

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 1 of 147

Project Number: 720270 Project Title: Human Brain Project SGA1

Document Title: HBP Software Engineering and Quality Assurance Approach

Document Filename: D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx

Deliverable Number: SGA1 D11.3.3 (D62.2, D17)

Deliverable Type: Report

Work Package(s): WPs 5.5, 5.8, 6.4, 7.1, 7.5, 7.6, 8.6, 9.5, 11.3 (WPs involved in writing this
document)

Dissemination Level: PU (= public)

Planned Delivery Date: SGA1 M10 / 31 Jan 2017

Actual Delivery Date: Submitted: 30 Nov 2017 (M20), accepted 9 Jul 2018

Authors: Alois KNOLL, TUM (P56), Jeff MULLER, EPFL (P1),

Compiling Editors: Jeff MULLER, EPFL (P1)

Contributors:

Carlos AGUADO, EPFL (P1), Olivier AMBLET, EPFL (P1), Yury BRUKAU, EPFL (P1),
Ludovic CLAUDE CHUV (P27) Jean-Denis COURCOL, EPFL (P1), Mihaela DAMIEN
CHUV (P27), Andrew DAVISON, CNRS (P10), Michael GEVAERT, EPFL (P1), Valentin
HAENAL, EPFL (P1), Thomas HEINIS, ICL (P28), Samuel KERRIEN, EPFL (P1), Anna
LÜHRS, JUELICH (P20), Hans PLESSER, NMBU (P44),), Colin McMURTRIE, ETHZ
(P18), Ben MORRICE, EPFL (P1), Luis RIQUALME, EPFL (P1), Andrew ROWLEY, UMAN
(P63), Martina SCHMALHOLZ, UHEI (P47), Felix SCHUERMANN, EPFL (P1), Stefano
ZANINETTA, EPFL (P1),

SciTechCoord Review:
EPFL (P1): Jeff MULLER, Martin TELEFONT

UHEI (P47): Martina SCHMALHOLZ, Sabine SCHNEIDER

Editorial Review: EPFL (P1): Guy WILLIS, Martin O’NEILL

Abstract:

This document summarises the current HBP Software Engineering and Quality
Assurance approach as well as the principles upon which the approach is based.
It describes in some places the consensus-driven standardised approaches to
software development and testing practices which is sensitive to the realities of
research software development and the needs of infrastructure construction. Due
to the heterogeneous nature of the developments in HBP, there are places where
a single standard is not appropriate and this document describes multiple
variants. It is not expected that these practices will be enforced globally, but will
serve to guide software developers who envision their software should be part of
the HBP infrastructure offering.

Keywords: system engineering, software engineering, quality assurance

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 2 of 147

Table of Contents
Software Engineering and Quality Assurance ... 5
1. Introduction ... 5

1.1 Status .. 5
2. Principles .. 5
3. Technical Management ... 6
4. HBP Agile Practice ... 7

4.1 Scrum: Roles and Procedures .. 7
4.2 Kanban .. 10
4.3 Integration of Larger Projects .. 12

5. Software Engineering .. 12
5.1 Software Development ... 12
5.2 Operations Standards (DevOps) ... 13
5.3 HBP Standard DevOps Stack ... 15
5.4 BBP Standard DevOps Stack ... 16
5.5 Medical Informatics Platform Standard DevOps Stack .. 17
5.6 Neuromorphic Platform Standard DevOps Stack ... 18
5.7 HPAC Platform Standard DevOps Stack ... 21
5.8 Long-term software maintenance .. 21

6. Quality Assurance .. 21
6.1 Unit Testing .. 22
6.2 Integration Testing ... 22
6.3 Manual Testing .. 22
6.4 User Interface Testing ... 23
6.5 Monitoring .. 23
6.6 Platform-testing specifics ... 23

7. Recommendations .. 24
7.1 Communication .. 24
7.2 Quality assurance ... 27

8. Systems Documentation ... 29
9. User Support ... 29
Annex A – HBP Extended TRL Standards ... 31
Annex B — Infrastructure Tiers .. 33
Annex C – BBP Development and Deployment Standards .. 34
Annex D – BBP Python Development Standards .. 97
1 Introduction .. 101
2 The Ipython Interpreter ... 101
3 Style Guide and Conventions ... 102

3.1 Style consistency ... 102
3.1 Code lay-out .. 103
3.3 Imports ... 104
3.4 Whitespace in Expressions and Statements ... 108
3.5 Naming Conventions ... 110
3.6 Exceptions ... 113

4 Static Checking .. 114
4.1 Comparison .. 115
4.2 Example .. 115

5 Testing .. 117
5.1 Unitest ... 118
5.2 Nosetest ... 119
5.3 Numpy Testing .. 119

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 3 of 147

6 Documentation .. 120
6.1 Docstrings ... 120
6.2 Numpy Docstrings .. 121
6.3 File Header .. 122
6.4 Automatic API Generation .. 122

7 Writing the setup.py file ... 122
8 Versioning .. 124
9 Obtaining Python Packages ... 125

9.1 Python on Linux .. 125
9.2 Python on Windows and Mac ... 126

10 Wrapping Native code ... 126
11 Performance Considerations ... 127

11.1 Define "Too Slow" .. 127
11.2 Identifying the Bottlenecks .. 127
11.3 Avoiding Premature Optimization ... 128
11.4 Consider time for Development ... 128

12 Target Version ... 128
12.1 Python 2.x ... 128
12.2 Python 3.x ... 128

Annex E – UI Development and Testing Standards .. 133
Overview .. 133
HBP Collaboratory .. 133

Step 1 – Concept ... 133
Step2 – Description of users needs ... 134
Step3 – User validation ... 134
Step4 – Mockups .. 134
Step 5 – User validation ... 135
Step 6 (part 1) – Enter stories in the backlog ... 135
Step 6 – Front end prototype .. 136
Step7, 8 – Testing and Refinement ... 136
Step 9 - Deployment on production .. 136
Subsequent steps .. 137

SP10 Example .. 137
Step 1 – Concept (driven by User need) ... 137
Steps 2 and 3 – Description of User need .. 137
Step 4 - mockup .. 138
Step 6 – Part 1 – enter story 1 into the backlog .. 139
Step 6 – Part 1 – enter story 2 into the backlog .. 139
Step 6 – Part 1 – enter story 3 into the backlog .. 140
Step 6,7,8 – In sprint usability testing and review ... 141
Subsequent steps .. 141

SP8 – Feature development process .. 142
Annex F – Software Development Committee Charter ... 143

Charter Working Group ... 143
Purpose of the Software Development Committee (SDC) .. 143
Mandate of the SDC ... 144

Annex G – Infrastructure Development Committee Charter .. 145
Charter Working Group ... 145
Purpose of the Infrastructure Development Committee (IDC) ... 145
Mandate of the IDC .. 145

Annex H: References .. 147

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 4 of 147

List of Figures
Figure 1: Agile Scrum Iteration Workflow: from the Product Owner Definition of the Backlog to a

Finished Product .. 8
Figure 2: Risk Reduction using a Short Feedback Loop with Users ... 9
Figure 3: Kanban kick start: Estimation ... 11
Figure 4: Agile iterative integration .. 12
Figure 5: HBP standard service deployment .. 14
Figure 6: HBP support channels ... 30

List of Tables
Table 1: HBP Standard DevOps Stack .. 15
Table 2: BBP Standard DevOps Stack ... 16
Table 3: Medical Informatics Platform Standard DevOps Stack ... 17
Table 4: Job Queue and Neuromorphic Collaboratory Integration .. 18
Table 5: SpiNNaker Large Machine Service .. 19
Table 6: NMPM-1 (20-wafer BrainScaleS System) Service... 20
Table 7: HBP Support count, per SP .. 29
Table 8: Technology Readiness Levels ... 31

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 5 of 147

Software Engineering and Quality Assurance

1. Introduction
One of the primary goals for the Human Brain Project (HBP) is to build an infrastructure that
serves cutting edge neuroscience, within the HBP and beyond. This infrastructure will be
made up of software, services and hardware, working in harmony to enable use cases that
expand neuroscience and to apply that knowledge to design novel hardware, improve robots
for a myriad of applications and to discover new medical treatments. Some of the software
and services needed will be custom built for the Project. Some of this infrastructure will be
built by integrating and customising existing software and services. As a result, the HBP must
undertake a substantial collection of software and system engineering activities, built on
best practices from industry and customised to HBP needs, to ensure that infrastructure is
developed in a cost-effective and user-centred manner.

This document describes the principles, tools, services, and development practices to be
used in the development of the HBP Platforms. It covers both the Agile and more traditional
software development practices used throughout the Project, and also the software
development infrastructure used by the various Subprojects (SPs) to achieve efficient,
robust, and well-tested software and services. Furthermore, this document gives an
overview of the testing practices used throughout the Project in all phases of software
development and service deployment.

1.1 Status
This document reports status at the time of drafting. It will be updated at least once per
Specific Grant Agreement (SGA) and also when development practices inside the project are
substantially modified.

2. Principles
The fundamental principle for all software produced for the HBP is that it will be of the
highest quality, balanced by the need for timely release of new functionality required by
users. This means that, at any given time, there are many software efforts in the Project
which are clearly in their early stages and as a result have been released to a limited set of
early users on a pre-release basis.

The following principles also apply:

1) Subsidiarity:

a) Each Platform SP is responsible for the coordination of development, user
recruitment and infrastructure management of their Platform.

b) User recruitment and infrastructure management for the Collaboratory serves as an
umbrella to coordinate activities between and across Platforms.

c) Subsidiarity of the respective Platform SPs is compatible with the current governance
and planning models of HBP.

2) Quality of the Platforms:

a) Given the high expectations and visibility of the HBP, all HBP Platforms must deliver
a positive experience in order to encourage early adoption.

b) Each Platform will first offer services in those areas with the highest potential for
their respective community.

c) The quality of offerings will be tailored to balance the need for early release against
the expectations of quality for a particular user community. Many user communities
prefer very early release of less mature software to later release with higher quality.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 6 of 147

Platform SPs have taken this into consideration in their Platform development
roadmaps.

3) Agile best-practices are recommended, but may be implemented selectively:

a) The Platforms teams are faced with a challenging product development problem, but
the difficulties involved can be reduced by regular access to representative
customers in the various HBP SPs.

b) Iterative development, Continuous integration and DEVelopment and OPerations
(DevOps) are well suited to the development of robust software and services by small
focused teams.

c) The Project Lifecycle referred to in this document is described both in the Framework
Partnership Agreement (FPA) and first Specific Grant Agreement (SGA1). It is a Lean
Management approach to scale coordination of projects using Agile methodologies
across the HBP.

3. Technical Management
Each Platform SP is responsible for planning the resources for operating and supporting its
Platform and its users. This follows from the subsidiarity principle. Resources should be
planned according to the estimated demand and expected maturity requirements, in
alignment with the scientific needs of the respective domains. These estimates should be
produced with help from the Community Coordinator in each SP and on the basis of the
Platform roadmap, the current usage and forecast changes in demand.

The HBP has created six Platform-specific Technology Coordinator roles and one central
Technology Coordinator. These are allocated to a specific partner in the workplan of a given
platform SP, but can also be assigned to one or alternates, by SP leadership. This Technology
Coordination group is responsible for:

1) collecting prioritised use cases from SPs and Co-Design Projects (CDP);

2) guiding the project in prioritising use cases into a Platform-specific roadmap;

3) coordinating technical implementation of the Platform roadmap and managing any
required adjustments on the basis of implementation progress and user feedback;

4) planning resources for their respective Platform development, support, and
maintenance, while ensuring alignment where use cases cross multiple Platform
boundaries;

5) communicating priorities and planning to users and other Platform teams;

6) communicating dependencies on other Platform components to their respective teams;

7) ensuring the technical direction and technical foundation supports existing developers
and attracts new developers;

8) ensuring and improving consistency intra- and inter-Platform with respect to user
interfaces (UIs), application programming interfaces (APIs), and documentation,
wherever necessary;

The seven Technology Coordinators will form the initial Software Development Committee
and Infrastructure Development Committees with additional members invited by the initial
group. The charters for the Software Development Committee and Infrastructure
Development Committee are included in Annex F and Annex G, respectively. Currently, the
Software Development Committee and Infrastructure Development Committee are made up
of a mix of SP-appointed technical coordination staff and invited members with strong
software or infrastructure backgrounds from throughout the HBP.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 7 of 147

4. HBP Agile Practice
One the goals of the HBP regarding its information and communication technology (ICT)
Platforms is "to demonstrate how the Platforms could be used to produce immediately
valuable outputs for neuroscience, medicine and computing". To achieve this goal, the
Platform teams must produce immediately useful software for their scientific customers,
taking into account the classic project management trade-off triangle of quality, cost and
delivery speed.

Because many of the requirements for scientific tools are not known ahead of time, building
the right software can only be achieved cost-effectively through close collaboration between
software development teams and scientific customers. This challenges classical “big design
first” software engineering process models.

The Agile movement grew out of dissatisfaction with existing software development
methodologies and attempts to provide a viable approach for the cost-effective delivery of
complex and risky software projects. The principles are captured in the Agile Manifesto:1

• individuals and interactions over processes and tools;

• working software over comprehensive documentation;

• customer collaboration over contract negotiation;

• responding to change over following a plan.

There are many methodologies that are built on the foregoing principles. Scrum, Kanban and
Extreme Programming have been used with great success in many organisations. Each has a
well-established discipline, with clearly defined strategies for adoption and adaptation. For
reasons of team experience and alignment with current team structure, many teams in the
HBP have adopted a Scrum variant. These include the Collaboratory, Brain Simulation,
Neuroinformatics, and Neurorobotics teams. It is clear that Scrum favours co-location of
teams. As a result, some teams in the HBP have adopted looser Agile variants due to
differences in team experience and their geographically distributed nature. Other
established teams with collaboration practices which precede HBP are continuing with the
practices they are familiar with.

4.1 Scrum: Roles and Procedures

In Scrum, a shippable increment of the software product is produced at the end of each
Iteration (also known as a Sprint) for Users to use or test. The Iteration or Sprint is the basic
unit of development in Scrum. The duration for each Sprint is fixed in advance, normally
between 1 and 4 weeks (typically 2 weeks). There is a Sprint-planning meeting for
identifying and estimating Tasks at the beginning and a Sprint review meeting for progress
monitoring and future prospects at the end of each Sprint.

There are three roles in Scrum:

1) The Product Owner represents Users as well as Stakeholders.

2) The Development Team is in charge of delivering the Platform in terms of potentially
shippable increments.

3) The Scrum Master ensures that the team can do its work without impediment and
oversees the development process.

At the beginning of the development, the Product Owner, with the help of the team,
transforms Use Cases into small increments called User Stories and containers of Stories
called Epics. Epics are thematically organised and usually do not cover a complete Use Case.
Epics are collected in the product Backlog, which can be considered as an ordered list of
planned activities.

http://agilemanifesto.org/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 8 of 147

The Product Owner prioritises each Story in consultation with Stakeholders and Users. At the
beginning of each Iteration, the team looks at the Stories with the highest priority and
decides which of them can be implemented in the Iteration. At the end of each Iteration,
the team demonstrates to the Product Owner and Users that the Stories are completely
implemented (tested and documented) — see Figure 1.

Figure 1: Agile Scrum Iteration Workflow: from the Product Owner Definition of the

Backlog to a Finished Product

The Scrum process model outlined in the foregoing enables high adaptability to User needs.
It is also inherently able to deal with changes in User requirements: Let one User realise, for
example, that a new feature is required that was not thought of at the beginning. By giving
feedback, the Product Owner can write new stories and will (re-)prioritise them with all
Stakeholders. The key point is that, regardless of the feedback, the Product Owner can take
quick concrete actions in order to prioritise User needs.

4.1.1 Scrum Review
One of the goals of working with small Iterations is to have quicker feedback from Users than
with a longer release cycle. At the end of each Iteration, a working Platform is released
along with a description of the features that have been implemented during the Iteration.
This process allowed Users as well as Stakeholders to see the software capabilities at any
time during a given SGA.

Gathering feedback from Users on small Iterations is a difficult but rewarding task. In a first
step, before the Platform reaches the Minimum Viable Product (MVP) state, internal Users
have to test a subset of features. These Users are people involved in the HBP Consortium.
Once the MVP state is reached, more Users begin testing the Platform. Throughout the
duration of the development, the Stakeholders and team ensure that enough advertisement
of the Platform is done in order to attract beta Users.

User feedback is addressed during each Iteration during Backlog discussion between
Stakeholders and the Product Owner. Integrating this feedback is vital for the Platform. It
reduces the risk of the final delivery failing to correspond to User expectations (see Figure
2).

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 9 of 147

Figure 2: Risk Reduction using a Short Feedback Loop with Users

For every Iteration, the Development Team presents the new features developed during the
Iteration in a demonstration to which Stakeholders and Users are invited.

4.1.2 Backlog

In the Scrum methodology, the Backlog usually contains User Stories that deliver User-visible
functionality. However, Backlog items can also be bugs that need to be fixed or tasks to be
performed. Every Backlog item has an effort estimate and a priority. Backlog items are
grouped into Epics that are collections of stories needed to deliver a larger piece of
functionality. An Epic in the Brain Simulation Platform might collect all items required to
configure and launch simulations from the Collaboratory.

The Backlog is available to Platform Stakeholders at all times. These Platform Stakeholders
are expected to be the SP Leader, SP Manager, and the Platform Coordinators. The Backlog
is regularly reviewed by the Product Owner and Platform Stakeholders to determine whether
some modification to the Backlog contents or priorities have to be made. There are several
possible types of modification, as follows:

1) Change of priority in the Backlog, e.g. a User needs a specific feature to demonstrate
the software during a conference. The Product Owner, in consultation with Stakeholders,
can choose to re-prioritise User Stories related to the feature in order to meet the
conference date.

2) Addition of User Stories, e.g. a User needs a feature for his or her project that is not
contained in the Backlog. This User can ask the Product Owner to prioritise it.

3) Removal of User Stories: after addition of needed User Stories to the Backlog, the
Product Owner realises that the release will not be delivered on time. The Product Owner
can decide to change the status of less-needed stories in the release Backlog in order to
ensure that the release meets the deadline. These stories can be placed lower down in
the request Backlog or dropped if they are no longer valuable for the Platform.

4) Change in the estimation of the stories. The development team regularly re-estimates
the stories in the Backlog. It's very difficult to have exact estimations at the beginning
of a project. Regular re-estimation improves overall confidence for meeting the
deadlines.

Flexibility in Scrum is accompanied by strongly defined team roles and meeting practices.
Scrum is well suited to iterative new product development, but there are many cases in
which the limited structure impedes the work to be done. In these cases, prevalent in

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 10 of 147

operations and integration-heavy environments, the Kanban Agile variant (see Section 4.2
below) is highly applicable.

4.2 Kanban
Kanban is a methodology originally developed by Toyota in the 1940s to improve the
efficiency of their manufacturing and engineering processes. Its first application to
knowledge work date back to 2005, with proper formulations emerging in 2009–2010, thanks
to the works of David J. Anderson, Jim Benson, Corey Ladas and others. Kanban is easy to
integrate with other processes, presenting minimal entry barriers and organisational
constraints.

Kanban consists of three main rules and one tool (the Kanban board):

1) Visualise your workflow.

2) Limit your work in progress (WIP).

3) Measure the flow.

These rules are explored in more detail in Sections 4.2.1 to 4.2.3.

4.2.1 Visualise your workflow
The literal translation of the Japanese word Kanban is “visual signal”. In Kanban, every work
item is represented as a separate card on the Kanban board. Physical boards typically use
adhesive notes on a whiteboard; online boards draw upon the whiteboard metaphor in a
software setting.

The use of cards on the Kanban board provides a way for the team to follow the progress of
tasks through its workflow. Kanban cards contain all crucial information about that particular
work item and typically give the team visibility into: the team member responsible for the
task; a description of the job being done; and an estimate of the duration of the work.

Kanban boards are organised in columns, with each column representing a step in a given
workflow. As work progresses on an item, its card is moved from one column to the other
(usually from left to right). When the work item is completed, the card is removed from the
board.

A basic Kanban board has a three-step workflow: To Do; In Progress; and Done. However,
depending on the size, structure, and objectives, the workflow can be mapped to meet the
unique processes of any particular team. For simple processes, board columns are usually
enough, whereas more complex processes typically combine columns and horizontal lanes
(also called swimlanes).

Kanban not only visualises work, allowing development teams to observe the flow through
the system, but also reveals tasks that are blocked or workflow bottlenecks and queues.
Visualisation of workflow can allow a team to improve communication and collaboration.

4.2.2 Limit your work in progress
A number at its top indicates the limit on the number of cards allowed in the column. Work
items enter a column only when it has free spots and the team focuses only on the work that
is actively in progress.

The limits are the critical difference between a Kanban board and any other visual
storyboard.

Limiting the amount of WIP at each step in the process prevents excessive multitasking and
reveals bottlenecks dynamically so that the team can address them, e.g. the entire team
can swarm on a work item to get the process flowing smoothly again.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 11 of 147

Another goal of limiting the amount of WIP is to match workflow to system capacity. In other
words, a system can only handle so much traffic moving smoothly through the steps in the
process.

In the Kanban mindset, keeping work moving is much more important than keeping workers
busy. This concept is usually summed up in the sentence, "Stop starting, start finishing".

4.2.3 Measure the flow
The visualisation of workflow and WIP limits help the team to collect metrics to analyse flow
and even to obtain indicators of future problems.

Key metrics in Kanban are as follows.

• Cycle time is the amount of time it takes for a unit of work to travel through the team’s
workflow–from the moment work starts to the moment it ships. By optimising cycle time,
the team can confidently forecast the delivery of future work.

• Lead time is the amount of time passed between the moment the task is created and
when it's completed.

• Throughput is the number of work items completed during a given period of time (e.g.
1 day).

Other metrics could be total WIP or the number of blockers. A cumulative flow diagram
shows the number of issues in each state and is a useful way to visualise some of these
metrics (e.g. see Figure 3, credit Pavel Brodzinski, slide 36 of
https://www.slideshare.net/pawelbrodzinski/kanban-basics-5834758).

Figure 3: Kanban kick start: Estimation

4.2.4 Kanban: final remarks
The ultimate objective of Kanban methodology is to help teams to improve collaboration
and pursue incremental evolutionary change. The Kanban system reveals how work flows
through a process and gives the User tools to evaluate workflow and how to improve it. Once
the User begins to analyse workflow — and measure things like total WIP, blockers,
throughput or lead or cycle time — ways to evolve and streamline become apparent. The

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 12 of 147

methodology advocates a focus on continually improving team efficiency and effectiveness
with every iteration of work.

In the words of one of the principal advocates of the Kanban approach:

• “Kanban is not a software development or project management lifecycle or process. …
The Kanban Method is an approach to change management”. — David Andersen —
http://www.scrumcrazy.com/David+Andersen+-
+There+is+no+kanban+process+for+software+development.

• “Many results of Kanban are counterintuitive. What appears to be a very mechanical
approach — limit WIP and pull work — actually has profound effects on people and how
they interact with one another.” (Anderson, 2010,2 p. ix)

4.3 Integration of Larger Projects
The HBP must also consider the case of multi-team integrations. Agile methodologies address
larger scale projects with a similarly iterative approach to integration. The approach is to
have “Integration Events” which take the place of a standard iteration and involve any
component teams needed.

During the Integration Iteration, the combined product is integrated, tested and validated
by the combined team, as in a standard iteration. It is best if these integration iterations
include only two teams. See Figure 4.

Figure 4: Agile iterative integration

5. Software Engineering

5.1 Software Development
In Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-
Service (IaaS) tiers of the hierarchy, software is a crucial component. All research activities
in the HBP are heavy consumers or producers of complex software packages. A robust
approach to software quality will therefore be a critical factor in the success of the HBP.

http://www.scrumcrazy.com/David+Andersen+-+There+is+no+kanban+process+for+software+development.
http://www.scrumcrazy.com/David+Andersen+-+There+is+no+kanban+process+for+software+development.
http://www.scrumcrazy.com/David+Andersen+-+There+is+no+kanban+process+for+software+development.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 13 of 147

Drawing on experience of other large-scale software projects, the HBP has identified the
need to invest in software maturity at an early stage.

These investments have continued and expanded to include the following best practices:

• version control — all software in the HBP must be developed using a version control
system;

• unit testing, typically with minimum test coverages (e.g. 90% or higher on all
Collaboratory and Brain Simulation Platform Team developments);

• automated integration testing suites (automated post-deployment system testing);

• continuous integration;

• ticket management for project feature planning;

• scrum training for Agile software development (either with an Agile coach or an HBP
practitioner);

• coding standards;

• utilisation of code review by both Developer and Scientific Developer teams.

Bringing all these pieces together results in DevOps. All teams in HBP use a variant of this
approach with slightly different mixes of tools.

5.2 Operations Standards (DevOps)
In future phases (SGA2 and beyond), the HBP may invest in a dedicated, centrally supported
DevOps stack that includes standardised tooling for the app development lifecycle. The
metrics gathered by such a system could be the backbone on which a central quality
assurance (QA) effort would be built to meet the criteria for the HBP Managed Infrastructure
Tier. It expected that a number of the components below will be provided by SP7’s Fenix
initiative (previously delivered as FeDaPP Architecture Report V01.docx, for the Oct 2016
DPIT review).

There are four main types of infrastructure that are needed to support the efficient
development and operations of Service Oriented Architecture. They are:

1) development tools: Source control, Issue/Requirements/Backlog tracking, Code review
tools, Continuous integration and Continuous deployment;

2) PaaS — proxy servers, log collection and monitoring services, databases;

3) IaaS — virtual machines (VMs), storage, network and network configurations;

4) HPC — high-performance computing (HPC) storage (General Parallel File System, GPFS),
networks compute clusters and supercomputers.

Development tools are crucial to maintaining a consistent flow of tracked code and
configuration changes, as well as ensuring that feature updates are tested and deployed
with minimum manual effort. This process, currently in development and planned to be
deployed at the end of SGA1, is outlined in Figure 5.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 14 of 147

Figure 5: HBP standard service deployment

For the SaaS, PaaS and IaaS tiers, reliable and repeatable deployment software is a crucial
component of the overall operations strategy. Monitoring of services will be based on best
practices from industry along with crucial expertise from HPC providers in the HBP and
federated infrastructure providers throughout the EU.

HPC centres (and by extension SP7) have well-defined deployment and monitoring practices
that are informed by a long history of service provision. For the other Platform teams, no
such history exists, so best practices have been adopted from Agile software development.
Platform teams in the HBP have been adapting these techniques and tools according to their
team needs.

To this end, a DevOps model is in the process of being pragmatically adopted across HBP as
follows.

• Deployment lifecycle with development, staging (optional), and production
environments for all services.

• Continuous integration — unit testing, integration testing, repeatable software builds
and package releases.

• VM configuration development — source control and code review of configuration
changes. Requires a programmable configuration system.

• VM configuration management — associate service configurations with specific VM
resources.

• VM configuration deployment — deploy approved changes through an automated system.

• Object Storage — highly available, redundant storage for VMs and service data.

• Internet Gateway with Caching Proxy Server — services typically are not available
directly via the internet. Best practice places a tuned caching proxy server between
application servers and the open internet for reliability, flexibility, and performance
reasons.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 15 of 147

While the service classes are mostly common to the various Platforms, variation exists, and
there are special needs in some Platforms. As the various capabilities of the Platforms were
developed initially in the Ramp-Up phase and with the subsidiary principle in place, there is
substantial heterogeneity between Platforms. This reflects not only the different times when
specific capabilities were deemed necessary, but also the subsidiary principle of the HBP at
work. The SGA1 Description of Actions makes no provision for activities to fundamentally
homogenise DevOps practices.

5.3 HBP Standard DevOps Stack
As this collection of services is being standardised and brought into service, it will be initially
tested by the HBP Collaboratory and any other interested Platforms. At the time of drafting,
the HBP Standard DevOps Stack is in use for selected services in:

• the HBP Collaboratory;

• SP5 Neuroinformatics Platform.

Table 1: HBP Standard DevOps Stack

Service Category Service Provided by Notes

Dev hosts Openstack ETHZ-CSCS under
Fenix initiative

Staging hosts Openstack ETHZ-CSCS under
Fenix initiative

Optional
environment

Production hosts Openstack ETHZ-CSCS under
Fenix initiative

Continuous integration Gitlab Collaboratory DevOps

VM configuration
development Git Collaboratory DevOps

VM configuration
management

Ansible and some
Docker Collaboratory DevOps

VM configuration
deployment

Ansible and some
Docker Collaboratory DevOps

Object Storage Ceph ETHZ-CSCS under
Fenix initiative

Internet Gateway with
Caching Proxy server NGINX Collaboratory DevOps

Monitoring
Zabbix,
Elasticsearch,
Kibana, telegraph

For SP5 services:
Collaboratory DevOps

For Fenix services:
joint effort of HPC
sites

Runtime Profiling Pinpoint (Java),
Datadog (Python)

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 16 of 147

User support tickets TBD

For HBP Platforms:
Tier 0 – Collaboratory
Platform Support

For Fenix services:
BSC, with support of
all HPC sites

Currently handled
by support email
with internal
ticketing service

Container services Docker Collaboratory DevOps

Release software repository Github

Database service MySQL, Postgresql Collaboratory DevOps

5.4 BBP Standard DevOps Stack
At the time of drafting, the Blue Brain Project (BBP) Standard DevOps Stack is the most
widely used of the DevOps infrastructures. The BBP Standard was developed by various teams
at the BBP and serves as the basis for significant parts of the development, deployment,
configuration, and monitoring of the following Platforms:

• Collaboratory;

• SP5 — Neuroinformatics;

• SP6 — Brain Simulation Platform;

• SP10 — Neurorobotics Platform.

Table 2: BBP Standard DevOps Stack

Service Category Service Provided by Notes

Dev hosts Openstack BBP Core
Services

Staging hosts Openstack BBP Core
Services Optional environment

Production hosts VMWare BBP Core
Services

Continuous
integration Jenkins BBP Core

Services
Jenkins uses Openstack VMs for
jobs

VM configuration
development Git + Gerrit BBP Core

Services

VM configuration
management Foreman BBP Core

Services
Integrates with VMware and
Openstack

VM configuration
deployment Puppet BBP Core

Services

Object Storage Ceph BBP Core
Services

Used by both Openstack VMs and
Collaboratory Storage Service

Internet Gateway
with Caching Proxy
server

Apache Traffic
Server

BBP Core
Services

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 17 of 147

Monitoring
Icinga, Grafana,
Kibana, syslogd,
collectd

BBP Core
Services

Only usable by BBP or affiliated
users

User support tickets JIRA BBP Core
Services

Only usable by BBP or affiliated
users

Container services Docker BBP Core
Services

Release software
repository

Nexus, internal
Pypi proxy, and
bower repositories

 Only available inside the EPFL
network

Database service Postgres and Mysql
DBaaS

BBP Core
Services

Only available inside the EPFL
network

5.5 Medical Informatics Platform Standard DevOps Stack
CHUV has developed its own DevOps approach due to the lack of a centrally supported
standard. The CHUV standard approach is tailored to the realities of operating in a hospital
IT environment. This system forms the foundation of development activities in SP8, Medical
Informatics.

Table 3: Medical Informatics Platform Standard DevOps Stack

Service
Category Service Provided by Notes

Dev hosts Docker Individual developers

Staging hosts Docker,
Mesos CHUV

Staging can also work inside
Vagrant VMs on a developer
desktop

Production
hosts

Docker,
Mesos CHUV

Continuous
integration

Jenkins,
Travis-ci.org,
CircleCI.com,
Werker.com,
Codacy.com

CHUV, free cloud services

VM
configuration
development

Git, Github,
BitBucket github.com, BitBucket.com

BitBucket is used to store
confidential and encrypted
information for the deployments
on each hospital

VM
configuration
management

Git and
Ansible CHUV Template project:3 adapted from

Cisco Mantl.io project

VM
configuration
deployment

Docker,
Mesos,
Marathon
and Ansible

CHUV

https://github.com/HBPMedical/mip-microservices-infrastructure

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 18 of 147

Object
Storage NA

Internet
Gateway with
Caching Proxy
server

NGINX CHUV

Monitoring

Collectd,
Marathon,
Consul,
StatusCake,4
RunStatus5

CHUV, EPFL

Container
services

Private
Docker
repository,
Docker hub

CHUV, docker.com

Java/Maven
jars repository Artifactory CHUV

Python
package
repository

Github installation from source with pip

Bower
repository NA

Database
service

Postgres and
RAW DBaaS CHUV, EPFL Deployed by Ansible on a Mesos

cluster

For the Medical Informatics Platforms, the following tools are used for project management:

• Codacy.com

• Waffle.io

• YouTrack (Jetbrains)

• Trello.com

In addition, our projects aim to follow a common development process.6

Finally, a catalogue of HBP software is used also as a dashboard to monitor the overall health
of the SP.7

5.6 Neuromorphic Platform Standard DevOps Stack
The Neuromorphic Platform has developed its own DevOps approach due to the lack of a
centrally supported standard.

5.6.1 Job Queue and Neuromorphic Collaboratory Integration
Table 4: Job Queue and Neuromorphic Collaboratory Integration

Service Category Service Provided by Notes

Dev hosts Docker individual
developers

https://www.statuscake.com/
https://www.exoscale.ch/runstatus/
https://hbpmedical.github.io/development-process/
https://hbpmedical.github.io/software-catalog/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 19 of 147

Staging hosts Docker public Cloud via
CNRS

Production hosts Docker public Cloud via
CNRS

current provider is
Digital Ocean

Continuous integration Travis CI Travis CI

VM configuration
development Git / Github github.com

VM configuration
management

Docker Hub / in-
house Python
application

docker.com, CNRS

VM configuration
deployment

In-house Python
application CNRS

Object Storage Collab Storage Collaboratory

Internet Gateway with
Caching Proxy server — — not currently

implemented

Monitoring
Digital Ocean
(hardware)

StatusCake (services)

Digital Ocean

StatusCake

Container services Docker Hub docker.com

Python package repository Pypi (if needed)

Bower repository Not used

Database service Postgres public Cloud via
CNRS

5.6.2 SpiNNaker Large Machine Service
Table 5: SpiNNaker Large Machine Service

Service Category Service Provided by Notes

Dev hosts Maven Jetty Individual
developers

Staging hosts Maven Jetty Local VM Server
at Manchester

Production hosts Maven Jetty Local VM Server
at Manchester

Continuous integration Travis CI Travis CI

VM configuration
development Xen VM Local VM Server

at Manchester

Some parts need
to be backed up
and documented

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 20 of 147

VM configuration
management — — Not currently

implemented

VM configuration
deployment — — Not currently

implemented

Object Storage
RAID-10 and RAID-6 array
backed up to University
Central Storage

Local VM Server
at Manchester /
U of Manchester

Internet Gateway with
Caching Proxy server — — Backend Service —

not relevant

Monitoring — — Not currently
implemented

Container services Not used

Release package repository git

Database service Backend Service

5.6.3 NMPM-1 (20-wafer BrainScaleS System) Service
Table 6: NMPM-1 (20-wafer BrainScaleS System) Service

Service Category Service Provided by Notes

Dev hosts Custom (SLURM, LXC,
build flow) locally

Staging hosts Custom (SLURM, LXC,
build flow) locally

Production hosts Custom (SLURM, LXC,
build flow) locally

Continuous integration Jenkis CI Jenkins server
running locally

VM configuration
development

Versioning: Git (reviewed
via Gerrit); development:
manually/low-level

—

VM configuration
management Salt/Git —

VM configuration
deployment Salt —

Object Storage

NFS (RAID-10 and RAID-6
array, partially backed up
to University Central
Storage)

locally

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 21 of 147

Internet Gateway with
Caching Proxy server — — Backend Service

Monitoring
Carbon/Graphite (fed by
custom services), syslog,
snmp

locally

User support tickets Redmine locally

Container services Shifter

Python package repository Spack github/locally
Some packages
still maintained
locally

Bower repository — — Backend Service

Database service — — Backend Service

5.7 HPAC Platform Standard DevOps Stack
The software developed in SP7 is not a single software stack, but a large variety of
independent tools and frameworks, which are to a large extent based on previous projects.
The quality and testing strategies for software and services are described in detail in Annex
H of Deliverable D7.7.5 (Ramp-Up Phase).8

5.8 Long-term software maintenance
The HBP has studied guidelines for sustainable scientific software, such as the TriBits model9
and numerous HBP participants have extensive experience in the initiation and execution of
long-running community driven scientific software projects, e.g. NEST, PyNN, Neo, and
NEURON. For those projects that are not suitable as sustainable open-source packages, the
HBP will endeavour to transition to infrastructure programmes to ensure long-term funding
for its scientific software development activities.

6. Quality Assurance
Standard Agile practice requires that the discipline of rigorous testing and user validation is
owned and performed by the feature teams. In HBP, this leads to several important
principles:

1) Making project value understood by Platform teams;

2) Use of user validation as key to ensuring that the right use cases are prioritised;

3) Effective and efficient testing as a cornerstone of quality software.

In the case of Principle 1), two factors are key. Lean management emphasises the
importance of the “definition of good” being clearly understood by implementation teams.
Does “good” mean, for example, that a certain analysis can be performed more predictably
in the same time or does it mean that the same analysis must be performed in one-tenth of
the current time. To resolve this ambiguity, the definition of good must also include the
need to accelerate ongoing science. Principle 1 drives quality pragmatically and principle 2
prioritises immediately valuable feature development. Principle 2 has the additional benefit
that it should only drive optimisations where they are really needed, rather than based on
some vague theoretical model of what is needed.

In practical terms, Principle 2) is addressed by involving HBP users in the validation and
verification of the Platforms wherever feasible. This has been ongoing since the Alpha

https://sos.exo.io/public-website-production/filer_public/42/2f/422fb62e-c232-4b72-bfc7-9dd6b23f6578/d775_rup_m30_accepted_20160803.pdf
https://sos.exo.io/public-website-production/filer_public/42/2f/422fb62e-c232-4b72-bfc7-9dd6b23f6578/d775_rup_m30_accepted_20160803.pdf

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 22 of 147

releases in M18–M24 of the Ramp-up Phase and is expected to continue for the duration of
the HBP. For example, Platform development teams have been tightly integrated into
Collaboratory feature prioritisation since the initial release at the end of April 2015.

Platforms have adopted a user-first approach to validation of use cases and user stories
where the user is explicitly a part of the process for planning of development priorities and
validating development products. Internal users in the Platform SPs were among the first
users of the Platform tools. Additionally, courses offered since the Ramp-Up Phase by the
HBP Education Programme and by HBP Partners engage students in HBP next-generation
tools. Additionally, plans for SGA2 are in place to incentivise external high-level scientific
collaborations with targeted high-level support allowing for deep customisation and steering
of Platform use cases by pairing scientific and engineering expert support resources inside
the project with an allocation system called the High Level Support Team, as outlined in
WP5.9 of the SGA2 Proposal.

Principle 3) is key for a software-driven ecosystem like the HBP Platforms and the HBP
Collaboratory, software QA must be undertaken strategically and it is clear that systematic
testing practices play a crucial role. Depending on the targeted maturity of a given piece of
software, different practices can be employed because many QA practices imply potentially
higher short-term costs. However, it is also clear that specific development techniques, for
example Test-Driven Development (TDD), yield a multitude of benefits as they enable the
team to catch errors early and develop features more aggressively, regardless of maturity.
The value of early detection and correction of errors and the resulting cost savings are well-
studied phenomena.10 As a result, rigorous multi-level testing approaches are recommended
for any long-term infrastructure software or service project in the HBP.

Testing approaches are applied by the HBP across numerous phases of development and the
application of these phases in the various Platforms is described in Sections 6.1 to 6.6. The
selection and application of the specific approaches is delegated to the Platforms in
accordance with the subsidiarity principle described in the Principles of this document.

6.1 Unit Testing
Unit testing consists of decomposing software functionality into functions and class units and
testing their individual functions independently from the software system of which they are
part. This gives increased confidence about the function of the individual components, but
is seen by some to require additional investment during development. However, in most HBP
teams involved in Platform development, the value of investments in repeatable testing is
understood. The long-term benefits of such investments are accepted and unit testing is
widely used.

6.2 Integration Testing
In addition to unit testing, investment in integration testing, in which various system
components are tested together, is also recommended. These tests can find a multitude of
uses from post-modification system correctness testing during development, system
correctness testing in early integrated “dev” environments in a continuous integration
system to provision of a subset of system health metrics for part of a service monitoring
system.

6.3 Manual Testing
Manual testing is typically done on graphical user interfaces when automated testing is more
challenging to set up and maintain. Additionally, manual testing plays a key role in the
testing of scientific software. HBP scientists using software tools play an essential role in
manual testing of these tools. These scientists are the principal experts in the application
of appropriate software tools and often have the best understanding of their correct
behaviour; consequently, they are able to detect deviations. In combination with continuous

https://www.nasa.gov/sites/default/files/files/39_Agile_Estimating_for_NASA_CAS_2014_Tagged.pdf

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 23 of 147

integration testing, this approach has been used successfully in Neural Simulation
Technology (NEST) development for nearly two decades.

6.4 User Interface Testing
User testing practices are fundamental to Agile software development. Wherever possible,
user validation is done during each iteration. In the development of new user-visible
features, the development teams also perform user testing. This requires that the
development teams have developed an understanding of user needs and engage in regular
interactions with potential customers. This is possible in part because all Platform SPs are
structured to include scientific Tasks that are consumers of the respective Platforms.
Coupled with Agile software development, SPs that engage their internal audiences are able
to get early validation of their development plans, even involving them in prioritising the
Backlogs. This can be seen in the processes and examples outlined in Annex E.

6.5 Monitoring
Monitoring can be seen as continuous automating testing of specific service characteristics
and is considered mandatory for any service targeting the HBP-defined internal criteria for
technology readiness level (TRL) ≥7 (see Annex A). It should cover some of the same
behaviour as integration testing, but must be done in a fashion that does not degrade service
behaviour and performance, while still attempting to continuously test the service in
question.

6.6 Platform-testing specifics
6.6.1 Collaboratory, Brain Simulation Platform, Neuroinformatics and

Neurorobotics
Testing standards used in development are described here in Annex C and Annex D. With
some variation in specific practices, this process is used by the Collaboratory, Brain
Simulation Platform, Neuroinformatics Platform, and Neurorobotics Platform.

Notably, the Collaboratory and Neuroinformatics Platform are in the process of migrating
from the BBP testing infrastructure to the HBP Standard DevOps stack described in Section
5.3. However, it expected that testing standards will remain largely the same otherwise.

Specifics of user interface (UI) testing are described in Annex E with examples from the
Collaboratory, Neurorobotics Platform, and Medical informatics Platform.

6.6.2 Neurorobotics
The Neurorobotics Platform SP (NRP) has a Task T10.6.2 dedicated to “testing, profiling and
quality assurance”. At the time of drafting, the most recent version of D10.7.2 provides
examples of NRP monitoring, analytics and testing activities.

6.6.3 Medical Informatics
Open-source projects on the Medical Informatics Platform should be hosted on Github, which
grants access to a free set of tools for continuous integration, software quality control, code
coverage, dependency analysis, and project management. The Medical Informatics Platform
is currently also using the following services as part of its testing infrastructure:

• Travis-ci.org

• CircleCI.com

• Wercker.com

Different continuous integration tools allow different aspects of SP8’s services to be
monitored: code quality, compilation and execution of unit and integration tests,
installation of HBP software components on a VM.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 24 of 147

Specifics of UI testing are described in the Annex E with examples from the Collaboratory,
Neurorobotics Platform, and Medical informatics Platform.

6.6.4 Neuromorphic Testing
When compared with the other HBP Platforms, the Neuromorphic Platform has an additional
facet to consider when it comes to testing. Because they develop hardware as well as
software and services, they must also consider how their custom hardware solutions behave
under a multitude of conditions and workloads. Examples of such practices are described in
the D9.5.1 and are not repeated in detail here.

Notably the following Tasks have a role to play in the testing of the hardware aspects of the
Platform:

T9.1.3 – Benchmarking with the SNABSuite benchmarking framework;

T9.2.2 – Hardware testing, in particular the HICANN testing module example;

T9.2.4 – Small Scale Simulator equipment for testing.

6.6.5 HPAC Platform Standard
Due to the length of time spent in development and the wide variety of software developed
in SP7, HPC software development practices are less standardised than in some of the newer
software Platforms in the HBP. However, as the context is high-end computing, HPC Centres
(and by extension SP7) follow rigorous practices in software development, tailored to the
particular community served.

For example, NEST Development in SP7 and SP6 is guided by developer guidelines.11 NEST
development has been using continuous integration testing since 2011. Since May 2015, CI
testing is based on Travis,12 testing all pull requests to the NEST master repository.13 Testing
comprises code style checks, static code analysis and a comprehensive test-suite combining
unit and integration tests. Automated testing is complemented by manual code review in
the Github repository, with merge privileges restricted to a small group of experienced
developers.

7. Recommendations
The following recommendations are designed to address two major issues related to quality.
The first is uniformity of communication regarding software, services, and workflows
developed by the project. The second is a high-level view on QA with clear recommendations
on Quality Ownership and Quality Checks. The Quality Assurance section (7.2) includes
recommendations on output artefacts for the two major styles of development in the Project
Lifecycle.

It should be clear from the description of HBP Managed and HBP Coordinated Tiers in the
FPA and SGA1 that these recommendations are to be considered mandatory for the HBP
Managed Tier and strongly recommended for the HBP Coordinated Tier. The exact definition
of components in the HBP Managed Tier is ongoing and the first version is expected to be
provided at the end of SGA1 with the definition of the HBP Infrastructure Plan MS11.3.4.

7.1 Communication
The work of the Software and Infrastructure development teams in the HBP is focused on
delivering software and services. However, clear communication is key to ensuring that
these product offerings meet user expectations.

One facet of communication is that the audience for a product should be clearly listed. An
immature product should be labelled as such and a mature product must have undergone
adequate testing and validation.

https://nest.github.io/nest-simulator/
https://travis-ci.org/nest/nest-simulator
https://github.com/nest/nest-simulator

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 25 of 147

Consequently, it is recommended that all HBP software or service components label their
target audience and maturity level consistently so that users can know what to expect.

The labels below are intended to be attached to application catalogues, software catalogue
entries, Collaboratory documentation, Github READMEs. If you need to include these labels,
please contact the HBP Collaboratory team for the latest style guide, labelling guidelines,
and icon library.

The communication recommendations in sections 7.1.1 to 7.1.3 largely follow the
classifications initiated by the Brain Simulation Platform in their March 2016 Platform
release. The major change is that the definitions have been generalised to make them
applicable to any software, services or workflows developed by the project.

7.1.1 Audience
Everyone interested in using the HBP Joint Platform infrastructure and
facilities in the easiest way for relatively simple collaborative scientific
projects using GUIs or simple, well-documented Jupyter notebooks.

These tools must be accessible to users with expertise in a particular scientific domain, but
with little or no background in computer programming, simulation or image processing tools.
Examples might be a clinician who uses MRI images as a diagnostic tool or an
electrophysiologist who deeply understands cell physiology, but has no exposure to Python
programming.

Power users are interested in using some of the deeper capabilities of
the HBP Joint Platform for collaborative projects. They are able to
design, implement, and run computational pipelines to analyse

volumetric data, models or simulations. They have a working knowledge of at least one
programming language, likely Python.

Experts and co-design partners are users who are experts in one or more
scientific domains. They may also have substantial expertise in
implementing custom solutions with complex software systems. They

are early scientific adopters of key software, service and workflows, and have a hand in
providing deep design feedback early in the development process. Usage by users outside
HBP should be invitation only and should be paired with extensive support, either from the
component developer or from the High-level Support Team.

Software developers are designers, implementers and early adopters of
initial versions of software, services, and workflows. Components may
be acceptable for limited release to audiences of software experts.

7.1.2 Component maturity
If a component does not have a maturity label, it is expected to be of production quality.
This level corresponds to TRL7–9 and the component is expected to be highly robust and
usable by the intended audience. Mature software need not be easy to use, if it targets
Power users or Developers, but it must still be well documented and predictable in its error
handling and performance profile.

Production: A service or software of this maturity level has reached a
high-level robustness and may be used by a wide audience with high levels
of confidence. The target audience may be End users, Power users,
Experts or Developers. Production tools which target Power users or
Developers may not be easy to use, but they will be well documented,
well tested, and can be expected to fail gracefully in documented ways.
Support channels must be well established.

Icon to be
determined

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 26 of 147

Beta: A service of this maturity level has reached a certain robustness and
may be used by early adopters. This level corresponds to TRL5–6. The
target audience may be End users, Power users, Experts or Developers.

Experimental: A service of this maturity level is under heavy
development and is recommended only for specialist use or use for co-
design partners. This level corresponds to TRL3–4. Generally, these
components should also be tagged as intended for Expert or Developer
audiences.

7.1.3 Compute Requirements
The compute requirements label applies specifically to HBP-provided services or workflows.
If no special compute requirements exist for a service or workflow, or if the compute
requirements are completely handled by the service in question, they should be labelled
“without compute requirements”. However, in some cases, additional user steps are
required to allocate desktop, HPC or cloud resources to use a tool. In these cases, the tool
should be labelled accordingly.

Desktop: Software, services or use cases with this icon can be run on your
laptop or desktop without a requirement for high-powered computing
resources.

HPC: Software, services or use cases with this icon require High-
Performance Computing resources. They can be either public, such as
those available through the Network Services Group, or provided by the
user through a personal grant, such as a Partnership for Advanced
Computing in Europe (PRACE) award granted from one of the
supercomputer centres supporting HBP activities.

Bring Your Own: Software, services, and use cases with this icon need
substantial compute resources from outside the HBP. Subject to technical
compatibility, these products will require access to a large compute
allocation through a personal grant or a user allocation of compute
resources with a cloud provider.

Neuromorphic: This tool has a requirement for neuromorphic computing
resources. These are accessible from the Neuromorphic Computing
Platform and may be in the form of access to the neuromorphic job queue
service or through locally installed neuromorphic computing systems.

Icon to be
determined

Icon to be
determined

Icon to be
determined

Icon to be
determined

Icon to be
determined

Icon to be
determined

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 27 of 147

7.2 Quality assurance
The recommendations for QA depend on the development methodology that the component
team is following. However, teams running an Agile process without adherence to the Agile
QA practices (see section 7.2.1) may need to fall back on Checkpoint QA (see section 7.2.2)
if appropriate QA activities are not included in their iterative development process. It is also
important that when SPs report to the European Commission on component releases, they
report the QA process they are using and their QA owner for that release. Finally, it is
possible for QA responsibilities to be assigned in different ways and for a Platform QA process
to differ significantly from the recommendations given in this section. However, in case of
significant deviations, the QA process should be documented as part of the component
documentation.

7.2.1 Agile Quality Assurance
Agile QA can be described as a continuous multi-level process integrating comprehensive
testing and user feedback throughout the iterative development process. The quality checks
listed are recommended, but some deviation is allowed if the product is in the early stages
of development or lower maturity levels are targeted. After initial release, it is
recommended that all the Quality checks be performed on each iteration (for SCRUM) or on
each feature release (Kanban).

For Agile QA, the checks below should verified by the QA Owner; alternatively, the QA owner
needs to create a priority ticket for the next iteration to resolve the issue. While the QA
owner verifies that the checks are happening, the actual checks should be done by the
component development team themselves as part of the User Storage Acceptance Criteria
or a more general Definition of Done for the team. Deferring the implementation of such
tickets incurs so-called Technical Debt and is considered a failure of the Agile QA process.
In the event of repeated failure of the Agile QA process, the QA Owner should schedule QA
checks (see the list below) to restore confidence in all facets of component quality.

QA Owner:

Recommended to be the Product Owner for the component.

QA Checks:

1) Unit test coverage is set to a minimum of 80%.

2) Integration tests are added with each new feature added.

3) Regressions are fixed with highest priority (immediately). This can be a requirement in
the Definition of Done.

4) Bug reports are followed by new integration or feature tests if possible.

5) Major UI changes, API revisions, schema or format revisions are mocked-up and tested
with users prior to development.

6) New or enhanced features/user stories are user tested before or immediately after
release.

7) Code changes are reviewed.

8) User and developer documentation is updated with each feature release and is reviewed.

9) Services should have monitoring systems to verify that basic functions are continuously
operational. These should be designed to monitor the service level agreement (SLA)
variables at 7 or higher.

7.2.2 Checkpoint Quality Assurance
Checkpoint QA is similar in principle to Agile QA with larger gaps between QA checkpoints.
This necessitates larger QA efforts at the checkpoint, but alleviates some of the integrating

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 28 of 147

comprehensive testing and user feedback throughout iterative developments. The quality
checks listed below are recommended, but some deviation is allowed if lower maturity levels
are targeted.

NOTE: Quality checkpoints should be no more than 6 months apart.

QA Owner:

Recommended to be the Owner for the component.

Quality Checks:

1) Use cases for new or enhanced features are documented.

2) UI features, API, schema or format changes are mocked-up and tested with users prior
to development. The resulting feedback is integrated into the Test Plan to ensure that
the final product matches user expectations.

3) Quality criteria documented since the last Quality Checkpoint have been added to the
Test Plan.

4) Unit test coverage is set to a minimum of 80%.

5) One or more integration tests are added with each new feature added since the last
checkpoint.

6) Bug reports are followed by new integration or feature tests if possible.

7) New or enhanced features/user stories are tested prior to release according to the
documented Test Plan.

8) User and developer documentation is updated with each component release and is
reviewed by a team member who is not the author.

As a result, it is expected that Checkpoint Quality Assurance follows these phases and upon
completion of a given phase, produces the following artefacts:

1) Phase: Specification

a) Use cases, functional and non-functional requirements

b) UI mockups

c) API, schema or format proposals

d) Initial test plan – this may be quite skeletal, describing only testing methodology and
key risk points which will need to be a focus of the implementation and testing

2) Phase: Implementation

a) New software or service release

b) User or developer documentation

c) Release notes

d) Final test plan

3) Phase: QA

a) Test report

b) Outstanding defect list

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 29 of 147

8. Systems Documentation
The Collaboratory hosts a documentation service. Platforms have been encouraged to deliver
their public documentation as an HTML documentation bundle and as a living website. The
documentation bundle is typically created from:

• Sphinx

• Doxygen

However, the Collaboratory documentation server supports any documentation system which
generates HTML documentation.

9. User Support
Quality user support is a key aspect of the operation of any infrastructure, but this activity
has only been lightly staffed in the Ramp-Up Phase and SGA1. However, Agile Methodologies
provide a solution to this problem inside the boundaries of the current work plan. Scrum
teams are made up of cross-functional feature development teams that actively engage user
communities to understand their needs. Involving developers in the support process gives
them key insights about usability enhancements and feature prioritisation needed for their
software products.

With this in mind, HBP has adopted a practice of using software developers who are the
primary support channel for the Platforms. This practice gives rise to Table 7, outlining
support personnel breakdowns for the respective Platforms.

Table 7: HBP Support count, per SP

Support Role COLL SP5 SP6 SP7 SP8 SP9 SP10

Support Part-time — Developers 5 2 4 8 2 5 4

Support Part-time — Non-developers 0 1 0 0 0 0 2

Full-time 0 0 0 0 0 0 0

Total support (PT and FT): 5 3 4 8 2 5 6

These developers occupy support channels (see Figure 6) that will be found in various places
in the Collaboratory. The Collaboratory has a global support request button for requesting
email responses. This will be expanded to automatically file a support ticket in a pipelined
user-ticketing system in SGA2 to allow users to track progress on their support requests and
to allow easy handover to other Platform support teams. Finally, the Software catalogue
links to the support channels for each of its entries. These support channels will either work
to address the issue with existing features or add feature requests to the work Backlog for
the Collaboratory, App or Software entry.

Wherever appropriate, the Collaboratory and App Support UIs will direct support requests to
the HBP Forum14 to allow the formation of a user knowledge base around frequently asked
questions. It will also allow the community self-support.

https://forum.humanbrainproject.eu/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 30 of 147

Figure 6: HBP support channels

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 31 of 147

Annex A – HBP Extended TRL Standards
This annex describes the standards that must be applied by scientists, developers, and
service operators in the HBP to apply a particular TRL label to a given system or service. The
TRLs set out in Table 8 correspond to the standard European Commission TRLs.15 They
further expand the EC definitions and include the properties required of an infrastructure
component at each TRL. The TRLs are intended to be applied to systems not only delivered
as research infrastructure (RI), but also producing key datasets.

One caveat should be applied when applying Table 8: if systems are not continuously or near-
continuously operating services, it should be assumed that where SLAs are specified they
can be safely ignored in evaluating TRL criteria. SLAs would clearly not make sense in the
context of a non-service system.

Table 8: Technology Readiness Levels

Technology Readiness
Level Expected Properties

TRL 1

Project Initiation

• Project owner identified

• Project principles and high-level objectives defined

• Use case definitions (includes target users and activities)

TRL 2

Conceptualisation

• Analytic study of the problem space

• Identify key functions which must be validated in Component
Implementation

• Formulate validation criteria for critical components

• Formulate validation criteria of complete prototype system

• Prototype Epic planning

TRL 3

PoC Implementation

• Implementations of key functions

• Validation of critical concepts

• Identification of additional validation criteria for TRL4

TRL 4

Prototype Component

• Validation of prototype components in Lab

• PoC has become prototype components

• System technology selection has been made

• Load testing of components under key load criteria

• Identification of additional validation criteria for TRL5

TRL 5

Prototype Integration

• Validation of integrated system in a real-world environment

• Tested in restricted environment with a small number of real users

• Data formats specified

• Identification of additional validation criteria for TRL6

TRL 6

Prototype-to-Real-world
Integration

• Validation of integrated system in a real-world environment

• Load testing of integrated system under expected load

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 32 of 147

• Tested in a real-world environment with a small number of real
users

• Initial System documentation

• Initial User documentation

• System monitoring points specified (for services)

• Identification of additional validation criteria for TRL7

TRL 7

Operational Integration

• Validation of integrated system in a real-world environment

• Tested in a real-world environment with a small number of real
users (canary testing for SoA)

• System monitoring implemented (for services)

• No expected data format or API changes (for services or software
components)

• Load testing of integrated system under expected load

• SLA monitored (for services)

TRL 8

Deployment

• Validation of integrated system in a real-world environment

• Tested in a real-world environment with a small number of real
users

• SLA enforced (for services)

TRL 9

Production

• Validation of integrated system in a real-world environment

• Tested in a real-world environment with a target number of real
users

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 33 of 147

Annex B — Infrastructure Tiers
The concept of infrastructure tiers in the HBP originated with the User Recruitment and
Instructure Strategy Working Group (URIS-WG) whitepaper. However, this concept exists in
many other federated infrastructure projects. In the HBP, services are assigned to tiers on
the basis of the analysis of the PLA dependencies and an analysis thereafter by the
Infrastructure Development Committee. The tiers are defined to highlight those areas where
central quality control, extensive testing, SLAs and monitoring are necessary. It is also
intended to highlight where addition flexibility is granted to the service provider.

The HBP Managed infrastructure tier will adhere to strict standards with centrally managed
SLAs that guarantee high availability. A combination of essential Software and High-level
Infrastructure that is federated over multiple sites will have to be committed, to achieve
the necessary service availability. A support plan will be documented and will have resources
committed. A sustainable roadmap for both Base Infrastructure and High-level Infrastructure
forms the core of the HBP RI.

HBP Coordinated components of infrastructure are provided for and owned by individual
partners (partner institutions and conglomerates or SPs). Adherence to the HBP standards is
optional and SLA will have negotiated availability. HBP Coordinated services will be deployed
on a mix of HBP Managed and non-HBP Managed base infrastructure. All Apps and Services
are monitored for health and availability by HBP Managed services. The respective partners
manage support and provide the service prioritised to encourage adoption for their
respective infrastructure components. The partners are responsible for assessing TRLs.

Community Coordinated software infrastructure is provided for and managed by a Third
Party not involved in the HBP. Apps and services may be monitored, and the Third Party
decides on SLA and Support levels.

Services delivered in the Ramp-Up Phase should be considered HBP Coordinated due to the
TRLs, as well as a lack of standardised monitoring and federated deployment capacity.
Services delivered in the Ramp-Up Phase will be evaluated for inclusion in HBP Managed
Infrastructure services during SGA1.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 34 of 147

Annex C – BBP Development and Deployment Standards

Co-funded by
the European Union

BBP Standard Development and
Deployment Process

Release 0.1

TBD

March 08, 2016

i

Co-funded by
the European Union

CONTENTS

1 Language Guidelines 1

1.1 C++ . 1

1.2 Javascript . 5

1.3 Java/Scala ... 14
1.4 Python ... 18

2 Delivering and CI 29
2.1 1. Submit your code to the Gerrit repository ... 29
2.2 2. Check the automated validation done in Jenkins. .. 29
2.3 3. Add reviewers ... 29
2.4 4. Code merge. ... 30

3 Further Resources 31
3.1 Useful links .. 31
3.2 Languages .. 31

4 Monitoring infrastructure 33
4.1 Goals .. 33
4.2 Monitoring data .. 33
4.3 Framework ... 34

5 Elastic Search 37
5.1 Components .. 37
5.2 Cluster deployment and specifications .. 38

6 Graphite 41
6.1 Goal .. 41
6.2 Components .. 41
6.3 Standalone deployment.. 41
6.4 Federated deployment .. 42
6.5 Deployment configuration .. 43
6.6 Relay rules .. 44
6.7 Performance measurement ... 45
6.8 Data retention policy ... 45
6.9 How to bring new data ... 46

7 Icinga 49
7.1 Infrastructure .. 49
7.2 Creating your own probes .. 49
7.3 Icinga Event Stream .. 50

7.4 Event Collector .. 51
7.5 Availability API .. 52

8 Log Management 55
8.1 How to index logs ... 55
8.2 How to visualize indexed logs .. 59

1

Co-funded by
the European Union

CHAPTER

ONE

LANGUAGE GUIDELINES
This section defines standards for the various major programming languages used in projects
hosted on the infrastructure BBP provides to HBP.

1.1 C++
1.1.1 Coding Standards

• Follow the existing coding style of a project

This documents lists the common practices for the BBP C++ projects. It is meant as a companion to
the Coding Standard, and is compiled from typical issues found working with legacy projects.

A code reviewer should reject the review if any of these rules is violated.

If the rationale for any of the rules below is not clear, ask the author who’ll happily explain it. Feel
free to propose additions.

1.1.2 CMake

• Each project needs to have the open source CMake tree integrated, as described in the
README . It has to include ‘Common’ early in the top-level CMakeLists.txt, and should also use
GitTargets and CommonCPack. The Hello project can be used for guidance.

• Common.cmake will set sensible C++ default warnings, and make all warnings errors. Fix
the warnings, quite a few of them will be bugs in legacy software. Repeat for a release build.
Use ‘include_directories(SYSTEM ...)’ to “fix” third-party code.

• Use sub projects for “internal” dependencies.

• Do not place generated files in the source directory. They have to go into
CMAKE_BINARY_DIR!

• Do not use ‘file(GLOB ...)’ to compile source lists

• Use proper library naming (see CommonLibrary.cmake)

• Run and fix ‘make cppcheck’ (provided by Common)

• Put header and implementation files in the same top-level directory name ‘<project>/’, us-
ing the same name for the final include directory, the namespace and project name

https://bbpteam.epfl.ch/project/spaces/display/BBPSTD/Coding%2BStandard
https://github.com/Eyescale/CMake#readme
https://github.com/BlueBrain/Hello#readme
https://github.com/Eyescale/CMake/blob/master/SubProject.cmake#L2

2 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

1.1.3 Common Coding Practices

These practices highlight commonly found anti-patterns, and are not a complete list:

• write the code assuming that it will be publicly accessible, e.g., to potential employers.

Hard rules

These are easily verifiable rules, for which I haven’t had an exception to the rule yet.

• constness: Declare every variable and method const, unless there is a logical design reason
against it, e.g., it’s a setter method.

• No ifdef within a class declaration. This is asking for runtime ABI trouble.

• Always initialize all variables

• methods always start with a verb: getWidth(), not width().

• class declarations have at most one public, protected and private section, in this order

• no break in switch(): For the occasional case clause with no break or return at the end,
insert an explicit ‘// no break;’ comment to express the fact you didn’t simply forget the
break;

• no public member variables in a class. It’s ok to have structs as long as they only hold data.

• use (s)size_t for any container counter or other counting variable

• no tabs in source code, use unix line endings

• no magic numbers: At least use one constant with a proper name.

• Declare local variable as late as possible and initialize them during declaration. Observe
constness rule.

• no ‘using namespace foo’ anywhere. Selective ‘using Foo::bar’ is acceptable in cpp files. Us-
ing namespace aliases is acceptable in cpp files.

• Don’t do double-negatives: ‘if(condition) doFoo(); else doBar();’ is easier to read than ‘if(
!condition) doBar(); else doFoo();’

• use container.empty(), not container.size() == 0

• avoid inlining of functions unless really necessary; is essential for not breaking ABI

• use the following strategy for object allocations:

• use members/stack variables with const reference parameter passing as much as possible

• well-defined ownership: each new has a corresponding delete, the owning object allocates
and deallocates the object in symmetric places

• shared ownership: each new assigns to a shared_ptr, return a shared_ptr from the creator
function and use the shared_ptr everywhere throughout the API

• Always compare floating point numbers using an epsilon, by preference using
std::numeric_limits< >::epsilon()

• Use ‘f’ for float calculations. ‘float i = k * 0.1’ is ‘float i = (float)((double)(k) * 0.1)’, which is
slower and might yield a different result then ‘float i = k * 0.1f’

1.1. C++ 3

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Soft rules

These rules may be violated if there is a conclusive argument. The reviewer has to understand
and agree with the argument.

• header file order: from most specific/local to least specific/global

• includes in headers: reduce them to the max by using forward declarations (gathered in
types.h) and the pimpl idiom

• early outs: Reduce indentation by using early outs wherever it makes sense.

• respect the 80 characters per line rule to improve readability

1.1.4 Discussion

Please formulate a question or add suggest rules below. They’ll be answered or incorporated in a
timely manner.

1.1.5 Coding Styles June 2 2015

• Spacing * space inside the parentheses in statements (if, for, switch, while, ...) * Scope for
change: ideally file/class, but function minimum

• Braces * on a new line * Scope for change: ideally file/class, but function minimum

• Position of & and * * put close to the type, not the variable * Scope for change: file/class

• Comment style * C++ style, not C * Scope for change: file/class

• Function and class names * camel case, functions start with a verb and optionally a noun
afterwards, class name are nouns * Scope for change: project

• Line length

– 80 or 100

• new projects * MyCoolClass.h (file name same as class name) * folder naming lowercase
folders * Scope for change: feasible wrt API changes, project wide

• leading underscore for private member variables & functions * Scope for change: file/class

• Pimpl * nested class Impl * unique_ptr (C++11) or raw pointer (C99) _impl; * contains all
private (non-virtual) class members, and nothing else * try to keep all pimpl members public
and to avoid pimpl class hierarchies * Scope for change: file/class

• Namespaces * directory name should match namespace name (nested namespaces / direc-
tories are reflected accordingly) * (no conclusion was reached regarding the use of subdi-
rectories without a matching namespace)

1.1.6 Building

All C++ projects should use C++, CMake and Superproject. To set up a build, do: Before
you start make sure you’ve got all the necessary build infrastructure available: Now get
your software:

http://herbsutter.com/gotw/_100/

4 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

If the build doesn’t run, try to fix it or ask Stefan Eilemann or Daniel Nachbaur.

Meanwhile, start reading and understanding the ‘SubProject<https://github.com/Eyescale/CMake/blob/maste
concept of linking multiple projects into a single CMake build.

Now start coding (example with RTNeuron):

Note:

• Lunchbox does not compile with mpi wrappers on BG/Q (some potential conflict with DNS
package.. -I/usr/include is missing...)

• It compiles fine with XLC compilers

• Clone the Hello Project for new projects

1.1.7 Testing

• Use CTest, recommended boost::unit_test

1.1.8 Packaging

• See CPack setup in Hello Project

1.1.9 Profiling

• VTune

1.1.10 Delivering and CI

1.1.11 Debugging

TotalView : https://bbpteam.epfl.ch/project/spaces/display/BBPHPC/Software+Debugging

1.1.12 Documentation

1.1.13 Environment Setup

1.1.14 Deployment best practices

Point of contact: Jean-Denis Courcol, Olivier Amblet

Warning

The standards define in this page are just a proposal, here to start a discussion.

git clone ssh://bbpcode.epfl.ch/common/config.bbp
mkdir build

cd build

cmake -GNinja -DINSTALL_PACKAGES=1

https://bbpteam.epfl.ch/project/spaces/display/%7Eeilemann
https://bbpteam.epfl.ch/project/spaces/display/%7Enachbaur
https://github.com/BlueBrain/Hello#readme
https://github.com/BlueBrain/Hello#readme
https://bbpteam.epfl.ch/project/spaces/display/BBPHPC/VTune
https://bbpteam.epfl.ch/project/spaces/display/BBPHPC/Software%2BDebugging
https://bbpteam.epfl.ch/project/spaces/display/%7Ecourcol
https://bbpteam.epfl.ch/project/spaces/display/%7Eamblet

1.2. Javascript 5

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

1.2 Javascript
Javascript section is the main language discussed in this section, but it also addresses some of the
structure and development of Web Components and Web UI as a whole.

1.2.1 Coding Standards

Based on AngularJS’ code standards .

Linting

Automated verification of the Coding standards and general best practice can be done with
jsHint. The configuration of jsHint is stored in the .jshintrc file at the root of the project. You
can have a look at the documentation page to see the explanations for the settings.

A list of available plugins for different IDEs can be found here.

1.2.2 The standards (WIP)
Global Scope and Closure

Unless necessary try not to create a new namespace instead write your code in an anonymous
function like this:

This will make sure you’re not polluting the global scope.

Equality

Use the identity operators (=== and !==) to the equality operators (== and !=). If some type
coercion is needed do it explicitly.

AngularJS specifics

https://github.com/mgechev/angularjs-style-guide

Building

Note

The build system we use is highly configurable and some of the explanation bellow may only be
valid for the way our project is configured.

(function(){

/* your code goes here*/

}());

http://docs.angularjs.org/misc/contribute#H1_3
http://www.jshint.com/
http://www.jshint.com/docs/options/
http://www.jshint.com/install/
https://github.com/mgechev/angularjs-style-guide

6 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Overview

Here we follow the 2014-ish standard for creating client side web application (see

Choosing a way to managing Javascript artefacts). The development tool and build system (and
perhaps a javascript server side app) are managed by the Node Package Manager(NPM). The
client side dependencies (aka the components and the client javascript libraries like Angular)
are managed by bower.

1.2.3 Installation

The tools we use to build frontend code are all based around Node.js and NPM. This means that you
will need to install them. Sadly the current version in Ubuntu’s repository are way to old. This means
that you will have to install them yourself. This pages explain how to do this without sudo access:
https://gist.github.com/isaacs/579814 (you can choose any of the proposed solution but I only
tested the first one).

Once those two are installed you will have to install yeoman and bower with the following com-
mand:

npm install -g yo npm install -g bower

1.2.4 Bower

Bower is the package dependency manager that allows us to retrieve and resolve the depen-
dency of our application. To download all the dependency automatically just execute the follow-
ing command from your project root folder:

To add or remove a dependency to your project you will need to edit the file bower.json . It’s
structure is pretty obvious and you can look at

bower’s documentation

to learn more. If you added a new dependency just run bower install

again to download it. If you removed dependency from the config file and want to remove them
from your file system you will have to call

bower uninstall package_name_goes_here explicitly.

If you know a new version of a dependency exists, you can update your packages with bower update

Warning

It’s very easy to add a package to bower’s centralized repository. To make sure you don’t
inadvertently do this with one of our package you absolutely have to always specify

“private”: true

in your bower.json file.

bower install

https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Choosing%2Ba%2Bway%2Bto%2Bmanaging%2BJavascript%2Bartefacts
https://gist.github.com/isaacs/579814
http://yeoman.io/
http://bower.io/
http://bower.io/#configuration

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

1.2.5 Grunt

We use Grunt to build the front-end code. It can be used for several purpose:

1.2.6 Development

If you use the command:

It will start a server and open the app into the default website. When you modify a file it will
automatically be deployed to the website, furthermore if you work with files that need to be
compiled (like sass, compass or coffee) it will be compiled too. We’ve also configured the task so
that javascript unit test are ran each time you same a js file.

If you want to test the production code in real time you can write this command instead:

If you want to have the auto-compile and error testing feature without starting the server you
could write:

1.2.7

1.2.8 Building

Grunt can also be used to generate the final application. This is done simply by calling:

The resulting files will be stored in the dist folder.

1.2.9 Unit Testing

The unit tests are executed during the build and while the development server is running but if you
want you can call it explicitly with:

1.2.10 What to commit to your repository

The javascript community is divided on whether or not the dependencies and built artefacts
should be checked in the final application version system. Statistically, the advantage goes to the
groups that want to check everything in. But we think it is a bad habit that mostly come from the
fact it is the easiest way to avoid a series of issues like:

• unable to deploy because an internet service is down (registry or repository),

• unable to reproduce a build because there is no locking(shrinkwrap) mechanism in bower.

A good rule of thumb is to avoid committing files that have been retrieved or generated by the
build system. This includes all the downloaded modules and build files. I would recommend using a
.gitignore file for this. Such a files is already define for the main project.

1.2. Javascript 7

grunt server

grunt server:dist

grunt karma:watch watch

grunt build

grunt test

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Ongoing trolling: Choosing a way to managing Javascript artefacts

1.2.11 Testing
Overview

We use grunt as a build system and to launch the tests too (for more information about grunt
look at javascript build. Grunt uses Karma to run the tests. The tests themselves are written
using Jasmin.

Configuration

The Karma configuration is in the conf/karma.conf.js file. The only reason you would want to
modify this file is to add a dependency. This is done by adding an entry into the files array. The
test files are automatically found if they are in the test/unit/ folder.

Writing the Tests

The tests a written using Jasmin. They simply are js scripts situated into test/unit. They are ran
inside PhantomJS. Since test are written in javacript it would be nice to stick to the javascript
coding standards.

Running the tests

To run the test simply do:

The result of the tests will displayed on the console as well as saved into a jUnit file (unit.xml in
the root of your project).

1.2.12 Packaging

1.2.13 Profiling

Chrome developer tools : http://discover-devtools.codeschool.com/ Chrome

Page Speed Plugin:

https://developers.google.com/speed/pagespeed/

Web Page test : http://www.webpagetest.org/

1.2.14 Delivering and CI
Retrieving dependencies

Bower is used to retrieve client side dependencies, npm to retrieve server side dependencies
(aka build dependencies). All the dependencies are made available through our internal registries
that match a component name to a Git tag.

8 Chapter 1. Language Guidelines

grunt test

https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Choosing%2Ba%2Bway%2Bto%2Bmanaging%2BJavascript%2Bartefacts
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/javascript%2Bbuild
http://karma-runner.github.io/
http://pivotal.github.io/jasmine/
http://pivotal.github.io/jasmine/
http://www.phantomjs.org/
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/javascript%2Bcoding%2Bstandards
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/javascript%2Bcoding%2Bstandards
http://discover-devtools.codeschool.com/
https://developers.google.com/speed/pagespeed/
http://www.webpagetest.org/

1.2. Javascript 9

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

1. Dev ask JSBowerRegistry (using bower cmd) or Sinopia (using npm cmd) the location of a
component.

2. The local registry fallback to the official public bower.herokuapp.com or registry.npmjs.org
to get a result.

3. The result, containing a Git URL is retrieved to the Dev.

4. The component is retrieved at the desired semver by the command line tool from the Gerrit
repository.

5. In the case of an external dependencies, the component is retrieved from there.

Interaction between a developer, Gerrit and Jenkins from the initial review to the release

(part in red are not implemented because of infrastructure issues)

1. When the developer post a review on Gerrit, Jenkins will be notified and a build will run
npm test and npm build on the given patch set.

2. If all good, it will send a verified +1 notification to Gerrit

3. At some point, the user will merge its modifications to master. At this point jenkins will run
npm test and npm build. In theory it should then commit the built artifact to Gerrit (bypass-
ing the review).

4. When a developer want to make a release, he has to commit the wanted version through
gerrit. Once all is in master, he connect to Jenkins and manually run a parametrised build
where RELEASE_TYPE=”RELEASE”.

1.2.15 Project Structure

Here are the attended structure for the different type of projects:

Angular Module

An angular module is imported by one or more Angular applications.

Library Naming Convention Mutation (#scary)

Try to follow the following plan for the naming convention of an angular library:

Corner cases:

• If the library is usable both by Angular or by a Vanila JS application, omit the angular in the
naming chain.

• If the main file is different for Angular app and Vanilla app, use angular to prefix the main
JS file that should be used by Angular

 -> Main JS File Name -> Module Name ->

10 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Minimal project structure

All those files must be checked-in.

The project structure might be fairly more complex but at the end, it should generate an angular-bbp-
library-name.js file at the project root.

.bowerrc

bowerrc contains configuration relative to the bower command-line. The content of this file is
exactly that:

bower.json

bower.json contains information about the library.

/.bowerrc /.jshintrc /bower.json /Gruntfile.js /package.json /angular-bbp-library-name.js

{

"registry":"'http://128.178.187.244:8080/bower" <http://128.178.187.244:8080/bower>'_,
"directory":"components"

}

{

"name":"angular-bbp-library-name",
"version":"0.1.0",

"authors": [

"BBP/EPFL"

],

"description": "A demo component",
"repository": {

"type":"git",
"url":"git+ssh://bbpcode.epfl.ch/platform/JSLibAngularLibraryName"

},

"main":"angular-bbp-library-name.js",
"moduleType": [

"angular"

],

"private":true,
"ignore": [

"**/.*",
"node_modules",
"bower_components",
"test",
"package.json",
"Gruntfile"

],

"dependencies": {

"angular":"~1.2.16"

},

1.2. Javascript 11

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Important:

• flag your package as private,

• indicate the repository.url using git+ssh:// protocol or no protocol at all (ssh:// is not sup-
ported by bower),

The dependencies should include only library that are not included into the built artefact, other
should go in devDependencies.

It is a good practice to ignore everything excepted the files that needs to be included and the
README. This way, the application does not weight more than necessary when checked into the
repository with all its dependencies.

You can use bower init to generate a first version of this file.

package.json

package.json contains node informations for the component. Node is basically used to build the
component using Grunt.

"devDependencies": {}

}

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Important:

• Jenkins plan will need the three specified scripts:

– test : the command to run test

– build : the command to create the distribution

– release : the command to release the component

• Flag the component as private

Gruntfile

Gruntfile contains the build instruction.

12 Chapter 1. Language Guidelines

{
”name”:

“angular-bbp-library-name”,
”version”:

“0.0.0”,
”private”:

true,
”scripts”: {

”test”:
“grunt test”,

”build”:
“grunt build”,

”release”:
“grunt release”
},
”author”:

“BBP/EPFL”,
”devDependencies”: {
”grunt”:

“~0.4.1”,
”load-grunt-tasks”:

“~0.1.0”,
”grunt-contrib-concat”:

“~0.3.0”,
”grunt-contrib-jshint”:

“~0.6.0”,
”jshint-junit-reporter”:

“~0.0.6”,
”grunt-contrib-clean”:

“~0.5.0”,
”grunt-release”:

“~0.7.0”,
”grunt-git”:

“~0.2.6”,
”request”:

“~2.34.0”
}

}

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

/* jshint node: true, browser: false */
‘use strict’;
module.exports = function (grunt) {

require(‘load-grunt-tasks’)(grunt);
require(‘time-grunt’)(grunt);
grunt.initConfig({

jshint: {
options: {

reporter: require(‘jshint-junit-reporter’),
reporterOutput:

‘reports/jshint-unit.xml’,
jshintrc:

‘.jshintrc’,
},
all: [’**/*.js’]

},
release: {

options: {
file:

“bower.json”,
bump:

false,
// until jenkins can commit on master branch.

commit:
false,
false,
false

}
},

push:
npm:

gitcommit: {
dist: {

options: {
message:

‘built artefact’,
ignoreEmpty:

true
},
files: {

src: mainjs
},

}
}

});
grunt.registerTask(‘register’, function(){

var request = require(‘request’);
var bowerConfig = grunt.file.readJSON(‘./bower.json’);
var baseUrl = grunt.file.readJSON(‘./.bowerrc’).registry;
var done =

this.async();
var registerComponent = function(done) {

grunt.log.writeln(‘Send registration request’);

1.i2f . Javascript 13

(! (bowerConfig && bowerConfig.repository && bowerConfig.repository.url)) {
grunt.log.error(‘Missing repository.url key in bower.json’);

done(false);

14 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

jshintrc

The .jshintrc file define the rules that should be enforced for the JS code format and quality. De-
veloper’s editor and Jenkins should use this file to test the lib.

You can download a pretty good version of this file from the JSLibOidcClient project, here .

1.2.16 Debugging

Chrome developer tools:

http://discover-devtools.codeschool.com/

1.2.17 Documentation

1.2.18 Environment Setup
Sublime Text

JSHint:

• install the package JSHint Gutter (shift+ctrl+P, then Package Control: Install Package, then
choose JSHint Gutter).

• got to preferences / package settings / JSHint Gutter / Set Linting Prefererences.

• copy the content of .jshintrc of other bbp JS repositories

• execute linting by shift + crtl + j

Access Local NPM

Run the following command to be able to access and publish to bbpteam.epfl.ch/repository/npm
(note that you must be on the EPFL network or connected via the proxy for it to work).

1.2.19 Deployment best practices

TBD

1.3 Java/Scala
Points of contact: Jeffrey Muller, Stefano Zaninetta, Yury Brukau.

npm config set registry http://bbpteam.epfl.ch/repository/npm

npm config set email bbpsoatest@epfl.ch

npm config set _auth YWRtaW46bm9wYXNzd2Q=
npm config set always-auth

https://bbpcode.epfl.ch/source/xref/platform/JSLibOidcClient/.jshintrc
http://discover-devtools.codeschool.com/
https://bbpteam.epfl.ch/project/spaces/display/%7Ejcmuller
https://bbpteam.epfl.ch/project/spaces/display/%7Ezaninett
https://bbpteam.epfl.ch/project/spaces/display/%7Ebrukau
http://bbpteam.epfl.ch/repository/npm
mailto:bbpsoatest@epfl.ch

1.3. Java/Scala 15

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

1.3.1 Coding Standards

From here:

http://www.ambysoft.com/essays/javaCodingStandards.html See the attached

javaCodingStandardsSummary.pdf

The following conventions on naming of methods and variables overrules the above document:

1.3.2 Naming

• Use short names for small scopes

– is, js and ks are all but expected in loops.

• Use longer names for larger scopes

– External APIs should have longer and explanatory names that confer meaning. Fu-
ture.collect not Future.all.

• Use common abbreviations but eschew esoteric ones

– Everyone knows ok, err or defn whereas sfri is not so common.

• Don’t rebind names for different uses

– Use final variables whereever possible

• Avoid using ‘s to overload reserved names.

– typ instead of type

• Use active names for operations with side effects

– user.activate() not user.setActive()

• Use descriptive names for methods that return values

– src.isDefined not src.defined

• Don’t prefix getters with get

– As per the previous rule, it’s redundant: site.count not site.getCount

• Don’t repeat names that are already encapsulated in package or object name

– Prefer:

object User {

def get(id: Int): Option[User]

}

to

object User {

def getUser(id: Int): Option[User]

}

//They are redundant in use: User getUser provides no more information than User get

http://www.ambysoft.com/essays/javaCodingStandards.html
https://bbpteam.epfl.ch/confluence/download/attachments/7569537/javaCodingStandardsSummary.pdf

16 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

1.3.3 Documentation
Java code should be documented for JavaDoc: http://www.oracle.com/technetwork/java/javase/documentation
137868.html

The documentation should follow guidelines in the

Java Coding Standards .

1.3.4 Building

1.3.5 Testing

1.3.6 Packaging

1.3.7 Profiling

Use Metrics

Official documentation of Metrics

http://metrics.codahale.com/manual/core/#man-core-meters

Setting a probe

Here I want to get the duration of the provenance query and the rate of its occurrence:

private final static

Timer responses = Metrics.newTimer(ProvenanceUtilities.class, “ProvenanceQueries”, TimeU-
nit.MILLISECONDS, TimeUnit.SECONDS); public static OPMQueryResult getProvenanceHis-
tory(EntityId karma) { final TimerContext context = responses.time(); OPMQueryResult s = run-
Query(KarmaQueryPattern.sGET_PROVENANCE_HISTORY,karma.id()); context.stop(); return s;
}

Launch your Jetty server.

Launch JConsole (Should be in the bin directory of your jdk)

Connect to your Jetty process through the “New Connection” submenu, Once

connected, go to the “MBeans tab”.

important attributes are “Count” (the number of occurence) and “Mean” (average duration time of
each occurrence).

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
https://bbpteam.epfl.ch/confluence/download/attachments/7569537/javaCodingStandardsSummary.pdf
http://metrics.codahale.com/manual/core/#man-core-meters

1.3. Java/Scala 17

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Delivering and CI

Debugging

Environment Setup

Deployment best practices

Use maven to build.

Deploy through the BBP provided Nexus repository.

1.3.8 Scala Getting Started
Getting started

This is intended to guide you to scala resources that might be useful in your day to day work

Tools

Typesafe Debian Repository - Instructions on how to set up the Typesafe Debian repository is
here:

http://typesafe.com/stack/download

• The Typesafe repo is used to install sbt below. Installation of the typesafe-stack package is
optional * SBT aka Simple Build Tool - maven repositories and dependency management with
a Scala DSL instead of XML. Lots of nice Scala friendly features -

https://github.com/harrah/xsbt/wiki/Getting-Started-Setup

• Scala-IDE - a mature scala plugin for eclipse is here: http://scala-
ide.org/download/current.html

• Recommended version of the Scala-IDE is currently 3.0

• Recommended version of Eclipse is 3.7

• Ensime - a scala ide for emacs users

• Giter8 - automatic Scala project template setup from github maintained project templates
- https://github.com/n8han/giter8

Learning Scala resources

http://twitter.github.com/scala_school/

Documentation and Coding standards

• See here: https://bbpteam.epfl.ch/confluence/display/BBPWFA/WFA+Coding+Standards

http://typesafe.com/stack/download
https://github.com/harrah/xsbt/wiki/Getting-Started-Setup
http://scala-ide.org/download/current.html
http://scala-ide.org/download/current.html
https://github.com/n8han/giter8
http://twitter.github.com/scala_school/
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/WFA%2BCoding%2BStandards

18 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

1.3.9 Coding Standards

We follow this recommendation here. If the code deviates from the Style guide in an appreciable
way, please file it as a bug or fix it. http://twitter.github.com/effectivescala/

ScalaDoc

Scala code should be documented for ScalaDoc: https://wiki.scala-lang.org/display/SW/Scaladoc

1.4 Python
Points of contact: Jean-Denis Courcol, Michael Gevaert, Juan Pablo Palacios.

1.4.1 Coding Standards

Refer to the BBP Python Best Practices document, attached

1.4.2 Repository Structure
Project Organisation

Refer to Python Package and Repo Naming

In each module, there are init.py and version.py files. The version code is described under ‘Ver-
sioning’:

 init .py:

version.py:

The VERSION must be in this exact format: uppercase, and using double-quotes

With this in place, one can simply import the version string in the setup.py, and only ever have to
update it in the version.py file:

setup.py:

""" the bbp provenance server """

from provenance_server.version

import

VERSION as version # pylint: disable=W0611

""" provenance server version """

VERSION = "0.0.2.dev4"

from provenance_server

import version

...

http://twitter.github.com/effectivescala/
https://wiki.scala-lang.org/display/SW/Scaladoc
https://bbpteam.epfl.ch/project/spaces/display/%7Ecourcol
https://bbpteam.epfl.ch/project/spaces/display/%7Egevaert
https://bbpteam.epfl.ch/project/spaces/display/%7Epalacios
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Python%2BPackage%2Band%2BRepo%2BNaming

1.4. Python 19

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Setting up a new python repository

This paragraph describes how to set up a new python code repository following this project

organization and naming conventions .

install bbp-platform-dev package

this script snippet requires to have python-virtualenv package installed.

generate the repository structure

Now your repository is ready. You just need to fill the readme.txt, git add everything, commit
and review.

version= version

create a directory where you want to install the package

mkdir ~/dev-tools

cd ~/dev-tools

create a virtual environment in that directory

virtualenv venv

activate it (this should change your shell prompt) source

venv/bin/activate

install an older pip version that is compatible with our build tools pip

install pip==1.5.4

install the package

pip install -i http://bbpgb019.epfl.ch:9090/simple bbp-platform-dev -pre

letGs clone your empty gerrit repository (hbp-my-repo):

cd ~/mystuff

git clone ssh://bbpcode.epfl.ch/platform/hbp-my-repo

in the virtualenv you just created

generate_repository.py ~/mystuff/hbp-my-repo

https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Python%2BPackage%2Band%2BRepo%2BNaming
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Python%2BPackage%2Band%2BRepo%2BNaming
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Python#Python-packagesetup

20 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

1.4.3 Installation of Packages

The list of Python software maintained in by the platform team can be found

here .

Setup

In general, one should always use a virtual environment to install packages, along with pip. Make
sure that python-virtualenv is install on your machine:

1.4.4 Building

The majority of building happens in jenkins. To test whether your packages are being built prop-
erly, you can:

This will create and populate a ‘dist/’ directory.

1.4.5 Testing

Guidelines

After following the #Project Organization, the following holds true for testing:

1. Unit tests just test the sub_module.

2. Cross module just test multiple sub_module inside the same module. There are actually
unit tests too.

3. Integration module tests require resources that are not provided by the repository (like
access to a database for instance).

#in Ubuntu/Debian

sudo apt-get install python-virtualenv

#in RedHat

$ sudo yum install python-virtualenv

#Next, create a virtual environment:

$ virtualenv venv

#activate it

$ source venv/bin/activate

#install the package you want

$ pip install -i http://bbpgb019.epfl.ch:9090/simple/ task-sdk

make pypi-sdist

https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Tools
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Python#Python-ProjectOrganization

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

4. functional tests works on actual data, or take longer because of performances tests, or end
user like tests.

#1,#2 should not take more than ~10s per test, and should, on average take < 1 sec #3 should not
take in any case more than 5 min or are replayed by the continuous integration at each merge and for
each automated review. #4 can take more time and are replay periodically so that they don’t block
the build. #4 are not taken into account in the coverage to avoid “lazy” coverage (code is called
but not really tested).

Functional Tests

Note: If one is organizing their tests in directories, don’t forget to put ‘test’ somewhere in the
directory, so that nose knows that tests live there:

Test Driven Development

nosy https://pypi.python.org/pypi/nosy is a good tool to help your TDD development. It will
crawl your filesystem from a particular path and re-run specified tests when detecting modifica-
tions.

you just install nosy in your virtual environment, create a configuration file (setup.cfg is the de-
fault configuration file name) like this one:

and run:

since setup.cfg is in the extra_paths, tests will be re-run if you change the configuration file.

1.4.6 Packaging

Managing setup.py

Normal setup.py options apply, the python docs .

1.4. Python 21

[nosy]

Paths to check for changed files; changes cause nose to be run base_path

= ./

glob_patterns = *.py

exclude_patterns = *_flymake.*

extra_paths = setup.cfg

Command line options to pass to nose options

= -x

Command line arguments to pass to nose; e.g. part of test suite to run

tests = tests/unit_tests.py

nosy

https://pypi.python.org/pypi/nosy
http://docs.python.org/2/distutils/setupscript.html

22 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

To pass pylint, you may need to include:

An example setup.py is:

 .

1.4.7 Profiling

Algorithm

1. Start with builtin module

2. Use IPython (some tips)

3. Read some StackOverFlow

4. Ask Mike

1.4.8 Delivering and CI

Setup

Requirements

For the build and continuous integration systems to work, a number of requirements need to be
fulfilled. These are general conventions that exist in the Python community, but ones that are
required here. They include:

• All packages must use the setup.py package creation system, this comes with additional
requirements, like having a README.txt file

• If there are dependencies, packages must include a requirements.txt file that lists their de-
pendencies. All dependencies must be qualified by an exact version. Finally, a package that is
to be ‘released’ (to be described later) must only depend on packages that do not contain any
‘dev’ suffixes (also to be described later)

• All packages must conform to the Project Organization filesystem layout described later in
this document

• All packages must pass pylint and pep8 as well as tests to be suitable for inclusion in the
PyPi server, even if they are development packages.

• All packages must have a version attribute at the top level of the package. This should be
the same as the string used in the setup.py file. It is described in the ‘Versioning’ section of
this file.

• All packages must be included in their top level (ie: git root) Makefile, ensuring that test
coverage is correctly implemented. Read about how to set this up in the ‘Makefile setup’
portion of this document.

http://docs.python.org/2/library/profile.html
http://pynash.org/2013/03/06/timing-and-profiling.html
http://stackoverflow.com/questions/582336/how-can-you-profile-a-python-script

1.4. Python 23

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Versioning

The versioning convention that is required in for python packages closely follows PEP-0386 . It is

summarized as follows. The version number pseudo format is:

The dev suffix has special semantic meaning. Specifically, packages for with this suffix will be
created and pushed to a pypi repository, as long as they pass linting and tests. Once the ‘dev’ is
removed, only packages that go through the ‘release’ process (as described later) will be pushed to
the PyPi server. The last N is reserved for patches, and shouldn’t be included unless develop- ment
has advanced, but older code needs small amounts of patching.

note that ‘1.0’ > ‘1.0.devN’

Ignoring pylint and pep8 errors

“A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philoso-
phers and divines.” - Emerson

When it’s necessary, pylint and pep8 errors can be ignored in the following manor:

• pep8: append ‘ # nopep8’ to the end of the line (note, spacing is also important

• pylint: append ‘ # pylint: disable=errno,errno,errno’ to the end of the line

Please ignore errors sparingly, and document why if you’re doing it at the global or local scopes (not
per line)

Makefile setup

#modules that have tests
TEST_MODULES=rest_services/bbp_handlers/tests
provenance_services/bbp_provenance/tests tornado_swagger/tornado_swagger/tests
provenance_services/tests provenance_server/bbp_provenance_server/tests rest_server

#modules that are installable (ie: ones w/ setup.py)
INSTALL_MODULES=provenance_server provenance_services rest_server rest_services
tornado_swagger
#packages to cover
COVER_PACKAGES=bbp_provenance,bbp_provenance_server,bbp_circuit_utilities,bbp_rest_server
#documentation to build, separated by spaces
DOC_MODULES=tornado_swagger/doc
DO NOT MODIFY BELOW #####################
CI_REPO?=ssh://bbpcode.epfl.ch/platform/ContinuousIntegration.git
CI_DIR?=ContinuousIntegration
FETCH_CI :=

$(shell if
[! -d $(CI_DIR)]; then

git clone $(CI_REPO) $(CI_DIR) > /dev/null
;

fi;
echo $(CI_DIR))

include $(FETCH_CI)/python/common_makefile

http://www.python.org/dev/peps/pep-0386/

24 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

order for INSTALL_MODULES is important, if one package depends on another, they have to be
ordered based on dependency.

Additional Options

*IGNORE_LINT: This variable can be used to ignore certain files and directories for the pep8,
pylint and nosetest coverage directories. The format is very sensitive; it is one large regex used to
filter files. EX:

IGNORE_LINT=bbp_client/bbp_client/oidc/oauth2client|bbp_client/bbp_client/oidc/apiclient|bbp_clie
nt/bbp_ workflow-items

Makefile targets

The most important ones:

Target Description
devinstall as install but in development mode to make in-place source changes (like

‘pip -e .)

clean clean everything generated by make
pypi-sdist generate pip packages
pypi-clean clean generated pip packages
test run the unit and integration tests
func-
tional_test_all

run all the functional tests.

func-
tional_test
run

cross-package functional tests. There are also functional_test_<module>
targets for individual packages.

ver-
ify_changes

run pep8, pylint, unit and integration tests, and coverage on (to be)
commited changes

doc generate documentation
doc-clean clean generated documentation
help this help

1.4.9 Release Process

Goal

The goal of the release process is reliably create packaged code that can be installed through a
deployment system like pip. In order to ensure high quality of released code, this process is
automated as much as possible. This should mean that the created packages have a high degree of
uniformity.

Algorithm

Proposal

When a developer has changed the version.py file and updated the VERSION string, they would
then do a ‘git review’. This would kick off the the following algorithm:

1.4. Python 25

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

In this changeset, the only file that can have changed is the version file.

1. Check if other files have changed in this change set, fail if so

2. Check if there is already a tag’d version with our target tag name (based on the package
version.py), fail if so

3. Check that the version number is an increase on the previous one, fail if it’s not. Remember to
handle patches correctly.

4. Build the documentation with that name, and store it in a folder, and include it in the com-
mit so that it’s forever available, and push this to a documentation server

5. Tag the git commit with a tag name like what is used in the requirements.txt file, ex: ‘bbp-
provdmservices==0.0.2dev5’

Once the review happens, and the tag is accepted, there is a jenkins plan that uses the ‘SSH Agent’
option that has a key to push to the pypi repository, with the proper name, as created above

The dev suffix has special semantic meaning, refer to the ‘Versioning’ section.

1.4.10 Debugging

1.4.11 Documentation

Project documentation can be quickly and easily generated by using sphinx . Most code that is to
be accessed from outside of the platform team should have complete documentation of the
accessible APIs.

Use of Sphinx

Installation

Installation of sphinx is accomplished with pip:

(The sphinx-napoleon extension is used to autogenerate API documentation, more on this later)

http://sphinx-doc.org/
https://pypi.python.org/pypi/sphinxcontrib-napoleon

26 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Sphinx Documentation Layout

The raw documentation resides in a directory called ‘doc’ which is at the same level as the
setup.py or requirements file. For instance, for the tornado_swagger package, the directory
structure is this:

Setting Up Sphinx

Once the doc directory is created, and after you have sphinx installed, do the following:

And follow this guide on how to configure it:

• Separate source and build directories - yes

• autodoc - yes (this can be added later)

• viewcode - yes (this can be added later)

• Create Windows command file? - no

An example run is:

 .

Once this process is completed, one can look at the file generated in the ‘source/conf.py’ direc-
tory. The extensions agreed to above (autodoc and viewcode) should be in the ‘extensions’ list.
This file is normal python, and can import modules that are used in the autodoc, for instance.

It is recommended changing the theme to one that is much more usable:

To use the napoleon docstring formatting tool, add this to the ‘extensions’ list in the conf.py file:
‘sphinxcontrib.napoleon’.

Using Sphinx

Now it’s simply a matter of adding files to the ‘source’ directory, then adding that file to the
‘source/index.rst’ so that it is built and referenced.

To build the documentation simply:

A quick summary of some of the markup style is available here. A

cheat sheet is available here.

Note: Vertical whitespace is significant.

Having the version number autoupdated

By using the ‘source/conf.py’ mechanism, one can have the version number automatically in sync
with what the package is.

% make html

http://sphinx-doc.org/rest.html
https://github.com/ralsina/rst-cheatsheet

1.4. Python 27

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

For example, adding this to the conf.py:

along with the the version and release variables to existing module version:

should keep everything in sync.

1.4.12 Docstring standard

It was decided to use the Google standard for docstring documentation:

http://google-styleguide.googlecode.com/svn/trunk/pyguide.html?showone=Comments#Comments

This way, the ‘napoleon’ plugin can be used to extract relevant information and present it in the
documentation. It is up to the developer to document or not parameter, types and exceptions,
depending on the visibility of the API.

Rationale

• Pylint enforces in any case to provide a docstring.

• Raw ‘sphinx’ docstring are too dense to be used in the console

• ‘numpy’ style is nice but enforce type to be documented for return parameter and that is
not pythonic

• Google style is a little bit less clear than ‘numpy’ but does not enforce type

1.4.13 autodoc examples

With the autodoc plugin enabled (either at project start time, or through the config file, docu-
mentation can be extracted from the docstrings. To do this, one creates declarations like:

The full documentation is here.

Once documentation is created and maintained, it should be periodically built and released along
with the packages. This procedure has yet to be outlined.

The goal is to have the Python Continuous Integration system allow for full release control.

By having a release target, documentation will be generated, tagged and checked in, as well as pypi
packages being generated and pushed to the proper repository.

• Use virtualenv.

version = tornado_swagger. version

The full version, including alpha/beta/rc tags.

l t d i

http://google-styleguide.googlecode.com/svn/trunk/pyguide.html?showone=Comments&Comments
http://sphinx-doc.org/ext/autodoc.html
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Python%2BContinuous%2BIntegration
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/virtualenv

28 Chapter 1. Language Guidelines

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

29

Co-funded by
the European Union

CHAPTER

TWO

DELIVERING AND CI

2.1 1. Submit your code to the Gerrit repository.

For a general overview of using Gerrit, go

here .

2.2 2. Check the automated validation done in Jenkins.
At this point, a Jenkins build will automatically run and performs the following checks:

• style and static code analysis of the modified file (ie: pep8 and pylint for python) The thresh-
old is

0 errors

on

modified files. Configuration files for static code analysis are located in the plat-
form/ContinuousIntegration. You can submit a configuration change that will go through
the code review process and will change the build configuration automatically once it is
accepted.

• run the unit tests and the integration tests The threshold is

0 errors

on unit tests and integration tests.

• compute the code coverage The code coverage

should not be below the previous value . The threshold is a monotonic function, that will
increase until it reaches 90%. You can submit multiple patchset to fix fullfil the automated
validation (git commit –amend, git review -R).

2.3 3. Add reviewers
Once the automated review is done, you can add reviewer so that they can focus on the latest
patchset. Once a reviewer gives the +2, you can merge your changes through the “submit” but-
ton.

% git review

https://bbpteam.epfl.ch/project/spaces/display/INFRA/Gerrit%2Bworkflows

30 Chapter 2. Delivering and CI

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

2.4 4. Code merge.
Once the code is merged, a build is automatically run that will :

• run the unit tests and integration tests (The functional tests may run on a separate and
scheduled plan if they are too long).

• compute the code coverage, so that we have a consistent view of the evolution in Jenkins.

• execute style and static code analysis on the complete code base, so that we have a consis-
tent view of the evolution for legacy code.

Co-funded by
the European Union

CHAPTER

THREE

FURTHER RESOURCES

This section and subsections aims to contain all the information for Platform developers to be
setup.

3.1 Useful links
JIRA:

• Issue Tracking for the platform: https://bbpteam.epfl.ch/project/issues/browse/LBK

• Platform Support queue: https://bbpteam.epfl.ch/project/issues/browse/PHELP

• Infra service desk: https://bbpteam.epfl.ch/project/issues/servicedesk/customer/portal/3

• Continuous Integration for the platform: Jenkins - https://bbpcode.epfl.ch/ci/view/platform/

• Code review: Gerrit UI - https://bbpcode.epfl.ch/code

• Python repository: Devpi - http://bbpgb019.epfl.ch:9090/

• Java and Web artifact repository: Nexus - https://bbpteam.epfl.ch/repository/nexus/index.html#welcome

• Package repository: http://bbpteam.epfl.ch/repository/ubuntu/

• Platform sites/services - see Platform operations

• Gitolite - to be used for personal repos only - Version control service

• VM management: Foreman - https://bbpcfmgr.epfl.ch/users/login

• BBP Openstack: https://bbpopenstack.epfl.ch/

• Source code search and cross reference: Opengrok - https://bbpcode.epfl.ch/source/

• Slack: https://collaboratorytest.slack.com

• Asana : http://www.asana.com

3.2 Languages

• Python

• C++

• Javascript

• Java and Scala

31

https://bbpteam.epfl.ch/project/issues/browse/LBK
https://bbpteam.epfl.ch/project/issues/browse/PHELP
https://bbpteam.epfl.ch/project/issues/servicedesk/customer/portal/3
https://bbpcode.epfl.ch/ci/view/platform/
https://bbpcode.epfl.ch/code
https://bbpteam.epfl.ch/repository/nexus/index.html#welcome
http://bbpteam.epfl.ch/repository/ubuntu/
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Platform%2Boperations
https://bbpteam.epfl.ch/project/spaces/display/INFRA/Version%2Bcontrol%2Bservice
https://bbpcfmgr.epfl.ch/users/login
https://bbpopenstack.epfl.ch/
https://bbpcode.epfl.ch/source/
https://collaboratorytest.slack.com/
http://www.asana.com/
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Python
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/CPP
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Javascript
https://bbpteam.epfl.ch/project/spaces/display/BBPWFA/Java%2Band%2BScala

32 Chapter 3. Further Resources

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

33

Co-funded by
the European Union

CHAPTER

FOUR

MONITORING INFRASTRUCTURE

• Carlos Aguado, BBP Core Services

• Alexandre Beche, BBP Core Services

• Ben Morrice, BBP Core Services

IMPORTANT NOTE: The monitoring infrastructure described in the Monitoring Infrastructure,
Elastic Search, Graphite, Icinga, Log Management sections is only available for services running on
Blue Brain Infrastructure.

4.1 Goals

• Delivers a generic monitoring infrastructure to provide dashboards, reports, notification
system and analytic tools.

• Collect log data, metrics from various sensors and status from check and store them per-
sistently in a storage system (Elasticsearch proposed).

• Target all possible systems involved in the operation of the project: * Hardware fabric:
servers/clusters, network, storage, workstations, printers, help nodes * Applications: man-
agement applications, end-user support, file systems, application servers

• Provide dashboard with different scope: * Sysadmin (high level of details) * Manager
(overview)

• Provide reporting functionality

• Perform alerting based on recorded trends and complex analysis of series of events
(OLAP/CEP)

• Provide analytic tools to drill in the log.

• Provide a way of correlating everything (timestamps based)

• Arbitrary long-term archival of performance indicators: HPC performance indicators, ap-
plications usage, efficiency of consumable resources

4.2 Monitoring data

There are 3 kinds of monitoring data which are collected:

• Metrics for performance data

34 Chapter 4. Monitoring infrastructure

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

– timestamped key-value (“timestamp name value”)

– stored in fixed-size database (rrd style) where resolution is lost over time (persistent
storage at full resolution should be considered allowing other aggregation at full res-
olution for old data)

– No security concerns

• Status for “nagios” checks * json entry made of service name, host name, metadata, time of
status change and new status * Status are stored in nagios internals (can be retrieve by the
livestatus plugin) * Status change should be stored (allowing service, host, ... availability) *
No security concerns

• Logs * json entry made of metadata (host, cluster, application, ...) and free-text (log mes-
sage) * Stored in Elasticsearch persistently (data lifetime?) * Security should be considered
(how the logs are transported, who have access to them, which granularity of AuthZ)

In addition, an extra data type is generated by the monitoring system:

• Notifications * event generated when some condition are met (triggered) * Can be email or
RabbitMQ message

4.3 Framework
The monitoring infrastructure is organized in a well defined framework made of individual com-
ponents communicating together through standard interface. The following framework has the
advantage of being extensible and scalable since every component can be replaced with minimal
impact to the other.

Implementation

• Monitoring configuration deployed through puppet

4.3. Framework 35

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

36 Chapter 4. Monitoring infrastructure

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

37

Co-funded by
the European Union

CHAPTER

FIVE

ELASTIC SEARCH

Authors * Alexandre Beche, BBP Core Services

https://bbpteam.epfl.ch/project/spaces/display/INFRA/Elasticsearch

Goal

Elasticsearch is intended to index all the syslog messages of our infrastructure. In addition, it is now
opened to store any kind of json documents.

5.1 Components
Elasticsearch is a distributed document store built on top of Apache Lucene. From

the configuration file, 3 interesting options can be set:

• node.master: <true|false> Is the current node eligible as a master

• node.data: <true|false> Is the current node able to locally store data

• http.enabled: <true|false> Is the current node able to serve http query

These options allow to define the flavor of an ES node.

• Master node: Management node in the cluster responsible for shard allocation.

– node.master=true, node.data=false, http.enabled=false

• Data node: Storage node responsible for storing the shards

– node.master=false, node.data=true, http.enabled=false

• Client node: Proxy node to access the cluster through http

– node.master=false, node.data=false, http.enabled=true

• Standalone node: A node able to play any roles (Good solution for testing cluster, shouldn’t
be used in production)

– node.master=true, node.data=true, http.enabled=true

Visits 1 for more informations.

1 . http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-node.html

https://bbpteam.epfl.ch/project/spaces/display/INFRA/Elasticsearch
https://bbpteam.epfl.ch/project/spaces/pages/createpage.action?spaceKey=INFRA&title=1&linkCreation=true&fromPageId=18386574
https://bbpteam.epfl.ch/project/spaces/pages/createpage.action?spaceKey=INFRA&title=1&linkCreation=true&fromPageId=18386574
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-node.html

38 Chapter 5. Elastic Search

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

5.2 Cluster deployment and specifications
The production cluster is currently running on 5 dedicated OpenStack nodes. Scalability can be
ensure by scaling out data nodes or search node. Adding more master node would greatly im-
prove the reliability by removing this single point of failure (however, getting 2 masters is not an
option because of the split-brain problem).

While the master node is the most critical part of the cluster, it is the less resource-demanding, a
small VM without any external storage is enough. The data nodes first require external storage(ie.
100G Ceph volume) and a lot of memory for indexing the data. Finally, the search node usually
requires to run in-memory aggregations and sorting of the data returned by the data nodes.

 # CPU Memory Storage
Master 1 2 4G
Data 4 4 8G 100G
Search 1 4 8G

Cluster optimization

Number of shards and replicas is specific to any use-cases. The current configuration is 8 shards on
2 copies (1 primary + 1 replica)

Indexes backup and restore

Elasticsearch was designed with data locality in mind and shared storage should be avoided for
“online” data. However some other use case can justified to backup the data (Full crash in a clus- ter,
saving old data but removing them from the cluster).

5.2. Cluster deployment and specifications 39

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Warning: Elasticsearch can snapshot/restore indexes which are closely tight to the Lucene index
used. Better to backup the _source (ie. real data).

Cluster re-balancing after dropping a replica

40 Chapter 5. Elastic Search

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

41

Co-funded by
the European Union

CHAPTER

SIX

GRAPHITE

Chapter Authors * Carlos Aguado, BBP Core Services * Alexandre Beche, BBP Core Services

6.1 Goal
Graphite is intended to store timestamped data on the local file-system and query them through a
HTTP API. Because this is a fixed size database, retention policy should be defined at the begin- ning
and data get “compressed” (loose precision) over time. In the future we may think of storing
persistently the whole history at higher precision in another data store such as OpenTSDB.

6.2 Components
• carbon-relay: “Router” that redirect metrics to another carbon-relay instance or to a

carbon-cache.

• carbon-cache: Daemon that receives a stream of metrics (timestamped key-value pairs)
and periodically flush them to whisper.

• whisper-db: Flat-file database format for storing time-series data. Each file represents 1
metrics and has a fixed size.

• graphite-web: Django application running the web API which query the carbon-cache.

6.3 Standalone deployment
Because graphite is IO intensive, it has been decided to handle the whisper database in memory
with a periodic rsync for the persistent storage (see performance improvements below).

On each graphite node, a relay is listening for incoming metrics and forward them to 2 carbon-
cache process. Carbon cache is then flushing metrics to tmpfs, expose them through the query
port to the graphite web api which serve them to the end user a JSON results (see diagram be-
low).

42 Chapter 6. Graphite

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

6.4 Federated deployment
In order to scale graphite with the increasing number of metrics, a 5 nodes cluster has been setup. 1
node acting as a proxy for all incoming data and the federated view of the metrics tree, 4 data
nodes for the storage setup as for the standalone deployment. (see figure below).

6.5. Deployment configuration 43

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

6.5 Deployment configuration
All the machine are puppet managed but a few configuration are still applied manually (mainly
related to tmpfs configuration).

Puppet creates by default the folder for permanent sotrage (ie. /data/whisper.permanent)

6.5.1 creation of the ram disk

mkdir /data/whisper.ephemeral

mount -t tmpfs -o size=6g tmpfs /data/whisper.ephemeral/ ln

-s /data/whisper.ephemeral /data/whisper

6.5.2 Rsync script (including annotations)

vim /data/sync.sh

NOW=‘date “+%Y-%m-%dT%H:%M:%S” –date ‘now - 2 hours’‘

HOSTNAME=‘hostname |awk -F. ‘{print $1}’‘

curl -XPOST http://bbpsrvi47.epfl.ch:9200/annotations/annotate -d ‘

{

44 Chapter 6. Graphite

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

“@timestamp”: “’$NOW”’,

“title”: “rsync on ‘$HOSTNAME”’,

“text”: “rsync on ‘$HOSTNAME”’,

“tags”: “rsync-begin-‘$HOSTNAME”’

}’

rsync –archive /data/whisper.ephemeral/ /data/whisper.permanent

NOW=‘date “+%Y-%m-%dT%H:%M:%S” –date ‘now - 2 hours’‘

curl -XPOST http://bbpsrvi47.epfl.ch:9200/annotations/annotate -d ‘

{

“@timestamp”: “’$NOW”’,

“title”: “rsync on ‘$HOSTNAME”’,

“text”: “rsync on ‘$HOSTNAME”’,

“tags”: “rsync-end-‘$HOSTNAME”’

}’

6.5.3 Crontab

crontab -e

1(/16/31/46) * * * * sh /data/sync.sh >/dev/null 2>&1

6.6 Relay rules
In order to be able to scale the cluster as the data store grows, it has been decided to route met-
rics based on rules. This method is supposed to easy the cluster re-balancing problem.

Configuration removed

6.6.1 Migration procedure

To move data across the nodes, the procedure should be the following:

1. Disable puppet on the proxy node

2. Stop the collectd process which consume from rabbitmq

3. Stop the proxy relay (incoming metrics should stack into the broker)

4. Define the new rules into the proxy node (through puppet)

5. SCopy directory owning the metrics to the new host

6. Restart the relay, restart collectd and re-enable puppet (Backlog from RabbitMQ will be
consumed)

No data loss should be observed

6.7. Performance measurement 45

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

6.7 Performance measurement

• At 12:00, whisper DB has been put in memory, we can see a good impact on the CPU IO
waits and Load average of the machine.

• Currently our system is running without any problem with 110k metrics / minutes without
any impact on the update time / metrics

6.8 Data retention policy
Since graphite is also used today as long term storage, we have a need of having:

46 Chapter 6. Graphite

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

• high resolution for fresh data

• reasonably long term history of aggregated data

The following default pattern has been implemented:

• 10s for 2 hours

• 60s for 2 days

• 5 minutes for 3 months

• 30 minutes for 6 months

• 1 hour for 2 years

This policy (can be overridden per-serie basis) represent 872 kB (852 kiB).

Given that we today have roughly 60k metrics, our storage capacity (and memory size) should be
48.8GiB.

6.9 How to bring new data
While new data can be added through the graphite UDP collector,this method is not recom-
mendedand the associated port will be only opened for the RabbitMQ machine. Instead user
should publish to the RabbitMQ server directly, this allow every monitoring probes to be storage-
agnostic. Moreover, to ease the RabbitMQ interaction, it is highly recommended to use the Col-
lectd daemon to send monitoring data (daemon being already installed on all the machine).

To decouple monitoring for streamline activity, we recommend not to instrument your applica-
tion directly to send monitoring data but rather exporting its state through well-known API.

6.9.1 Write your own probes

Collectd offers a wide range of probes but give the ability of user to create its
own. The recommended way of doing is by using the collectd-python binding (
https://collectd.org/documentation/manpages/collectd-python.5.shtml). Below a skeleton of
the python probes.

https://collectd.org/documentation/manpages/collectd-python.5.shtml

6.9. How to bring new data 47

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

6.9.2 Configure Collectd to send data into rabbitmq

Loads the Python plugin Plugin. Unlike most other LoadPlugin lines, this one

#should be a block containing the line “Globals true”. This will cause collectd

#to export the name of all objects in the Python interpreter for all plugins to

#see. If you don’t do this or your platform does not support it, the embedded

#interpreter will start anyway but you won’t be able to load certain Python

#modules, e.g. “time”.

<LoadPlugin “python”>

Globals true

</LoadPlugin>

Register

#import
the collectd library
import
collectd
Define a variable which will be overridden by the configuration file
MY_VAR =
“default”
Define the configure callback to read data from configuration file
def configure_callback(conf):

”“”Received configuration information”“”
global MY_VAR
for

node in conf.children:
if

node.key ==
‘MyVar’:

MY_VAR = node.values[0]
Define a read callback which will send data through collectd
def read_callback():
Send a single value
val = collectd.Values()
val.host = <Service Name> # Workaround to not mess with system metrics val.type
=

‘gauge’
val.type_instance =
‘my-key’
val.values = [my_value]

Finally register
this
2
callbacks to collectd
collectd.register_config(configure_callback)
collectd.register_read(read_callback)

48 Chapter 6. Graphite

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

<Plugin “python”>

Where your module sit on the FS

ModulePath “/path/to/module”

Name of the python file

Import “collectd_plugin”

Configuration of a given plugin

<Module “collectd_plugin”>

MyVar “whatever”

</Module>

</Plugin>

Configure the amqp plugin to send data directly into RabbitMQ

LoadPlugin amqp

<Plugin “amqp”>

<Publish “rabbitmq_publisher”>

Host “<rabbitmq_host>”

Port “<rabbitmq_port>”

VHost “<rabbitmq_vhost>”

User “<rabbitmq_user>”

Password “<rabbitmq_password>”

Exchange “<rabbitmq_exchange>”

RoutingKey “<rabbitmq_routingkey>”

</Publish>

</Plugin>

Then you can start the collectd daemon using the following command

Test a read loop and exit

collectd -C my-collectd.conf -T

#Execute collectd in the foreground

collectd -C my-collectd.conf -f

49

Co-funded by
the European Union

CHAPTER

SEVEN

ICINGA

Chapter Authors * Alexandre Beche, BBP Core Services

Icinga (nagios killer) is a scalable and extensible monitoring system which checks the availability of
your resources and notifies users of outages.

• Infrastructure

• Creating your own probes

• Icinga Event Stream

• Event Collector

• Availability API

– Retrieving all the Status Changes for a service

– Availability computation

– Reliability computation

7.1 Infrastructure

 preprod devel / staging
server bbpmon02.epfl.ch bbpmon03.epfl.ch
api https://bbpmonitoring.epfl.ch/api http://bbpmonitoring.epfl.ch/state
rabbitmq exchange icinga.notification.preprod icinga.notification.staging

7.2 Creating your own probes
Icinga probe must follow the nagios standard.

Plugin Overview

Scripts and executables must do two things in order to function as Nagios plugins:

• Exit with one of several possible return values

• Return at least one line of text output to STDOUT

The inner workings of your plugin are unimportant to Nagios. Your plugin could check the status of
a TCP port, run a database query, check disk free space, or do whatever else it needs to check
something. The details will depend on what needs to be checked - that’s up to you.

https://bbpteam.epfl.ch/project/spaces/display/INFRA/Icinga#Icinga-Infrastructure
https://bbpteam.epfl.ch/project/spaces/display/INFRA/Icinga#Icinga-Creatingyourownprobes
https://bbpteam.epfl.ch/project/spaces/display/INFRA/Icinga#Icinga-IcingaEventStream
https://bbpteam.epfl.ch/project/spaces/display/INFRA/Icinga#Icinga-EventCollector
https://bbpteam.epfl.ch/project/spaces/display/INFRA/Icinga#Icinga-AvailabilityAPI
https://bbpteam.epfl.ch/project/spaces/display/INFRA/Icinga#Icinga-RetrievingalltheStatusChangesforaservice
https://bbpteam.epfl.ch/project/spaces/display/INFRA/Icinga#Icinga-Availabilitycomputation
https://bbpteam.epfl.ch/project/spaces/display/INFRA/Icinga#Icinga-Reliabilitycomputation
https://bbpmonitoring.epfl.ch/api
http://bbpmonitoring.epfl.ch/state

50 Chapter 7. Icinga

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Return Code

Plugin return code Service state
0 OK
1 Warning
2 Critical
3 Unknown

Performance data

While nagios plugins API define a way of giving performance data, our implementation does not
takes them into consideration. All performance metrics must be transfered through collectd as
explained in

Graphite#Howtobringnewdata

Packaging & Deployment

BBP probes should be package as RPM and follow the naming convention nagios-plugins-bbp-*.

An example specfile can be found

ssh://bbpcode.epfl.ch/infra/monitoring.git

under

plugins/nagios/

The “client side” configuration of those probes should be puppet managed as in the following
example:

Installing monitoring probes for redis

package { ‘nagios-plugins-bbp-redis’:

ensure => present,

}

$cmd = ‘/usr/lib64/nagios/plugins/check_redis -w 128 -c 512 -t 1000’

$libdir = ‘/etc/nrpe.d’

icinga2::checkplugin { ‘nrpe-check_redis.cfg’:

checkplugin_file_distribution_method => ‘inline’,

checkplugin_libdir => $libdir,

checkplugin_source_inline => “command[check_redis]=${cmd}”,

}

}

At this stage, your probes is ready to be checked by an Icinga server. To register in our central
server, please contact core services.

7.3 Icinga Event Stream
The Icinga Event Stream (IES) has been developed to keep track of all the status changes in Icinga. To
do so, a notification script has been hooked in icinga and report all event to a RabbitMQ ex-

https://bbpteam.epfl.ch/project/spaces/display/INFRA/Graphite#Graphite-Howtobringnewdata

7.4. Event Collector 51

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

change. Anyone is free to listen from this message queue and react on specific event.

Each event consist of a JSON payload containing the following entries: notificationtype, host,
service, timestamp, state, description

{“description”: “DISK CRITICAL - free space: / 33669 MB (87% inode=98%); /dev/shm 3935 MB
(100% inode=99%); /data 89334 MB (93% inode=99%); /data/whisper.ephemeral 24 MB (0%

inode=97%);”, “service”: “disk”, “state”: “CRITICAL”, “timestamp”: “2015-04-08 09:40:38 +0200”,
“notificationtype”: “CUSTOM”, “host”: “bbpcb020.epfl.ch”}

Connection details to the message queue:

host = bbpsrvi44.epfl.ch port = 5672 vhost = /icinga user = <ask-it> pass = <ask-it> exchange

= icinganotification

7.4 Event Collector
The event collector has been designed to keep the service state history. It is designed in such a
way that different data sources can be easily added and data-store (elasticsearch today) easily
replaceable.

The logic is quite basic, the event collector is listening on the message queue for all the new
events and add them to the statuschange index if 1) most recent know event for the couple
host/service 2) status change since the latest record (removed duplicated).

The output field is populated only on problem (never when the service is recovering)

Example of an event record in ElasticSearch

{

“_index”: “availability”,

“_type”: “statuschange”,

“_id”: “AUyUCm-ZJNnjUIBrrq0I”,

“_score”: null,

“_source”: {

“output”: “DISK CRITICAL - free space: / 33669 MB (87% inode=98%): /dev/shm 3935 MB
(100% inode=99%): /data 89334 MB (93% inode=99%): /data/whisper.ephemeral 24 MB (0%
inode=97%):”,

“host”: “bbpcb020.epfl.ch”,

“current_state”: 2,

“state_change”: “2015-04-07T15:20:47”,

“service”: “disk”}

}

Querying this history index should allow to recompute the history of a service.

52 Chapter 7. Icinga

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

7.5 Availability API
All status change are recorded into an ElasticSearch index and exposed through a well-defined
HTTP API. The following opretations are available in the API.

7.5.1 Retrieving all the Status Changes for a service

Endpoint:

POST /api/getStatusChanges

Description:

This endpoint allow retrieving all the status changes (with/without including the initial state) for a
given (hostname,service) tuple in a given time-window.

Parameters:

• hostname

: Hostname where the service is running

• service

: Service name for which to compute availability

• fromDate : Retrieve status changes from this date (default: now-1d)

• toDate

: Retrieve status changes to this date (default: now)

• initial

: Include the state just before the from-toDate interval

• order

: Order the data by timestamp asc / desc

Examples:

curl -k -H ‘Content-Type: Application/json’ -XPOST https://bbpmonitoring.epfl.ch/api/getStatusChanges

-d ‘{“hostname”: “bbpmon02”, “service”: “icinga2”}’

{“data”: [{“state_change”: “2015-12-10T03:11:01”, “foreman_environment”: “preprod”, “de-
scription”: “PROCS OK: 1 process with command name icinga2”, “service”: “icinga2”, “fore-
man_hostgroup”: “monitoring/icinga2”, “hostname”: “bbpmon02”, “current_state”: 0, “fqdn”:
“bbpmon02.epfl.ch”, “notificationtype”: “RECOVERY”}], “params”: {“toDate”: “2015-12-19”, “ini-

tial”: true, “service”: “icinga2”, “hostname”: “bbpmon02”, “fromDate”: “2015-12-14”, “order”:
“asc”}}

7.5.2 Availability computation

Endpoint:

POST /api/getAvailability

Description:

https://bbpmonitoring.epfl.ch/api/getStatusChanges

7.5. Availability API 53

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

This endpoint allow retrieving binned availability for a given (hostname,service) tuple in a given
time-window as well as an overall numerical availability (! based on downsampled data !)

Parameters:

• hostname

: Hostname where the service is running

• service

: Service name for which to compute availability

• services

: Bulk availability computation for hostname-service collection

• groups

: Allow grouping services together

• fromDate

: Retrieve status changes from this date (default: now-5d)

• toDate

: Retrieve status changes to this date (default: now)

• binSize

: Size of the bin to group the data (default: 1d)

• binFormat

: Format of the bin to be returned (timestamp by default)

• binOrder

: Ordering of the bins

Examples:

curl -k -H ‘Content-Type: Application/json’ -XPOST https://bbpmonitoring.epfl.ch/api/getAvailability
-d ‘{“hostname”: “bbpmon02”, “service”: “icinga2”}’
{“data”: {“bbpmon02-icinga2”: [”ok”, “ok”, “warning”, “ok”, “ok”]}, “avails”: {“bbpmon02-icinga2”:
90}, “params”: {“toDate”: “2015-12-19”, “hostname”: “bbpmon02”, “fromDate”: “2015-12-
14”, “service”: “icinga2”, “binSize”: “1d”}, “bins”: [1450393200, 1450306800, 1450220400,
1450134000, 1450047600]}
curl -k -H ‘Content-Type: Application/json’ -XPOST https://bbpmonitoring.epfl.ch/api/getAvailability
-d ‘{“hostname”: “bbpmon02”, “service”: “icinga2”, “binFormat”: “%a. %d”}’
{“data”: {“bbpmon02-icinga2”: [”ok”, “ok”, “warning”, “ok”, “ok”]}, “avails”: {“bbpmon02-icinga2”:
90}, “params”: {“toDate”: “2015-12-19”, “hostname”: “bbpmon02”, “fromDate”: “2015-12-14”,
“service”: “icinga2”, “binSize”: “1d”}, “bins”: [”Fri. 18”, “Thu. 17”, “Wed. 16”, “Tue. 15”, “Mon. 14”]}

7.5.3 Reliability computation

Endpoint:

POST /api/getMTMetrics

https://bbpmonitoring.epfl.ch/api/getAvailability
https://bbpmonitoring.epfl.ch/api/getAvailability

54 Chapter 7. Icinga

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Description:

This endpoint allow retrieving the Mean Time to Recover (MTTR*), the Mean Time to Failure
(MTTF*) and the Mean Time Between Failure (MTBF*) for a given service.

Parameters:

• hostname

: Hostname where the service is running

• service

: Service name for which to compute availability

• fromDate

: Retrieve status changes from this date (default: now-5d)

• toDate

: Retrieve status changes to this date (default: now)

• ignoreWarning : Warning are considered as a normal state if set (Critical Otherwise)

Examples:

curl -k -H ‘Content-Type: Application/json’ -XPOST https://bbpmonitoring.epfl.ch/api/getMTMetrics

-d ‘{“hostname”: “bbpmon02”, “service”: “icinga2”}’

{“params”: {“toDate”: “2015-12-19”, “initial”: true, “service”: “icinga2”, “ignoreWarning”: false,
“hostname”: “bbpmon02”, “fromDate”: “2015-12-14”}, “data”: {“mttr”: “7m 59s”, “mtbf”: “1h 12m
0s”, “mttf”: “3d 3h 38m 1s”}}

*Understanding reliability metrics:

https://bbpmonitoring.epfl.ch/api/getMTMetrics

55

Co-funded by
the European Union

CHAPTER

EIGHT

LOG MANAGEMENT

Authors * Alexandre Beche, BBP Core Services

8.1 How to index logs
Making the logs searchable from a central place is a 2 steps operation.

1. Shipping the logs

2. Indexing the logs

8.1.1 Shipping the log

Because log indexing is a cpu intensive operation which could potentially disturb the main activ- ity
of a server, log file are not locally indexed but rather sent to a specific node dedicated to this task
(ie. the indexer). In our infrastructure, log stash is used to perform this operation and con-
figuration is 100% puppet-managed. To start shipping logs, the following puppet code should be
added:

• Many input files may be given

• path in the input file support wildcards

• Type is an arbitrary string that define the type of your logs

• tags (optional) allow you to annotate your logs

• the following team name are supported: coreservices, hpc, neuroinformatics, neuro-
robotics and platform

include ::env::logstash
env::logstash::input_file {
‘shipper-input’:
path => [<path>], # required
type => <type>, # required
tags => [<list of tags>], # optional

}
env::logstash::output_redis {
‘shipper-output’:
redis_key =>

‘<team-
name>’,
}

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

The following example show how one can ship nginx access logs and tagging them

As a results, logs will reach the search engine (Elasticsearch) without being indexed.

8.1.2 Indexing the log

By default, logs are not indexed. That means free-text search is possible but answering question like
“return all logs which were generated by anonymous user and return 404” is not.

Indexing is the operation which consist to interpret :

56 Chapter 8. Log Management

include ::env::logstash
env::logstash::input_file {
‘shipper-input-nginx-error’:
path => [
‘/var/log/nginx/access.log’
],
type =>

‘nginx’,
tags => [$::environment,

‘access’]
}
env::logstash::output_redis {
‘shipper-output’:
redis_host =>

‘bbpcb023.epfl.ch’,
redis_key =>
‘coreservices’,
}

{
”message”:

“128.178.97.66 - username [13/Aug/2015:10:42:26 +0200] “GET /tr HTTP/1.1” 401 194 “-”
“Mozilla/5.0
(X11; Ubuntu; Linux x86_64; rv:29.0) Gecko/20100101
Firefox/29.0””,
”@version”:

“1”,
”@timestamp”:

“2015-08-13T08:42:27.118Z”, !!! Insertion timestamp by
default, not the log date !!!
”type”:

“nginx”,
”tags”: [

“devel”,
“access”,
“coreservices”
],
”host”:

“bbpch015”,
”path”:
“/var/log/nginx/access.log”
}

8.1. How to index logs 57

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

into:

This operation requires a good knowledge of the syntax of the logs to be indexed. To do this op-
eration Grok filters are used (https://www.elastic.co/guide/en/logstash/current/plugins-filters-
grok.html).

Grok pattern can be first tested in (http://grokconstructor.appspot.com)

Example:

Line to be tested:
128.178.97.66

• username [13/Aug/2015:10:42:26
+0200]
“GET /tr HTTP/1.1” 401
194 “-“
“Mozilla/5.0 (X11; Ubuntu; Linux x86_64;rv:29.0) Gecko/20100101 Firefox/29.0”
#Pattern to be applied:
^%{IPORHOST:clientip} (?:-|%{USER:ident}) (?:-|%{USER:auth}) \[%{HTTP-
DATE:timestamp}\] \”(?:%{WORD:verb} %{NOTSPACE:request}(?:
HTTP/%{NUMBER:httpversion})?|-)” %{NUMBER:response} (?:-|%{NUMBER:bytes})
“%{NOTSPACE:referrer}” %{QS:UserAgent}

When the pattern match the log line, indexing operation can be tested as part of the log shipping
workflow by adding:

Logs are by default indexed based on the insertion timestamp, not the “log date”. this behavior

{

ip:

128.178.97.66,

user: username,
timestamp:
13/Aug/2015:10:42:26

+0200

message =
“128.178.97.66 - username [13/Aug/2015:10:42:26 +0200] “GET /tr HTTP/1.1” 401 194 “-”
“Mozilla/5.0
(X11; Ubuntu; Linux x86_64;rv:29.0) Gecko/20100101
Firefox/29.0”“

env::logstash::grok_filter {
‘grok_filter_test’:
type =>

‘nginx’,
pattern =>

‘^%{IPORHOST:clientip} (?:-|%{USER:ident}) (?:-|%{USER:auth})
\[%{HTTPDATE:timestamp}\] \”(?:%{WORD:verb} %{NOTSPACE:request}(?:
HTTP/%{NUMBER:httpversion})?|-)” %{NUMBER:response} (?:-|%{NUMBER:bytes})
“%{NOTSPACE:referrer}” %{QS:UserAgent}’,
}

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
http://grokconstructor.appspot.com/

58 Chapter 8. Log Management

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

may be overwritten by knowing the field / format containing the log date. In the example below, we
want to index the logs based on the “timestamp” field of the log line.

If everything goes well, your logfile is now indexed as follow:

env::logstash::grok_filter {
‘grok_filter_test’:

type =>
‘nginx’,

pattern =>
‘^%{IPORHOST:clientip} (?:-|%{USER:ident}) (?:-|%{USER:auth})
\[%{HTTPDATE:timestamp}\] \”(?:%{WORD:verb} %{NOTSPACE:request}(?:
HTTP/%{NUMBER:httpversion})?|-)” %{NUMBER:response} (?:-|%{NUMBER:bytes})
“%{NOTSPACE:referrer}” %{QS:UserAgent}’,

datefield =>
‘timestamp’,

dateformat =>
‘dd/MMM/YYYY:HH:mm:ss Z’,
}

8.2. How to visualize indexed logs 59

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

8.2 How to visualize indexed logs
Indexed logs can be queried / visualise from the test kibana interface.

http://bbpcb023.epfl.ch:5601

{
”message”:

“128.178.97.66 - fakeuser [13/Aug/2015:14:14:03 +0200] “GET /tr HTTP/1.1” 401 194 “-”
“Mozilla/5.0
(X11; Ubuntu; Linux x86_64; rv:29.0) Gecko/20100101
Firefox/29.0””,
”@version”:

“1”,
”@timestamp”:

“2015-08-13T12:19:00.964Z”,
”type”:

“nginx”,
”tags”: [

“devel”,
“access”,
“coreservices”
],
”host”:

“bbpch015”,
”path”:
“/var/log/nginx/access.log”,
”clientip”:
“128.178.97.66”,
”auth”:

“fakeuser”,
”timestamp”:
“13/Aug/2015:14:14:03 +0200”,
”verb”:

“GET”,
”request”:

“/tr”,
”httpversion”:
“1.1”,
”response”:

“401”,
”bytes”:

“194”,
”referrer”:

“-”,
”UserAgent”:

“”Mozilla/5.0
(X11; Ubuntu; Linux x86_64; rv:29.0) Gecko/20100101
Firefox/29.0”“
}

8.2. How to visualize indexed logs 59

Co-funded by
the European Union

BBP Standard Development and Deployment Process, Release 0.1

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 97 of 147

Annex D – BBP Python Development Standards

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 98 of 147

Blue Brain Project - Python Best Practices

Set of best practices to follow for current and future Python software within the Blue Brain Project.

Author: Valentin Hänel <valentin.haenel@epfl.ch>

Date: Apr 16, 2012

Version: 1.0

CheckoutURL: https://bbpteam.epfl.ch/svn/user/haenel/bbp-python-best-practices

SVN Revision : 3295

git hash : 3332bc71d67bee3612f2fbd20595380062ca24fb

mailto:valentin.haenel@epfl.ch
https://bbpteam.epfl.ch/svn/user/haenel/bbp-python-best-practices

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 99 of 147

Table of Contents
1 Introduction 3

2 The Ipython Interpreter 3

3 Style Guide and Conventions 4

3.1 Style consistency 4

3.2 Code lay-out 5

3.3 Imports 6

3.4 Whitespace in Expressions and Statements 8

3.5 Naming Conventions 10

3.6 Exceptions 11

4 Static Checking 12

4.1 Comparison 13

4.2 Example 13

5 Testing 14

5.1 Unitest 15

5.2 Nosetest 16

5.3 Numpy Testing 16

6 Documentation 17

6.1 Docstrings 17

6.2 Numpy Docstrings 18

6.3 File Header 19

6.4 Automatic API Generation 19

7 Writing the setup.py file 19

8 Versioning 20

9 Obtaining Python Packages 21

9.1 Python on Linux 21

9.2 Python on Windows and Mac 22

10 Wrapping Native code 22

11 Performance Considerations 23

11.1 Define "Too Slow" 23

11.2 Identifying the Bottlenecks 23

11.3 Avoiding Premature Optimization 24

11.4 Consider time for Development 24

12 Target Version 24

12.1 Python 2.x 24

12.2 Python 3.x 24

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 100 of 147

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 101 of 147

1 Introduction
This document collects the recommended best practices for programming in Python at the Blue Brain
Project. This document contains both a coding standard, based largely on the existing, published style guide
for Python code (PEP8 3), as well as additional recommendations for static checking, future proofing code,
writing documentation, automated testing and packaging. The format of presentation is based loosely on
the existing BlueBrain C/C++ coding standard.

This document aims to be succinct and self contained but also provides links to additional material for the
interested readers where appropriate.

If you really have no time to read this document, you should at least look at "10 Ways to let People know
you'r a bad Python Programmer 1". Besides being quite informative, its actually also quite funny.

As a side note, the design choices and style guidelines for Python are conveniently summarised in 19
aphorisms which are accessible by typing import this in any interactive Python interpreter:

2 The Ipython Interpreter
The ipython 2 interpreter is the de-facto preferred interpreter for interactive work with Python. It has a
plethora of extremely useful features which make working with Python interactively much more convenient.
Since an in-depth description of Ipython is outside the scope of this document, we highlight three substantial
productivity boosters.

• History System -- Akin to any UNIX shell, Ipython has a sophisticated history mechanism which can
be used to recall previous commands.

• Tab Completion -- Again, like a UNIX shell, Ipython has a tab-completion system. This will complete
Python keywords and built-in functions (e.g. try, list and dict), variables defined within the
current scope and also executable system commands.

• Easy Acces to Help -- Using the question mark (?) after a function or method will display available
help. This is usually much faster than using dir() since it is less to type and can be appended to
the command line:

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

http://www.python.org/dev/peps/pep-0008/
http://artificialcode.blogspot.com/2009/08/10-ways-to-let-people-know-your-bad.html
http://artificialcode.blogspot.com/2009/08/10-ways-to-let-people-know-your-bad.html
http://ipython.org/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 102 of 147

For more information consult the website.

For more information on how to obtain Ipython, see the section on Obtaining Python Packages

3 Style Guide and Conventions
Code should be formatted according to the Python Enhancement Proposal #8: PEP8 3. It contains
recommendations about:

• Style consistency

• Code lay-out

• imports

• Whitespace in Expressions and Statements

• Comments

• Documentation Strings

• Naming Conventions

• Programming Recommendations

Since this document is quite long, we summarize the most important aspects in the following sections and
add some additional recommendations.

3.1 Style consistency

3.1.1 Prefer a consistent style
If you are modifying code that conforms to different recommendation than PEP8 3 don't mix them. Reuse
the existing style as much as possible.

For example, the standard Python naming conventions (see section on Naming Conventions) dictate that
functions should use the style lower_case_with_underscores. However, due to the influence of Java and
C++ many libraries use the style mixedCaseFunctions. In this case it is recommended to continue using
this style, since mixing styles will be even more ugly than a non standard style:

>>> list?

Type: type
Base Class: <type 'type'>
String Form: <type 'list'>
Namespace: Python builtin
Docstring:

list() -> new empty list
list(iterable) -> new list initialized from iterable's items

class SpamHamAndEggs(object):

def exportFooFromBar(self):

pass

BAD PRACTICE: MIXING NAMING STYLE

def export_bar_from_foo(self):
pass

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 103 of 147

3.1 Code lay-out

3.1.1 Never mix tabs and spaces and use four(4) spaces for indentation

In python, whitespace matters. Mixing tabs and spaces will cause the interpreter to abort. According to
PEP8 3 you should use 4 spaces for each level of indentation.

Also It's a good idea to Configure your editor to adhere to the above. For example by automatically inserting
4 spaces instead of a tab character when you type the TAB key.

The exception here is if you are working with code, that either uses 8 spaces for each level of indentation
or tabs. In this case, adhere to the existing style.

3.1.2 Limit the line length to 79 characters and split lines logically
Although many people argue that our monitors are large enough these days to support a line length of
>79 characters, the PEP8 3 strongly argues for the old 79 character limit which originates from the use of
old UNIX terminals, which were indeed limited to 80 characters. The PEP8 3 argues that default wrapping
on such devices makes it more difficult to read. The argument that such devices are no longer prevalent, is
invalid if one considers the recent advances of small form factor portables such as netbooks, ultrabooks
and 12" laptops.

If you must split code across lines, use Python's implied line continuation inside parentheses, brackets and
braces. Here is the example for the PEP8 3:

Depending on your personal preference you could also use a backslash (\) to perform line continuation,
preferably after the operator. The example above could thus be transformed as:

for i in [1,2,3]:

first level indentation

if i < 3:

second level indentation

print "less than three"

class Rectangle(Blob):

def init (self, width, height,

color='black', emphasis=None, highlight=0):
if (width == 0 and height == 0 and

color == 'red' and emphasis == 'strong' or
highlight > 100):
raise ValueError("sorry, you lose")

if width == 0 and height == 0 and (color == 'red' or

emphasis is None):
raise ValueError("I don't think so -- values are %s, %s" %

(width, height))

class Rectangle(Blob):

def init (self, width, height,

color='black', emphasis=None, highlight=0):

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 104 of 147

3.1.2 Use the blank lines to separate code
• Separate top-level function and class definitions with two blank lines.

• Method definitions inside a class are separated by a single blank line.

• Extra blank lines may be used (sparingly) to separate groups of related functions.

3.1.3 Prefer a portable she-bang

The rational is, that the Python interpreter may be in a location other than /usr/bin or there may even be
multiple interpreters present on the system Using env (under the assumption that it is correctly configured)
allows you to invoke the preferred interpreter for the system.

3.1.4 Prefer UTF-8 encoding

Here you can use the encoding magic:

This allows you to use correctly encoded UTF-* Characters, for example äöü or èéô in your source code,
for example when documenting the names of the authors.

3.3 Imports

3.3.1 Place all imports at the top of the file
Unless you have a very good reason not too (for example if you have optional dependencies, see below).
Group the imports in the following order system imports, third-party library imports and local application
imports:

if width == 0 and \

height == 0 and \
color == 'red' and \

emphasis == 'strong' or \
highlight > 100:

raise ValueError("sorry, you lose")

if width == 0 and height == 0 and \

(color == 'red' or emphasis is None):
raise ValueError("I don't think so -- values are %s, %s" %

(width, height))

Blob. init (self, width, height,
color, emphasis, highlight)

#!/usr/bin/env python

#!/usr/bin/python

<-- CORRECT

<-- WRONG

-*- coding: utf-8 -*-

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 105 of 147

#!/usr/bin/env python

-*- coding: utf-8 -*-

import os
import sys

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 106 of 147

One very good reason are optional dependencies. In this case it may sometimes be useful to place
imports at the top of the function or method that requires them, for example:

This does not inpact performance, since imports are already cached. Meaning: in case the
optional_lib has already been imported, it will not be imported again. This also means that you can't
use import to re-import a module, instead use reload.

A second good reason is the import of functions from a module only within a function. In the following
example the functions cos and sin are only used in in the function cotan:

3.3.2 Avoid relative imports
Relative imports for intra-package imports are highly discouraged. Always use the absolute package path
for all imports. Relative imports are hard to read and will easily break when refactoring. The following is a
canonical example

Imagine you have the following package structure:

Where mod1.py contains the relative import, using the .. notation:

And mod10.py contains the absolute import:

import numpy
import scipy

import bbp

def optional_func():
import optional_lib
lib.compute()

def cotan(theta):

from numpy import cos, sin

return cos(theta)/sin(theta)

package
+-- init .py
+-- sub1

+-- init .py
+-- mod1.py
+-- mod10.py

+-- sub2
+-- init .py
+-- mod2.py

from ..sub2 import mod2 as mod

print mod.func()

from package.sub2 import mod2 as mod

print mod.func()

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 107 of 147

And mod2.py contains the code to be executed:

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 108 of 147

Where both do actually work:

3.3.1 Avoid using the star import

UNLESS you are working in the interactive interpreter. (c.f. Namespaces are one honking great idea --
let's do more of those!)

The rational is that importing everything from a name-space pollutes the name-space, may take a long
time to load, may overwrite existing definitions and makes it hard to trace the origin of imported names.

There are two recommended ways to import:

Or alternatively:

There is also a syntax using the as keyword:

But for the BBP-SDK this is not so useful, since it has a short name already, and shortening it to a single
character violates the rule about not naming variables with single letters (see also: the section on naming
Variables). If the SDK had a different name, for example blue_brain_project_sdk, this would be more useful:

3.4 Whitespace in Expressions and Statements

3.4.1 Always surround binary operators with a single space on either side

assignment (=):

augmented assignment (+= -= *= /= %= **= <<= >>= &= ^= |=):

def func():

return "func call"

>>> import package.sub1.mod1

func call
>>> import package.sub1.mod10

func call

from bbp import *

from bbp import Neuron
n = Neuron()

import bbp

n = bbp.Neuron()

import bbp as b

n = b.Neuron()

import blue_brain_project_sdk as bbp

n = bbp.Neuron()

x = y

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 109 of 147

comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is not):

Booleans (and, or, not):

The exception here is the power operator (**), which is usually not surrounded by spaces:

3.4.2 But do not use a space when defining keyword arguments

3.4.3 Use spaces around arithmetic operators
The following formatting is recommended by PEP8 3, but maybe violated for sake of readability:

Permissible violation:

x += 1
x >>= 2
x ^= x

x == y
x < y < z
x in numbers
x is not y

x and y
x or y
not x

x = y**2

def fun(x, y, size=23, initial_pos=(0, 0)):
pass

CORRECT

i = i + 1
submitted += 1
x = x * 2 - 1
hypot2 = x * x + y * y
c = (a + b) * (a - b)

WRONG (Maybe)
i=i+1
submitted+=1

x = x*2 - 1
hypot2 = x*x + y*y
c = (a+b) * (a-b)

Indicate operator precedence

hypot2 = x*x + y*y
Indicate grouping

c = (a+b) * (a-b)

http://www.python.org/dev/peps/pep-0008/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 110 of 147

3.4.4 But avoid extraneous whitespace

Immediately inside parentheses, brackets or braces:

Immediately before a comma, semicolon, or colon:

Immediately before the open parenthesis that starts the argument list of a function call:

Immediately before the open parenthesis that starts an indexing or slicing:

3.4.5 Always Follow a comma with a space

3.5 Naming Conventions

3.5.1 Packages, Modules and Scripts
Should always use lower_case_with_underscores:

Some filesystems are case insensitive, so using upper case to distinguish files is highly discouraged. Also,
don't use a hyphen (-) in filenames. If you ever need to import that file, the hyphen will be interpreted as the
subtraction operator.

3.5.2 Classes

spam(ham[1], {eggs: 2}) <-- CORRECT
spam(ham[1], { eggs: 2 }) <-- WRONG

if x == 4: print x, y; x, y = y, x <-- CORRECT

if x == 4 : print x , y ; x , y = y , x <-- WRONG

spam(1) <-- CORRECT
spam (1) <-- WRONG

dict['key'] = list[index] <-- CORRECT
dict ['key'] = list [index] <-- WRONG

x = [1, 2, 3]
y = {"a":1, "b":2}

package
+-- init .py
+--module

+-- init .py
+-- code_file.py

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 111 of 147

Use CamelCase

class IonChannel(object):
pass

class PostStimulusTimeHistorgram(object):
pass

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 112 of 147

PEP8 3 does not mention anything about capitalisations of acronyms included in class names, but for the
BBP the recommendation is to keep the acronym upper case:

3.5.3 Functions and methods

Use lower_case_with_underscores

3.5.4 Constants/Literals

Use ALL_CAPITALS for anything that would be a #define or const in C/C++, for example:

3.5.5 Variables
Use meaningful but short names for your variables. I.e. avoid single character variables but also overly
long and hard to type names:

The obvious exception here, is when you are writing very mathematical code which is made to look more
like written formulas. In this case you may want use inline comments to indicate what your variables mean,
or use LaTeX in your docstrings.

3.5.6 Note on the BBP-SDK Python bindings
The bindings use the naming convention Caml_Case_With_Underscores. Although PEP8 3 describes this
as ugly, you should adhere to this convention, since consistency is better than a mixed style (see above).

CORRECT

class PSTHPlot(object):
pass

WRONG

class PsthPlot(object):
pass

def inter_bouton_interval(self):
pass

def morphology_label(self):

pass

PI = 3.1459
TIMEOUT = 2.3

GOOD

indexes = [1, 2, 3]
BAD

i = [1, 2, 3]
idx = [1, 2, 3]
indexes_into_array_of_floats_with_widget = [1, 2, 3]

svd = bbp.Segment_Voxel_Density()

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 113 of 147

3.6 Exceptions

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 114 of 147

• Use the standard exception hierarchy 4 whenever possible, instead of defining you own custom
exceptions.

Here are the most important and useful ones:

The three most used in user code are IndexError, TypeError and ValueError:

4 Static Checking
You can (and should) use automated tools to check if your code conforms to the coding conventions
(a.k.a. Static Checking):

• pylint 5

• pyflakes 6

• pep8-tool 7

• PyChecker 8

Exception
+-- StandardError

+-- ArithmeticError
+-- FloatingPointError
+-- OverflowError
+-- ZeroDivisionError

+-- AssertionError
+-- IndexError
+-- TypeError
+-- ValueError

class CustomContainer(object):
""" Custom list which is preallocated and holds only integers. """

def init (self, size):

if size < 0:
raise ValueError(

"Size of CustomContainer may not be less than zero.")
else:

preallocate a list for storage
self._container = [0 for i_ in range(10)]

def _check_index(self, index):

if index >= len(self):
raise IndexError("CustomContainer index out of range.")

def get_item (self, index):

self._check_index(index)
return self._container[index]

def set_item (self, index, item):

self._check_index(index)
if not isinstance(item, int):

raise TypeError("CustomContainer can only hold integers."
self._container[index] = item

http://docs.python.org/library/exceptions.html
http://www.logilab.org/857
https://launchpad.net/pyflakes
https://github.com/jcrocholl/pep8/
http://pychecker.sourceforge.net/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 115 of 147

4.1 Comparison
Of all of these, pylint 5 is by far the most widely used tool. The number of issues that it can detect is quite
comprehensive but it takes quite long to run. pyflakes 6 and pep8-tool 7 are nice alternatives that run quicker.
The first detects logical errors such as unused imports and redefined names. The second checks code style
such as whitespace, correct use of blank lines. However, at the time of writing neither was able to detect
adherence to the naming conventions or missing docstrings, which pylint 5 did detect.

PyChecker 8 is the oldest of the tools. It one major disadvantage compared to the other tools is, that it
imports code, which may trigger unwanted side effects such as SQL Connections, installation of
configurations files etc. Because of this it is not recommended. The other three analyse the abstract syntax
tree instead which prevents any side effect.

The recommendation is to use pylint. If this is too pedantic for you or runs too slowly, use a combination
of pyflakes 6 and pep8-tool 7. Note also that since pylint is so pedantic it is usually not feasible to target a
score of 10/10. Instead you should use pylint to guide you towards the most severe violations and use good
measure to ignore the lee important ones. A pylint score of above 7 is usually sufficient.

There are several ways to integrate automatic checking into your editor of choice, Google is your friend
here. For this use-case, pylint 5 may not be that suitable, since it has a long runtime. Therefore pep8-tool 7

and pyflakes 6 are more suitable.

4.2 Example
Consider the following piece of badly written code:

Running pylint:

import sys, os

lowercase_constant=1
print "import side effect"

class no_caml_case(object):

def init (self,param1):

unused_variable=(1,2,3)
self.param1 = param1

def getParam1(self):
return self.param1

http://www.logilab.org/857
http://www.logilab.org/857
https://launchpad.net/pyflakes
https://github.com/jcrocholl/pep8/
http://www.logilab.org/857
http://pychecker.sourceforge.net/
http://pychecker.sourceforge.net/
https://launchpad.net/pyflakes
https://github.com/jcrocholl/pep8/
http://www.logilab.org/857
https://github.com/jcrocholl/pep8/
https://launchpad.net/pyflakes

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 116 of 147

$ pylint badcode_example.py

No config file found, using default configuration

************* Module badcode_example
C: 1: Missing docstring

C: 3: Operator not preceded by a space
lowercase_constant=1

^

C: 3: Invalid name "lowercase_constant" (should match (([A-Z_][A-Z0-9_]*)|(.*))$)
C: 5:no_caml_case: Invalid name "no_caml_case" (should match [A-Z_][a-zA-Z0-9]+$)

C: 5:no_caml_case: Missing docstring

C: 7:no_caml_case. init : Comma not followed by a space
def init (self,param1):

^^

C: 8:no_caml_case. init : Operator not preceded by a space

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 117 of 147

Running pep8:

Running pyflakes:

As you can see, at least in the case of this limited example, pylint 5 outperforms the other tools. It even
has a single number summary of how good you code is.

Just for reference, here is the output of PyChecker 8, which shows how the print statement is triggered:

5 Testing
Unit testing 9 is vital for creating robust Python programs, since we don't have a compiler to check types for
us. As with the automatic style checkers we have a multitude of options again, the most important of which
are:

• unittest 10

• nosetest 11

• py.test 13

unused_variable=(1,2,3)
^

W: 8:no_caml_case. init : Unused variable 'unused_variable'
C: 10:no_caml_case.getParam1: Invalid name "getParam1" (should match [a-z_][a-z0-9_]{2,30}$)
C: 10:no_caml_case.getParam1: Missing docstring
R: 5:no_caml_case: Too few public methods (1/2)
W: 1: Unused import sys
W: 1: Unused import os

...

Global evaluation

Your code has been rated at -3.00/10 (previous run: -3.00/10)

$ pep8 badcode_example.py
badcode_example.py:1:11: E401 multiple imports on one line
badcode_example.py:3:19: E225 missing whitespace around operator
badcode_example.py:5:1: E302 expected 2 blank lines, found 1
badcode_example.py:7:22: E231 missing whitespace after ','
badcode_example.py:10:5: E301 expected 1 blank line, found 0

$ pyflakes badcode_example.py
badcode_example.py:1: 'sys' imported but unused
badcode_example.py:1: 'os' imported but unused
badcode_example.py:8: local variable 'unused_variable' is assigned to but
never used

$ pychecker badcode_example.py
Processing module badcode_example (badcode_example.py)...
import side effect

Warnings...

badcode_example.py:1: Imported module (os) not used
badcode_example.py:1: Imported module (sys) not used

http://www.logilab.org/857
http://pychecker.sourceforge.net/
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Unit_testing
http://docs.python.org/library/unittest.html
http://readthedocs.org/docs/nose/en/latest/
http://pytest.org/latest/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 118 of 147

For further reading including a comprehensive list of available tools please consult The Python Testing Tools
Taxonomy 14.

The unittest 10 module is part of the standard Python library. The nosetest 11 module must be installed
additionally. In Ubuntu the package is called python-nose. When developing software for the Blue
Brain Project we recommend that you don't use the unittest module, but instead write your tests
exclusively using the nosetest apis and run them using the nosetests command line tool. Although the
burden is an additional dependency, this is pure Python and available for a wide range of distributions
and the advantages and work-flow simplifications make it really appealing over unittest 10. The following
sections will describe why. py.test 13 is quite similar to nosetest 11 but does not have as much momentum
within the python community.

Important note: many existing projects already use the unittest module. In this case, it is not worth
refactoring everything since first, the unittest module is part of the standard library so no additional
dependencies are incurred and second, nosetest can handle tests written with unittest.

Lastly, if you are using Numpy, be sure to read the last section which introduces additional mechanisms to
test Numpy's arrays.

5.1 Unitest
The unittest 10 module has been the standard for a long time, but suffers from old age. It was initially inspired
by the Java unit testing framework JUnit and as a result suffers due to various non-pythonic aspects. Its two
major shortcomings are, that it does not adhere to the PEP8 3 recommendation for function names and
requires a lot of boilerplate when writing test:

The first thing to note is that the function assertEqual does not adhere to the Python recommendation
lower_case_with_underscors, but instead is mixedUpperAndLowerCase as in Java. This means that if
you do initially adhere to the python PEP8 3 recommendation and also use the unittest 10 framework, you
tests will unavoidably end up being mixed style. Additionally the test_sum function requires two
unnecessary and non-pythonic boilerplate snippets. First, a sub-class of TestCase must be defined to
contain the function. And secondly, the statement ut.main() must be included for the unittest 10
framework to discover and run tests in this file.

Running the code:

As indicated above the statement ut.main() causes all tests to be run. The default unittest 10 runner will
display a period (.) for each successful test but can be customised to provide more verbose output.
Obviously, if any tests fail, a traceback is displayed.

import unittest as ut

class TestSum(ut.TestCase):

def testSum(self):

self.assertEqual(sum([1, 2, 3]), 6)

if name == ' main ':

ut.main()

$ python unittest_example.py
.
--
Ran 1 test in 0.000s

OK

http://packages.python.org/testing/
http://packages.python.org/testing/
http://packages.python.org/testing/
http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html
http://readthedocs.org/docs/nose/en/latest/
http://docs.python.org/library/unittest.html
http://pytest.org/latest/
http://readthedocs.org/docs/nose/en/latest/
http://docs.python.org/library/unittest.html
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 119 of 147

5.2 Nosetest
With nose there is no need to define a class or a ut.main() statement because the command line tool
nosetest will perform automagic discovery of your tests. As an additional benefit you can use the
pythonic assert_equal instead of the Java-like assertEqual:

To run the test you would use the nosetest command line tool:

The nosetest command features automatic discovery of all of your tests using clever heuristics. Also,
you can filter tests and thus only run the ones your are currently interested in, for example, when fixing a
bug or developing a feature. Have a look at the homepage for more information. Furthermore, it is extensible
and there is a plug-in for the coverage module 12 to run the tests while simultaneously determining test
coverage.

One important switch for nosetests is -v which will increase the verbosity of the tool such that the test
which are also printed to the screen:

5.3 Numpy Testing
Importantly Numpy provides some additional array testing methods 15 which make testing code that uses
arrays much easier. Trying to test arrays using the standard way to test for equality of elements:

import nose.tools as nt

def test_sum():

nt.assert_equal(sum([1, 2, 3]), 6)

$ nosetests nosetest_example.py
.
--
Ran 1 test in 0.000s

OK

$ nosetests -v nosetest_example.py
nosetest_example.test_sum ... ok

--
Ran 1 test in 0.000s

OK

>>> import numpy
>>> import nose.tools as nt
>>> nt.assert_equal(numpy.zeros(10), numpy.zeros(10))

ValueError Traceback (most recent call last)

/home/haenel/<ipython console> in <module>()

/usr/lib/python2.7/unittest/case.pyc in assertEqual(self, first, second, msg)

501 """
502 assertion_func = self._getAssertEqualityFunc(first, second)

--> 503 assertion_func(first, second, msg=msg)

http://pypi.python.org/pypi/coverage
http://docs.scipy.org/doc/numpy/reference/routines.testing.html

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 120 of 147

If instead we use numpy.testing:

Two additional important functions to mention are assert_array_almost_equal
assert_almost_equal. These can assert that two arrays are equal up to a certain precision. This is
important when testing numerical code. For example, when using two different numerical optimisers the
solution will differ ever so slightly. For example the first algorithm may find the solution at 3.145875634
whereas the second may find it at 3.145875492 This is to be expected due to numerical precision and
convergence parameters of the algorithms. In order to convince oneself, that they do actually find the
same optimum ones needs to compare the solution only up to a significant digit:

6 Documentation
This section deals with best practices for documentation, that is syntax for docstrings and fileheaders.

6.1 Docstrings

• Use the docstring mechanism to embed documentation into your source code. This ensures that the

documentation is available as help from an interactive session and that tools can automatically
extract the documentation to build a website.

• A one line docstring is the absolute minimum requirement:

504
505 def assertNotEqual(self, first, second, msg=None):

/usr/lib/python2.7/unittest/case.pyc in _baseAssertEqual(self, first, second, msg)
491 def _baseAssertEqual(self, first, second, msg=None):
492 """The default assertEqual implementation, not type specific."""

--> 493 if not first == second:
494 standardMsg = '%s != %s' % (safe_repr(first), safe_repr(second))
495 msg = self._formatMessage(msg, standardMsg)

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

>>> numpy.testing.assert_almost_equal(3.145875492, 3.145875634, decimal=6)
>>> numpy.testing.assert_almost_equal(3.145875492, 3.145875634, decimal=7)

AssertionError Traceback (most recent call last)

/home/haenel/<ipython console> in <module>()

/usr/lib/pymodules/python2.7/numpy/testing/utils.pyc in assert_almost_equal(actual, desired, decimal, err_msg, verbose)

461 pass
462 if round(abs(desired - actual),decimal) != 0 :

--> 463 raise AssertionError(msg)
464
465

AssertionError:
Arrays are not almost equal
ACTUAL: 3.145875492
DESIRED: 3.145875634

>>> import numpy.testing

>>> numpy.testing.assert_array_equal(numpy.zeros(10), numpy.zeros(10))

def load_neurons(path):
""" Load the neurons from a circuit at path. """

pass

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 121 of 147

6.2 Numpy Docstrings
Instead of the standard documentation guidelines 16 please use the Numpy docstring guidelines 17. This
has the advantage of also requiring you to specify the type of the arguments, which is very useful for
numerical/scientific code.

Since the standard is quite lengthy we list only the most important aspects here:

• Single line summary

• Detailed description paragraph

• Parameters and Returns section (if applicable) including the types

• Note that for classes, the constructor is documented in the class docstring

For a full blown example, see the numpy docstring example 18

class SpamHamEggs(object):
""" An object to hold a numerical breakfast.

This is a useful object which will hold and mix all of our breakfast.
The object is able to, amongst other things, to mix and serve a random
breakfast.

Paramters

spam : float

the yummy bit
ham : list

the delicate bit
eggs : ndarray

the mushy bit
"""

def init (self, spam, ham, eggs):

pass

def random_mix(self, num_desired):
""" Mix the components

Parameters

num_desired : int

the number of components

Returns

mix : list

a list containing the number of desired components in a random
order

"""
pass

http://www.python.org/dev/peps/pep-0257/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/example.py

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 122 of 147

6.3 File Header
Each Python file should have a header of the form:

The initial author and the copyright are important. However it is not necessary to modify this header when
changing a file, or including @date or @filename tags. Instead you should use the version control system
to figure out who has worked on the file and when it was last modified.

6.4 Automatic API Generation
Unfortunately there are a number of different tools for automatically generating API documentation from
docstrings in the source code and the Python community has not yet converged on one standard. Hence
for the time being, please adhere to the numpy docstring guidelines. This will ensure, that the future tool of
choice will be able to deal with your software. Note also, that doxygen supports extracting docstrings out-
of-the-box with the two caveats that doxygen's special commands such as @param or @var do not work
and that doxygen is not able to render reStructuredText.

7 Writing the setup.py file
The setup.py is the quasi equivalent of a makefile or build.xml. The big difference is that, since
Python is an interpreted language, no compilation is required and hence the build file is quite minimal. Its
main use is to contain metadata, for example the author and copyright information, as well as information
about the version and any modules the software provides. This information can be used to install the
software in the correct place. The main functionality needed in the setup.py file is provided by the
distutils module. For more information see the guide to writing the setup file 19.

Also the setup.py has some command line help:

The setup.py may also contain information about extensions written in compiled languages. This is
particularly important for scientific software since a layered approach that combines high performance code
in a compiled language with an easy to script python interface is extremely common. In this case the

""" Brief summary of the functionality of this file/module.
Optionally, an extended summary of the functionality of this file.

@author Valentin Haenel

@remarks Copyright (c) BBP/EPFL 2005-2012; All rights reserved.

Do not distribute without further notice.

"""

$ python setup.py --help

Common commands: (see '--help-commands' for more)

setup.py build will build the package underneath 'build/'

setup.py install will install the package

...

$ python setup.py --help-commands
Standard commands:

build build everything needed to install

build_py "build" pure Python modules (copy to build directory)
build_ext build C/C++ extensions (compile/link to build directory)

...

http://docs.python.org/distutils/setupscript.html%60

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 123 of 147

setup.py can be used to specify which sources files belong to extension. Although the distutls module

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 124 of 147

can compile such extensions, it does suffer from some major shortcomings, the most grave being an inability
to detect what needs to be recompiled. This means, that whenever you wish to re-compile your extension,
the entire code needs to be recompiled, as opposed to using make which supports re-compiling only those
files which have changed. If compilation time is an issue it may make sense to craft a buildsystem using a
combination of CMake and a setup.py.

At the blue brain project pure python programs should contain a minimal version for this file. For example:

The Debian packaging system has the ability to hook into a setup.py and use the native tools provided
to build a package. This can save a lot of time and hassle when developing a Debian package for a Python
tool.

8 Versioning
A software should have a version number which is a triplet of MAJOR.MINOR.PATCH, for example 0.2.4.
Compared to C++ where we need to be careful to maintain binary compatibility, we can be somewhat less
strict in Python. Use the following guidelines when deciding how to increment the version: The PATCH
version number should be increased for changes that do not alter the public API of your system. I.e. for
those where no refactoring is required for any software that uses your software; The MINOR number
should be increased in case of public API changes. That is to say, software that uses your software will
have to be refactored minimally to work with the new version; The MAJOR number should be increased
when you overhaul your software and make sweeping changes to the public API and internals. In this
case any software using your software may have to undergo substantial changes to work with the latest
version.

You may also want to look at the versioning guideline for BBP software 20 and the Wikipedia article about
versioning 21

The version should be stored in a single place in your software, for example in a file version .py in
your package, i.e:

Where the contents of version .py is for example:

And init .py contains:

#!/usr/bin/env python

from distutils.core import setup

setup(name='bbp-example-toolkit',

version='1.5.3',
description='Example Toolkit for the Blue Brain Project',
author='Valentin Haenel',
author_email='valentin.haenel@epfl.ch',
url='http://bbpteam.epfl.ch/documentation/bbp_example',
packages=['bbp_example'],
)

mypackage
+-- init .py
+-- version .py

version = "0.1.2"

from version import version

https://bbpteam.epfl.ch/confluence/download/attachments/3412334/Versioning.pdf?version=3&modificationDate=1321519850000
http://en.wikipedia.org/wiki/Software_versioning
http://en.wikipedia.org/wiki/Software_versioning
http://bbpteam.epfl.ch/documentation/bbp_example%27

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 125 of 147

$ pip install --install-option="--user" nose

You can then access the version number using:

You may also want to read the stackoverflow article about this, which suggests somewhat more
sophisticated techniques for storing the version number.

9 Obtaining Python Packages
This section explains the best strategies to follow when installing Python software on your system.

9.1 Python on Linux
When using Linux, the preferred method to obtain and install Python packages is using the package
manager. In Debian/Ubuntu this means using one of apt-get, aptitude, synaptic or any other front-
end to dpkg. This is by far the easiest and most user-friendly way. Dependencies are installed
automatically, software (and its dependencies) can be removed easily and software is easily upgraded.
Before looking at any installation documentation, check if the desired software is available via the
package manager

For example to install nosetest:

In certain cases it may not be feasible to use the package manager. For example, if the software you are
looking for has not yet been packaged for your target distribution, when you are using an exotic system
which may only have old and outdated packages or if you do not have sufficient privileges to install the
software system-wide.

In such cases you may be able to install it from the Python Package Index (PyPi 22) using either pip 23

(preferred) or easy_install 24 (if pip is not available. The one major advantage that pip 23 has over
easy_install 24 is that it can uninstall packages too. However bear in mind, that the package manager of
your distribution will not be aware of packages installed this way. For example to install the nosetest package
nose available from PyPi 22:

Using the --user flag will install the software in the users local site-packages directory, for example
/home/haenel/.local/lib/python2.7/site-packages. This has the advantage, that the
directories are automatically added to your $PYTHONPATH and no further manipulation of this variable is
needed.

>>> import mypackage

>>> mypackage.version
'0.1.2'

$ sudo aptitude install python-nose

$ pip install --user nose
$ easy_install --user nose

Note

Versions of pip prior to 0.8.1 did not directly support the --user option. Instead you have to
use --install-option="--user", for example:

http://pypi.python.org/pypi
http://www.pip-installer.org/en/latest/
http://packages.python.org/distribute/easy_install.html
http://www.pip-installer.org/en/latest/
http://packages.python.org/distribute/easy_install.html
http://pypi.python.org/pypi

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 126 of 147

Since pip 23 is pure python it is easy to install, detailed instructions can be found on their website.

The last resort for obtaining software is downloading the source code and doing a manual install via a
(hopefully) provided setup.py file or use of the $PYTHONPATH environment variable. This variable
contains paths which are searched by the Python interpreter when attempting to import modules. For more
information about the setup.py file, see the section: Writing the setup.py file.

For example, if you have downloaded the package foobar which is pure Python code (i.e. no C or
FORTRAN extensions), to the directory $HOME/src/foobar. It may be enough to set:

... to make the software available.

If the software has a proper setup.py file, you can use this to install or build extensions.

Although many websites and forums suggest simply running:

... this is frowned upon by many experienced developers. The problem is, that this simply copies the
respective files somewhere into your operating system, which may make them hard to find or delete. It is a
similar problem as using pip 23 or easy_install 24. There exists several ways to install the software in a user-
defined location. The easiest is:

The --user flag works here too as described above, and hence there is no further need to modify the
$PYTHONPATH variable.

9.2 Python on Windows and Mac
Enthought 25 provides the Enthought Python Distribution (EPD 26) which is available for download for strictly
academic uses 27. It provides a large number of software including the most important packages for scientific
computing, Numpy, Scipy and Matplotlib. It is available for Windows, Mac OSX, Linux and Solaris. An
alternative for Windows is the Python(x,y) 28 distribution which also included the scientific computing
packages, but seems to be available for windows only.

10 Wrapping Native code
One of Pythons greatest strengths is that it allows you to wrap native code written in C/C++ and FORTRAN.
This has several interesting use-cases for scientific computing; first of all it is feasible to take existing legacy
code and make it available through an accessible Python interface; secondly, code that has a high run-time
can be implemented in C/C++ for speed and made accessible in Python for convenience.

Unfortunately a number of very different options exist to achieve this goal and describing all of them is well
beyond the scope of this document. At the Blue Brain Project we make heavy use of the boost.python 29

library, especially for the BBP-SDK. Also there is some limited use of cython 30. If a software project is
already using one or the other technology please continue to use this, if you need to modify or extend the
wrapping.

Since developing wrappings depends largely on the problem at hand, the required scope of the wrapper
and the development status of the wrapping tools, it is not really possible to make any general
recommendation. The advice here is that, if you need to develop wrappers consult with the engineering
team and the general project manager to decide the best approach.

PYTHONPATH=$HOME/src/foobar

$ python setup.py install # <-- BAD PRACTICE

$ python setup.py install --user

http://www.pip-installer.org/en/latest/
http://www.pip-installer.org/en/latest/
http://packages.python.org/distribute/easy_install.html
http://www.enthought.com/
http://www.enthought.com/products/epd.php
http://www.enthought.com/products/edudownload.php
http://www.enthought.com/products/edudownload.php
http://www.enthought.com/products/edudownload.php
http://code.google.com/p/pythonxy/
http://www.boost.org/doc/libs/1_48_0/libs/python/doc/
http://cython.org/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 127 of 147

11 Performance Considerations
Often people complain about Python being too slow. Hence, the section is a small overview of performance
related issues in Python. Often these comments are unjust and mal-informed. Hence this sections aims to
give a little insight into performance considerations and optimization for Python, to make sure you don't fall
victim to the many pitfalls.

While reading this section, bear in mind, that Python performance optimization techniques and approaches
are still an active area of research and also that optimization is considered somewhat of an black art
amongst computer scientists, often cited as one of the hardest tasks in computing. Hence it pays to be
humble when optimizing -- speak to your colleagues and discuss ideas.

Two good links for the interested reader are the page about Pythons profilers 31 and the Scipy page on
PerformancePython 32.

11.1 Define "Too Slow"
To begin with, one needs to define what "too slow" actually means in your context, since it is often enough
a measure that relies on your own perception. Does too slow mean your simulation runs for 2 months, but
you want to your results in one month? Or does it perhaps mean, you don't wish to "get a coffee" every time
your program computes new results?

11.2 Identifying the Bottlenecks
Usually, Python programs are fast enough for the task at hand. If they are provably not there are several
approaches to reducing the run-time. All of them hinge on the use of a so-called profiler. This is software
tool which allows you to inspect the run-time of your code according to its constituent parts. For example,
a profiler will tell you how often a function was invoked during a run of your software, and how long this
invocation took on average. This then allows you to identify clearly the bottlenecks of your application. Now
you can target exactly those bottlenecks and thereby improve the overall performance of your application.

11.2.1 Improve your Algorithm
Pose the fundamental question: Can your algorithm or its implementation do better? Is there a for-loop
somewhere that can be avoided. Can you use a hash-table to do look-up instead of a sorted-list? Can you
use a tree data-structure instead of linked-list? Many famous basic algorithms for tasks such as sorting and
searching or graph traversal were improved over the years, maybe you can find a shortcut in yours too?

11.2.2 Using Numpy
If you need to do anything with vectors or matrices use numpy 33. This is a very widely used, stable and
well documented library for numerical work. It is written in C using Python's native C interface which usually
results in a speed increase of an order of magnitude when compared to pure python. It provides an N-
dimensional array object which is particularly well suited for matrix and vector math.

11.2.3 Implement your Bottleneck in C

If you discover, that you bottleneck can not be optimized by improving your algorithm or vectorizing your
code using numpy, the last resort is to implement a C extension of your bottleneck. This should be the last
resort, because it is a fragile process that requires compiling code. There are several approaches here, but
many people have reported good success with cython 30 in the past and we recommend this for partial
implementation of your program in C.

http://docs.python.org/library/profile.html
http://www.scipy.org/PerformancePython
http://numpy.scipy.org/
http://cython.org/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 128 of 147

11.2.4 Parallelize your Code

An alternative to implementing you bottleneck in C is to parallelize your code. Of course, this is only relevant
if you have available resources such as a graphics card, a compute cluster or a supercomputer. Unless your
problem can be easily split into several parts parallelizing it is a highly non-trivial task.

11.3 Avoiding Premature Optimization
Avoid the pitfall of assuming that your application will be too slow and assuming that you will have to write
it in C for it to work at all. In this case you may want to consider implementing a prototype in Python (Python
is written quickly after all) to investigate the feasibility of your idea before considering an implementation in
native code. Perhaps Python is fast enough after all.

11.4 Consider time for Development
The cost of developing native code when compared to python is significant. Python has several advantages
which seriously reduce development time, such as: automatic memory management, a large standard
library and a big offering of third-party libraries for many purposes. Often development time is not considered
when estimating the speed of an application. This is especially relevant for the scientist, who needs to
produce results quickly. In this case a not-so-fast Python application which takes 3 days to develop is often
better than a super-fast C application which takes 3 weeks to develop.

12 Target Version
This section describes what version of Python to code for.

12.1 Python 2.x
There are currently several Python versions in use across distributions:

Distribution/Server Python Version

Debain Stable Python 2.6.6

Ubuntu Natty Python 2.7.1+

LinServ1 Python 2.4.3

LinServ2 Python 2.6.5

bbpdbsrv2 Python 2.4.3

bbpsg1 Python 2.5

BlueGene Python 2.4 / 2.6 (Special)

Although the lowest common denominator is 2.4, I would still recommend to target 2.6, since the older
machines are being phased out anyway. It's available on linserv2 and there are packages available in
Ubuntu, although its not the default version there.

Python on the BlueGene is somewhat special. If you are developing for or porting too this platform please
speak to Eilif Muller and check Confluence for additional documentation on this topic.

12.2 Python 3.x
The up-and-coming version is Python 3000, also known as Py3k or Python 3.0. This has some major
improvements which remove long standing cruft and uglyness, but are largely backward incompatible with
the 2.x line. You may want to look at What’s New In Python 3.0 34 There is a useful Python2orPython3 FAQ
36 which describes the differences, has some recommendations about what version to use under what
circumstances and also contains many links and pointers.

http://docs.python.org/py3k/whatsnew/3.0.html
http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/Python2orPython3

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 129 of 147

Although there is an automated tool called 2to3 35 which can convert, it makes sense to follow a few simple
rules to future proof your python code 38.

You can import certain changes from future python versions using the future module 37. The following
example demonstrates how to do this using integer division as an example, since this is one very subtle
backwards incompatible change which can not be converted or detected by the 2to3 35 tool.

Historically, the division operator (/) in Python has two modes. If both arguments are integers an integer
division, also known as floor division, is performed. If however, at least one of the arguments is a float, the
operator will perform a true division and return a reasonable decimal approximation:

This argument-type-dependent behaviour, so called mixed division, caused many headaches for new
programmers, since the result could be ambiguous or even unpredictable in numerical code. Traditionally,
the solution has been to explicitly cast your arguments to floats to ensure that the true division would be
used:

The enhancement proposal PEP238 39 addressed this issue and it was decided to fix this ambiguous
behaviour in Python 3.0. In a nutshell the / operator will do true division:

and the // operator will do floor division:

$ python3
>>> 1/2
0.5

>>> 1/2.0
0.5

>>> 1.0/2
0.5

>>> 1.0/2.0
0.5

$ python2
>>> 1/2
0

>>> 1/2.0
0.5

>>> 1.0/2
0.5

>>> 1.0/2.0
0.5

>>> float(1)/float(2)
0.5

http://docs.python.org/library/2to3.html
http://wiki.python.org/moin/FutureProofPython
http://docs.python.org/library/__future__.html
http://docs.python.org/library/2to3.html
http://www.python.org/dev/peps/pep-0238/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 130 of 147

$python2
>>> 1//2
0

>>> 1.0//2
0.0

>>> 1//2.0
0.0

>>> 1.0//2.0
0.0

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 12-Sep-2018 Page 131 of 147

If you want to write future proof code you can use the aforementioned future module to import the true
division behaviour for the / operator into Python 2.x and make sure to use the // operator, which has
existed in Python 2.x for quite sometime, if you really do want floor division:

This ensures, that all of your division operations will continue to function as you intended, when you code
is ported to Python 3000.

$ python2
>>> from future import division

>>> 1/2
0.5

>>> 1//2
0

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 132 of 147

1 http://artificialcode.blogspot.com/2009/08/10-ways-to-let-people-know-your-
bad.html

2 http://ipython.org/
3 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) http://www.python.org/dev/peps/pep-0008/
4 http://docs.python.org/library/exceptions.html
5 (1, 2, 3, 4, 5) http://www.logilab.org/857
6 (1, 2, 3, 4) https://launchpad.net/pyflakes
7 (1, 2, 3, 4) https://github.com/jcrocholl/pep8/
8 (1, 2, 3) http://pychecker.sourceforge.net/
9 http://en.wikipedia.org/wiki/Unit_testing
10 (1, 2, 3, 4, 5, 6, 7) http://docs.python.org/library/unittest.html
11 (1, 2, 3) http://readthedocs.org/docs/nose/en/latest/
12 http://pypi.python.org/pypi/coverage
13 (1, 2) http://pytest.org/latest/
14 http://packages.python.org/testing/
15 http://docs.scipy.org/doc/numpy/reference/routines.testing.html
16 http://www.python.org/dev/peps/pep-0257/
17 https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.t

xt
18 https://github.com/numpy/numpy/blob/master/doc/example.py
19 http://docs.python.org/distutils/setupscript.html`
20 https://bbpteam.epfl.ch/confluence/download/attachments/3412334/Versioning

.pdf?version=3&modificationDate=1321519
21 http://en.wikipedia.org/wiki/Software_versioning
22 (1, 2) http://pypi.python.org/pypi
23 (1, 2, 3, 4) http://www.pip-installer.org/en/latest/
24 (1, 2, 3) http://packages.python.org/distribute/easy_install.html
25 http://www.enthought.com/
26 http://www.enthought.com/products/epd.php
27 http://www.enthought.com/products/edudownload.php
28 http://code.google.com/p/pythonxy/
29 http://www.boost.org/doc/libs/1_48_0/libs/python/doc/
30 (1, 2) http://cython.org/
31 http://docs.python.org/library/profile.html
32 http://www.scipy.org/PerformancePython
33 http://numpy.scipy.org/
34 http://docs.python.org/py3k/whatsnew/3.0.html 35(1, 2)

 http://docs.python.org/library/2to3.html
36 http://wiki.python.org/moin/Python2orPython3
37 http://docs.python.org/library/ future .html
38 http://wiki.python.org/moin/FutureProofPython
39 http://www.python.org/dev/peps/pep-0238/

http://artificialcode.blogspot.com/2009/08/10-ways-to-let-people-know-your-bad.html
http://artificialcode.blogspot.com/2009/08/10-ways-to-let-people-know-your-bad.html
http://ipython.org/
http://www.python.org/dev/peps/pep-0008/
http://docs.python.org/library/exceptions.html
http://www.logilab.org/857
https://launchpad.net/pyflakes
https://github.com/jcrocholl/pep8/
http://pychecker.sourceforge.net/
http://en.wikipedia.org/wiki/Unit_testing
http://docs.python.org/library/unittest.html
http://readthedocs.org/docs/nose/en/latest/
http://pypi.python.org/pypi/coverage
http://pytest.org/latest/
http://packages.python.org/testing/
http://docs.scipy.org/doc/numpy/reference/routines.testing.html
http://www.python.org/dev/peps/pep-0257/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/example.py
http://docs.python.org/distutils/setupscript.html%60
https://bbpteam.epfl.ch/confluence/download/attachments/3412334/Versioning.pdf?version=3&modificationDate=1321519
https://bbpteam.epfl.ch/confluence/download/attachments/3412334/Versioning.pdf?version=3&modificationDate=1321519
http://en.wikipedia.org/wiki/Software_versioning
http://pypi.python.org/pypi
http://www.pip-installer.org/en/latest/
http://packages.python.org/distribute/easy_install.html
http://www.enthought.com/
http://www.enthought.com/products/epd.php
http://www.enthought.com/products/edudownload.php
http://code.google.com/p/pythonxy/
http://www.boost.org/doc/libs/1_48_0/libs/python/doc/
http://cython.org/
http://docs.python.org/library/profile.html
http://www.scipy.org/PerformancePython
http://numpy.scipy.org/
http://docs.python.org/py3k/whatsnew/3.0.html
http://docs.python.org/library/2to3.html
http://wiki.python.org/moin/Python2orPython3
http://docs.python.org/library/__future__.html
http://wiki.python.org/moin/FutureProofPython
http://www.python.org/dev/peps/pep-0238/

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 133 of 147

Annex E – UI Development and Testing Standards

UI Development Guidelines
Author: Martina Schmalholz, Annapaola Santarsiero and Jeff Muller

Date: 2016-04-15

Overview
This document describes the basic process used for the development of UIs in the HBP, based
on a standard Agile model. The initial structure is followed by a concrete example from the
Collaboratory and SP10 platform development history.

Best practice process follows roughly these steps:

1. concept w/ users
2. use cases
3. optional user validation
4. mockup
5. optional user validation
6. front-end prototype -> dev or staging servers
7. Usability testing by sprint team
8. Refinement -> dev or staging servers
9. Deployment to production servers
10. Feedback from users
11. Optional return to step 6 if needed.

Parts 1-3 are typically done before a sprint and items 4-9 would be attempted in a single 2
week sprint (usually 1-3 UI modifications of this sort happening per sprint). 10-11 would be
post-sprint activities.

HBP Collaboratory
The Collaboratory (Collab) is the central hub and main access point to the Platforms.
Therefore, there is particular attention in the development of the UI.

User tests are usually executed internally to the development team, or involving users from
other projects.

The following example shows the process used for the development of a new functionality
in the system that allows to manage groups and members.

Step 1 – Concept
The collab is not only the place where one may access the different features and tools of
the platforms, but it also allows for retrieval of more information, and management of the
different collabs, apps, and tools.

Groups are collections of identities which are used for various purposes:

• Authorisation – some HBP Platform systems allow operations only by certain groups
• Communication – some HBP Platform systems send communications to a group
• Organisation – some HBP structures need to documented in a database to allow

efficient coordination of the project.

The Groups service has been in operation for some time, but there is no way for users to
easily edit group mappings. Admin users, in particular, want to decide what resources can
be used by new users. The planned way of doing this is by adding them to a Admin define
group. The UI will make this a more accessible operation.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 134 of 147

Step2 – Description of users needs
Users need a place where they may access information about groups and users and, in case
they have admin rights, to manage groups.

To accomplish those needs the following scenarios were defined:

1. As a user, I want to search for a group;
2. As a user, I want to access a group details;
3. As a user, I want to view the list of members and admin(s) of a group;
4. As an admin of a group, I want to add a user or a subgroup as member of a group;
5. As an admin of a group, I want to delete a user from the group members;
6. As an admin of a group, I want to add a user or a subgroup as an admin of a group;
7. As an admin of a group, I want to delete a user from the group admins;
8. As a user, I want to create a new group;
9. As an admin of a group, I want to edit the group name and description; and
10. As an admin of a group, I want to delete a group.

Step3 – User validation
Before starting a sprint, the scenarios are approved by the development team.

Step4 – Mockups
Once the scenarios are validated internally, some mockups are created so they can be shown
to users for a further validation.

For brevity, we will focus on the scenario 3 [As a user, I want to view the list of members and
admin(s) of a group].

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 135 of 147

Step 5 – User validation
A user test on the group UI is conducted with potential users using interactive mockups with
the main purpose of validating the scenarios and the interface.

During the session, which last approximately 10/15 minutes, the participants are asked to
follow some scenarios and to comment on them.

Comments are annotated and, if necessary, changes to the mockups are made.

Step 6 (part 1) – Enter stories in the backlog
After validating the mockups, the development work can start. The first step consists in
defining the user stories and inserting them in the backlog.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 136 of 147

Step 6 – Front end prototype
At this point the team can start the development of the UI, which will be deployed on the
development site at the end of the sprint.

Step7, 8 – Testing and Refinement
During the “end of sprint” meeting, the UI is demoed to the rest of the group and, in some
cases, to other users as well.

During the demo, comments are taken in account and used to define a new story or to detail
the current one, which will go under further development in the following sprint.

However, if the acceptance criteria are met, the story is marked as “Resolved” and closed.

Below the screenshots of the first version of the group interface shown at the end of the
sprint.

Step 9 - Deployment on production
If the UI passes the test during the demo, it is then deployed in production so that can be
available to all the users.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 137 of 147

Subsequent steps
Once released, users can take advantage of the functionality which has been developed. If
they have concerns or questions, these are routed through the standard “Feedback”
mechanism on the site.

SP10 Example
Human-computer-interface or UI (User Interface) are very important for SP10. In order to
provide the best possible user experience, this is how SP10 proceeds for each new UI
development according to the process (1-11) outlined above.

Since it is very difficult to have the perfect UI from the beginning, we use the scrum process
to have several iterations on a UI element when the users are not satisfied.

The following concrete story shows the process:

Step 1 – Concept (driven by User need)

Steps 2 and 3 – Description of User need

The problem:

to switch between view, move and rotate mode for a given object of the scene, the user has
to:

- select the object by clicking on it

- open the environment editor

- click on move (for example)

- close the environment editor

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 138 of 147

- move the object

- reopen the environment editor

- click on view

- reclose the environement editor

This process is absolutely not user friendly. The user does not want to open the environment
editor to move an object.

The solution:

The user wants to just right-click on the object and pop up a menu with a sort of floating
object inspector as in the mockup.

The move (translate) and rotate button should be packed in this inspector floating panel, as
well as the new wished feature to display the object

in wireframe or transparent mode.

Step 4 - mockup

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 139 of 147

In this case SP10 uses an existing piece of software to validate the functionality and UI
arrangement. After validating the mockup with representative uses the development work
can be broken down in to stories for entry into multiple stories for entry into the backlog.

Step 6 – Part 1 – enter story 1 into the backlog

Step 6 – Part 1 – enter story 2 into the backlog

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 140 of 147

Step 6 – Part 1 – enter story 3 into the backlog

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 141 of 147

Step 6,7,8 – In sprint usability testing and review

SP10 tests UIs as they are developed. If the criteria for success are unclear at the point of
testing test users are engaged during the sprint to provide immediate feedback.

As UI stories are completed, they are reviewed and recorded in the review report. Typically,
this includes a screenshot of the UI in question and some statements about what was
implemented. This marks the point at which an iteration of a UI is considered finished. It
will then be released to real users for “real-world” feedback.

Subsequent steps
Once released, users can take advantage of the functionality which has been developed. If
they have concerns or questions, these are routed through the standard “Feedback”
mechanism on the site.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 142 of 147

SP8 – Feature development process
SP8 has documented their current Feature development process, but user testing is currently
focused primarily on internal users. For the sake of completeness, they’ve included parts
of their development lifecycle with continuous integration testing and other non-UI testing
activities.

User interaction is shown in this figure by the red background and little human icons in the
process boxes:

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 143 of 147

Annex F – Software Development Committee Charter

Software Development Committee
2016-08-29

Charter Working Group
Jeff Muller

Hans Ekkehard Plesser

Andrew Rowley

Andrew Davison

Colin McMurtrie

Anna Lührs

Thomas Heinis

Jean-Denis Courcol

Martina Schmalholz

Marc-Oliver Gewaltig

Bennie Weyers

Eric Müller

David Lester

Joan Gulley

Michael Thies

Colin McMurtrie

David Lester

(Others to be added on invitation of the Charter Working Group or SIB after the Charter is
approved)

Purpose of the Software Development Committee (SDC)
The HBP Software Development Committee (SDC) shall address strategic cross-cutting
software development issues in the HBP.

The Committee shall work independently to develop procedures, guidelines and standards
to satisfy the strategic direction set by the HBP SIB. The SDC reports to the SIB through the
Software Development Director.

The SDC will inform developers and administrators of the HBP platforms about procedures,
guidelines and standards through workshops and living documents. It will coordinate its
activities with the Data Management Committee and the Infrastructure Development
Committee of the HBP.

The SDC will propose pragmatic approaches to ensure adoption of the developed standards,
as unimplemented standards provide little gain to the HBP.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 144 of 147

Mandate of the SDC
The SDC shall develop and communicate the following:

● HBP Software Engineering Guidelines
○ Common software development principles
○ Common development platforms
○ Source code control standards
○ Source code formatting standards
○ Documentation standards
○ Software practices for reproducible research
○ Recommendations for data handling in software products
○ UI standards
○ Protocol standards for public APIs and services
○ Data format recommendations
○ Software and source code licensing

● HBP-wide coordination of software development efforts in cases where multiple SPs
work in the same or very similar fields

● Software security recommendations (in collaboration with Infrastructure
Development Committee)

● Verification and validation standards (in collaboration with Infrastructure
Development Committee)

● Guidelines for inclusion/adoption of existing projects
○ Evaluation criteria recommendations
○ Definition of a standard approach for interactions between HBP standards

and standards already used in established community projects.
● Guidelines for Platform components

○ Definitions of classes of software
○ Support recommendations
○ Technology Readiness Level criteria (in collaboration with Infrastructure

Development Committee)
● Awareness of software development activities across the HBP
● Recommendations on use of proprietary software
● Recommendations on shared infrastructure required to provide HBP software

services
● HBP Software Catalogue
● Documentation of HBP Software Development Committee guidelines to address any

relevant HBP milestones or deliverables.
○ For SGA1 this includes contributions to a number of milestones and

deliverables, notably D11.2.2 – Software Engineering and Quality Assurance
Approach

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 145 of 147

Annex G – Infrastructure Development Committee Charter

Infrastructure Development Committee
2016-01-17

Charter Working Group
Chair - Infrastructure Director, Karlheinz Meier

Deputy Chair - Technical Coordinator, Jeff Muller

SP5 – Jan Bjaalie, Timo Dickscheid

SP6 – Michele Migliore, Felix Schürmann, Eilif Muller

SP7 - Anna Lührs, Boris Orth, Colin McMurtrie, Cristian Mezzanotte

SP8 – Ferath Kherif, Ludovic Claude

SP9 – Andrew Davison, David Lester, Eric Mueller

SP10 – Marc-Oliver Gewaltig, Axel von Arnim, Luc Guyot

(Others to be added on invitation of the Charter Working Group or SIB after the Charter is
approved)

Purpose of the Infrastructure Development Committee
(IDC)
The HBP Infrastructure Development Committee (IDC) will address strategic infrastructure
development activities which affect multiple Subprojects in the HBP.

The Committee will work independently in developing procedures, guidelines and standards
to satisfy the strategic direction set by the HBP SIB. The IDC reports to the SIB through the
Infrastructure Development Director.

The IDC will disseminate information to developers and system administrators of the HBP
platforms with respect to these procedures, guidelines and standards by means of workshops
and living documents. It will coordinate its activities with the Data Management Working
Group and the Software Development Committee of the HBP.

The IDC will emphasise pragmatic approaches with a view to ensuring the adoption of HBP
developed or external standards, since unimplemented standards are a hindrance rather
than a gain to the HBP.

The IDC will collect and provide information about the standards of infrastructure
components that are not owned by the HBP, but essential parts of the HBP infrastructure. It
assesses the impact on HBP-internal standards, Service Level Agreements, support channels
etc., and takes care that the externally defined standards are compatible with standards
and procedures that are defined internally by HBP.

Mandate of the IDC
The IDC shall develop and communicate the following:

● HBP Infrastructure Engineering Guidelines
● Common infrastructure architecture principles
● Service configuration standards
● Monitoring standards

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 146 of 147

● Security practices documentation
● System Documentation standards

● HBP Data Management Plan (“DMP”, M9 Deliverable and living document)
● Harmonising the DMP with policy updates from the Data Governance Working

Group (DGWG).
● Recommendations and implementation for data handling in deployed

services based on DGWG policies.
● Implementation of data handling in deployed services based on DGWG

policies.
● HBP-wide coordination of infrastructure development efforts in cases where

multiple SPs work in the same or very similar fields
● Supports the SDC in developing software security recommendations
● Supports the SDC in developing verification and validation standards
● Production of standards recommendations for service deployment

○ Evaluation criteria recommendations
○ Definition of a standard approach for interactions between HBP standards

and standards already used in established community projects.
○ Identify standard deployment methods for different environments (for

example on HPC, on collab, with Docker, with regular devpi servers, etc.)
○ Provide recommendations (and later implementations) for services

supporting HBP standard service deployment and monitoring.
● Guidelines for Platform components

○ Support recommendations (where 3rd party components are deployed with
minimal changes)

○ Technology Readiness Level criteria (in collaboration with Software
Development Committee)

● Reporting of all service updates to the official service catalogs and databases.
● Recommendations on shared infrastructure required to provide HBP software

services
● Documentation of HBP Infrastructure Development Committee guidelines to address

any relevant HBP milestones or deliverables.
○ For SGA1 this includes contributions to a number of milestones and

deliverables, notably D11.3.2 – Data Management Plan (M9), but also
including other deliverables in other SPs.

Co-funded by
the European Union

D11.3.3 (D62.2 D17 - SGA1 M10) ACCEPTED 180709.docx PU = Public 09-Jul-2018 Page 147 of 147

Annex H: References

1Beedle M et al. (2001). Manifesto for Agile software development. Available (viewed 2017-11-27)
at: http://agilemanifesto.org/
2Anderson DJ (2010). Kanban: Successful evolutionary change for your technology business. Sequim,
WA: Blue Hole Press. 262 pp.

3 HBPMedical/mip-microservices-infrastructure. Available (viewed 2017-11-27) at:
https://github.com/HBPMedical/mip-microservices-infrastructure
4Status Cake. Available (viewed 2017-11-27) at: https://www.statuscake.com/
5Exoscale. Runstatus. Available (viewed 2017-11-27) at: https://www.exoscale.ch/runstatus/
6 HBP SP8 Repository: Development process. Available (viewed 2017-11-27) at:
https://hbpmedical.github.io/development-process/
7 HBP SP8 Repository: Software catalog. Available (viewed 2017-11-27) at:
https://hbpmedical.github.io/software-catalog/
8 SP7 D7.7.5. High Performance Computing Platform v1. Available (viewed 2017-06-29) at:
https://sos.exo.io/public-website-production/filer_public/42/2f/422fb62e-c232-4b72-bfc7-
9dd6b23f6578/d775_rup_m30_accepted_20160803.pdf
9Heroux M, Ross Bartlett R, Willenbring J (2012). Software engineering principles: The TriBITS
lifecycle model. Available (viewed 2017-11-27) at:
http://www.sandia.gov/~maherou/docs/HerouxTribitsOverview.pdf
10Available (viewed 2017-06-29) at:

https://www.nasa.gov/sites/default/files/files/39_Agile_Estimating_for_NASA_CAS_2014_Tagged.p
df
11NEST: Developer space. Available (viewed 2017-11-27) at: https://nest.github.io/nest-simulator/
12nest/nest simulator. Available (viewed 2017-11-27) at: https://travis-ci.org/nest/nest-simulator
13The NEST simulator. Available (viewed 2017-11-27) at: https://github.com/nest/nest-simulator
14 Human Brain Project forum. Available (viewed 2017-11-27) at:
https://forum.humanbrainproject.eu
15Annex G: Technology readiness levels (TRL) of Horizon 2020 – Work programme 2016–2017. Available
(viewed 2017-11-27) at:
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-
wp1617-annex-g-trl_en.pdf

http://agilemanifesto.org/
https://github.com/HBPMedical
https://github.com/HBPMedical/mip-microservices-infrastructure
https://github.com/HBPMedical/mip-microservices-infrastructure
https://www.statuscake.com/
https://www.exoscale.ch/runstatus/
https://hbpmedical.github.io/development-process/
https://hbpmedical.github.io/software-catalog/
https://sos.exo.io/public-website-production/filer_public/42/2f/422fb62e-c232-4b72-bfc7-9dd6b23f6578/d775_rup_m30_accepted_20160803.pdf
https://sos.exo.io/public-website-production/filer_public/42/2f/422fb62e-c232-4b72-bfc7-9dd6b23f6578/d775_rup_m30_accepted_20160803.pdf
https://www.nasa.gov/sites/default/files/files/39_Agile_Estimating_for_NASA_CAS_2014_Tagged.pdf
https://www.nasa.gov/sites/default/files/files/39_Agile_Estimating_for_NASA_CAS_2014_Tagged.pdf
https://nest.github.io/nest-simulator/
https://travis-ci.org/nest/nest-simulator
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

	Software Engineering and Quality Assurance
	1. Introduction
	1.1 Status

	2. Principles
	3. Technical Management
	4. HBP Agile Practice
	4.1 Scrum: Roles and Procedures
	4.1.1 Scrum Review
	4.1.2 Backlog

	4.2 Kanban
	4.2.1 Visualise your workflow
	4.2.2 Limit your work in progress
	4.2.3 Measure the flow
	4.2.4 Kanban: final remarks

	4.3 Integration of Larger Projects

	5. Software Engineering
	5.1 Software Development
	5.2 Operations Standards (DevOps)
	5.3 HBP Standard DevOps Stack
	5.4 BBP Standard DevOps Stack
	5.5 Medical Informatics Platform Standard DevOps Stack
	5.6 Neuromorphic Platform Standard DevOps Stack
	5.6.1 Job Queue and Neuromorphic Collaboratory Integration
	5.6.2 SpiNNaker Large Machine Service
	5.6.3 NMPM-1 (20-wafer BrainScaleS System) Service

	5.7 HPAC Platform Standard DevOps Stack
	5.8 Long-term software maintenance

	6. Quality Assurance
	6.1 Unit Testing
	6.2 Integration Testing
	6.3 Manual Testing
	6.4 User Interface Testing
	6.5 Monitoring
	6.6 Platform-testing specifics
	6.6.1 Collaboratory, Brain Simulation Platform, Neuroinformatics and Neurorobotics
	6.6.2 Neurorobotics
	6.6.3 Medical Informatics
	6.6.4 Neuromorphic Testing
	6.6.5 HPAC Platform Standard

	7. Recommendations
	7.1 Communication
	7.1.1 Audience
	7.1.2 Component maturity
	7.1.3 Compute Requirements

	7.2 Quality assurance
	7.2.1 Agile Quality Assurance
	7.2.2 Checkpoint Quality Assurance

	8. Systems Documentation
	9. User Support
	Annex A – HBP Extended TRL Standards
	Annex B — Infrastructure Tiers
	Annex C – BBP Development and Deployment Standards
	Annex D – BBP Python Development Standards
	1 Introduction
	2 The Ipython Interpreter
	3 Style Guide and Conventions
	3.1 Style consistency
	3.1.1 Prefer a consistent style

	3.1 Code lay-out
	3.1.1 Never mix tabs and spaces and use four(4) spaces for indentation
	3.1.2 Limit the line length to 79 characters and split lines logically
	3.1.2 Use the blank lines to separate code
	3.1.3 Prefer a portable she-bang
	3.1.4 Prefer UTF-8 encoding

	3.3 Imports
	3.3.1 Place all imports at the top of the file
	3.3.2 Avoid relative imports
	3.3.1 Avoid using the star import

	3.4 Whitespace in Expressions and Statements
	3.4.1 Always surround binary operators with a single space on either side
	3.4.2 But do not use a space when defining keyword arguments
	3.4.3 Use spaces around arithmetic operators
	3.4.4 But avoid extraneous whitespace
	3.4.5 Always Follow a comma with a space

	3.5 Naming Conventions
	3.5.1 Packages, Modules and Scripts
	3.5.2 Classes
	3.5.3 Functions and methods
	Use lower_case_with_underscores

	3.5.4 Constants/Literals
	3.5.5 Variables
	3.5.6 Note on the BBP-SDK Python bindings

	3.6 Exceptions

	4 Static Checking
	4.1 Comparison
	4.2 Example

	5 Testing
	5.1 Unitest
	5.2 Nosetest
	5.3 Numpy Testing

	6 Documentation
	6.1 Docstrings
	6.2 Numpy Docstrings
	6.3 File Header
	6.4 Automatic API Generation

	7 Writing the setup.py file
	8 Versioning
	9 Obtaining Python Packages
	9.1 Python on Linux
	9.2 Python on Windows and Mac

	10 Wrapping Native code
	11 Performance Considerations
	11.1 Define "Too Slow"
	11.2 Identifying the Bottlenecks
	11.2.1 Improve your Algorithm
	11.2.2 Using Numpy
	11.2.3 Implement your Bottleneck in C
	11.2.4 Parallelize your Code

	11.3 Avoiding Premature Optimization
	11.4 Consider time for Development

	12 Target Version
	12.1 Python 2.x
	12.2 Python 3.x

	Annex E – UI Development and Testing Standards
	Overview
	HBP Collaboratory
	Step 1 – Concept
	Step2 – Description of users needs
	Step3 – User validation
	Step4 – Mockups
	Step 5 – User validation
	Step 6 (part 1) – Enter stories in the backlog
	Step 6 – Front end prototype
	Step7, 8 – Testing and Refinement
	Step 9 - Deployment on production
	Subsequent steps

	SP10 Example
	Step 1 – Concept (driven by User need)
	Steps 2 and 3 – Description of User need
	Step 4 - mockup
	Step 6 – Part 1 – enter story 1 into the backlog
	Step 6 – Part 1 – enter story 2 into the backlog
	Step 6 – Part 1 – enter story 3 into the backlog
	Step 6,7,8 – In sprint usability testing and review
	Subsequent steps

	SP8 – Feature development process
	Annex F – Software Development Committee Charter
	Charter Working Group
	Purpose of the Software Development Committee (SDC)
	Mandate of the SDC

	Annex G – Infrastructure Development Committee Charter
	Charter Working Group
	Purpose of the Infrastructure Development Committee (IDC)
	Mandate of the IDC

	Annex H: References

