that a critical aspect of visual 
perception is the implementation, in a top-down manner, of a priori, predictive 
information in neuronal circuits. Such prior information, which is assumed to be 
implemented in the form of “internal models” of objects, and is likely to be operating 
below the threshold of awareness, allows the visual perceptual system to operate at high 
efficiency and adaptively, behaving close to an optimal Bayesian inference device. This is 
particularly critical when faced with ambiguous or noisy information. However, the 
specific details and neuronal implementation of such predictive information processing 
remains to be clarified. 

In Stanislas DEHAENE’s group at the Commissariat àommissaria atomique et aux énergies 
alternatives (CEA – P9), a new paradigm has been designed to investigate the temporal 
dynamics of view-specific and view-invariant object recognition, and the manipulation of 
predictive mental models of objects in the human brain. The associated behavioural and 
magneto- and electro-encephalography (MEEG)  were acquired by Clement MOUTARD 
(CEA), and will be made available by the end of the Ramp-Up Phase. This data set is 
described in more detail in Subsection 2.1.1.2. 

Rafael MALACH’s group (Weizmann Institute of Science  [WIS – P78]) has developed new 
approaches to study the architecture of visual perceptual networks and other cortical 
networks. These are based on their hypothesis (formulated in HARMELECH and MALACH, 
TICS 20131) that coherent patterns which spontaneously emerge when the visual system is 
at rest, i.e. not processing any visual stimulation, reflect the "imprinting" of habitual 
network activations of the visual system and other cortical networks during natural 
activations2,3. We have now completed three studies that are compatible with this 
hypothesis. In the first study, published in Nature Neuroscience, we demonstrated that 
high functioning autistic individuals show unique "idiosyncratic" spontaneous patterns4.  In 
a second study, we have shown that the cross hemispheric correlation patterns reflect bi-
manual hand use in amputees5. Both these results show the significant information 
contained in the correlation patterns of spontaneous brain fluctuations. In the third study, 
which has not yet been published, and is therefore described in further detail below, we 
have obtained a detailed description of coherent patterns of activity in the human visual 
system, reaching a detailed intra-areal level of accuracy. We have shown that the 
spontaneously emerging patterns recapitulate the nature of cortical co-activations that 
occur during naturalistic vision in a remarkably significant manner.  This information is of 
extreme importance, because a serious shortcoming of controlled laboratory approaches to 
study cognitive architecture is that they typically use highly artificial means to generate 
the experimental data. Here, we demonstrate a promising new approach that could 
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potentially uncover activation patterns as they occur in "real life", i.e. during habitual 
naturalistic performance. 

2.1.1.2 Data Set One: MEEG Recordings of the Time Course and the Manipulation of 
View-specific and View-independent Content in Object Recognition  

2.1.1.2.1 Description of Data and Models 

Participants examined an item in slow rotation on screen (either a face or an object, 
rotating clockwise or counter clockwise at 12 rpm). Two time scales of prediction are of 
interest: long time scales reflecting the internalisation of natural world statistics of 
objects such as faces, and short time scales reflecting the "on-line" acquisition of new 
expectations about a specific object. 

The stimuli were specially designed to cross these two scales. To study long-term 
predictions, we employ natural dynamic changes of an object, such as a rotating head, 
whose geometry is familiar to the viewer. To study short-term predictions, the paradigm 
also requires learning one new view of the object (the front and profile views of the object 
conform to everyday life, but subjects also learn that the back view is a specific texture, 
either a checkerboard or colourful flowers). This latter configuration enables us to test 
theories according to which invariant object recognition is achieved by an association of 
multiple, possibly arbitrary views 6–8.  

The protocol includes two parts. In the first part, four cardinal views of two objects (a 
face and a coffee machine) were learned during an initial exposure period, based on a 
Rapid-Serial Visual Presentation (RSVP) protocol. The textures of the back faces were 
displayed on a disc rather than on the shape of the objects, to prevent the participants 
from associating textures and objects at this stage (cf. Figure 1). This sequence was 
repeated at the end of the experiment to check whether learning the whole object 
representation (see second part below) made an association between textures and objects. 
Furthermore, these RSVP data allowed us to train multivariate decoders for each object 
and each orientation, using generalisation of decoding, to test whether an invariant 
representation of the object was present, regardless of which view was presented (familiar 
or recently acquired), and to investigate the time-course of view-specific and view-
invariant representations.  

In the second part, the participants first viewed the whole spinning objects for several 
minutes. Then, while the object was rotating, an occluder hid the object for a variable 
duration (¼, ½, ¾, or a full turn). Using multivariate decoding, this period allows us to 
probe the presence of an internal model of the rotating object: can we continuously 
decode what object is occluded and its orientation? Additionally, when the screen 
dropped, it revealed either the right object or the wrong object, in either the correct 
rotation or the counter-rotation, and with either the appropriate angle or a different 
angle. The subjects’ task was to report whether the post-occluder situation matched what 
was expected. If the predictive coding hypothesis is correct, each of those mismatches 
should elicit error signals in MEEG, and the classifiers should present an update in the 
representational model of the object, either in terms of object identity or object 
orientation. 

A behavioural version of the paradigm was performed to clarify the latent variables 
explaining the psychophysical results (n=3 participants). MEEG and eye tracker data (102 
magnetometers, 204 gradiometers, 60 EEG electrodes, sampling rate = 1000 Hz) were 
collected from 20 healthy human adults for part two of the protocol. We are currently 
analysing the data. 
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Figure 1: Paradigm Design and Decoding Results – From Static to Dynamic 

Depresentations, and Manipulation of Objects 
A) Experiment design. 1) RSVP Phase. RSVP enables the acquisition of 60 event-related fields/potentials for the 
four cardinal views of each object (F1, F2, F3 and F4 for the head; O1, O2, O3, O4 for the coffee machine), 
one image presented every 400 ms. These data will be used as spatio-temporal localisers. 2) Learning Phase. 
The participant is introduced to the continuous stimuli within four sequences: one for each object and rotation 
direction (clockwise [cw] and counterclockwise [ccw]). 3) Predictive Task. While the rotating stimuli are 
occluded, the participant is asked to mentally simulate the continuation of the rotation. When the stimuli 
reappear, the subject has to say whether the stimulus viewpoint is what they expected. The numerous 
independent variables are balanced and crossed. B) Analysis tool. The stimuli are classified with Support 
Vectors Machine decoders for each trial time and also applied to all the other time slots (called generalisation 
across time). The classification of the objects, and of the views of a same object, is tested. The high efficiency 
of the decoders (Area Under the Curve - AUC - > 0.95) in the two conditions and its stability across time 
suggest that decoding the objects and their views during both visible and mental simulation rotations is 
possible as a first step of additional analysis. 

 

2.1.1.2.2 How Data are Related to Specific Platform Requirements 

Different kinds of data could be provided:  

• Event-Related Potentials/Fields associated with the RSVP images  

• Time-generalisation matrices (see Figure 1.B) 
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• Reconstructed sources of the electromagnetic fields measured. These data will clarify 
the time course of visual processing regarding view-specific and view-independent 
information.  

2.1.1.2.3 Quantitative Indicators of Data Completeness 

The behavioural (three subjects) and the MEEG (20 subjects) datasets have been fully 
acquired. The behavioural data set has been fully analysed. The MEEG data analysis is on-
going. 

2.1.1.2.4 Status of Data Delivery 

Raw data are available. Fully processed data will be delivered during data delivery phase II 
(end of the Ramp-Up Phase, March 2016). 

2.1.1.2.5 List of SP4 Collaboration Partners 

Our data are optimally suited to all SP4 partners interested in theorising and modelling the 
internal models of visual objects, and their role in sending top-down statistical signals in 
anticipation of incoming visual inputs. 

2.1.1.2.6 Data Provenance 

The MEEG and behavioural data were collected by Clément MOUTARD, working as part of 
Stanislas DEHAENE’s team at NeuroSpin, CEA. 

2.1.1.2.7 Plan Until the End of the Ramp-Up Phase 

We aim to finalise the data analysis and to publish the results of this project in two 
articles. One will report the first part of the experiment based on the RSVP paradigm. The 
other will report the results of the second part of the experiment, corresponding to the 
occluded object rotation paradigm.  

2.1.1.3 Data Set Two: The Patterns of Co-activation During Natural Sensory Processing 
Uncovered Through Resting State and Naturalistic Stimulation Paradigms 

2.1.1.3.1 Description of Data and Models 

The MALACH group has now collected data from a novel localiser paradigm including three 
major elements:  

• A "conventional" resting state fMRI scan, in which participants rest with their eyes 
closed.  

• A controlled visually-specific resting state scan, in which the participants complete a 
non-visual cognitive task (beep detection). We have demonstrated that this approach 
uncovers the same coherent patterns as found during more conventional resting state- 
albeit under highly controlled cognitive states.  

• Two repeat presentations (separated by at least one hour) of an audio-visual movie 
aimed at capturing the statistics of natural sensory stimulation. Using this approach, 
we have succeeded, using fMRI in mapping the details of natural network co-activation 
reaching the level of intra-areal functional connectivity patterns.  

The Figure 2 below depicts the experimental structure of the experiments. 
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Figure 2: Uncovering Long-term Visual Biases and Predictions in the Human Brain 

The different experimental conditions used in revealing intra-areal patterns of co-activations that are 
generated in the human cortex under natural viewing conditions. 
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Figure 3 

Patterns of correlations between cortical voxels in three visual areas (arranged in arbitrary diagonals for 
visualisation purposes during the resting state) during rest, and compared to conventional, laboratory-
controlled visual mapping approaches using polar angle and eccentricity, and more naturalistic stimulation 
using an audio-visual movie under natural viewing conditions. The figure shows that the resting state patterns 
are closer to the organisation of activity produced by naturalistic conditions, than those produced by highly 
effective but artificial controlled stimuli. 
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2.1.1.3.2 How Data are Related to Specific Platform Requirements 

The data collected by the MALACH group offer a resolution to a fundamental problem in 
brain research; the fact that data generated under laboratory conditions may not be 
relevant or informative as to the natural cognition of the organism. Here, we have 
demonstrated that by using controlled resting state conditions, we could potentially 
uncover detailed information about the human visual system that captures such 
naturalistic principles. Therefore the data are highly relevant to models attempting to 
capture the meso-scale, i.e. intra-areal, functional connectivity patterns under natural 
vision. 

The MALACH group data will include raw magnetic resonance imaging (MRI) image 
sequences; both structural T1 brain sections, and EPI (Echo_Planar Imaging) BOLD (Blood 
Oxygenation Level Dependent) fMRI series obtained using our 3T Siemens system. 
Processed data will include various parameters (contrast, power, Fourier phase and 
correlation levels) processed using Brain Voyager software and FMRIB Software Library 
(FSL). 
Processed data will include individual subjects' contrast maps in localiser scans, Fourier 
phase maps in the case of periodic stimuli (polar and eccentricity mapping) and correlation 
matrices between voxel pairs' time courses, both across movie presentations and during 
various spontaneous paradigms. Importantly, the correlation matrices are available both at 
whole brain level, and separately for each retinotopic area.  

2.1.1.3.3 Quantitative Indicators of Data Completeness 

We have completed fMRI scans on 12 participants, and have analysed all BOLD fMRI 
patterns under the different experimental conditions. We have generated correlation maps 
proving our central thesis that the spontaneous, resting state patterns capture essential 
features of natural vision, and are superior to more controlled laboratory approaches such 
as polar and eccentricity mapping. 

2.1.1.3.4 Status of Data Delivery 

We have published a number of papers relating to our approach; some specifically related 
to natural perception1–3, and others reporting general findings related to our hypothesis4,5.  

Available data include raw MRI images (structural and EPI), experimental protocols, 
behavioural responses, processed data (contract, Fourier phase, correlation matrices). 

2.1.1.3.5 List of SP4 Collaboration Partners 

Our data are suited to all SP4 partners interested in modelling the functional organisation 
principles of the human visual cortex at resolution level. 

2.1.1.3.6 Data Provenance 

Our data were collected at the WIS Norman and Helen Asher Center for Brain Imaging. 
They are available both as raw functional imaging data, and as processed data at various 
stages, such as connectivity matrices, power spectra and global signal measures. 

2.1.1.3.7 Plan Until the End of the Ramp-Up Phase 

We now plan to integrate the data into a coherent set of architectures and principles. We 
aim in particular to plan visualisation on strategies and statistical approaches, to reveal 
the central principles and patterns that emerge from our experiments. 
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2.1.2 Visual Attention and the Mechanisms of Inter-areal Communication  

2.1.2.1 Overview 

In Pascal FRIES’ group (Ernst Strüngmann Institute for Neuroscience  [ESI – P14]), large-
scale (~256 sites) electrophysiological measurements were acquired from both whole-brain 
and local networks of visual areas. These data allow information transfer within and 
between distributed populations to be analysed. The “benchmarking” data were acquired 
by Conrado BOSMAN and Christopher LEWIS, and will be made available by the end of the 
Ramp-Up Phase. This data set is described further in Subsection 2.1.2.2. 

 

2.1.2.2 Data Set One: Large-scale Recordings from Distributed and Local Visual 
Networks During Rest 

2.1.2.2.1 Description of Data and Models 

Recordings were made from conscious macaque monkeys, while they passively viewed a 
white screen, or sat in a dark recording booth. Recordings were made from 252 sites 
covering large portions of one cerebral hemisphere. Visuotopic mapping was performed by 
visual stimulation to quantify the selectivity of recording sites. Local field potentials were 
recorded from many distributed sensory and higher-order areas. Retinotopic mapping was 
performed to assess the specificity of sensory responses in early and intermediate visual 
areas.  

Data were acquired during both passive and active states to assess the specific patterns of 
inter-areal interaction present in these two distinct states.  

 

 
Figure 4: Paradigm Design and Decoding Results – From Static to Dynamic 

Representations, and Manipulation of Objects 



 

Co-funded by the 

 
 

 

SP3 D3.7.3 FINAL  PU = Public 15 May 2015 Page 15 / 84 
 

A) Location of multi-electrode array on the reconstructed cortex of one monkey. Black dots indicate recording 
sites. Coloured regions indicate putative anatomical landmarks of particular interest for visual analysis. B) 
Visuotopic mapping. Visual selectivity of recording sites were computed based on retinotopic mapping at 60 
locations. C) Visual selectivity of visual recording sites as a function of spectral power induced in the local field 
potential by stimuli. D) Retinotopic organisation of early (V1/V2) and intermediate (V4/TEO) visual areas 
showing well structured topography. E) The correspondence of spontaneous inter-areal synchronisation to 
regional topography is limited in a spectrally-specific manner. 

2.1.2.2.2 How Data are Related to Specific Platform Requirements 

Different kinds of data could be provided, such as: 

• Raw field potentials recorded from distributed brain networks.  

• Spectrally-resolved tuning, selectivity and topographies (see Figure 4C and D). 

• Spectrally-resolved inter-areal interaction matrices, characterising inter-areal coupling 
by phase-synchronisation or power-covariation, under both visual stimulation and 
spontaneous activity.  

2.1.2.2.3 Quantitative Indicators of Data Completeness 

The datasets have been fully acquired. The data analysis is on-going. 

2.1.2.2.4 Status of Data Delivery 

Raw data are available. Fully processed data will be delivered during data-delivery phase 
II. 

2.1.2.2.5 List of SP4 Collaboration Partners 

Gustavo DECO’s group (Universitat Pompeu Fabra [UPF – P65]) is currently analysing these 
data and using them to validate dynamical models. 

2.1.2.2.6 Data Provenance 

The data were collected by Conrado BOSMAN and Christopher LEWIS at The Donders 
Institute for Brain, Cognition, and Behaviour, at Radboud University, the Netherlands, and 
the ESI. 

2.1.2.2.7 Plan Until the End of the Ramp-Up Phase 

We aim to finalise the data analysis and publish the results of this project in two articles. 
The first will report on the large-scale interaction of visual areas during rest. The second 
article will address the micro-organisation of areas underlying large-scale inter-areal 
interactions.  

2.2 Understanding the Circuits Linking Perceptions to Actions 
(T3.1.2)  

2.2.1 Overview 

The goal of T3.1.2 is primarily to develop new models, and to explore how existing models 
for action recognition might be linked to simulation tools in other SPs.  

As basis for developing models, selected stimulus sets have been developed. These 
constrain specific computational functions in the recognition of actions. A critical part of 
this data set can be made available as part of the data sharing initiative within the HBP. In 
addition, psychophysical results concerning the judgement of agency from abstract stimuli 
vs. hand actions, which have been obtained with this data set, can be provided. The goal 
of this is to support the development of alternative models, with the aim of providing a 
benchmark data set on which the performance of multiple models can be compared.  
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Due to the lack of available staff within the HBP (equivalent to 0.3 PhD students), we will 
not be able to develop extensive new data sets. This is compounded by the fact that the 
available staff will focus on creating links between the existing models, the simulation 
frameworks in SP4, and the simulator pillars of the HBP. However, the same stimuli might 
also be useful for the development of new fMRI and electrophysiology experiments, as they 
have been in the past.  

We plan to provide a simplified version of an action recognition model, as context of the 
data sharing initiative, at the end of the Ramp-Up Phase, a contribution that makes good 
use of the skills available at our institution. 

The available data set consists of image sequences that were recorded, reproducing 
established paradigms from relevant literature, to provide coherent stimulus data sets for 
developing models that show the visual processing of goal-directed actions. The stimuli 
were optimised to minimise computer vision problems, such as segmentation from 
cluttered scenes, as the work focused on principles of neural circuits in action recognition, 
rather than on lower-level image processing. This makes the data set suitable for deriving 
highly controlled stimuli via video editing techniques, achieving exact and independent 
control of the timing and spatial structure of objects and effectors in visual scenes. In 
addition, the data set contains versions of stimuli that allow us to study abstract forms of 
action encoding, e.g. replacing the moving stimulus elements with simple geometrical 
figures, as used in studies on the perception of causality9. Stimuli derived from this 
stimulus set have been used in a variety of psychophysical and electrophysiological 
experiments on the neural basis of the visual processing of goal-directed actions, the 
processing of visual causality10–14, and for the development of associated models15,16. 
Further studies using these stimuli are in progress. The same type of stimuli will be of high 
relevance for an on-going collaboration with Markus DIESMANN and Sonja GRÜN at 
Forschungszentrum Jülich (JUELICH – P17). A joint project is planned to study the neural 
encoding of visually perceived and executed actions in monkeys, exploiting multi-unit 
recordings with Utah arrays. Data obtained with the same stimuli is also central to a 
collaboration with Wolfgang MAASS (SP4), which addresses the link between computational 
and neural representations of temporal sequences in the premotor cortex. In addition, 
related stimuli will play a central role in new experiments studying the representations of 
causality and action semantics in populations of mirror neurons in area F5 of the macaque 
brain.  

2.2.2 Data Set One: Benchmark Data set Constraining Computational 
Mechanisms for the Recognition of Goal-directed Hand Actions 

2.2.2.1 Description of Data and Models 

The data set aims to identify the key computational properties of the visual processing of 
goal-directed actions. It reproduces critical stimuli derived from a wide spectrum of 
experiments within a homogeneous environment (see Fleischer et al. 2012, 201310,15 for a 
more detailed description and cross references to the original experiments).  

To evaluate the model in FLEISCHER et al.,15 we recorded sets of video stimuli showing a 
hand grasping objects. Videos were recorded using a CANON XL1-S camera with a frame 
rate of 25 Hz. A subset of these stimuli was also used in physiological experiments with 
monkeys, partially testing hypotheses derived from the proposed model11. All video frames 
were converted to gray-scale, and preprocessed by using intensity thresholds to remove 
low-intensity background noise. Typical example frames are shown in Figure 5. 

The first data set (dataset A) consisted of 270 videos (resolution of 360 × 176 pixels), 
depicting side views of grasps (view direction 90° relative to the direction the actor was 
facing. All actions were performed by the same actor). Videos showed a hand grasping 
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balls with different diameters (4, 8, and 12 cm), with either a power or a precision grip. 
The stimulus set was derived from 50 original movies via video manipulation, where the 
original videos included power grips of large and medium-sized balls, and precision grips of 
all tested ball sizes. In the original movies, the hand started in a resting position, 30 cm in 
front of the object on the table, and moved naturally, grasping the object. The 
manipulated videos were generated by colour segmentation of the hand, the object and 
the background. The manipulated set included movies showing only the hand, or only the 
object. Another set of movies showed spatially shifted versions of the action scenes (9 
different positions displaced by maximum ± 4°, again for precision and power grip). 

The second set (dataset B) contained 150 videos (resolution 405 × 364 pixels), showing 
different views of power grips. These were performed either above, or to the side of, a 
cylindrical goal object (height 10 cm, diameter 4 cm). This action was recorded from 19 
different angles, differing by ∼10°. The grips were performed by the same actor. This 
angle set specifically included the first person perspective (0°) and the “third person 
perspective” (180°). Each grip was repeated three times. An additional data set contained 
examples of the same action shown with three view angles (0°, 90°, and 180°) by two 
additional actors, again with three repetitions.  

A third dataset (dataset C), created by editing videos, was a subset of the videos from 
dataset A. These data set contained videos showing grasping and placing actions, similar to 
the stimuli used in the studies by BARRACLOUGH et al. (2009)17 and NELISSEN et al. 
(2005)18. In these movies, the hand entered the scene, grasped a small ball with a 
precision grip, and moved out (grasping). A second set of sequences was generated by 
reversing the order of the original video frames, so that the hand entered the scene with 
the ball and left after releasing the ball (placing). Additional control stimuli showed only 
the hand (pantomimed action) and only the object. Additional views for testing view 
dependence were generated by mirroring the grasping and placing stimuli along the 
vertical axis, resulting in movies showing the opposite hand interacting with the object 
from the opposite side17. This data set was based on nine repetitions of each condition, 
and was cross validated by using the relevant model parameters with the data from eight 
repetitions, testing the remaining repetition, and averaging all partitions in the training 
and test sets. 

 

Figure 5: Example Frames from the Benchmark Stimulus Set Used for the Development 
of Neural Action Recognition Models in T3.1.2 

Stimuli were derived from real grasping actions, and were optimised for video manipulation. This allowed for 
the separation of effector and object, and the introduction of spatio-temporal manipulations that are of 
interest concerning constraining models for visual action recognition. 

 

Example frames 
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2.2.2.2 How Data are Related to Specific Platform Requirements 

Critical parts of the stimulus set will be provided for the platform as a basis for the 
development of models, and potential fMRI experiments testing aspects of the model. We 
will not be able to provide fMRI data ourselves. Processed psychophysical data from the 
study of FLEISCHER et al. 201210 can be added to the corresponding stimuli if this is of 
interest to other HBP partners. In the second phase, we will work on providing a simplified 
version of the recognition model as part of the platform. 

2.2.2.3 Quantitative Indicators of Data Completeness 

The data are fully recorded and processed, and could be uploaded if access to an 
appropriate data structure is provided.  

2.2.2.4 Status of Data Delivery 

Stimulus data are ready and available. Psychophysical data are available. The model will 
require substantial additional work to make it accessible for sharing purposes. This 
processing is planned for the rest of the Ramp-Up Phase. 

2.2.2.5 List of SP4 Collaboration Partners 

Close interactions exist with Markus DIESMANN and Sonja GRÜN, who also develop the 
simulation platforms. We also collaborate with Wolfgang MAASS on the link between 
computational and neural representations of temporal sequences in the premotor cortex. 

2.2.2.6 Data Provenance 

The stimulus data basis is available in Tübingen, and will be made accessible once an 
appropriate software framework is available.  

2.2.2.7 Plan Until the End of the Ramp-Up Phase 

A further physiological study using the stimulus set has been submitted. A further 
collaborative study also using this stimulus set has been submitted by Rufin VOGELS from 
the Katholieke Universiteit Leuven  (KUL – P89). The few staff available (consistent with 
the promises made in the work program) will focus on linking the existing model to existing 
simulation tools for spiking networks, and on transforming of the existing model into 
something that can be shared as part of the platform.  

2.3 Understanding how Body Perception Becomes a Reference Point 
for the Sense of Self (T3.1.3) 

This Task involves the following two groups, each of which is reported on separately: 

• That of Olaf BLANKE (École Polytechnique Fédérale de Lausanne [EPFL – P1]) 

• That of Mel SLATER (Universitat de Barcelona  [UB – P64]) 

2.3.1 Overview 

Conscious percepts are bound to the self, and experienced as unitary entities; any 
experience is felt in the body and is bound to the self, rather than being detached in the 
outside world. The sense of self is commonly held to involve self-identification (the 
experience of owning “my” body), self-location (the experience of where “I” am in space), 
and first-person perspective (the experience of the position from where “I” perceive the 
world). Using robotic technology, we achieved specific bodily conflicts, and induced 
predictable changes in self-location, by altering where healthy subjects experienced 
themselves to be. Functional magnetic resonance imaging showed that temporo-parietal 
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junction (TPJ) activity reflected experimental changes in self-location, which also 
depended on the first-person perspective, due to visuo-tactile and visuo-vestibular 
conflicts. Our findings reveal that multisensory integration at the TPJ reflects one of the 
most fundamental subjective feelings in humans: that of being an entity localised at a 
position in space and perceiving the world from this position and perspective. 

2.3.2 Data Set One: Multisensory Mechanisms in Temporo-parietal Cortex 
Support Self-location and First-person Perspective 

2.3.2.1 Description of Data and Models 

In the present fMRI study19,20, Olaf BLANKE’s group adapted the ‘‘mental ball dropping’’ 
(MBD) task21 to the Magnetic Resonance environment. To induce changes in self-location, 
we manipulated the synchrony between the stroking of the participant’s back, and the 
back of a visually presented virtual human body. In the MBD task, participants were asked 
to estimate how long the ball they were holding in their hands would take to hit the 
ground if they were to release it. This provided repeated quantifiable measurements of 
self-location (height above the ground) during scanning. We expected longer response 
times (RTs) for higher self-location and shorter RTs for lower self-location21. The visual 
stimuli in the experimental conditions were presented through video goggles. It consisted 
of short movies showing the back view of the virtual body, filmed from an elevated 
position21. The virtual body was being stroked by a sphere positioned at the end of a rod, 
moving vertically along the midline of the virtual person’s back (body conditions). The 
video during the control conditions showed only the moving rod and stimulator, without 
the person’s body (no-body conditions). A custom-built robotic device allowed us to 
control the trajectory of the tactile stimulation of the participant’s back in both body and 
control conditions (using the same movement profile). This trajectory either matched 
(synchronous) or did not match (asynchronous) the applied tactile stimuli to the visually 
displayed position of the virtual rod (supplemental information). Thus, we precisely 
controlled the spatial and temporal aspects of the stimulation sphere’s movement during 
scanning (supplemental information). Participants performed the MBD task under four 
different conditions according to a 2 x 2 factorial design with Object (body; no-body) and 
Stroking (synchronous; asynchronous) as main factors. 

All MR images were collected using a Siemens Trio 3T scanner. Functional images were 
preprocessed with SP8 (Wellcome Department of Cognitive Neurology, Institute of 
Neurology, University College London, - P71), and subsequently analysed at a single 
subject level using a first-level fixed effects analysis. According to a 2-3-2 design with 
Object and Stroking as main factors, four contrast images were computed for each 
participant. These represented the estimated amplitude of the hemodynamic response in 
the synchronous and asynchronous stroking for the body and no-body conditions, relative 
to the baseline condition. Contrast images were then entered into a second-level random-
effect analysis. 

2.3.2.2 How Data are Related to Specific Platform Requirements 

We plan to deliver the key statistical results of the fMRI analysis in the form of contrasts at 
the group level. As the data is being analysed with the Statistical Parametric Mapping 
software (SPM toolbox, Matlab), the statistical results will be provided as a SPM.mat file; a 
common practice in the field. The raw data could be made available in a second phase.  

2.3.2.3 Quantitative Indicators of Data Completeness 

The behavioural and brain imaging datasets (22 subjects) are now fully acquired and 
analysed. The results have been published19,20. 
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2.3.2.4 Status of Data Delivery 

All data is now available.  

2.3.2.5 List of SP4 Collaboration Partners 

We plan on renewing a previous collaboration with Wulfram GERSTNER (SP4, EPFL), with 
whom we previously developed a model of the rubber hand illusion.  

2.3.2.6 Data Provenance 

All data were acquired by Silvio IONTA at the Centre Hospitalier Universitaire Vaudois, 
(CHUV – P23) in collaboration with the Centre d’Imagerie BioMedicale at EPFL. 

2.3.2.7 Plan Until the End of the Ramp-Up Phase 

In parallel to the modelling collaboration with Wulfram GERSTNER, we will transfer our 
experimental setup for strategic human brain data acquisition in collaboration with 
Bertrand THIRION (SP2, CEA) from September 2015. 

2.3.3 Genetic Programming Approach to EEG Agency Related Data 

2.3.3.1 Description of Data and Models 

Mel SLATER’s group has carried out an experiment using virtual reality (VR). It aims to 
enhance previous results by exploiting perspective as a modulator of the effects of the 
mirror neuron system. Prior research has found that VR can be used to create an illusion of 
ownership over a virtual body. We are particularly interested in what happens in 
conditions of strong body ownership, when the virtual body acts independently of the 
movement of the person’s real body; such as moving a limb. We are also interested as to 
whether there is a corresponding illusion of agency over the virtual body movements, and 
whether this is reflected in associated detectable brain activity. The objective is to 
understand the relationship between real and embodied virtual arm movements. The 
experiment has three conditions: movement execution in a first person perspective view 
(1PP) over a virtual collocated body, movement observation in 1PP, and movement 
observation in third person perspective (3PP).   

A major part of this is to explore methods of “big data analysis”. This involves 
automatically analysing significant amounts of EEG data, to discover equations that may 
shed light on the relationships between real and virtual body activity under different 
conditions. For this we use the Nutonian/Eureqa technology for genetic programming1. 

Data was collected on 18 male subjects. The setup of the experiment is shown in Figure 6. 
The study was approved by the UB ethics committee. In the laboratory, participants were 
first placed in the same position as the avatar that they saw through the head-mounted 
display (HMD) co-located with their own body. The experiment consisted of 80 trials where 
either the avatar moved the hand or the participant moved the hand, i.e. where the 
participant was asked either to observe or to execute a movement. Movements lasted only 
two seconds, and within this time participants should have moved the arm towards the 
chin and back to the original position. The avatar movements for the observation condition 
were recorded with motion capture and also lasted two seconds. Each block of 80 trials 
targeted the same hand, There was then a short pause, after which the other hand was 
targeted for 80 trials. This was done to avoid error monitoring systems, due to hand 
decision making, such as Error Related Negativity.  

                                             
1 http://www.nutonian.com 
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Participants went through three different conditions that were counterbalanced to avoid 
order effects. 

1) Motor execution in Virtual Reality (VRME): participants entered the virtual environment 
and saw an avatar from 1PP. Their task was to perform the motor action 80 times with 
one arm, and then with the other arm.  

2) Motor observation in 1PP (MO1PP): participants entered the virtual environment and 
saw an avatar from 1PP. Their task was to observe the motor action that was 
performed by the avatar, while not moving themselves. 

3) Motor observation in 3PP (MO3PP): participants entered the virtual environment and 
saw an avatar from 3PP. Their task was to observe the motor action that was 
performed by the avatar 80 times, while not moving themselves. 

Finally, an extra condition was run for a consistency check; in this condition the 
participant performed the motor execution in the real scenario without VR or HMD. For 
that condition, a real screen was used to indicate the trial flow to the participants (see 
Figure 6). We will refer to this condition as real motor execution (RME). The whole 
experiment lasted for a total of two, and the participants had the HMD removed between 
the conditions. One block of 80 trials lasted for approximately 13 minutes. Lateralised 
readiness potentials (LRP) were first studied, as they have been shown to elicit activations 
as a result of the mirror neuron system. A significant LRP was found for both motor 
execution conditions (RME and VRME) from 300 ms to 600 ms (t-test >0.05). No differences 
were found between the two conditions in the time course. This indicates that, when the 
participant was executing the actions, the LRP was equivalent in the real environment and 
in the virtual environment. Furthermore, both the MO1PP and MO3PP elicit significant LRP 
at different timings. The voltage of the LRP during the observation of movements’ 
conditions (MO1PP and MO3PP) is reduced when compared to the real execution conditions 
(RME and VRME). However, it is of note that the first person perspective MO1PP has an 
earlier activation than third person observation MO3PP, and it is more in line with the 
temporal dynamics observed in the case of the real motor execution. This alone is a 
promising result for the idea that virtual embodiment may be a significant factor 
describing the motor resonance mechanisms. 
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Figure 6 
The top of the figure shows a participant fitted with the equipment. The participant was sat in the same 
position as the avatar (bottom). 1PP and the 3PP were used. The top right shows a small schema of the trial 
flow; participants fixated on a dot and performed the on-screen instruction. Every 10 trials, they had a specific 
time for blinking. 

For one individual the data consists of an 11,480 x 64 data matrix of event-related 
potentials (ERP) values (64 electrodes). The time sequence is partitioned into eight 
segments:  

1) The participant moved their real right hand (outside of VR) 

2) The participant moved their real left hand (outside of VR)  

3) VR moves right hand  

4) VR moves left hand  

5) VR 1PP observed virtual right hand moved (real stationary)  

6) VR 1PP observe left (real stationary)  

7) VR 3PP observe right (real stationary)  

8) VR 3PP observe left (real stationary). 

In our preliminary analysis, we considered only segments 1, 5 and 7. Therefore, we 
compared: 

• The real hand moving. 

• The real hand stationary, with the virtual hand seen to move by itself from a first 
person perspective over the virtual body (with an illusion of body ownership).  

• The virtual hand moving by itself but where the body is seen from a third person 
perspective (i.e. there is no illusion of body ownership).  

Three genetic programming exercises were therefore executed. A minimum of 500,000 
equations were generated in each case, run on a four-processor machine. We wanted to 
see whether this approach worked at all, and if so, much larger scale multiprocessor 
machines would be used for further research. In each case, the genetic programming 
generated almost perfect fits to the data, based on results from a very small number of 
electrodes: for 1) P07, O9 and Oz, for 5) Cz and C6 and 7) PO3, P7, C3, P5. 

Although the genetic programming (GP) programme was fed with many electrodes and 
ERPs for the different conditions, some of the results reflect previous studies on motor 
action observation. These have found that visual and kinaesthetic information may 
converge in parietal areas of the brain, and in our current GP analysis we find parietal 
electrodes to be significant descriptors of the mathematical equations, this is the case of 
PO7, P5, PO3 and P7. The motor cortex also seems to be contributing significantly to the 
equations in the observation conditions, as suggested by the role of electrodes Cz, C6 and 
C3.  

Overall, the method appears to be a promising way of exploring these very large data sets, 
though at the time of writing we cannot draw conclusions on its long-term viability. We 
will next study the combined data of all 18 participants, and design further studies in 
collaboration with our HBP Partners. 

2.3.3.2 How Data are Related to Specific Platform Requirements 

These data will help us to understand the brain activity related to illusory agency. If we 
understand how agency can be artificially induced, we can gain a better understanding of 
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the mechanisms involved. This would allow us to move towards testing whether this can be 
achieved with an artificial brain. 

2.3.3.3 Quantitative Indicators of Data Completeness 

The data is complete and no more will be collected. 

2.3.3.4 Status of Data Delivery 

The data is not available at this time, as the authors are still in the process of analysing it 
and submitting it for publication. 

2.4 Multiscale Data Analysis and Multiscale Transfer Modelling 
(T3.1.4) 

2.4.1 Overview 

Task T3.1.4 is led by Peter DE WEERD’s group at Universiteit Maastricht (UM – P108) and 
Avgis HADJIPAPAS’ group at the University of Nicosia (UNIC – P84). The overall aim is to 
construct empirically-validated network models of gamma oscillations in the visual cortex. 
These will have increasing levels of complexity: beginning with spatially undifferentiated 
Pyramidal Interneuron Gamma Network (PING) models (single-layer), to multi-layer models 
(single-column), and finally laterally expanded multi-column models. Even the simplest of 
these models requires a large number of parameters to be specified, which are at present 
largely unknown (for instance the strength of neuronal class connectivity, neuronal phase 
response curves, cross-layer connectivity, etc.). Our approach is to specify these crucial 
network parameters by using constraints derived from previously acquired empirical data 
at many different spatial scales (spikes, local field potential (LFP), electrocorticography 
(ECoG), magnetoencephalography (MEG)), from laminar recordings with a spatial resolution 
of 0.15 mm, from ECoG Non-Human Primate (NHP) recordings covering several cm, and 
from human MEG recordings under the same task (perception of grating stimuli of varying 
contrast). Using multiple constraints derived from the data to specify the unknown model 
parameters is at the heart of the approach. For instance, the free unknown model 
parameters are set such that the model produces input-dependent modulations of single 
unit firing rates, LFP oscillation frequency, and LFP oscillation power, that are similar to 
what is observed in the empirical data. The physiologically-constrained models derived will 
then represent the best possible model for V1, and will yield predictions that can be tested 
in experiments.  

2.4.2 Data Set One: Establishing the Key Parameters for an Empirically-
validated Spatially-unstructured PING Network Model of Gamma 
Oscillation in the Visual Cortex 

In previous and on-going projects, we have collected a unique data set comprising highly 
comparable recordings at multiple spatial scales in the NHP and Human primary visual 
cortex (V1). This data shows the response properties of single units (NHP only) and 
neuronal populations (NHP and Human) during parametric variation of stimulus contrast, 
which is a fundamental feature of visual stimuli and directly related to input strength. In 
order to build a model which best represents the population activity, we must quantify 
several features of single unit activity, which are currently poorly understood. We have so 
far shown that broad spiking neurons, putatively excitatory, fire at an earlier phase in the 
gamma cycle than narrow spiking neurons, putatively inhibitory. We have so far quantified 
how the preferred phase and phase consistency varies as a function of contrast. We are, 
however, cautious of verifying the classification of neurons as inhibitory and excitatory cell 
types, as the primary visual cortex has particularly diverse anatomical cell classes. In line 
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with this, we find that the distribution of spike widths varies between layers, despite 
expecting the ratio of excitatory to inhibitory cells to remain constant. We are now 
repeating our analysis of preferred phase, phase difference and phase consistency in a 
laminar-specific manner. Moreover, we are exploring alternative methods for determining 
excitatory and inhibitory neuron classes. 

We will be able to provide layer-specific quantitative assessments of putative inhibitory 
and excitatory neurons’ average response properties in V1. These response properties will 
include the firing rate, gamma preferred phase, and phase consistency as a function of 
visual contrast. These values are crucial for modelling, yet are currently poorly reported in 
literature. 

2.4.2.1 Description of Data and Models 

In the first part of the project, we aim to establish the key parameters for a model of a 
spatially-unstructured PING network. The goal is to make the key findings of the data- 
analysis and models available by the end of the Ramp-Up Phase. The raw empirical (NHP 
and human) data will not be made available, as these were not acquired during the HBP, 
and are part of an on-going project.  

The spatially-unstructured PING model can be thought of as a single layer network of 
randomly coupled regular-spiking excitatory and fast-spiking inhibitory neurons. Model 
neurons are described by coupled Hodgkin-Huxley-style single compartment neuron 
models. The intrinsic frequency of excitatory neurons in response to input is relatively 
lower than in inhibitory cells. As in the empirical data, model neurons fire sparsely, with 
model inhibitory neurons firing more frequently than model excitatory neurons. Coupling 
within and between populations is random (through voltage-dependent synapses) and 
occurs within a certain probability of connection. Input representing the LGN afferent 
inputs is provided in the form of Poissonian spike trains. The strength of input to the 
excitatory cells is varied, to represent stimulus contrast-dependent input.  

The model is constrained such that it reproduces the following empirically-observed 
phenomena:  

1) Realistic firing rates for E and I neurons  

2) Oscillations within a certain frequency range and frequency shift with input  

3) Power decay with increasing input.  

Once the unknown parameters are obtained, predictions of the models (e.g. phase locking 
of units to population as a function of input) can be tested in empirical data. 

Some of the empirical data constraints can be readily extracted from population signals 
(LFP, MEG) or from entire of neuron populations (unit phase locking to LFP, average firing 
rate). However, some key constraints rely on successfully classifying neurons as either 
excitatory or inhibitory, which has so far not been done for the NHP V1. Placing neurons in 
the NHP V1 into the main inhibitory and excitatory classes may be difficult due to the 
marked neuronal variability in NHP visual cortex. We have, however, made considerable 
progress. We are now focusing on classification per cortical layer and performing 
comparisons between layers. If successful, the outcome of this analysis will provide a 
significant level of validation for our models.  

2.4.2.2 How Data are Related to Specific Platform Requirements 

We plan to deliver the developed models and the key results obtained from their 
simulation and analysis. So far, the models were simulated with the BRAIN simulator, a 
Python package (all models and are written in the Python programming language). 
Simulation results are analysed in MATLAB. Upon publication, the spatially-
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undifferentiated PING model will be made available for public download from the ModelDB 
model repository of the SenseLab database (senselab.med.yale.edu/SenseLab/ModelDB). 
The models will be delivered as .py files and the results will be provided as .mat files, a 
practice that is common in the field. 

2.4.2.3 Quantitative Indicators of Data Completeness 

We are currently finalising our spatially-undifferentiated PING model (first Milestone). We 
have also started studying the interaction among coupled PING networks as a step towards 
modelling columns (second Milestone). This effort will take place rapidly once we have 
optimised the undifferentiated model. Upon publication, the spatially-undifferentiated 
PING model will be made available. 

2.4.2.4 Status of Data Delivery 

We currently have no published data that we can deliver immediately. This is because 
work on the spatially-undifferentiated PING model started less than a year ago, and has 
not yet been published. All models and the generated results will be delivered after 
publication. 

2.4.2.5 List of SP4 Collaboration Partners 

At the moment we do not have an on-going collaboration with any SP4 Partners. 

2.4.2.6 Data Provenance 

The models were developed by Margarita ZACHARIOU and Avgis HAJDIPAPAS. The 
previously acquired experimental data came from on-going projects at UM funded by the 
Dutch National Science Foundation (NWO). The data were acquired by Peter DE WEERD and 
Mark ROBERTS, and were analysed by Mark ROBERTS and Ali BAHRAMISHARIF.  

2.4.2.7 Plan Until the End of the Ramp-Up Phase 

We have published a first paper with multi-scale analysis among NHP and human V1 data, 
which forms the basis for current modelling22. Beyond this, we anticipate the following 
steps:  

1) Present results of modelling at a conference23. 

2) Publish the results of the empirically validated, spatially-undifferentiated PING model.  

3) Finish analysis of NHP data, and publish on the classification of V1 NHP neurons in 
inhibitory and excitatory classes. We aim to submit these manuscripts before the end 
of the Ramp-Up Phase. 

4) Build empirically informed columnar. 

5) Create laterally expanded, empirically-constrained models.  

In this process, where computing power is essential, we aim to make use of the HBP 
computing Platform. All published models and the modelling results generated will be 
delivered during data-delivery phase II.  

2.5 Development and Validation of Brain Network Models 
Constrained by Realistic Physiological Phase Lags and 
Interaction Time Delays (T3.1.5) 

2.5.1 Overview 

The objective of this task (led by Matias PALVA, Helsingin yliopisto [UH – P86] and Viktor 
JIRSA, Université d’Aix-Marseille [AMU – P104]) is to understand the dynamic nature of 
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spontaneous brain activity through both electrophysiological recordings and biologically 
realistic brain network models with concurrent oscillations in multiple frequency bands.  

Using a large amount of intra-cranial stereo-electroencephalography (SEEG) data, we aim 
to rigorously characterise the spontaneous spatio-temporal patterns in resting- and task-
state data. We aim to achieve a comprehensive map of 1-500 Hz dynamics, inter-areal 
connectivity, and phase/time lags among cortical areas. The two key advantages of these 
SEEG data are the localisation of the electrode contacts in cerebral tissue accurate to less 
than a millimetre, and the consequent ability to use local white-matter contacts as 
“silent” references for nearby grey matter contacts. This, for the first time, will yield top-
quality measurements of not only inter-areal interactions, but also of the associated phase 
and time lags that cannot be measured accurately, either non-invasively or with bipolar 
SEEG. 

Knowledge of neuronal communication delays is fundamental for any biologically-realistic 
modelling of brain network activity. We will clarify the structural and anatomical 
constraints (connectivity, time delays) imposed upon a network, which will then lead to 
the emergence of self-organised brain pattern dynamics. The ultimate goal is to 
understand how distributed information is integrated in the structure of human cognition. 
Using the lag estimates from SEEG, and MRI-based structural connectivity maps for 
biologically realistic large-scale brain network simulations, we will account for how 
coherent oscillations emerge, and how they integrate robustly distributed information. We 
will then validate the theoretical findings against the SEEG dataset. 

2.5.2 Data Set One: Map of Human Inter-areal Connectivity and Phase Lags 
Based on Resting-state SEEG 

We use white-matter referenced local field potential recordings from human cortical and 
subcortical structures to accurately map the time and phase lags of the interactions among 
local neuronal oscillations. These lags cannot be estimated non-invasively, or with 
conventional referencing schemes, because volume conduction and the mixing of signals 
from multiple sources corrupt the lag estimates.  

The initial results show that most electrode pairs have a unimodal phase lag distribution, 
of which the predominant lag is very similar in time-averaged (static) phase-locking 
estimates, and in short time windows, to strong coupling. Therefore, even in task-free 
conditions, there are systematic phase lags between cortical regions, and these lags are 
robust with respect to the estimation method. A subset of inter-areal couplings exhibited 
near zero lag coupling, even at long distances (> 3 cm).  

2.5.2.1 Description of Data and Models 

Uninterrupted recordings of 10 minutes of spontaneous activity, with the eyes closed, were 
acquired with a 192-channel SEEG amplifier system, at a sampling rate of 1 kHz. In the 
initial 27-subject cohort, each subject had on average 14 ± 1.9 (mean ± standard 
deviation, SD) shafts (range 17–10) with a total of 152 ± 20 electrode contacts (range 184–
122, left hemisphere: 37 ± 49, right hemisphere: 115 ± 51 contacts). The electrode 
contacts have been automatically segmented with a novel algorithm24, and co-localised 
with neuroanatomically labelled individual cortical surfaces, and volumetric identification 
of sub-cortical structures. Electrode contacts in or near grey matter are used for local field 
potential recordings, and are always referenced to the closest contact in underlying white 
matter25. 

2.5.2.2 How Data are Related to Specific Platform Requirements 

Not applicable. 
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2.5.2.3 Quantitative Indicators of Data Completeness 

The SEEG resting- and task-state datasets are being acquired in a project funded by the 
Academy of Finland. The analyses of inter-areal connectivity and, in particular, phase-lags 
from these data, are the focus of this HBP project. The total projected size of the resting-
state cohort in March 2016 is at least 77 patients, which is by far the largest SEEG cohort 
ever collected, but is slightly short of the aimed cohort size of 100 patients. Whether a 
new epilepsy centre will be recruited to support data acquisition is being considered at the 
moment. Of the 77 patients, 27 have already been fully analysed, and 13 pre-processed. 
From these data, five subjects were rejected because of macroscopic cortical 
malformations. Data from 13 patients have already been collected and await transfer from 
the hospital, while a further 24 patients are expected to be recorded between May 2015 
and March 2016. 

2.5.2.4 Status of Data Delivery 

Raw data will not be made available due to restrictions put in place by the ethical 
committee. Dynamic and static connectome matrices of phase locking and phase lags will 
be made available when the first half (40 subjects) of the cohort has been analysed. The 
algorithm for SEEG electrode contact localisation has been made freely available. 

2.5.2.5 List of SP4 Collaboration Partners 

Gustavo DECO, Universitat Pompeu Fabra (UPF – P65). 

2.5.2.6 Data Provenance 

The raw data is being acquired in a collaboration project comprising Matias PALVA, UH, 
and Lino NOBILI, Claudio Munari Epilepsy Surgery Centre, Niguarda Hospital, Italy. 

2.5.2.7 Plan Until the End of the Ramp-Up Phase 

New subjects will continue to be acquired until the end of March 2016. Full cohort data 
will be deposited after April 2016. 

2.5.3 Data Set 2: Effects of Multimodal Distribution of Delays in Brain 
Network Dynamics 

Large-scale modelling of the brain is defined by the local oscillatory dynamics that are 
superimposed on an architecture. This architecture is based on a comprehensive map of 
neural connections in the brain–connectome26. Coupling strengths, and time-delays due to 
transmissions via tracts, are crucial features of a connectome. They represent a proxy of 
the spatial structure to the temporal dynamics. Thus, the most straightforward approach 
to model brain dynamics in space and time is to link oscillatory nodes to a connectome-
based network. The analysis that we performed on the experimentally derived connectome 
suggests that the tract lengths, i.e. distances between different brain nodes, and thus the 
time delays, follow a multimodal distribution.  

2.5.3.1 Description of Data and Models 

We investigated  the implementation of multimodal distributions of discrete time delays, 
and its effects on the mean-field dynamics. Because of analytical tractability, the 
Kuramoto oscillator describes the temporal dynamics of each node, and the links between 
the nodes are symmetric but heterogeneous. Therefore, we analysed synchronisation in 
populations of phase oscillators27, which have the same distribution of natural frequencies 
and coupling strengths, but whose structure is defined solely by their different intra- and 
inter-population delays.  
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2.5.3.2 How Data are Related to Specific Platform Requirements 

The results are relevant to understanding the synchronisation that underlies cognitive 
processes. They describe the conditions necessary for achieving synchronisation in large-
scale networks in the Simulation and Neuroinformatics Platforms. 

2.5.3.3 Quantitative Indicators of Data Completeness 

Assuming a same overall distribution of time delays, several cases were investigated. 
These ranged from fully random distributions, to two delay-imposed structures of 
subpopulations (Figure 7). For all scenarios, mean-field dynamics were analytically 
obtained28 and numerically confirmed (Figure 8). In addition, boundaries and stabilities of 
different low-dimensional solutions were investigated. These revealed a split of phase 
dynamics in different clusters, which can be phase shifted, or even non-stationary, with 
different time-varying order parameters for the clusters.  

The large-scale spatial organisation of the brain was integrated in a network model. Using 
this model, we presented the effects of the multimodal distribution of time delays, and 
the structure they impose on the network dynamics, such as synchronisation. Therefore, 
we stress the role of the spatial organisation of the brain, which is reflected in the 
different time-delays between different parts of the brain in the formation of 
spatiotemporal dynamics.  

 

 
Figure 7: Sketch of Delay-imposed Structure of Population of Oscillators 

A) Different inter and same intra delays, B) same inter and intra delays. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Order Parameters for Model A. Inset: PDF of the Phases 
Theoretical predictions (lines) are compared with numerical simulations (lozenges). Blue and red correspond to 
the first and second populations respectively, and black and grey lines are from the overall population. 



 

Co-funded by the 

 
 

 

SP3 D3.7.3 FINAL  PU = Public 15 May 2015 Page 29 / 84 
 

 

2.5.3.4 Status of Data Delivery 

Not applicable. 

2.5.3.5 List of SP4 Collaboration Partners 

Gustavo DECO, UPF. 

2.5.3.6 Data Provenance 

Not applicable. 

2.5.3.7 Plan Until the End of the Ramp-Up Phase 

The same analysis will be performed for more realistic, amplitude oscillators (Stuart-
Landau). In addition, the connectivity matrix of the connectome will be implemented, and 
the influence of the spread of peaks in the delay distribution will be also studied.  
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3. Motivation, Decision and Reward (WP3.2) 

3.1 Mapping and Understanding the Neuronal Circuits Involved in 
Decision Making, Confidence and Error Correction (T3.2.1) 

3.1.1 Overview 

T3.2.1 addresses how confidence is computed in the brain. Data from human participants 
were generated at NeuroSpin by Florent MEYNIEL during abstract probabilistic reasoning. 
Data from mice was generated by Rui COSTA at Fundação Champalimaud  (FCHAMP – P19), 
in a much simplified task also involving a form of confidence computation. 

The NeuroSpin group is also working on a data set to characterise confidence in perceptual 
decisions. The same experiment will be used to acquire behavioural, fMRI and MEG data. 
The MEG part is a new collaboration with Tobias DONNER from T3.2.3 (Universiteit van 
Amsterdam, [UVA – P109]), and the behavioural part is in collaboration with Mariano 
SIGMAN. However these acquisitions are not funded by the HBP and may not be included 
eventually as a Deliverable. In a nutshell, this experiment is designed to compare different 
models of perceptual decision-making. The two predominant models currently differ in 
how confidence is computed. One proposes that the decision is made when one possible 
answer, out of several, has received substantial evidence (the race model); the other 
proposes that the decision is made when there is a substantial difference between the 
evidence supporting the first and second best options (the diffusion model)29–33. We will 
benefit from behavioural data and the complementary temporal and spatial resolutions of 
MEG and fMRI to compare these two decision models.  

The mouse data on action performance monitoring were collected at the Champalimaud 
Centre for the Unknown in Lisbon, Portugal by Rodrigo FREIRE OLIVEIRA (post-doc at the 
Neurobiology of Action under the supervision of Rui COSTA). 

At this stage, we are making available the raw behavioural data set of the confidence 
estimation task in mice. The data set is composed of behavioural sessions including 
different phases of training, and a final asymptote performance, where the confidence 
estimation was calculated. These data were collected during 2012 and 2013 and are 
described below. 

Currently, confidence estimation has been studied in perceptual decision making tasks in 
primates34, rodents35 and humans36. The brain circuitry responsible for confidence 
estimation in humans is also being investigated (see 3.1.2.1). The estimation of confidence 
after one’s own performance has received considerably less attention and has, to our 
knowledge, not yet been studied in rodents. The development of a robust behavioural 
rodent assay for confidence estimation in action performance paves the way for the 
investigation of the brain circuitry required for its computation. 

The brain areas implicated in estimating confidence of action performance remain 
unknown. We are investigating the role of the Anterior Cingulate Cortex (ACC), which has 
been previously implicated in error detection, and the somatosensory system (particularly 
S1 and M1) which has been implicated in sensory-motor integration. We predict that the 
optogenetic inactivation of the ACC would increase the overall fraction of aborted trials 
without changing the accuracy of the performance monitoring. We predict that 
inactivation of S1 will lead to a flat distribution of fraction of aborted trials, therefore a 
degradation of the ability of the animals for confidence estimation in action performance. 
This will give important convergence data for the human studies. 
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3.1.2 Data set One: Confidence During Probabilistic Reasoning, Behavioural 
and fMRI Recordings 

3.1.2.1 Description of Data and Models 

The data set aims to identify the brain networks involved in computing confidence during 
probabilistic reasoning, and the algorithms that underlie this computation.  

Participants performed a probabilistic learning task, which was to observe binary 
sequences of stimuli that were generated randomly based on transition probabilities. 
These transition probabilities were constant only piecewise in time. Participants had to 
infer the transition probabilities generating the observed sequence online and, from time 
to time, report their level of confidence in that estimation (see Figure 9). The probabilistic 
and time-varying nature of the task purposefully induced fluctuations of confidence.  

The fluctuations in subjective confidence levels were compared to a normative estimate of 
confidence using an optimal Bayesian Observer. This model gave a clear formalism of the 
task, and also quantitative variables to describe the inference process. Subjective 
confidence ratings were linearly related to the optimal confidence level. This provided a 
normative account of subjective confidence. It also provided a quantitative model from 
which key variables of the inference process could be computed on a trial-by-trial basis, 
such as the estimated confidence, the inferred probability, the likelihood of observing a 
particular outcome given its inferred probability, and the update of the internal model. In 
addition, the use of different modality (auditory and visual) in the fMRI task allows 
modality-specific and generic computations in the brain to be identified. 

 

Figure 9: Task Design for T3.2.1 - Mapping and Understanding the Neuronal Circuits 
Involved in Decision-making, Confidence and Error Correction 

Subjects were exposed to sequences of binary stimuli. The sequence depended on the transition probabilities 
between stimuli A and B. The transition probabilities themselves were stable piecewise: they were constant for 
only a limited time and changed abruptly and randomly, delineating “chunks” in the sequence separated by 
“jumps”. Subjects had to report the occurrence of jumps, and occasionally they were jointly asked to estimate 
which stimulus should come next (i.e. guess the transition probabilities in sensory stimuli) and to report their 
degree of confidence in those estimates. 

A first behavioural study (n=18 participants) was performed to investigate the confidence 
ratings of participants in this task in detail. The results and the Ideal Observer model are 
described in a submitted publication. 
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In a second study, we acquired fMRI data using a similar protocol, slightly adapted to the 
constraints of fMRI. The data set was acquired from 21 human healthy adults, using a 
whole brain coverage at the 1.5 isotropic resolution, with one scan acquired every 2 
seconds. The data were collected while participants performed the estimation task. We 
are currently analysing the data. 

3.1.2.2 How Data are Related to Specific Platform Requirements 

We plan to deliver the key statistical results of the fMRI analysis in the form of contrasts at 
the group level. As the data being analysed with the Statistical Parametric Mapping 
software (SPM toolbox, Matlab), the statistical results will be provided as SPM.mat file, a 
practice that is common in the field. The raw data could be made available in a second 
phase.  

3.1.2.3 Quantitative Indicators of Data Completeness 

The behavioural (18 subjects) and brain imaging (21 subjects) datasets are now fully 
acquired. The behavioural data set is fully analysed. The results were submitted for 
publication. The fMRI data analysis is still on-going. 

3.1.2.4 Status of Data Delivery 

Raw data is available. Fully processed data will be delivered during data-delivery phase II. 

3.1.2.5 List of SP4 Collaboration Partners 

Our behavioural and brain imaging results challenge the current models of learning, and of 
probabilistic learning in particular. SPs 3 and 4 therefore scheduled an international 
workshop, organised by Stanislas DEHAENE (SP3), Alain DESTEXHE (SP4), Florent MEYNIEL 
(SP3) and Wolgang MAASS (SP4). This is to be held in Paris in September 2015, and is 
entitled 'Probabilistic inference and the Brain'. This workshop will gather prominent 
scientists from theoretical and experimental fields.  

3.1.2.6 Data Provenance 

The fMRI and behavioural data were collected by Florent MEYNIEL at NeuroSpin. 

3.1.2.7 Plan Until the End of the Ramp-Up Phase 

We aim to publish the results of the behavioural study (publication submitted). We also 
aim to fully analyse the results of the brain imaging study and report them in a publication 
(submitted). 

3.1.3 Data set 2: Confidence Estimation on Motor Skill Performance in Mice 

3.1.3.1 Description of Data and Models 

This behavioural data set aims to determine whether rodents are capable of estimating 
confidence during motor skill performance. In addition, the data shows that variables with 
different time scales are integrated in the course of this computation. 

Mice were trained daily in an instrumental box with one active lever (extended) and a 
magazine (with IR break sensor) where reinforcement is delivered. The mouse had to 
execute an action sequence (of 4 or 5 presses) before visiting the magazine. After arriving 
at the magazine, the animal had to wait for 8 seconds before the reinforcement was 
delivered. If an incorrect number of presses were performed, no reinforcement was 
delivered, and the sequence was reset. If the animal left the magazine before 8 secs had 
passed, the trial was considered aborted. Sessions finished once 60 reinforcements had 
been collected, or two hours had passed. In summary, the reinforcement was cached, and 
the time waited in the magazine added extra cost to the performance, which drove the 
mice to select the trials to which they should commit. 
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Figure 10: Confidence Estimation in Motor Skill Performance 

(A) Fraction of aborted trials as a function of sequence length. Figure shows the distribution of the mean of the 
fraction of aborted trials (with all sessions grouped together) by animal (error bars correspond to standard 
error of the mean (SEM) over animals). The red line is the quadratic fit to the data with an R2 0.98.  

(B) Comparison between experimental and permuted data. Figure shows the distribution of the curvature 
parameter of the quadratic fit derived from 10 000 permutations (dark blue) of the original data. All 
permutations generated a distribution centred away from the experimental value observed (light green). The 
chances of the experimental curvature happening by chance are statistically much smaller than 0.01 (red 
lines).  

(C) Logistic regression analysis of trial abortion probability. Logistic regression analysis predicting abortion, 
using different trial events (abortion, performance and feedback), at different lags (trials relative to predicted 
trial). The blue trace shows the loading for abortions on prior and future trials, i.e. the extent to which 
aborting on a given trial predicts aborting in future trials. The symmetric high loadings in previous and future 
trials suggest that a slow variable (i.e. engagement in task) is a strong determinant of the likelihood of current 
trial abortion. The black trace shows the loadings for incorrect performance of sequences, i.e. the extent to 
which incorrect performance on a given trial predicts aborting in future trials. It has a large loading on only the 
current trial, consistent with performance monitoring. Finally, the light green trace shows the loadings for 
feedback (which takes values of 0 in aborted trials, -1 in incorrect completed trials and +1 in correct 
completed trials). This variable aims to capture the effect of reinforcement obtained in correct vs incorrect 
sequences). 

Mice decide on abortion in a fast trial-by-trial basis, depending on their performance. The 
fractions of aborted trials for the target sequences (Fig. 10, A, lengths 4 and 5) are lower 
than the flanking incorrect sequences, with either fewer or extra presses. This suggests 
that mice keep track of their current performance, compare it to a target, and abort 
sequences based on the difference between the former and the later (Figure 10 A and B). 
The logistic regression analysis confirms that the performance in the current trial has a 
higher probability of aborting. Furthermore, it shows that a slower variable linked to the 
history of abortion also predicts the probability of aborting (Figure 10C). 
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The data set includes the time stamps of the animals’ responses during the sessions, 
including lever presses, visits to the magazine, and consummatory behaviour (licks). It also 
includes the timestamps of other relevant events, e.g. sucrose delivery and box light 
switching on-off. The data was acquired from 12 mice BL6/C57, with a time resolution of 1  
msec. 

3.1.3.2 How Data are Related to Specific Platform Requirements 

Our task will provide a localiser for the brain structures involved in monitoring action 
performance.  

3.1.3.3 Quantitative Indicators of Data Completeness 

The behavioural dataset included in this phase illustrates the strategies used by mice in 
estimating their confidence of action performance, and aborting trials, based on their own 
performance and other variables (potentially attention and/or motivation). This 
behavioural data set is fully analysed. 

3.1.3.4 Status of Data Delivery 

Raw data is being shared at this stage. Data collected with optogenetic manipulations will 
be delivered during data-delivery phase II. 

3.1.3.5 List of SP4 Collaboration Partners 

Our data are optimally suited to all SP4 partners interested in theorising brain operations 
as a form of Bayesian inference, e.g. Wolfgang MAASS. 

3.1.3.6 Data Provenance 

The mouse data set on confidence estimation and action performance was collected at the 
Champalimaud Centre for the Unknown by Rodrigo FREIRE OLIVEIRA. 

3.1.3.7 Plan Until the End of the Ramp-Up Phase 

We are currently writing a manuscript and testing manipulations for optogenetically 
silencing cortical circuitries that we consider to be the best candidates for computing 
confidence estimation (ACC and S1). We aim to submit a publication with the behavioural 
data, analysis and the effects of manipulations by June 2016. 

3.2 Mapping and Understanding the Neuronal Circuits Involved in 
Motivation, Emotion and Reward (T3.2.2) 

3.2.1 Overview 

The goal of this Task (led by Mathias PESSIGLIONE, Institut du Cerveau et de la Moelle 
épinière  [ICM – P25]) is to provide datasets from a battery of motivational tests. We will 
start with two key paradigms that assess effort production and instrumental learning. FMRI 
data have been previously acquired using these two tests. During this ramp-up period (only 
six months so far for this task), we have acquired some behavioural data in patients and in 
healthy volunteers using pharmacological manipulation. Below is a short description of the 
two tests. 

3.2.1.1 Effort Test 

Patients have to squeeze a handgrip to win money, knowing that the payoff is proportional 
to both incentive level and force peak. This task assesses the energisation process, which 
is the ability to boost behavioural output in proportion to what is at stake. This can be 
captured with a computational model that weighs the impact of incentives on force 
independently of sensitivity to effort cost, compliance to instructions, and motor 
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limitations. It requires efficient connectivity from the valuation system to the motor 
circuits responsible for movement execution37–39. Deficits were found in various clinical 
populations (auto-activation deficit, Parkinson’s disease, major depressive episode) and 
correlated to apathy scores measured with Starkstein’s questionnaire40–42. 

3.2.1.2 Learning Test 

Patients make a series of binary choices between novel cues associated through 
probabilistic contingencies to rewarding, neutral or punishing outcomes. The progression 
of correct choices across trials can be fitted using a Q-learning algorithm, which combines 
a Rescorla-Wagner rule to update values, and a softmax function for making decisions43–45. 
This task enables us to assess global learning ability and specific sensitivity to positive 
versus negative reinforcements. It has been used to show the opposite effects of dopamine 
enhancers and dopamine blockers on reward versus punishment learning in pathological 
conditions such as Parkinson’s disease and Gilles de la Tourette syndrome45–48. Differential 
sensitivity to reward and punishment was also found in Huntington’s disease and patients 
with low-grade tumoral mass around the anterior insula42. 
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Figure 11: Experimental tests and typical behaviour 

(A). Instrumental learning task. The successive screenshots displayed during one example trial are displayed 
from left to right. Subjects chose between left- and right-hand responses, based on the two corresponding 
abstract cues. They were first provided with a feedback on their choice (with a red pointer) and then with the 
monetary outcome (a 50c winning in this case). The left diagram indicates the reward (Rw) probability 
associated to each choice (C, left or right) for the different cue pairs (illustrated with different colors). 
Learning curves represent right choice rate averaged over the 24 participants of the study. Note that learning 
occurs only for pairs with unequal reward probability (blue and red). (B) Grip force tasks. In both tasks, 
subjects were first informed of the condition (instructed force or monetary incentive), then they squeezed a 
handgrip to move the orange cursor within a ladder scaled to twice their maximal force, and finally observed 
the outcome of their performance. In the instructed force task, subjects squeezed the grip so as to move the 
orange cursor up to the red line. The outcome was a feedback on whether they correctly produced the 
requested force. In the incentive force task (bottom), subjects squeeze the grip so as to win as much money as 
possible. The outcome was a cumulative total of monetary earnings, which were calculated for each trial as 
the percentage of the incentive corresponding to the height reached in the ladder. Bars indicate peak force 
(expressed as percentage of maximal force Fmax), averaged over the eight patients who performed the two 
tasks, for the different instructions and incentives (bottom). For both choices and forces, error bars represent 
inter-participant s.e.m.  
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3.2.2 Data set One: Pharmacological Manipulation of Motivational Processes 

3.2.2.1 Description of Data and Models 

We planned to employ these two tests to assess the effects of drugs affecting three main 
neuromodulatory systems (dopamine with L-Dopa, serotonin with Citalopram, noradrenalin 
with atomoxetine) and the opioid system (morphin and naloxone). Every drug is tested 
within subject (n=24) against a placebo. We envisage to provide a summary of behavioural 
results for each test and drug, together with a computational characterization using effort 
production and instrumental learning models. 

3.2.2.2 How Data are Related to Specific Platform Requirements 

Our task will provide a localiser for the brain structures involved in motivational processes. 

3.2.2.3 Quantitative Indicators of Data Completeness 

Behavioural data are currently being collected. We have completed the citalopram study 
(n=24). The opioid study has been started (n=8 so far).  

3.2.2.4 Status of Data Delivery 

Given that this task was only funded for the past six months, data delivery will occur in 
phase II. 

3.2.2.5 List SP4 Collaboration Partners 

None so far. 

3.2.2.6 Data Provenance 

All data were collected at the Centre d’Investigation Clinique at ICM. 

3.2.2.7 Plan Until the End of the Ramp-Up Phase 

We need to complete the opioid study. Dopamine and noradrenaline will be started in a 
few months. There is already fMRI data corresponding to these tests,49,50 which could be 
provided at a later stage. 

3.3 Dissecting the Brainstem Modulation of Cortical Decision 
Computations (T3.2.3) 

3.3.1 Overview 

Within T3.2.3 is led by Tobias DONNER, UVA and Andreas Karl ENGEL, Universitätsklinikum 
Hamburg-Eppendorf  [UKE – P103]). Neuroimaging data from human participants were 
generated using fMRI at UVA, by one post-doc and one PhD student (Olympia COLIZOLI and 
Jan Willem DE GEE), and at UKE (using MEG) by Jan Willem DE GEE. 

The goal is to make three data sets available by the end of the Ramp-Up Phase. These data 
sets target the question of how decision-making mechanisms in the cerebral cortex are 
shaped by ascending modulatory brainstem systems. The data sets are described below. 

3.3.2 Data set One: Pupil-linked Brainstem Responses and the Computation of 
Yes vs. No Decisions (fMRI) 

3.3.2.1 Description of Data and Models 

The data set aims to characterise the coupling between pupil dilation and 
neuromodulatory brainstem nuclei. It also aims to to pinpoint how modulatory brainstem 
systems shape the computation of elementary decisions, focusing on a visual yes-no 
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decision (Figure 12). Participants performed a yes-no contrast detection task (Figure 12A) 
during concurrent whole-brain high-resolution fMRI (1.7mm x 1.7mm inplane). Pupil 
diameter was monitored. Dynamic noise was continuously present in a circular aperture 
around fixation. During the decision interval (onset cued by a tone), participants searched 
for a faint contrast grating target signal that was superimposed onto the noise on 50% of 
the trials. They indicated their yes or no choice by pressing a button with one of their 
index fingers. The signal contrast was adjusted individually, such that each subject was 
correct about 75% of the time. 

 

 

 
Figure 12: Pupil-linked Brainstem Responses During a Visual Yes vs. No Decision 

(A) Sequence of events during a single trial. Dynamic noise is continuously present in a circular aperture around 
fixation. During the decision interval (onset cued by a tone), the subject searches for a low-contrast grating 
target signal superimposed onto the noise, and forms a yes vs. no decision about target presence. The final 
choice is indicated by one of two button presses. The signal is shown at high contrast for illustration purposes 
only, but titrated to the individual 75% correct detection threshold in the actual experiment. (B) Pupil-linked 
brainstem responses during decision-making. Left panel, trial-related LC responses and baseline LC signal levels 
for high vs. low TPR trials. Right panel, matrix of the correlation between trial-related responses in the pupil 
and several brainstem regions, as well as the ACC. (C) High TPR is also linked to stronger responses in cortical 
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decision networks. Abbreviations: TPR, trial-related pupil response. LC, locus coeruleus. VTA, ventral 
tegmental area. SN, substantia nigra. BF, basal forebrain. ACC, anterior cingulated cortex. 

Trial-related pupil responses (TPR) were robustly coupled to task-related responses in the 
(individually delineated) noradrenergic locus coeruleus (LC) of the brainstem (Figure 12B, 
left). Significant coupling between pupil and brainstem responses was also observed for 
dopaminergic midbrain nuclei (SN and VTA), but not the cholinergic basal forebrain (Figure 
12B, right). There was also a significant anti-correlation between decision-related 
responses in the LC and the cholinergic basal forebrain. Finally, there was significant 
coupling between trial-related responses in the anterior cingulate cortex that sends strong 
top-down projections to the brainstem.  

Strong trial-related pupil responses are associated with boosted decision-related responses 
in the cortical decision network (Figure 12C). Computational modelling of subjects’ 
behaviour indicates that strong, pupil-linked neuromodulation during the decision pushes 
the decision process towards making more yes-judgments (data not shown). 

3.3.2.2 How Data are Related to Specific Platform Requirements 

In the first phase, we plan to deliver data in the form of (i) dataframes (csv-files) with the 
trial-wise behaviour of each subject (choice, reaction time) suitable for decision-model 
fitting as well as (ii) the trial-related pupil and brainstem nuclei responses (suitable for 
event-related and correlation analyses as in Figure 12B), and (iii) whole brain statistical 
maps of the main contrasts of interest at the group level (nifti-files). The raw data could 
be made available at a later stage.  

3.3.2.3 Quantitative Indicators of Data Completeness 

The combined behavioural, pupil, and fMRI dataset is now fully acquired. The data set 
comprises N = 15 subjects, 2 sessions per subject in the main experiment and 1 retinotopic 
mapping session from 8 of the 15 subjects who were new in our data base and for whom 
retinotopic maps were not yet available. The analysis of all aspects of the data is on-going, 
but close to completion (Figure 12). 

3.3.2.4 Status of Data Delivery 

Raw data is available. Fully processed data will be delivered, upon publication of the data, 
during data-delivery phase II. 

3.3.2.5 List of SP4 Collaboration Partners 

Gustavo DECO, UPF. 

3.3.2.6 Data Provenance 

The fMRI dataset was collected by Jan Willem DE GEE (UKE) and Olympia COLIZOLI (UvA). 

3.3.2.7 Plan Until the End of the Ramp-Up Phase 

Finalise data analysis and publish the results. 

3.3.3 Data set Two: Pupil-linked modulation of the cortical dynamics 
underlying yes vs. no decisions (MEG) 

3.3.3.1 Description of Data and Models 

The data set aims to identify how pupil-linked modulatory signals shape the dynamics of 
the cortical decision network during a visual yes vs. no decision. 

Participants performed the same yes-no decision-making task as described in section 3.3.2, 
during concurrent whole-head MEG recordings and monitoring of pupil diameter. The task 
was described as above with the following exceptions:  
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• There were different noise levels in different blocks.  

• An online staircase procedure (“Quest”) kept each subject’s performance at 75% 
correct answers.  

• At the end of each trial, subjects reported how confident they were of their decision. 

3.3.3.2 How Data are Related to Specific Platform Requirements 

We plan to deliver the key statistical results of the MEG analysis in the form of statistical 
time-frequency maps. These will show power or coupling differences between 
experimental conditions at the group level (selected sensor groups/regions of interest and 
whole-brain). The MEG data will be analysed with Fieldtrip, thus the statistical results will 
be provided as Matlab .mat files. The raw data could be made available at a later stage.  

3.3.3.3 Quantitative Indicators of Data Completeness 

The combined behavioural, pupil, and MEG dataset (N = 25 subjects, 2 sessions per 
subject) is now fully acquired. The data analysis is still on-going. All MEG and pupil data is 
pre-processed, and the main analyses will start upon submission of the paper on the fMRI 
project described in section 3.3.2. 

3.3.3.4 Status of Data Delivery 

Raw data is available. Fully processed data will be delivered, upon publication of the data, 
during data-delivery phase II (end of the Ramp-Up Phase, March 2016). 

3.3.3.5 List of SP4 Collaboration Partners 

Gustavo DECO, UPF. 

3.3.3.6 Data Provenance 

The MEG dataset was collected by Jan Willem DE GEE (UKE) and Niels KLOOSTERMAN 
(UVA). 

3.3.3.7 Plan Until the End of the Ramp-Up Phase 

We aim to fully analyse the results of the MEG study and report them in a submitted 
publication. 

3.4 Characterise Multiscale Brain Architecture of Decision-related 
Motivational States and Values (T3.2.4) 

3.4.1 Overview 

The goal of T3.2.4 (led by Talma HENDLER, Foundation for Medical Research Infrastructural 
Development & Health Services [TASMC – P98]) was to provide a comprehensive neuro-
behavioural deconstruction of the human motivational domain into its elementary 
processes, states and accounts. It also aimed to further reveal the brain mechanisms 
supporting each process, and how they are regulated while engaged in naturalistic 
behaviour. To do this, multilevel data was collected from humans using the same 
paradigms during fMRI and intracranial recordings of LFP’s and single-cells. This will 
ultimately provide a basis for computational modelling of motivational decision-making.  

The main paradigm used in our study is aimed at capturing the spontaneous on-going 
motivational behavioural tendencies which occur in response to incentives and threats, 
with an important distinction between goal-conflict and no-conflict situations. 
Manipulating controllability (i.e. controlled vs. uncontrolled conditions) further allowed 
the extraction of the neural correlates of approach behaviour, as well as a neural 
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dissociation of the human motivation domain into the incentive and hedonic accounts, and 
the way they interact to regulate behavioural decision making. 

Figure 13 shows a new ecological interactive computer game. This was constructed to 
manipulate approach and avoidance behaviours during an on-going dynamic goal-conflict, 
while enabling dissociation of incentive and hedonic accounts. The goal of the game is to 
earn money by catching coins and avoiding balls. There are two ways to gain or lose 
money. These are controlled (Con), where the player actively approaches coins and avoids 
balls (Figure 13, upper panel), and uncontrolled (NoC), where the player is hit by random 
coins and balls from an animated figure (Figure 13, lower panel). Each coin-catch resulted 
in a five-point gain, and each ball hit resulted in loss of five points, regardless of 
controllability. The game is played for four sessions of six minutes each (each session 
serves as a separate scan run). A fixation point is presented for one minute at the 
beginning of each session to establish a baseline condition. At the end of each session, 
subjects rate their feelings and attention towards each condition of the game (Con and 
NoC, winning and losing) on a nine-point Likert scale. Prior to each experimental session 
(fMRI or intracranial recordings), subjects were introduced to the game and played it for 
one minute, to ensure that the instructions were fully understood. 

This paradigm has been running in our lab on healthy populations, providing convincing 
results which have been prepared for publication.  

 
Figure 13: The Punishment, Reward and Incentive Motivation (PRIME) Game: Conditions 
of Interest 
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The goal of the game is to earn money by catching coins and avoiding balls. There are two ways to gain or lose 
money: controlled, where the player actively approaches coins and avoids balls (upper panel), and 
uncontrolled, where an animated figure throws random coins and balls that hit the player (lower panel). 
Subjects are told at the beginning of the game that these events are uncontrollable. For controlled conditions, 
each trial begins when a coin appears at the top of the screen (upper left panel). The subject chooses either to 
move towards the coin, or to move away from balls (incentive behaviour: upper centre panel, duration 1000-
3000ms). The subject then succeeds in catching a coin, or gets hit by a ball (response to outcome: upper right 
panel, duration 1000ms). For No-Control conditions, each trial begins when a flying figure appears on the 
screen (lower left panel). The player then anticipates the coin/ball that falls and “chases” them (motivation 
anticipation: lower centre panel, duration 1000–3000ms), then the coin or ball hits them (response to outcome: 
lower right panel, duration 1000ms). Trials (behaviour and response) were separated by 0.5-5.5 seconds ISI. 

The second paradigm used in our study is a well-established interactive risky-choice game developed in our 
lab51–53. 

Figure 14 shows a paradigm that allows us to separate the motivational decision, 
anticipation of reward/punishment states, and response to outcome. It is a two-player 
competitive domino game. The opponent's responses ware randomly generated by a 
computer in a predetermined pattern, to allow a balanced design. Players, however, were 
told that the opponent was the experimenter, and that their choices could increase their 
chances of winning. At the beginning of each game, 12 random domino chips were assigned 
to the player, and were shown at the bottom of the board. At the same time, one master 
domino chip, which remained constant throughout the game, appeared at the top left 
corner of the board. Players won the game if they were able to successfully dispose of all 
12 chips within four minutes. Each assigned chip could either match the master chip (have 
one of the master chip’s numbers), or not. In each round of the game, players had to 
choose one chip (decision making), place it face down adjacent to the master chip 
(execution), and then wait for the opponent’s response (anticipation), to see whether the 
opponent challenged this choice by uncovering the chosen chip or not (outcome). Since the 
master chip remained constant throughout the game, it was only possible to win by 
choosing both matching and non-matching chips. In the game context, matching chips are 
considered ‘safe’ moves, since they are associated with rewards if uncovered and non-
matching chips are considered ‘risky’ moves, since they are associated with punishments if 
uncovered. Specifically, based on the player's choice and opponent’s response, there are 
four possible consequences per game round (i.e. 'outcome' possibilities): 

1)  Show of a non-match chip: the choice of a non-match chip is exposed, and the player 
is punished by receiving the selected chip back, plus two additional chips from the 
deck.  

2) No show of a non-match chip: the choice of a non-match chip remains unexposed and 
only the selected chip is disposed of, so the player is not punished.  

3) Show of match chip: the choice of a match chip is exposed and the player is rewarded 
by the disposal of the selected chip, and one additional random chip from the game 
board.  

4) No show of a match chip: the choice of a match chip is not exposed, and only the 
selected match chip is disposed of, so the player is not rewarded.  

Overall, player’s choices and opponent’s responses are interactively determined by the 
flow of the game round after round, creating a natural progression of the game situation. 
This lasts for four minutes, or until the player wins. Each player played consecutively for 
14 min. For more details of the game, see Figure 14, and GONEN et al, 2012 52. 
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Figure 14: Risky Choice Domino Game Paradigm. 
Each round of the game is composed of four intervals: the player chooses which chip to play next (first 
interval: “choose” 4 second), moves the cursor to the chosen chip and places it face down adjacent to the 
master chip (second interval: “ready” and “go”. 4 second). The player then waits for the opponent’s response 
(third interval: “anticipation”; jittered randomly to 3.4, 5.4 or 7.4 second), and sees whether the opponent 
challenges this choice by uncovering the chosen chip or not (fourth interval: “outcome”; jittered randomly to 
3.4, 5.4 or 7.4 second). The player’s choices and opponent’s responses are interactively determined by the 
flow of the game round after round, creating a natural and unpredictable progression of a game situation, 
which lasts four min, or until the player wins. Each player played consecutively for 14 min. 

3.4.2 Data set 1: Intracranial Single Cell and LFP Dataset 

3.4.2.1 Description of Data and Models 

The set of data collected within this task provides one of the few opportunities to observe 
local small-scale recordings of single neurons, and small neuronal populations within deep 
regions of the brain. The data of five patients will be provided in Phase I. Additional data 
will be provided by the end of the Ramp-Up Phase. Table 1 describes the overall location 
of electrodes available from these five patients. 

The data delivered to the HBP platforms will include the following: 

1) A summary table of electrode location in xyz Montreal Neurological Institute (MNI) 
coordinates, and their atlas labels using the neuromorphics atlas (http://www.oasis-
brains.org/, http://Neuromorphometrics.com/ segmenting the human brain to 207 
brain regions). This includes microwire locations, which can detect single cell 
recordings, and macro electrode locations recording local field potentials (LFP). 

2) A table describing neuronal firing. This will show a significant increase or decrease in 
firing rate in response to, or in anticipation of, a paradigm induced event (e.g.: an 
account of neurons in different brain locations responding to control punishment in the 
PRIMO paradigm, or responding to the show match conditions in the risky-choice 
domino game). 

http://www.oasis-brains.org/
http://www.oasis-brains.org/
http://neuromorphometrics.com/
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3) Matlab matrices describing the LFP signal power at the different frequency bands and 
different spatial locations, responding to paradigm induced events.  

 

 
Table 1: Overall Electrode Locations Per Patient.  

L=Left, R=Right, B=Bilateral. More detailed coordinates will be provided in the data. 

 

3.4.2.2 How Data are Related to Specific Platform Requirements 

Atlas coordinates will be provided, along with Matlab structures and files.  

3.4.2.3 Quantitative Indicators of Data Completeness 

The data from five patients (as detailed in the above description of data) is complete. This 
includes the complete mapping of electrode locations, and neuronal responses to paradigm 
stimuli at the different locations. The remaining dataset of an additional six patients will 
be provided by the end of the Ramp-Up Phase. This data will be regarded as complete 
when it includes the final localisation of all channels (from 11 patients), and neural 
responses at the different scales. 

3.4.2.4 Status of Data Delivery 

In Phase I, the localised results of paradigm-induced reactions in single neuronal activity 
and LFP (as detailed in the above description of data) of five patients will be delivered.  

3.4.2.5 List of SP4 Collaboration Partners 

The micro scale and multiscale dataset provided by this work should be of great value for 
SP4 in general, and in particular WP4.1, dealing with “bridging scales” aiming to create 
models for intral and extral cellular recordings, LFP and EEG. Contact with SP4 partners 
for feeding models with real human neuronal data is planned. 

3.4.2.6 Data Provenance 

The data is owned by TASMC. The data were collected and analysed by a large group of 
collaborators, including neurosurgeons, neurologists, technicians and neuroscientists.  

3.4.2.7 Plan Until the End of the Ramp-Up Phase 

The dataset of an additional six patients will be provided by the end of the Ramp-Up 
Phase. Deeper analysis into system dynamics and correlation between regions and scales 
will be performed. 
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4. Learning and Memory (WP3.3) 

4.1 Skills and Habits (T3.3.1) 

4.1.1 Overview 

The aim of the studies conducted in Avi KARNI’s group, University of Haifa  (UHAIFA – P72) 
is to address cortical dynamics (repetition suppression, repetition enhancement, functional 
connectivity) as brain signatures of accumulating experience, plasticity, and procedural 
memory consolidation in motor skill learning in typical young adults. A key strategic point 
is that we are following on from the work of KARNI et al, (1995), (1998) 54,55. This means 
looking at short-term modulations of the evoked BOLD signals in motor cortex, and the 
motor system in general, as enduring signatures of previous experience. Importantly, we 
are also seeing these as signatures of overnight procedural memory consolidation. Thus, 
we are testing whether activity in a given brain area is modulated by task repetition in a 
differential manner, as a function of whether prior experience was afforded, i.e. 
reflecting local mnemonic processes, specifically procedural memory consolidation.  

This focus on the temporal modulation of activity (as reflected in the metabolic BOLD 
signal) is complemented by tests for repetition-dependent modulations of the functional 
connectivity between areas engaged in the performance of the task. Our proposal is that 
M1 serves as a hub for a motor working memory system, wherein a temporarily stabilised 
network in the cortex and striatum promotes an integrated representation of the new 
movement sequence (i.e. the movement syntax). The M1-straitum co-activation is down 
regulated for a well-consolidated (automatic) movement sequence. 

 

4.1.2 Data set One: Short-term Cortical Modulation by Task Repetition as 
Signatures of Procedural Memory Consolidation 

 

4.1.2.1 Description of Data and Models 

Strategic question: are mnemonic processes reflected in the modulation of neuronal 
responses to task repetition (how Ti ≠ Ti+1)? We investigated how units/columns in the 
human motor cortex (M1) address repeated experience, i.e. tasks repeated across a brief 
(30 second) rest period. We show clear repetition dependent dynamics in signal intensity56 
and in connectivity57. With the data set, we aim to identify the brain signatures of the 
processes underlying overnight procedural memory consolidation of a trained movement 
sequence.  

Behaviour data: Participants (n=36) were trained in performing a five-element finger 
opposition movement sequence (Figure 15A). Training consisted of 160 blocked, cued, 
repetitions of the assigned movement sequence (T-FOS). Performance was tested for speed 
of execution and accuracy in four blocks of 30 seconds each. The control was an identically 
constructed movement sequence, with movements arranged in the mirror-reversed 
sequence (U-FOS). Behavioural results are shown in Figure 15B. Training resulted in both 
within-session (“online”) gains in performance, and in additional robust overnight 
(delayed, consolidation phase, “offline”) gains in both speed and accuracy. Importantly, 
the gains in performance that occured overnight (delayed “offline” gains, DG), were 
specific to the trained movement sequence (T-FOS). 
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Figure 15: Task Design for T4.1.2 and Behavioural Results 
Left panel: the two sequences. There were two five-element sequences of finger to thumb opposition 
movements.These were both composed of the same movements and performed at a fixed, paced, equal rate 
(in the scanner). However, the component movements were arranged in two different orders (syntax) that 
mirror imaged each other (sequence one: 4-1-3-2-4, sequence two: 4-2-3-1-4, each number is a finger, 1 = 
index, 4 = little finger). Only one sequence was trained and allowed to be consolidated overnight (=T-FOS). The 
other was introduced for the first time in the scanner (= U-FOS). Only one of the sequences was assigned for 
training (160 repetitions).  

Right panel: behavioural results. Subjects were tested before, (Pre-T) and immediately after, the training 
session (Post-T), and were then re-tested immediately after the fMRI scanning session (Overnight). The 
overnight test assessed performance for both sequences. The results show that training resulted in both within-
session (“online”) gains in performance, and in additional robust overnight (delayed, consolidation phase, 
“offline”) gains. The gains in performance that occur overnight (delayed “offline” gains, DG) are specific to 
the trained movement sequence (T-FOS).  

Brain imaging: comparing movement representation changes across a brief rest period () 
occurring overnight   

In the brain imaging study, we acquired fMRI data in 16 of the same participants. The data 
set was acquired using whole brain coverage at 1.5 isotropic resolution. The data were 
collected while participants performed the FOS task, either the trained (T-FOS) or the 
untrained, complementary sequence (U-FOS). The brain imaging data collection approach 
is shown in Figure 16.  
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Figure 16: Task Performance Paradigm for T4.1.2 in fMRI Session 

Left panel: task one of the sequences was assigned for training (160 repetitions). Right 
panel: overnight scanning session. There were two five-element sequences of finger (to 
thumb) opposition movements. These were  both composed of the same movements, and 
performed at a fixed, paced, equal rate (in the scanner). Only the component movements 
were arranged in two different orders (syntax), as they mirror imaged each other. One 
sequence was trained the day before and was consolidated overnight (T-FOS). The other 
was introduced for the first time in the scanner (U-FOS). Each sequence was performed in 
two intervals. Perf1 was performed for 30 seconds (continuously and in a paced manner), 
followed by a rest interval (30 seconds), and then Perf2 (30 seconds). The evoked signals in 
Perf1 and 2 were compared.  

Importantly, there is no difference in the average evoked activity in the cortex, or in sub-
cortical structures, which differentiates between two such movement sequences when 
both are performed at the same rate. So, we looked at task repetition effects (signal and 
connectivity modulations). The logic behind this is that consolidation processes generate 
local changes within the column. This may be reflected in inhibition-excitation balance, 
and thus in signal modulation, during task repetition, rather than in averages across task 
repetitions. The results of the different analysis approaches are in the press56,57. We 
demonstrate clear repetition dependent dynamics in 1) signal intensity (Figure 17) and 2) 
connectivity (Figure 18).  
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Figure 17: Brief but Robust Modulation of M1 Signals by Task Repetition. 
The top panels show the motor cortex (M1) contralateral to the left hand performing the sequences (i.e. in the 
right hemisphere). This was the only brain area showing significant repetition enhancement (RE) effects, but 
this was only for the trained, consolidated movement sequence, when tested overnight. Repeating the U-FOS 
resulted in repetition suppression (RS). The result is not shown, as it is a well-known phenomenon of motor 
novelty (KARNI et al, [1995], [1998]). The bottom left-hand panel shows the correlation between the 
behavioural measure of consolidation; the expression of overnight Delayed Gains in speed (DG, x axis) 
and the RE in M1 (in terms of the BOLD signal differences, deltas, y axis) upon task repetition. Each data point 
shows a single subject’s behaviour (overnight, delayed, performance gains, DG’s) and the corresponding signal 
modulation in M1. 

1) There is repetition suppression (RS) for repeating new movement sequences, and 
repetition enhancement (RE) effects for repeating well-consolidated sequences. 
Importantly, the enhancement effect is well correlated with the behavioural effect of 
consolidation, i.e. overnight, offline movement speed gains (Figure 17). 

2) Connectivity between M1 and the basal ganglia (BG) increases when a new movement 
sequence is repeated after the short rest. The connectivity between M1 and the BG tends 
to decrease after the brief rest for a well-consolidated sequence (Figure 18). We think that 
this reflects the setting up of a short-lived motor working memory for the untrained 
sequence (U-FOS), but the representation of the trained sequence (T-FOS) is BG 
independent. 
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Figure 18: Brief Dynamic Modulations of Neural Activity and Connectivity, During Task 
Repetition, May Constitute Robust Signatures for Mnemonic Processes in the Cortex. 

A) Images showing five brain areas/structures (from left to right in A: Inferior frontal gyrus [IFG], the putamen 
(part of the BG), shown bilaterally, the ventral pre-motor area [PMv], and the ventral M1 — a part of M1 
representing the trained hand (other than the “seed” voxels of the right M1). All of these brain structures 
showed functional connectivity changes with an M1 seed upon task repetition. These are brain structures in 
which activity significantly correlates with the M1 seed; the right (contraleteral to the performing hand) M1’s 
signal during task performance.  

B) This shows differential modulations of M1’s connectivity with the five brain structures upon task repetition 
(before [Perf1] and after [Perf2] a 20 second rest interval). It is clear that modulation is different for the two 
sequences tested: the trained consolidated sequence (T-FOS) shows a consistent pattern of decreased 
connectivity upon repetition. However, when the untrained, novel sequence of movements is repeated, the 
correlation between all five brain areas, and importantly, between the pre-motor areas, the BG (bilaterally) 
and the right M1 increases (y axis = mean correlation coefficients, measure of functional connectivity). 

A small number of voxels in M1, contralateral to the task performing hand, were used as a 
"seed" (standard term designating the source of the time-course data, to which parts of the 
rest of the brain time-correlate). What parts of the brain act in sync (positively or in 
reverse phase) to the "seed" area. We discovered that for a novel movement sequence, 
connectivity increases between the motor cortex and the BG, pre-motor (sequence 
planning) areas, and even other parts of the M1 itself (more of it is recruited for repeated 
task performance than for initial performance). The connectivity is down-modulated by 
repeating a well-consolidated movement sequence. 

4.1.2.2 How Data are Related to Specific Platform Requirements 

In addition to publishing the key findings and analysis results, we plan to deliver the key 
statistical results of behaviour, and the fMRI analysis in the form of contrasts at group 
level. The fMRI data is being analysed with Statistical Parametric Mapping software (SPM 
toolbox, Matlab), and the statistical results will be provided as SPM.mat files. The raw 
data could be made available in a later phase.  

4.1.2.3 Quantitative Indicators of Data Completeness 

The behavioural and brain imaging datasets have now been fully acquired. The behavioural 
data set has been fully analysed and published56,57. The fMRI data analysis results have also 
been published in part, but additional fMRI data analyses are underway. A third paper 
addressing transfer (remote) effects to the other hemisphere is under review (GABITOV, 
MANOR and KARNI). 
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4.1.2.4 Status of Data Delivery 

Raw data is available. Fully processed data will be delivered during data-delivery phase II. 

4.1.2.5 List of SP4 Collaboration Partners 

None, but this is currently being explored. 

Our behavioural and brain imaging results provide an important challenge for models and 
simulations at the multi-column level. The results should be considered as providing 
important tests and insights into simulations. This is because they suggest the dynamics in 
repeated cortical networks are not “noise”, but rather reflect patterned dynamic 
modulations of neural activity and functional connectivity during task repetition. They 
therefore constitute robust signatures for novelty, repeated experience and long-term 
mnemonic processes.   

4.1.2.6 Data Provenance 

The behavioural data was acquired in the KARNI Lab at UHAIFA. The fMRI data were 
collected by members of the KARNI Lab (supervised by Ella GABITOV and Rinatia MAARAVI-
HESSEG) At the Sheba Medical Center, Tel Hashomer, and at the Rambam Medical Center, 
Haifa, Israel. 

4.1.2.7 Plan Until the End of the Ramp-Up Phase 

We aim to continue publishing the results of the brain imaging study. We also aim to 
continue investigating the mnemonic processes initiated by action observation, rather than 
actual physical performance, using the novel paradigm (including additional fMRI data 
collection — see below). This is related to cross WP collaboration with partners from 
WP3.6. and WP2.3. 

A behavioural study (completed) and an fMRI brain imaging study (on-going), are in 
progress. These aim to address motor cortex plasticity driven by visual input (action 
observation). The behavioural data suggest that executing and observing movements 
improves task performance and triggers skill consolidation processes. However, 
consolidation could be blocked by ensuing action but not by observation, indicating that 
skills acquired in doing or observing do not overlap in the brain. A paper is being prepared 
(MAARAVI-HESSEG, GAL, KARNI). 

4.2 Memory for Facts and Events (T3.3.2) 

4.2.1 Overview 

Yadin DUDAI’s group has generated a human memory protocol combining behaviour and 
fMRI. This allowed us to identify behavioural and brain mechanisms that trigger episodic 
memory consolidation under real-life conditions. It also allowed us to tease apart the 
contribution of encoding and retrieval in a single experience. We have specifically focused 
on the role of the hippocampus in these processes. We have integrated this into a 
flowchart brain-inspired functional model of the initiation of episodic memory 
consolidation that guides and constrains the modelling of acquisition storage and use of 
declarative memory in the human medial temporal lobe.  
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4.2.2 Data Set 1: Cognitive Architecture of Episodic Memory Consolidation 

4.2.2.1 Description of Data and Models 

4.2.2.1.1 Goal 

The goal is to identify circuits that help to trigger the consolidation of realistic episodic 
memory. 

4.2.2.1.2 Hypothesis 

Our hypothesis is that realistic episodes undergo binding in a temporary episodic buffer as 
soon as they make sense, cued by event boundaries. 

4.2.2.1.3 Boundary Conditions 

In on-going episodes, the activation of brain circuits that encode events on the fly 
confounds the identification of representations of posited closure cues. 

4.2.2.1.4 Strategy 

The strategy is to present brief episodes encoded (4—20 seconds) in the form of audiovisual 
clips, with intercalated 'rest' (no stimulus) periods. The protocol is then pursued to identify 
brain activation that is time-locked to the offset the episode, and predict subsequent 
memory. As a second stage, participants are presented with the same set of episodes 
multiple times, to separately assess the effect of familiarity on brain activation at event 
onset vs. event offset. 

4.2.2.1.5 Protocol 
Stage One: 

Each experiment consists of a “study” phase in the fMRI scanner and a subsequent “test” 
phase outside the scanner58,59. The procedure aims to identify brain regions exhibiting 
delayed encoding-related activation (i.e. a higher BOLD response to subsequently 
remembered vs. forgotten clips, initiated at clip offset). It uses eight second audiovisual 
clips that the participants had not seen before. A total of 180 clips are used, of which 160 
were narrative movie clips (Movie) and 20 were visually scrambled clips (Scrambled), 
accompanied by non-distinctive background noises. The intercalated rest period involved 
4—12 (jittered) blank screens. The fMRI data acquired during the presentation of Movie 
clips were subsequently divided into Remembered and Forgotten events. Similarly, fMRI 
data acquired during the presentation of blank screens following the clips were divided 
into R-Blank, F-Blank and S-Blank periods (blank screens following Remembered, Forgotten 
and Scrambled clips, respectively). The conjunction contrast of R-blank>F-blank and F-
Blank>baseline yielded several brain regions (combined p<0.000025, uncorrected, minimal 
cluster size of five contiguous functional voxels). These included the right hippocampal 
body, bilateral hippocampus head (extending to the amygdala-hippocampal junction), right 
optic radiations (directly posterior to the hippocampus), bilateral dorsal caudate nucleus, 
and bilateral posterior cerebellum. The results were replicated in several studies in our 
laboratory and included in several publications. The identified circuit is currently 
predictive at group level, and we are attempting to modify the protocol to achieve 
predictability at individual subject level.  

Stage Two 

Similarly to stage one, the experiment is divided into a study phase, which takes place in 
an fMRI scanner, and a test phase outside the scanner. Participants are presented with 80 
narrative movie clips, 40 of which are repeated six times (Repeated) and 40 of which are 
presented once (Single-Pres). Performing an ROI-analysis on the hippocampus, which was 
identified in Stage one, we assessed the effect of increased familiarity (across 
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presentations) at event onset vs. offset. We found that the offset response decreases with 
familiarity, in line with an encoding signal, while an onset response emerges only for 
familiar events, in line with a retrieval signal. This enabled us, for the first time, to tease 
apart encoding and retrieval signals in response to the same event60. 

 

 
Figure 19: Brain Regions Predicting Stimulus-offset-locked Memory Predicting Activity  

Striatal, hippocampal and cerebellar activations are identified. From Ben-Yakov and Dudai 201158.  

4.2.2.2 How Data are Related to Specific Platform Requirements 

The protocols allow us to identify the role of hippocampal formation and other brain 
circuits in specific steps in the initiation and retention of episodic memory. This therefore 
clarifies the cognitive architecture of a major unique function of the human brain. The 
data obtained feeds into a flowchart model of the initiation of memory consolidation, and 
is integrated into available information on the human medial temporal lobe and neocortex.  

4.2.2.3 Quantitative Indicators of Data Completeness 

We have so far acquired about 80% of the data required, and performed about 50% of the 
analyses that we expect to perform on these data. 

4.2.2.4 Status of Data Delivery 

We can supply fMRI and behavioural data that identify the role of the hippocampus in 
triggering human episodic memory consolidation immediately at the offset of short 
episodic segments in realistic conditions (see cognitive architecture document enclosed), 
and in switching between encoding and retrieval mode in a single episodic experience59,60. 
The data collected is currently in Brainvoyager proprietary format. We can supply the 
individual timecourses for each functional run of each participant, extracted from 
anatomicallydefined regions of interest, as well as design files that indicate the timings of 
different events in each functional scan. Both of these can be supplied as matlab variables 
in a .mat file. If required, the anatomical scans, currently in Brainvoyager format, can be 
converted into nifti format.  

4.2.2.5 List of SP4 Collaboration Partners 

We have no targeted collaboration on this project with SP4, but have had several focused 
exchanges so far with Dr. Misha TSODYKS on potential memory models. We predict that 
once our data become available to SP4 principle investigators, some of them will integrate 
it into their work. 
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4.2.2.6 Data Provenance 

The fMRI and behavioural data were collected and analysed by Aya BEN-YAKOV, Neetay 
ESHEL, Micah RUBINSON and Meytar ZEMER. The data were also analysed by Noga COHEN, 
at the WIS. 

4.2.2.7 Plan Until the End of the Ramp-Up Phase 

We expect to complete the acquisition of additional complementary data related to the 
role of event boundaries in initiation of consolidation (as predicted by our functional and 
neuroanatomical model). We plan to use the same data sets to analyse pre-stimulus 
predictors of subsequent memory, and the effect of the passage of time in modifying the 
contribution of medial temporal role in memory representation and transformation. We 
expect to provide improved functional localisers and functional models of episodic memory 
consolidation, to feed into SP4 as required. 

4.2.3 Model One: Neural mass models of the sleeping brain 

4.2.3.1 Description of Data and Models 

4.2.3.1.1 Goal 

The overarching project aim is to model the transformation of hippocampus-dependent 
memory during sleep-dependent system consolidation. To this end, as a first stage we 
aimed to model sleep using neural mass models. This would allow us to predict the 
outcome of experimental setups investigating the influence of sleep on memory 
consolidation. In modelling sleep, we put special emphasis on the interaction between the 
neocortex, the thalamus and the hippocampus as the key structures contributing to active 
system consolidation of hippocampus-dependent memory. To validate our models, we used 
parallel studies in rats. We recorded local field potentials and single unit activity 
concurrently, from the key structures of interest, during sleep and wakefulness, and in the 
context of specific memory tasks.   

4.2.3.1.1 Hypothesis 

Neural mass models provide a direct link between mesoscopic measurements, such as EEG, 
and local field potential oscillations and the underlying neural network dynamics, as 
explored in our in-vivo experiments in rats. Incorporating different experimental settings 
enables us to validate our model directly, and predict the dynamic between activity 
patterns thought to be particularly relevant for memory processing during sleep, i.e. the 
hippocampal sharp wave-ripples, the thalamic spindles and the neocortical slow 
oscillations.  

4.2.3.1.2 Strategy 

Changes in brain dynamics are driven by neuromodulators that are highly specific to the 
respective brain structure. Furthermore, it has been shown that there is a strong temporal 
relationship between the structures of interest here, i.e. a grouping of neocortical slow 
oscillations, thalamic spindles and hippocampal sharp wave-ripples. Consequently, we 
focus on developing independent models of the relevant brain structures (cortex, 
thalamus, and hippocampus), which are then incorporated into a unified framework. This 
approach enables us to investigate the interplay between the different brain structures, 
and validate our models by comparison with the experimental studies in rats that 
specifically target the different brain structures. 

4.2.3.1.3 Progress 

Stage One: 
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We developed a model of the sleeping cortex within the neural mass framework, allowing 
for a cost efficient modelling of a sleep EEG. Based upon our findings, we were able to 
describe the emergence of K-complexes and slow oscillations during NonREM sleep, and 
how the cortex transitions from wakefulness to deep sleep61.  

Stage Two: 

Based upon our findings in stage one, we developed a model of the sleeping thalamus62. 
We were able to show that our simple approach was sufficient to generate realistic spindle 
activity in the thalamic model. Additionally, we combined both models from stages one 
and two, and investigated the thalamo-cortical interaction. The combined model was able 
to reproduce the EEG from sleep stages N2 and N3 to a high degree, including cortical K-
complexes, slow wave activity and thalamic spindles. Furthermore, we could show that our 
model is able to reproduce the temporal relationship between cortical slow oscillations/K-
complexes and thalamic spindles, which is thought to be crucial for memory consolidation.  

In our studies in rats, we have so far concurrently recorded spontaneous local field 
potentials and single unit activity from cortical and hippocampal regions during 
wakefulness and sleep. The data will be used to test and optimise our model.      

4.2.3.2 How models are Related to Specific Platform Requirements 

Currently our models focus on the generation of realistic EEG signals, and their link to 
network spiking activity. However, there is also a direct link between the activity of neural 
masses and the BOLD signal measured in fMRI, which would enable us to additionally 
validate our model against fMRI data. 

4.2.3.3 Quantitative Indicators of Data Completeness 

We have validated our different models against multiple pre-existing experimental data. 
Validation shall be extended to data that will be obtained from recordings of the rat 
thalamus. Once we expand our model to include a hippocampal component, we will also 
add tests with hippocampal data. 

4.2.3.4 Status of Data Delivery 

We have developed simulation routines with interfaces to commonly used analysis software 
e.g. Spike2 and MATLAB. If there is demand for other software interfaces, we should be 
able to add them easily. Additionally, full model descriptions are available through our 
publications and can be easily implemented individually.  

4.2.3.5 List of SP4 Collaboration Partners 

Our theory should be particularly relevant to theorists in SP4 aiming at reproducing global 
brain signals associated with vigilance, e.g. Alain DESTEXHE, Gustavo DECO. 

4.2.3.6 Data Provenance 

Full model description and implementation details of our model are provided in our 
publications. They are sufficient to completely reproduce our findings. 

4.2.3.7 Plan Until the End of the Ramp-Up Phase 

We are currently working on a neural mass model of the hippocampus, which is able to 
generate sharp wave-ripples. Once we have validated our results with our experimental rat 
data, we plan to integrate it into our existing neural mass framework, to investigate 
hippocampal - thalamocortical interactions in depth. We will put special emphasis on the 
temporal relationship between sharp wave-ripples and slow oscillations/thalamic spindles, 
i.e. the generation of spindle-ripple events, which we see in our recordings from rats. 
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4.3 Working Memory (T3.3.3) 

4.3.1 Overview 

Working memory (WM) maintains information over brief periods of time. This feature is 
required for goal-directed behaviour, and allows us to act beyond the confines of the here 
and now. WM can thus be conceptualised as providing an interface between perception, 
long-term memory, and action. As such, WM is taxed by numerous laboratory and everyday 
cognitive challenges. The delayed match-to-sample (DMS) task captures the essence of 
WM: maintenance of information during a delay period, when there is no sensory 
input/external support. Various versions of the DMS task have been used in many past 
human and primate studies, demonstrating that a network of brain regions implements 
WM. However, the specific contribution of each network component remains unclear. Also, 
a long-standing assumption of the relation between WM and consciousness has recently 
been questioned, and should be further investigated. Here we describe a dataset that will 
consist of fMRI data from participants performing a DMS task, under conditions of conscious 
and non-conscious perception of the sample stimuli. 

4.3.2 Data set One: Short-term Maintenance of Conscious and Non-conscious 
Information. 

4.3.2.1 Description of Data 

During fMRI scanning, participants perform a delayed match-to-sample task, where sample 
stimuli are shown either consciously or non-consciously. This is followed by a delay period, 
and then a probe stimulus (always conscious) that either does or does not match the 
sample. Trials with no sample stimulus are used as a reference condition (subjectively 
identical to non-conscious trials). A critical aspect of the experiment is to dissociate brain 
activity related to the different trial components (sample presentation, delay period, 
response), and to compare sample-absent and non-conscious trials, and conscious and non-
conscious trials, in relation to brain activity that is specifically associated with the delay 
period. 

Data collection is made on a GE 3 Tesla Discovery MR750 scanner. T2*-weighted images are 
obtained with a single-shot GE-EPI sequence with the following parameters: field of view: 
25 cm, matrix size: 96 x 96, slice thickness: 2.9 mm, 37 slices (interleaved, no inter-slice 
interval), echo time: 30 ms, repetition time: 2.0 s, flip angle: 90 degrees. 

4.3.2.2 How Data are Related to Specific Platform Requirements 

FMRI data will be analysed with SPM. We plan to deliver the key statistical results of the 
fMRI analysis in the form of contrasts (volumes of t/F-statistics), and also to provide the 
statistical models used to generate the contrasts (SPM.mat files). The raw data could be 
made available in a second phase. 

4.3.2.3 Quantitative Indicators of Data Completeness 

An initial dataset has been collected (n=27), but additional data collection is required to 
allow conclusive results. 

4.3.2.4 Status of Data Delivery 

Raw data is partially available (initial dataset). Fully processed data will be delivered 
during data-delivery phase II (end of the Ramp-Up Phase, March 2016). 

4.3.2.5 List of SP4 Collaboration Partners 

None 
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4.3.2.6 Data Provenance 

The data has been, and will be, collected by Fredrik BERGSTRÖM at Umeå Center for 
Functional Brain Imaging (UFBI), Umeå University, Sweden.  

4.3.2.7 Plan Until the End of the Ramp-Up Phase 

We plan to complete the data collection, and analyse and report the results in a 
publication.  
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5. Space, Time and Numbers (WP3.4) 

Only the Space part of the WP, “identifying circuits for spatial navigation and spatial 
memory”, is funded during the HBP Ramp-Up Phase, and is therefore the object of the 
present report. The Time and Numbers parts were scheduled to start in the second phase. 

5.1 Identifying and Analysing the Multi-modal Circuits for Spatial 
Navigation and Spatial Memory (T3.4.1) 

5.1.1 Overview 

Within T3.4.1, Neil BURGESS’ group (UCL) has identified the critical data for constraining 
models of navigation from the existing literature on experiments in rodents. In addition to 
published reports of the firing patterns of place cells, grid cells, head direction cells and 
boundary cells, we have focused on the behavioural/lesion findings of PACKARD and 
MCGAUGH, 1996; and PEARCE et al., 1998 63,64. The PEARCE et al. study describes the 
behaviour of rats in a modified version of the Morris Water Maze: providing a local 
landmark at a fixed distance and direction from the submerged platform (see Figure 20). 
More specifically, it quantifies the time necessary for rats to reach the platform as a 
function of experience for animals with and without hippocampal lesions. The PACKARD 
and MCGAUGH study measures the number of animals that exhibit place vs response 
learning as a function of number of training days on a plus maze, and how this is affected 
by inactivation of the hippocampus or striatum. 

 
Figure 20: Water Maze with Submerged Platform Positions (empty circles) and 

Landmark (black circles) 

5.1.2 Data Sets One and Two: Performance of Lesioned and Control Rats 

The first dataset64 aims to show the performance (in seconds) of rats trying to find a 
submerged platform in the Morris Water Maze. The rats used in the experiments were 
either normal controls, or rats with ibotenic-acid-induced lesions of the hippocampus. 

The second dataset63 aims to show the number of rats in each treatment group (caudate 
nucleus or hippocampal injection) that exhibited place or response learning on both the 
Day Eight and Day 16 test trials. 
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5.1.2.1 Description of Data and Models 

The neuronal-level model under development aims to reproduce the behaviour and the 
performance of control as well as rats with a damaged hippocampus, by reproducing the 
functioning of the areas involved in spatial navigation and decision-making, namely the 
hippocampus and the striatum. 

5.1.2.2 How Data are Related to Specific Platform Requirements 

We plan to deliver the key statistical results of the simulation in the form of reaction 
times, provided as an Excel file. The raw output of simulations could be made available in 
a second phase.  

5.1.2.3 Quantitative Indicators of Data Completeness 

The simulations of the behaviour of the neuronal-level models (30 animals) are now fully 
acquired and analysed. The code is being uploaded as part of our collaboration with SP4. 
The results are being submitted for publication. 

5.1.2.4 Status of Data Delivery 

Experimental data have already been published. Fully processed simulation data will be 
delivered during the data-delivery phase II. 

5.1.2.5 List of Collaboration Partners 

At the beginning, we will use the neuronal population density simulator developed by P110 
(Marc DE KAMPS, University of Leeds [ULEEDS]) to run faster versions of our rodent 
navigation simulations. We will also collaborate with P1 (Marc Oliver GEWALTIG, EPFL) to 
run our software exploiting high performance computing architectures in closed loop 
configurations. We will receive a Spinnaker Board from P73 (David LESTER, University of 
Manchester - UMAN) to run accelerated spiking neuron versions of our simulations. On this 
board, we will implement neuron models developed by P7 (Alain DESTEXHE, CNRS). Once 
the task is running correctly in our own developed simulator, we will collaborate with P53 
(Technische Universität München  [TUM]) to implement it in their newly developed physics 
engine, and later on the real robot. 

5.1.2.6 Data Provenance 

The behavioural data concerned were obtained in summary form from the literature - 
collected by Mark PACKARD and James MCGAUGH (Department of Psychology, University of 
New Orleans; Department of Psychobiology, University of California, Irvine), and by John 
PEARCE, Amanda ROBERTS and Mark GOOD (School of Psychology, Cardiff University). The 
simulation data were generated within the HBP by our own lab (BURGESS lab, UCL). 

5.1.2.7 Plan Until the End of the Ramp-Up Phase 

We aim to publish the results of the simulation studies (publication in preparation), and to 
publish the cognitive constraints on neural mechanisms of spatial navigation that we 
identified (special issue of Neuron organised by Stanislas DEHAENE is in preparation). 
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6. From Sensory Processing to Multimodal Perception 
(WP3.5) 

6.1 Neural Correlates of Unimodal Perception and Self-organisation 
of Internal Knowledge in Mammalian Primary Cortical Areas 
(T3.5.1) 

6.1.1 Overview 

This report section describes the database of recordings from cat V1, obtained by Yves 
FRÉGNAC’s lab. It also describes some of the results from analysing these data, which are 
used to constrain the computational models developed with the help of the CNRS, the EC 
FET Integrated Project BrainScaleS, and the Flagship HBP. The technical underpinnings of 
the database can be obtained from author Andrew DAVISON (HBP SP5 and SP9 task leader) 
at CNRS-UNIC. Here we provide information on accessing the database, present some 
screenshots of the web-interface, and give some examples of using the Python client 
interface. Since the data were not obtained primarily through HBP funding, the Database 
access is on request only for the read-out part. Access to raw data will be given on the 
conditions that authorisation is granted by the data owner (Yves FRÉGNAC, CNRS-UNIC Unit 
of Neuroscience, Information and Complexity) and a collaboration has been established 
with the experimenters allowing a full understanding of the metadata. 

6.1.2 Data set One 

6.1.2.1 Description of Data and Models 

6.1.2.1.1 Introduction 

Collaborative science requires the sharing of data, associated metadata, and the results 
and methods of data analysis. The metadata provides the experimental context — the 
stimulus used, the model specification, the biological preparation, the hardware setup, 
etc. — without which analysis of the data is impossible. Traditionally, especially for in vivo 
experiments, the metadata have been recorded by hand in paper lab notebooks, while 
data analysis results are scattered over multiple folders on multiple computers, and shared 
by e-mail or removable disks. One of the goals of the BrainScaleS database was to 
augment/replace the paper notebook with a structured (meta)database. This database 
should contain the context of biological experiments, numerical and analogue simulations, 
and analyses that need to be shared with potential users, together with links to the actual 
data files. 
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Figure 21: Architecture of the Helmholtz Framework Underlying the V1 database 
The figure shows multiple clients accessing the database through a web-services API, with a relational database 
backend.  

Updates and improvements have been implemented, notably: 

• Support for XML-based web services has been added to the Elphy data acquisition and 
analysis software developed by Gérard SADOC at CNRS-UNIC, and has already been used 
by several international research groups.  

• A high-level Python client library, building on top of the low-level “requests” module, 
has been added. 

• The web interface has been re-implemented using a modern CSS/Javascript framework 
(Bootstrap 3).  

All data and metadata in the database are under access control. Read-only access is 
available on request. The BrainScaleS V1 database is available at:          
https://brainscales.unic.cnrs-gif.fr/ 

6.1.2.1.2 The Web Interface 

The web interface provides four main views of the database: 

• By publication – Figure 22, 

• By experiment (where one experiment is a recording session lasting two to four days) –
Figure 23, 

• By cell (typically several cells are recorded during each experiment, and several 
stimulation protocols are run on each cell) – Figure 24. 

• By data analysis or visualisation result – Figure 25 and Figure 26 

https://brainscales.unic.cnrs-gif.fr/


 

Co-funded by the 

 
 

 

SP3 D3.7.3 FINAL  PU = Public 15 May 2015 Page 61 / 84 
 

•  
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Figure 22: A Screenshot of the Publications View, Linking Published Articles to the 
Underlying Raw Data and Data Analysis 

 

 
Figure 23: A View of One Specific Recording Session 
The figure includes metadata about the preparation and links to all of the neurons recorded during that session 



 

Co-funded by the 

 
 

 

SP3 D3.7.3 FINAL  PU = Public 15 May 2015 Page 63 / 84 
 

 
Figure 24: A View of Intracellular Recordings from an Individual Neuron, and Associated 
Data Analysis 
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Figure 25: A High-level View of a Data Analysis Originally Performed Before the 
Introduction of the Database 
This provides links from a published figure to the underlying raw data.  

A more fine-grained view of the data analysis pipeline, showing each of the intermediate 
steps, is possible for new data analyses, and will be applied retrospectively to key earlier 
results. 
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Figure 26: A Visualization of a Single Recording. 

 

6.1.2.1.3 The Python Client 

Here are some examples of accessing the web services API through Python, using the 
requests library, for example: 

 

$ import requests 

$ r = requests.get(’http://127.0.0.1:8000/neuralstructures/brainregion/’, 

       auth=("username", "password")) 

$ r.json() 

{’meta’: {’limit’: 1000, 

   ’next’: None, 

   ’offset’: 0, 

   ’previous’: None, 

   ’total_count’: 1}, 

 ’objects’: [{’abbreviation’: ’V1’, 

   ’name’: ’Primary visual cortex’, 

   ’parent’: None, 

   ’resource_uri’: ’/neuralstructures/brainregion/nlx_143552’, 

   ’species’: [’/species/species/1’], 

   ’url’: ’http://neurolex.org/wiki/Category:Visual_cortex_primary’}]} 
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This method of accessing the database is still available, but we have additionally begun to 
develop a more user-friendly, object-orientated Python client aimed at scientists with a 
basic knowledge of Python, but not requiring advanced programming skills. The new client 
is currently available in the Github repository for the Helmholtz framework 
(https://github.com/apdavison/helmholtz).  

Some examples of using the client: 

Connect to the database: 

$ from helmholtz.client.ooclient import Client 

$ c = Client(username="username", password="password", 

              entrypoint="https://brainscales.unic.cnrs-gif.fr", verify_certificates=False) 

 

List recording blocks (for intracellular recordings, one recording block corresponds to one 
cell): 

$ cells = c.list_blocks(cascade=True) 

$ cells[:10] 

[Block(’1806a’, uri=’/recordings/block/1’), 

 Block(’1806b’, uri=’/recordings/block/2’), 

 Block(’1806c’, uri=’/recordings/block/3’), 

 Block(’1806d’, uri=’/recordings/block/4’), 

 Block(’1806e’, uri=’/recordings/block/5’), 

 Block(’1806f’, uri=’/recordings/block/6’), 

 Block(’1806g’, uri=’/recordings/block/7’), 

 Block(’5106a’, uri=’/recordings/block/8’), 

 Block(’5106b’, uri=’/recordings/block/9’), 

 Block(’5106c’, uri=’/recordings/block/10’)] 

 

Display metadata about the experimental preparation for one cell: 

$ cells[18].experiment.preparation.type 

’IN-VIVO-SHARP’ 

$ cells[18].experiment.preparation.animal.species 

’cat’ 

$ cells[18].experiment.preparation.animal.strain 

’domestic short-hair’ 

$ cells[18].experiment.preparation.animal.sex 

’M’ 
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List the recordings obtained from the cell: 

$ cells[18].recordings 

[Recording(’2308dm7’, uri=’/recordings/recording/3’), 

 Recording(’2308dm1’, uri=’/recordings/recording/5’), 

 Recording(’2308dm2’, uri=’/recordings/recording/6’), 

 Recording(’2308dm3’, uri=’/recordings/recording/7’), 

 Recording(’2308dm4’, uri=’/recordings/recording/8’), 

 Recording(’2308dm5’, uri=’/recordings/recording/9’), 

 Recording(’2308dm6’, uri=’/recordings/recording/10’)] 

 

Display information about the stimulus and data file for a given recording: 

$ cells[18].recordings[0].stimulus 

Stimulus(type=’dense noise’, uri=’/stimulations/stimulus/2’) 

$ cells[18].recordings[0].file 

File(’/data/2308DM7.dat’, mimetype=’application/vnd.cnrs.unic.elphy’) 

6.1.2.2 How Data are Related to Specific Platform Requirements 

The present data are not related to specific platform requirements. However, Andrew 
DAVISON (CNRS-UNIC) in SP5, who is in charge of the management of the BrainScaleS 
database, will consider in the second phase of HBP, if funding is available, the necessary 
steps required for the implementation of the V1 model (still under construction) for 
neuromorphic computation.  

6.1.2.3 Quantitative Indicators of Data Completeness 

The functional database of BrainScaleS is based on 200 cells recorded intracellularly with 
sharp electrodes and patch electrodes in the anesthetised cat V1. The complete entry of 
metadata requires, however, additional human resources for which we have not received 
funding. This is why we chose to populate a front-end database with published and 
summary data. 

6.1.2.4 Status of Data Delivery 

Summary data for dependency on input statistics are available. Fully processed data 
concerning long-distance integration through horizontal axons (involved in “self-
organisation of internal knowledge”) will be delivered during data-delivery phase II. 

6.1.2.5 List of Collaboration Partners 

We participate actively to EITN conferences in Paris and the CNRS-UNIC lab is responsible 
for the administration of the infrastructure of the European Institute of Theoretical 
Neuroscience (Scientific Director: Alain DESTEXHE), with the help of the Foundation “Voir 
et Entendre”. We are in the process of organising an international symposium on V1 with 
the CNRS, HBP and the Idex Paris-Saclay (ICode), which will be held at the EITN in Spring 
2016. We collaborate closely with Andrew DAVISON (task leader in SP5 and SP9), with 
whom we co-supervise PhD students and Postdoctoral fellows (Jan ANTOLIK). We 
collaborate closely with Alain DESTEXHE (Director of SP4) and Olivier MARRE (SP4) on 
power-law analysis and correlation studies in asynchronous irregular networks. We 
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collaborate with Olivier FAUGERAS (SP4) to promote links between Neuroscience and 
Mathematics through the organization of interdisciplinary conferences. 

6.1.2.6 Data Provenance 

The data were acquired by Yves FRÉGNAC’s team at CNRS-UNIC, in Gif sur Yvette, in cats 
bred by the CNRS animal care facilities.  

6.1.2.7 Plan Until the End of the Ramp-Up Phase 

At the time of writing, the database contains a subset of the data acquired and/or 
analysed associated with peer-reviewed publications. We intend to include further 
acquired data associated with future publications. Note that, since the HBP does not 
contribute to the build-up of these databases, and seems to have excluded future support 
to animal experiments apart from mouse and humans from the next FPCA, the funding for 
continued database operation and maintenance in cat V1 will be provided by the CNRS, 
while future technical developments will be supported by external grants.  

6.2 Neural Correlates of Unimodal and Multi-modal Perception in 
Mammalian Primary Sensory Areas (T3.5.2) 

6.2.1 Overview 

Everyday perception is multisensory, and the brain combines cues from different sensory 
modalities to interpret the environment. There is increasing evidence that these cross 
modal interactions can occur as early as in primary sensory cortical areas. To precisely 
model this type of interactions, strategic data are necessary. In the framework of the HBP, 
we have developed the methodology, performed experiments and analysed the data to 
provide a precise example of multisensory interactions in the mouse visual cortex during 
perception in the awake state. Using two-photon calcium imaging, we have generated a 
large dataset of V1 neuron responses during stimulation, with time-varying images and 
amplitude or frequency modulated sounds. This data shows clear evidence of strong “ON”-
type auditory responses in V1. In addition, while most of the neurons sum additively 
auditory and visual responses, we also observed a substantial fraction of neurons displaying 
non-additive multimodal responses and signalling the specific coincidence of certain 
auditory and visual stimuli. We are currently acquiring and analysing a symmetric dataset 
for the mouse primary auditory cortex (A1) that we will deliver with the V1 dataset. 
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Figure 27: Summary of Auditory and Visual Responses in V1 Neurons. 
A. Visual (blue), auditory (green), auditory-visual stimuli. These include looming receding disks and gratings of 
different orientations, combined with amplitude and frequency modulated sounds. B. Analysis of uni- and 
multi-sensory responses in V1. From top left to bottom right: fraction of visually responsive cells. Fraction of 
cells responding exclusively to gratings, disks or to both types of stimuli. Fraction of V1 cells responding to 
sounds. Fractions of cell responding to auditory and/or visual stimuli. C. Averaged calcium signals for one 
neuron responding in a non-linear manner to combined auditory and visual stimuli.    

6.2.2 Data set One: Two-photon Calcium Imaging of Mouse V1 and A1 
Response During Time-varying Auditory Visual Stimulation 

6.2.2.1 Description of Data and Models 

The data consists of 12 already acquired two-photon calcium imaging sessions in the mouse 
primary visual cortex (V1), and a planned total of 12 sessions in the mouse primary 
auditory cortex A1. The V1 dataset includes the activity of approximately 3500 neurons 
during the presentation of auditory and visual stimuli to awake mice. The data consists of 
raw or deconvolved calcium signals, giving an estimate of the variations in the neurons’ 
firing rates around and during stimuli presentation. The data include four auditory stimuli 
(two amplitude modulated white noise, and two frequency modulated sine waves), 10 
visual stimuli (one receding and one looming disk, 10 drifting grating with different 
orientations), and 12 combinations of auditory and visual stimuli. Each stimulus is 
presented 20 times to the animals, which are passively attending to them.  

The statistical analysis for the detection of neurons responding to visual (resp. auditory) 
stimuli is performed using the general linear model method (GLM). Non-additive bimodal 
neurons are also identified with a GLM, comparing the following hypotheses:  

• Null hypothesis (additivity): responses to bimodal stimulations are fully predicted by 
responses to unimodal stimulations. 
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• Full hypothesis (no-additivity): responses to bimodal stimulations are modelled 
separately. 

6.2.2.2 How Data are Related to Specific Platform Requirements 

We plan to deliver the key statistical results of the two-photon calcium imaging analysis in 
the form of the fraction of cells responsive to each of the stimulus conditions, and the 
fraction of cells responding in a non-additive fashion to multimodal stimuli. The statistical 
results will be provided as Matlab structures in a .mat file, similar to the fMRI data 
provided by some SP3 Partners. The raw data will be made available in a second phase, 
hopefully when the results are published.  

6.2.2.3 Quantitative Indicators of Data Completeness 

The mouse V1 cortex imaging dataset is now fully acquired and analysed (five mice for a 
total of 3500 identified neurons recorded in 12 sessions). The mouse A1 cortex imaging 
dataset is being acquired and analysed (five mice for a total of 2017 identified neurons 
already acquired in eight sessions).  

6.2.2.4 Status of Data Delivery 

Raw data is available. Fully processed data will be delivered during data-delivery phase II. 

6.2.2.5 List of Collaboration Partners 

We participate in EITN conferences in Paris. We collaborate with Wolfgang MAASS (SP4) to 
analyse the two-photon calcium imaging data in the mouse auditory cortex, that was 
acquired by Brice BATHELLIER. 

6.2.2.6 Data Provenance 

The data were acquired by Brice BATHELLIER’s team at CNRS-UNIC in 2014. The data is 
taken from awake Bl6C57-J mice.  

6.2.2.7 Plan Until the End of the Ramp-Up Phase 

Until the end of the Ramp-Up Phase, we will: 

• Use a light flash count discrimination paradigm to test whether the auditory response 
in mouse V1 correlates with perceptual effects similar to the double flash illusion 
observed in humans. This point is key for showing the relevance of our mouse-based 
recordings to human cognitive architecture. 

• Finish recording and analyse the dataset for mouse A1. The imaging has already 
started. 

• Publish the results, if possible, together with behavioural data.  
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7. Capabilities Characteristics of the Human Brain (WP3.6) 

7.1 Symbols and their Manipulation (T3.6.1) 

Task T3.6.1 aims to understand the cortical mechanisms that support our ability to 
recognise and manipulate letters and numbers. The task is investigated by Thomas 
HANNAGAN (CEA), under the supervision of Stanislas DEHAENE (CEA). Research on T3.6.1 
only started when Thomas HANNAGAN entered the project in mid-December 2014. 
Consequently, the task has not yet produced deliverable data. The means of investigation 
for T3.6.1 being computational in nature, the task will in time produce data in the form of 
computational models (code, simulated experiments, and analyses). Our position in this 
task is not to run new experiments, but to try and make sense of the colossal knowledge 
that has been acquired experimentally in recent years, especially regarding the maturation 
of letter and number form areas in the brain. Three projects are under way: 

1) An invited opinion paper for "Trends In Cognitive Science", on the origins of symbol 
form areas in the ventral occipitotemporal cortex. In addition to Stanislas DEHAENE, 
this involves three collaborators outside the HBP: Amir AMEDI (Hebrew University of 
Jerusalem), Laurent COHEN (INSERM/ICM), Ghislaine DEHAENE-LAMBERTZ (from SP2; 
CNRS). This opinion paper has been submitted. 

2) A computational model on mirror invariance for visual symbols, before and after the 
acquisition of literacy, using deep convolutional networks. One paper is currently in 
revision, with co-authors outside the HBP: Arash YAZDAMBAKSH and Jasmin LÉVEILLÉ 
(Boston University), Felipe PEGADO (Leuven University) and Jonathan GRAINGER 
(CNRS). Another computational investigation of the detailed mechanism underlying 
mirror invariance is on-going, with Clément MOUTARD (CEA, HBP). 

3) A neural field computational model on the emergence of form areas in the ventral 
occipitotemporal cortex, which operates at the level of cortical columns, and where 
the hypotheses laid out in the opinion paper (1) are being tested. The simulations are 
in progress and the paper in preparation. 

7.2 Linguistic and Non-Linguistic Nested Structures (T3.6.2) 

7.2.1 Overview 

In task T3.6.2, data from human participants are generated in NeuroSpin. This task, led by 
Christophe PALLIER (CEA) aims to shed light on the problem of how the human brain 
encodes tree structures — a neural code whose mechanisms are currently unknown, and 
which has been hypothesised as perhaps unique to humans as opposed to non-human 
primates. To clarify which areas are involved and how they operate, we rely on three 
studies which are only partially funded by HBP. 

Experiment one uses fMRI to examine how humans extract the regularities of linguistic 
nested-structures (Christophe PALLIER and Murielle FABRE). Experiments two and three 
examine how humans extract the regularities of non-linguistic structure. Experiment two 
(Florent MEYNIEL, Maxime MAHEU) examines this capability with MEG data, using 
sequences structured by the transition probabilities between the stimuli. Experiment three 
(Liping WANG, Marie AMALRIC) investigates this capability with behavioural and fMRI data, 
using sequences structured by chunks and nested rules. 
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7.2.2 Data set One: Encoding of Syntactic Structures 

According to linguistic analyses, sentences possess syntactic structures that can be 
described formally as trees whose leaves — that is, the terminal nodes — typically 
correspond to words. These structures capture the notion of constituency, and some of the 
dependencies between words, as attested by example of structural ambiguity: compare 
((black taxi) driver) vs. (black (taxi driver)). PALLIER, DEVAUCHELLE and DEHAENE (2011)65 
used fMRI to identify cortical areas where activation increased with the size of syntactic 
trees, defined as the number of words forming a constituent. This provided quantitative 
data that models of human sentence processing must match. The current experiment 
builds on this result, and seeks the neural correlates of more abstract syntactic properties: 
the empty positions created by syntactic movement.  

The final word order in a sentence reflects the outcome of merging and moving operations 
that apply to words and phrases, building and transforming the tree. For example, in 
French, one way to form an interrogative is to invert the verb and the subject (e.g. “Vient-
il?” Is he coming?).  The verb movement is assumed to leave an empty, non-pronounceable 
element, also known as a trace, in the tree structure (see Figure 28). 

 

 
Figure 28: Example of Verb Movement in French 

For the present experiment, we generated a set of short sentences (from two to four overt 
words and two to seven syntactic positions when including empty traces), applying 
different types of movements (Wh-movement, verb movement, clitic movement and NP-
movement). 

The experimental conditions, obtained by crossing all meaningful combinations of 
movement types, are described in the following tables. 
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Table 2: The 35 Experimental Conditions Obtained by Combining Several Types 
of Syntactic Movements. 

7.2.2.1 Description of Data and Models 

High-resolution fMRI data sets (isotropic 1.5 mm voxels) were acquired from 24 native 
French speakers, who read the short sentences that were flashed for 200 ms on the centre 
of the screen (four participants were rejected because of movements that were too large, 
or technical failure during the acquisition. The group analysis was performed on the 
remaining 20 participants). Data were pre-processed in the classic manner: slice timing, 
movement correction, and spatial normalisation to the MNI template and smoothing at 5 
mm. The model at individual level includes one regressor per condition, and covariates of 
non-interest (movements detected by the realignment step, as well a covariate 
representing the expected HRF modulated by text size). At group level, a repeated 
measurement Analysis of Variance model is used, with 35 maps per participant, 
corresponding to each of the conditions.  

7.2.2.2 How Data are Related to Specific Platform Requirements 

The results will be provided as effect-size maps and t-values maps for the main contrasts 
of the group analysis, stored using nifti format. In addition, we will provide the response 
profiles — that is, effect sizes plots showing responses to the 35 conditions — for a set of 
regions of interests from the literature on sentence processing.  

7.2.2.3 Quantitative Indicators of Data Completeness 

Data acquisition is complete. The main statistical models have been designed and 
estimated. The whole brain analyses have been performed. We are currently performing 
regions of interest analyses. 

7.2.2.4 Status of Data Delivery 

Not yet initiated. 
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7.2.2.5 List of SP4 Collaboration Partners 

Our data are optimally suited to all SP4 partners interested in the neuronal 
implementation of nested or recursive sequences. 

7.2.2.6 Data Provenance 

The data were collected at NeuroSpin by Christophe PALLIER and Murielle FABRE.   

7.2.2.7 Plan Until the End of the Ramp-Up Phase 

We will complete the regions of interest analyses to provide summary response profiles for 
various linguistic questions (the response profile across the 35 conditions have already 
been computed). 

7.2.3 Data Set Two: Bayesian Modelling of Expectation Effects in Sequences  

7.2.3.1 Description of Data and Models 

When exposed to any type of sequences, even random ones, humans search for 
regularities, such as streaks and alternations. In line with this idea, new observations may 
reinforce the current characteristic inferred from the sequence, or alternatively, be at 
odds with this estimate. When expectations are violated, surprise signals are detected in 
the brain, e.g. as the amplitude of the P300 in EEG recordings66, or with fMRI67 and in the 
behavioural measures such as reaction times68. 

The aim of this dataset is to use the high-temporal resolution of MEG to characterise the 
temporal dynamic of the computations that underpin the extraction of the characteristics 
of a sequence of stimuli. Our hypothesis is that this extraction is made by probabilistic 
inference. We operationalised this notion by focusing on basic characteristics: the 
frequency of stimuli in the sequence, and the transition probabilities between stimuli. 
These minimal characteristics are the simplest way to start the investigation of 
probabilistic learning. This simplicity nonetheless offers the foundation of a minimal 
hierarchical system the identification of transition probabilities requires the estimation of 
frequencies, but specifically on a context (the previous stimulus). 

 

Figure 29: Active Bayesian Inference Based on a Sequence of Stimuli 
Subjects were exposed to sequences of binary stimuli (say, A and B), generated as particular transition 
probabilities. In most trials, participants were passively listening to the stimuli, and in some catch trials they 
were asked to report the stimulus that should come next as quickly as possible. Our working hypothesis is that 
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the brain is constantly inferring the probabilistic characteristics of the sequence (an internal model) to predict 
future observations. Deviations between the actual observation and the prediction, which is formally 
quantified by the notion of surprise, may be used to update this internal model.  

To characterise the computation of frequencies and transition probabilities in the brain, 
we exposed participants to random sequences of binary stimuli (see Figure 29) and we 
used different transition probabilities to generate the sequences:  

• p(A|A)=p(A|B)=p(B|A)=p(B|B)=0.5: unbiased frequencies, unbiased transitions, 

• p(A|A)=p(A|B)=1/3 and p(B|A)=p(B|B)=2/3: biased frequencies, unbiased transition, 

• p(A|B)=p(A|B)=1/3 and p(B|B)=p(A|A)=2/3: unbiased frequencies, transitions biased 
toward repetitions, 

• p(A|B)=p(A|B)=2/3 and p(B|B)=p(A|A)=1/3: unbiased frequencies, transitions biased 
toward alternations. 

We also developed several Ideal Observer models to formalise and quantify what can be 
learned from a specific sequence of stimuli. These Observer models differ in several 
aspects of the inference: 

• Their temporal horizon: whether they integrate observations only locally in time, or on 
protracted periods. 

• The flexibility of this temporal horizon: whether it is adaptive chunking or a simple 
fixed memory limitation. 

• The type of characteristics they infer: context-independent characteristics such as the 
frequency of stimuli, or context-dependent characteristics such as the transition 
probabilities between stimuli. 

• The prior expectations on these inferred characteristics, whether there is no particular 
expectation (flat prior), or for instance biases favouring the perception of alternations, 
or of repetitions in the sequence of stimuli. 

These different aspects can be combined so that the resulting Ideal Observer models 
formalise specific characteristics of the probabilistic inference. The information-theoretic 
variables derived from these models (prediction, surprise, update, etc.) can then serve as 
probes to disentangle brain signals that potentially overlap in space and time, based on 
the computational characteristics they reflect.  

The MEG data were collected on an Elekta device, (300 MEG sensors and 64 EEG sensors) at 
1024 Hz.  

7.2.3.2 How Data are Related to Specific Platform Requirements 

We plan to deliver the key statistical results of the MEG analysis in the form data matrices 
(space x time) that summarise the topography and time course of the computational 
signature identified at the group level. The data will be provided as .mat files, containing 
a data structure with the FieldTrip format (FieldTrip toolbox, Matlab). This format is 
commonly used in the field. The raw data could be made available in a second phase.  

7.2.3.3 Quantitative Indicators of Data Completeness 

The MEG dataset is still in the process of being acquired and analysed. Two subjects have 
been acquired so far. 

7.2.3.4 Status of Data Delivery 

Raw data from two pilot subjects is available. Fully processed data will be delivered during 
data-delivery phase II. 
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7.2.3.5 List of SP4 Collaboration Partners 

We plan to present these data during an international workshop, to be held in September 
2015 in Paris, entitled “Probabilistic inference and the Brain”. This workshop will gather 
prominent scientists from the theoretical and experimental fields. It is a collaboration 
between SP3 and SP4. Stanislas DEHAENE (SP3), Alain DESTEXHE (SP4), Florent MEYNIEL 
(SP3) and Wolgang MAASS (SP4) are co-organising this workshop. 

7.2.3.6 Data Provenance 

The MEG data were collected by Florent MEYNIEL at NeuroSpin. 

7.2.3.7 Plan Until the End of the Ramp-Up Phase 

We aim to complete the data acquisition before June 2015. 

7.2.4 Data Set Three: Encoding of Geometrical Structures in Human and Non-
Human Primates 

Is the ability to embed symbols into recursive structures a uniquely human ability? To 
examine this question, we invented a task which can be performed by both humans and 
non-human primates. Sequences of dots are displayed at the vertices of an octagon, 
following more or less complex rules (see Figure 30 below). Then, recordings of 
anticipatory eye movements can be used to assess the internal, mental representation of 
the sequence. At brain level, we use fMRI to search for activations that correlate with the 
level of complexity, and particularly the number of embeddings, and for new responses 
when rules are violated. This test, which is entirely non-linguistic in nature, allows us to 
experimentally test the HAUSER, CHOMSKY and FITCH (2002)69 proposal that recursive 
embedding is a unique ability of the human brain. 
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Figure 30: Protocol Testing for Recursion in the Mental Representation of Visual 
Sequences 
For each trial, subjects are presented with a single instance of a sequence where eight dots are successively 
flashed. Pilot experiments indicate that even young children immediately identify structures when they are 
present, e.g. they detect the repetition of horizontal segments (example 1) or the presence of two rotated 
rectangles. Sequences containing such structures are more easily memorised, suggesting that the human brain 
“compresses” the sequence into an algebraic formula, similar to those shown. 

7.2.4.1 Description of Data and Models 

FMRI data are being collected, together with eye tracking data. In addition, similar data in 
macaque monkeys will be collected, using non-HBP funds. 

Eye-tracking raw data has been converted into measures of accuracy, inversely related to 
the inverse of the distance of eye position to the expected target dot. Data corresponding 
to the figure below will be provided. 
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Figure 31: Accuracy of Anticipatory Eye Movements as a Function of Sequence Type 

The fMRI data will consist of effect-size and statistical (T-values) maps for each of the 
different types of sequences relative to baseline, at group level.  

7.2.4.2 How Data are Related to Specific Platform Requirements 

We plan to deliver the stimulus set and the key results from the analysis of the fMRI data, 
in both humans and non-human primates. The data are being analysed with Statistical 
Parametric Mapping software (SPM toolbox, Matlab, http://www.fil.ion.ucl.ac.uk/spm/). 
The results will be delivered in the form of statistical parametric maps and contrast 
images. The raw data can also be delivered on request.  

7.2.4.3 Quantitative Indicators of Data Completeness 

The acquisition of eye tracking data has been completed. The data analysis pipeline is 
implemented and data analyses are in progress. Concerning fMRI, 14 out of 20 human 
participants have been scanned.  

7.2.4.4 Status of Data Delivery 

Not started yet, planned for Phase II. 

7.2.4.5 List of SP4 Collaboration Partners 

Our data are optimally suited to all SP4 partners interested in theorising the 
representation of nested or recursive sequences, and the evolutionary events that may 
have led to a uniquely human competence in this domain. 

7.2.4.6 Data Provenance 

The data were acquired at NeuroSpin by Liping WANG and Marie AMALRIC.  

http://www.fil.ion.ucl.ac.uk/spm/
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7.2.4.7 Plan Until the End of the Ramp-Up Phase 

We will complete fMRI data acquisition. We will then analyse the data to search for brain 
areas where activation increases with rule complexity, and in particular the number of 
embeddings. We also plan to implement a computational model for the interpretation of 
current sequential learning tasks.  

7.3 The Social Brain – Representing the Self in Relation to Others 
(T3.6.3) 

7.3.1 Data set One: Social Localiser 

7.3.1.1 Description of Data and Models 

Riitta HARI’s group (Aalto-korkeakoulusäätiö [AALTO – P2]) is building a localiser fMRI 
experiment to identify brain regions associated with social cognition. Our comprehensive 
set of social stimuli aims to target functional subregions supporting face and body 
perception, action understanding, and theory-of-mind capabilities. The localiser includes 
the following stimulus categories with appropriate control conditions (not listed here): 
biological movement, goal-directed action perception, self vs. other perception, 
perception of persons in social interaction, theory-of-mind ability (moving geometrical 
shapes), joint attention, face perception and body perception. For preliminary results, 
please see Figure 32.  

 

 
 

Figure 32: Preliminary Results on Social Localiser Experiment (pilot subject four).  
A) Brain regions activated more strongly by pictures of body parts than of objects (puncorr<0.001, cth = 5 
voxels); the areas include the extrastriate body area (EBA) and fusiform body area (FBA). B) Brain regions 
involved in face perception were identified by comparing activations elicited whilst viewing videos of faces vs. 
videos of natural scenes. These stimuli activated several brain regions, including the occipital face area (OFA), 
fusiform face area (FFA) and regions along the superior temporal sulcus (STS). C) Viewing of animated 
geometrical shapes depicted in social interaction activated regions along STS and temporoparietal junction 
(TPJ). D) Medial prefrontal cortex (mPFC) and precuneus showed stronger activation when the subject was 
making judgements on people rather than on objects. 

7.3.1.2 How Data are Related to Specific Platform Requirements 

We plan to deliver the stimulus set, and the key results from the analysis of the fMRI data. 
The data are being analysed with SPM software (SPM toolbox, Matlab, 
http://www.fil.ion.ucl.ac.uk/spm/). The data analysis comprises standard pre-processing 

http://www.fil.ion.ucl.ac.uk/spm/
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steps (slice-timing correction, movement correction, smoothing) and statistical analysis 
(general linear modelling). The results on key brain regions can be delivered, for example, 
in the form of statistical parametric maps and contrast images. The raw data can also be 
delivered on request.  

7.3.1.3 Quantitative Indicators of Data Completeness 

We have acquired pilot data, and have been optimising the localiser based on the pilot 
results. The plan is to acquire a comprehensive data set by October 2015. 

7.3.1.4 Status of Data Delivery 

Pilot data can be delivered on request. Fully processed data will be delivered during data-
delivery phase II. 

7.3.1.5 List of SP4 Collaboration Partners 

No active SP4 collaboration has been established yet.  

7.3.1.6 Data Provenance 

Data were collected using a 3-T whole-body MRI scanner (Magnetom Skyra, Siemens) at the 
Advanced Magnetic Imaging Centre (http://ani.aalto.fi/en/ami_centre/) at Aalto-
korkeakoulusäätiö, in Finland. The pilot fMRI data were collected by Timo NURMI and 
Linda HENRIKSSON between October 2014 and March 2015 at the Department of 
Neuroscience and Biomedical Engineering, Aalto-korkeakoulusäätiö.  

7.3.1.7 Plan Until the End of the Ramp-Up Phase 

By the end of the Ramp-Up Phase, we aim to provide a working localiser experiment, key 
results on brain regions involved in different social tasks, and, on request, the pre-
processed raw fMRI data from a complete set of subjects. 
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