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1. Introduction 

1.1 Aim of this Document 

This document reports on the results achieved by Subproject 11 (SP11) of the Human Brain 
Project (HBP) between Ramp-Up Phase Months 18–30, including published and submitted 
journal papers. 

1.2 Overview of Subproject 11 Achievements 

Subproject 11 was created to provide project internal guidance for the Information and 
Communications Technology (ICT) Platforms before their completion at the end of the 
Ramp-Up Phase. For this purpose, the three Work Packages of SP11 have been tightly 
integrated with Subprojects 8, 9 and 10. At the same time, the work in SP11 provided a 
first glimpse of possible future applications for the Platforms. 

Major parts of the scientific, technical and computing work (application tasks and related 
Platforms) done in the Ramp-Up Phase can be linked to tasks in SGA1. The high-level 
overview table in Appendix A demonstrates this. 

The work of SP11 has been successful and is reported in this document. In the following, 
we provide a short list of achievements ordered by Work Package.  

WP11.1 Future Neuroscience 

Retinal and cortical models of visual processing were developed and validated as planned. 
They are being put to use as input for other systems (e.g. object tracking) and as a way of 
explaining psychophysical data (e.g., visual crowding). 

WP11.1 also connected researchers in SP11 and the developers of the Neurorobotics 
Platform (NRP) in WP10. They successfully integrated the retinal model into the NRP. 

WP11.2 Future Medicine 

The work on model description and validation for dementia classification shows that there 
is more than one pattern of regional brain pathology characterised by an Alzheimer 
phenotype. The regions contributing to each set of rules or subgroups are very specific. 

The development of enriched automated diagnostic tools demonstrated that individuals 
with mismatched labels showed intermediate characteristics in both anatomy patterns and 
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memory performance. This characterises different mechanisms related to Alzheimer’s 
disease (AD). 

Deep learning for automated feature extractions showed that low-level features extracted 
from the scans without any preliminary knowledge, combined with a fairly easy deep 
learning scheme, has promising classification potential. 

Studies of the informatics-based model and factor analysis for learning disease severity led 
to the conclusion that clinically diagnosed groups have significantly different distributions 
of severity, but with a big overlap between them. This is expected due to the blurry 
clinical diagnostic criteria.  

Bi-clustering applied to gene expression and brain volumetric data showed that the co-
module genes were enriched for expressions in various regions of the brain. 

The status of algorithms, classifiers and models being implemented with the Medical 
Informatics Platform (MIP) is described in detail in the main body of this document. 

WP11.3 Future Computing 

The development of neuromorphic data mining systems was successfully studied in two 
major use cases: Predictive maintenance and the application of neuromorphic compatible 
classifiers to non-uniform memory access (NUMA) scheduling in a combined online 
transaction processing (OLTP)/online analytical processing (OLAP) In-Memory Database. 

Porting the Cell Assembly Robot (CABot), a video game agent, to neuromorphic chips has 
been carried out for two major uses cases: the SpiNNaker agent; and, a cognitive model of 
categorisation model. The agent, though simple, works. The cognitive model is being 
published and categorises like the brain’s putative explicit system. 

The exploitation of feedback in ultra-fast spiking visual architectures has been 
implemented as an event-driven Convolutional Neural Network architecture with optimized 
parameters to perform recognition of the card that has been programmed on a 4-chip 
Spinnaker board. 

The construction of spiking associative networks for neuromorphic computing systems led 
to the development of tools (spiking associative memory (SAM) generation, benchmark 
generation, PyNNLess, performance analysis, parameter optimization) that are now open 
to all HBP users. For the neuromorphic researchers these tools simplify the hardware 
access and systematic hardware testing. These tools are especially helpful for the design 
of the next generation of neuromorphic hardware within HBP. 

Asynchronous computational retina work developed a pure, event-driven visual 
computational approach that uses precise timing mechanisms to design new computational 
techniques in visual processing. The task produced a full event-driven visual processing 
system linking a neuromorphic retina directly to the SpiNNaker system by an Asynchronous 
Event Representation (AER) bus. The architecture allowed the first real-time development 
and implementation of new, visual, event-driven computation techniques. 

The implementation of spiking classifier networks was based on previous work carried out 
on the Heidelberg spiking neural network chip Spikey. The classifier design has been 
modified and adapted for implementation on different neuromorphic platforms. The 
researchers analysed how each implementation performs differently with varying model 
sizes (up to 30,000 neurons, 18 million synapses), with different number of classes (2-10 
digits), and when incorporating increasing numbers of “virtual receptors” (VRs) in input 
space (20 – 500+). The second part of the work focused on using a large model on higher 
capacity “large-scale” hardware. 

The current report on future computing also contains an introductory section discussing 
state-of the-art of neuromorphic computing, the contributions of SP11 to the field and the 
future developments planned in the HBP. 
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1.3 Overview of Subproject 11 Problems and Corrective Actions 

In the following section we discuss the problems encountered during the project work and 
the plans for a continuation of aspects of SP11 in the HPB SGA1 phase. 

WP11.1 Future Neuroscience 

Although the retinal and cortical models were successfully integrated, this integration did 
not happen soon enough to fully explore all of the intended topics related to 
psychophysical data. Such investigations are on-going. In particular, we continue to 
explore Weber’s Law for brightness perception, Bloch’s law for brightness perception, and 
visual afterimages. 

Although the retinal model was successfully integrated into the NRP, a similar effort to 
integrate the cortical model revealed that the current computational resources are unable 
to simultaneously generate the virtual environment and (a reduced version of) the cortical 
model. A way of parallelizing the computations is being explored. 

The work will be transferred to the SGA1 phase of the HBP. 

WP11.2 Future Medicine 

No major problems have been encountered during the work of WP11.2. All Tasks will be 
continued in the first SGA phase of the HBP. 

WP11.3 Future Computing 

Due to the parallel development of neuromorphic chips and their applications only a few 
experiments could be executed on real hardware. The availability of software models and 
executable software specifications helped to overcome this problem. The communication 
between WP11.3 and SP9 (Neuromorphic Computing) was excellent due to the tight 
integration of the two activities with joint regular meetings and close collaboration of 
individual groups. It is worth noting that with one exception (SAP), the WP11.3 groups 
were selected through an open call and could only start work 6 months into the project. 

During the preparation of the SGA1 proposal it was decided to continue Tasks 11.3.2, 
11.3.4 and 11.3.6 in the SGA1 phase as they represent challenging use cases for the HBP 
Neuromorphic Computing Platform (NCP) hardware and will act at the same time as 
benchmarks for the next generation neuromorphic machines. 
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2. Future Neuroscience (WP11.1) 

This report describes the results achieved by the end of the 30-month Ramp-Up Phase for 
Tasks 11.1.1 (Psychophysics of perception: the Weber-Fechner law) and 11.1.2 (Integrated 
brain-body control benchmarks). 

Retinal and cortical models of visual processing were developed and validated, and the 
retinal model was successfully integrated into the NRP. 

2.1 Description and validation of the visual (retina) processing 
models 

The retinal model was validated as part of previous milestones (MS200 and MS201) against 
neurophysiological and behavioural measures1,2. In particular, the retinal model processing 
produces representations of light intensity that correspond to Weber’s Law.  

A technical validation of the retinal model has been completed that corresponds to 
milestone MS202: integration of the retinal model with the NRP. This milestone was 
satisfied later than the planned Month 18 date because the NRP was not available until 
Month 18. 

As part of previous milestones (MS200 and MS201) the cortical model has also been 
validated relative to neurophysiological and behavioural measures3. The validation process 
of such a model never really ends, but the model behaves properly for the target topics 
(e.g., the dynamic rate of information processing in the model is realistic, the model 
produces “illusory contours”, and the model explains a wide variety of masking effects).  

The retinal and cortical models have also been successfully integrated. 

2.2 Experimental set-up of simulation environment 

The virtual environment in the NRP uses a small humanoid type of robot in a room with a 
textured floor, panelled walls, and two large screens on opposite walls. The content on 
the screens can be changed according to experimental plans. The current plan is to feed 
the retinal output into a system developed by Egidio FALOTICO from SP10 as part of a 
visual tracking system. Figure 1 is from a recorded movie of the NRP and the retinal 
processing model. The virtual environment is shown in the bottom window. 
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Figure 1: Integration of the retina model into NRP 

2.3 Implementation status with the Neurorobotics Platform 

The retinal model has been integrated with the NRP so that image frames of the virtual 
environment, from the perspective of a NRP robot, are submitted to the model and 
processed by the model to produce spike trains of ganglion cells. In Figure 1 the smaller 
windows display outputs from various stages of the retinal model. 

In contrast to the success of the retinal model’s integration with the NRP, the cortical 
model has encountered computing boundaries. The initial attempt to integrate the cortical 
model in the NRP was done without the retinal model (their integrations were been done 
in parallel). A small version of the cortical model (50 x 50 pixels, with approximately 
162,500 model neurons) was coded in the NEST software and provided to the NRP team. 
They reported that the computers running the NRP virtual environment could not 
simultaneously run a model with so many neurons. A request was made to reduce the 
model size by an order of 10, but this would result in a 5 x 5 pixels input frame, which is 
too small to be of any practical value in the NRP. 

Further discussions with the NRP developers revealed that they are working on ways of 
separating the computing resources for the NRP and interacting models. Such separation 
should allow for the cortical model to interact with the NRP virtual environment in the 
future. 

Because the cortical model could not be implemented in the NRP with current computing 
resources, we did not pursue further efforts to combine the retinal and cortical models in 
the NRP. In principle, since the cortical and retinal models have been integrated outside of 
the NRP, it should be possible to do so with the NRP. These problems mean that we have 
been unable to complete milestone MS203 (First experiment completed) by Month 30. 

2.4 Description of major use case(s) and target users 
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Application of the models to use cases and target users will largely depend on whether the 
retinal model output is sufficient by itself (as for the on-going experiment on visual 
tracking) or if the cortical model (with its mechanisms for perceptual grouping) is needed. 
In the latter situation, the system is not functional until the planned separation between 
the NRP and model computations is completed. 

Target users for the retinal model include scientists interested in utilising the 
computational processing of the retina. This may include people interested in computer 
vision, biological processing, and human vision. The retinal output could provide the 
signals that support further processing. 

Target users for the cortical model (perhaps combined with the retinal model) include 
scientists interested in perceptual grouping, brightness perception, the neurophysiological 
representation of visuo-spatial information, attention, and figure-ground distinctions. 

2.5 Documentation of models and experimental set-up 

The source code for the retinal model, documentation for its use, and a video of its 
integration with the NRP is uploaded to the NRP OwnCloud: 

https://neurorobotics-
files.net/owncloud/index.php/apps/files/ajax/download.php?dir=%2Fgeneral-
files%2Fother_material%2FSP10_videos&files=retina_first_steps_integration.ogv 

Source code for the cortical model, a draft manuscript describing its application to cases 
of visual crowding, and an analysis script is posted at the Open Science Framework. The 
files can be viewed at: 

https://osf.io/4fhxs/?view_only=a1d4cee6f6514b3da9e8bf40c132b085 

Details and source code have been provided as a Data Information Card (DIC) in the HBP 
Collaboratory. 

2.6 Outreach  
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https://neurorobotics-files.net/owncloud/index.php/apps/files/ajax/download.php?dir=%2Fgeneral-files%2Fother_material%2FSP10_videos&files=retina_first_steps_integration.ogv
https://osf.io/4fhxs/?view_only=a1d4cee6f6514b3da9e8bf40c132b085
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3. Future Medicine (WP11.2) 

This report describes the results achieved by the end of the 30-month Ramp-Up Phase for 
Task 11.2.1 (Biological signatures of diseases). 

Model description and validation for dementia classification shows that there is more than 
one pattern of regional brain pathology characterised by an Alzheimer phenotype. 
Individuals with mismatched labels show intermediate characteristics in both anatomy 
patterns and memory performance, which characterises different mechanisms related to 
AD. Low level features extracted from scans, together with a deep learning scheme, has 
promising classification potential. 

The informatics-based model and factor analysis show that clinically diagnosed groups 
have different, but overlapping, distributions of severity. 

Bi-clustering applied to gene expression and brain volumetric data showed that the co-
module genes were enriched for expressions in various regions of the brain. 

The status of algorithms, classifiers and models being implemented with the Medical 
Informatics Platform (MIP) is described in detail. 

3.1 Model description and validation for dementia classification 

The computer-aided diagnosis based on the identification of the biological signatures of AD 
has proven to be a promising method of early detection, an important condition for 
treating the disease more effectively. Most of the machine learning tools that have been 
developed are based on the evaluation of magnetic resonance imaging (MRI) scans with 
multiple modalities. These are sometimes supplemented with additional information, such 
as positron emission tomography (PET) scans, or genetic or cerebrospinal fluid values to 
improve the classification accuracy. 

Table 1: List of models developed and data sets used 

Data Sets Classification 
and clustering 

Informatics 
based models 

Algorithms and 
Benchmarks Comments 

Research 
data from 
ADNI and 3C: 
imaging, 
genetic and 
clinical 
variables  

Semi-supervised 
clustering 
algorithm 

Rule-based 
classification 

Six rules were 
derived for 
explaining AD 

Density-based 
algorithm 
compared to the 
use of state of 
the art “black 
box” methods  

The results show that low 
dimension factors can 
explain both healthy and AD 
patients 

Research 
data from 
ADNI and 3C: 
imaging, 
genetic and 
clinical 
variables 

Support vector 
machine (SVM) 
classifier 
trained on the 
pathology 
proven data and 
tested on the 
previous 
research data 
(ADNI) 

Automated 
diagnosis 
based on 
neuroimaging 
data (T1w MRI 
scans) 

The results were 
compared to 
clinical diagnosis 
performed by 
neurologists 
(expert 
knowledge) 

The results show that 
automated classification 
based on neuroimaging data 
can identify asymptomatic 
individuals at risk of 
dementia  

Research 
data from 
ADNI and 3C: 
imaging, 

Deep learning 
algorithm 

Automated 
feature 
learning 

Neural 
net/stacked auto-
encoder 

The results show that the 
algorithm was able to learn 
the best features for 
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genetic and 
clinical 
variables 

Compared atlas 
based features 
vs. random based 
features 

Compared to 
clinical label 

optimum accuracy 

Research 
data from 
ADNI and 3C: 
imaging, 
genetic and 
clinical 
variables 

Bi-clustering 
applied to gene 
expression and 
brain volumetric 
data 

Identify co-
modules 

The analysis of 
the co-modules is 
mainly gene-
centric. Bgee’s 
TopAnat showed 
that the co-
module genes 
were enriched for 
expression in 
various regions of 
the brain. 

GeneMANIA allowed the 
construction of a network 
whose central genes have 
known roles in brain 
functions or have previously 
been implicated in various 
neurological pathologies, 
such as AD, Parkinson’s 
disease, or autism. 

Research 
data from 
ADNI and 3C: 
imaging, 
genetic and 
clinical 
variables 

Rasch model 
and factor 
analysis for 
learning 
individuals’ 
disease severity 

Latent 
variable 
identification  

 

The results were 
compared to 
clinical diagnosis 
performed by 
neurologists 
(expert 
knowledge) 

The results show that the 
algorithm was able to learn 
the disease severity going 
beyond simple binary 
classification (patients vs 
controls) 

Research 
data from 
ADNI and 3C: 
imaging, 
genetic and 
clinical 
variable 

Bayesian causal 
model 

Bayesian 
Linear 
Regression 
Streaming 
variational 
Bayes 

The results were 
compared to data 
driven methods 

The Bayesian Formalism 
provides us the necessary 
armamentarium to deal with 
it and offers general 
sophisticated ways to extend 
to other models and 
managing high dimensional 
and Multimodal Data 

 

We built several predictive models of dementia by tuning the use of data driven machine 
learning methods. The list of tools developed are reported in Table 1 and summarised in 
more detail here below. The models were validated using different cohorts from research 
studies (ADNI) to population based studies (3 C).  

Table 2: Functions and KPI statuses for WP11.2 

Function  Function Name  Possible KPI statuses  Current KPI 
status 

Target 

11.2.1.1  Description 
format for the 
biological disease 
signature  

Identify multimodal clinical 
data  

Data pre-processing  

Data aligned  

Feature selection  

All achieved M3 

M6 

M9 

M12  

11.2.1.2 Informatics based 
model for 
generating 
biological disease 

Implement test different 
algorithms 

Model configuration  

All achieved M12  

M18  

M18  
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signature Benchmark algorithms   

Select algorithms 

M18 

11.2.1.3 Biological 
signature of major 
dementia. 

Scale up a pilot study to a large 
scale level 

Apply algorithm 

Clinical interpretation Internal 
validation 

Model prediction 

All achieved  M18 

11.2.1.4 Causal 
mechanisms for 
major dementias 

Define multi-scale description 
of the data 

Build an a priori bio-
physiological model 

Compare model behaviour to 
data 

Identify the pathways 

All achieved M30 

3.2 Predictive models of major dementia 

3.2.1 Informatics-based Model: Unsupervised Rule-based Clustering 

3.2.1.1 Objectives 

There is a great amount of uncertainty regarding the accuracy of diagnostic classification 
in the early stages of AD. This is due to the underlying heterogeneity in etiologies leading 
to similar phenotypes. To explain the observed heterogeneity, we use a rule-based 
clustering algorithm, and identify homogeneous subgroups of patients. The hypothesis is 
that such subgroups have the same underlying causes.  

3.2.1.2 Methods 

We used high-resolution T1-weighted 3D data from the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) datasets, which included 66 healthy controls and 48 AD patients. 
Participants were matched for age and gender. Firstly, the data were normalised to a 
common template, using new segmentation and “Diffeomorphic Anatomical Registration 
using Exponentiated Lie algebra” (DARTEL) processing in SPM8. This allowed us to extract 
measures of Grey Matter volume (GMv) from each voxel. Next, we summarised the data 
into regions of interest, based on the Automated Anatomical Labeling (AAL) atlas (Figure 
2).  

The rule-based algorithm aims to explain the variability between individuals, and describes 
a population by a group of “local over-densities”. These are defined as subspaces over 
combinations of variables. The algorithm performs an exhaustive search of the data space 
to predict the outcome variables; in this case, the health status of each subject in terms of 
the presence or absence of AD. In our experiment, the predictive variables are the 90 
brain region volumes, age, gender, and individual subject global volumes. 

3.2.1.3 Results 

After convergence and cross-validation tests, Hypercube showed that the data could be 
explained by six different rules for AD patients, and five rules for healthy controls. 
Bringing these rules together maximises the difference between healthy controls and AD 
patients. At a population level, this result shows that there are six ways of presenting with 
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an Alzheimer phenotype. These six ways correspond to six different sets of regions (see 
Figures 3 and 4). At an individual level, nonlinear effects are captured by the fact that 
each participant can be explained by more than one rule (see Table 1 for the proportion of 
overlap between rules). Critically, in prediction mode, AD and control rules explain 98% of 
AD patients and 100% of controls. 

 

Figure 2: Anatomical label of the six rules, and proportion of data space explained by 
each rule 

 
Figure 3: Brain regions contributing to each set of rules  

3.2.1.4 Conclusion 

The results show that there is more than one pattern of regional brain pathology 
characterised by an Alzheimer phenotype. The regions contributing to each set of rules or 
subgroups are very specific. Patients differ from controls according to a very systematic 
pattern that involves regions known to show atrophy from pathological examination. 
Specifically, the results showed that: a) the pattern of differences between AD patients 
and controls involved regions beyond the medial temporal lobes; b) that there is evidence 
for the existence of several subgroups of AD patients; and c) that these subgroups can be 
predicted with high accuracy from a low number of deterministic rules. 
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Given the small number of patients and variables included in the pilot study, we have 
concluded that it would be very worthwhile to carry out a further study. This would 
include a much greater number of subjects, and a considerably greater range, diversity, 
and amount of data describing their states. This follow-up would aim to confirm the 
preliminary results and specify with greater precision how many sets of rules are needed to 
identify patients with the AD phenotype. Adding more data may result in fewer rules if 
some of the patterns identified in our small pilot sample are idiosyncratic and replaced by 
a more consistent set of factors. The inclusion of new data and auxiliary variables 
(genetic, cognitive, etc.) would provide a smaller-grained, direct descriptive explanation 
of the underlying causative pattern identified in this preliminary analysis. 

3.2.2 Informatics-based Model: Enriched Automated Diagnostic Tools 

3.2.2.1 Objectives 

It has been predicted that delaying AD onset by just one to two years would result in 9.5 to 
23 million fewer symptomatic and dependent cases by 2050. AD pathology, like that of 
Parkinson’s disease, precedes symptoms. This is demonstrated in the significant 
redundancy of brain organisation, with a resulting capacity for reorganisation in the face 
of pathology.4 In light of this, it is legitimate to propose a strategy of preventive therapy 
for dementia patients. This would require accurate diagnosis prior to the onset of 
symptoms, or demonstrable signs and syndromes. Identifying accurate biomarkers, 
independent of symptoms, is critical to such a strategy. 

3.2.2.2 Methods 

We built an automated classifier from a set of MRI scans that came from deceased, 
pathologically diagnosed individuals. This classifier was evaluated for its prognostic value 
on clinically categorised living people. Subjects were clinically diagnosed as either healthy 
controls (HC) or with AD, and then grouped by the presence or absence of AD related 
atrophy into probable AD or HC. Recent evidence suggests that a clinical diagnosis of AD 
has 70% sensitivity and 44% specificity when patients are followed to autopsy. We compare 
the clinical diagnosis with one based on an AD-typical pattern of brain atrophy and 
biomarker profiles (genetic and proteomic), and aim to correlate the results with clinical 
evidence of subsequent cognitive decline. We tested the idea that cognitively normal 
people with an AD related brain atrophy pattern were at high risk for conversion to 
memory impairment and dementia. We evaluated the relative risk of such conversion, and 
compared it with other conventional AD risk factors, such as the Apolipoprotein E4 (APOE-
ε4) genotype, and AD-associated single nucleotide polymorphisms (SNPs). 

3.2.2.3 Results 

We used all 33 pathologically verified subjects to train an SVM classifier, and evaluated the 
performance using a leave-one-out cross-validation. We achieved 88% accuracy in 
diagnostic discrimination (sensitivity=88.8%, specificity=86.6%). The classifier was then 
used on ADNI subjects to predict pathological diagnoses based on anatomical patterns of 
atrophy. All ADNI subjects had been clinically diagnosed. By adding predicted pathological 
diagnoses, all subjects received a binary label that referred to clinical diagnosis and SVM 
prediction, e.g. “clinically healthy/predicted AD” or HC_AD. ADNI subjects fell into four 
groups: 275 clinical healthy controls with normal anatomical patterns: HC_HC, 192 clinical 
AD with an AD atrophy pattern: AD_AD, 91 clinically diagnosed AD subjects were classified 
as HC by the SVM, and 83 clinically diagnosed HC subjects had an AD-specific atrophy 
pattern.  
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Figure 4: Results of the study 
A shows a comparison of pathologically validated AD and HC revealed atrophy. B—E show group 

comparisons among ADNI subgroups. F compares the atrophy pattern of cognitively normal participants 
classified as AD (HC_AD) in the 3C study, to those classified as HC_HC. 

3.2.2.4 Survival analysis 

Clinical HC participants were followed for a median of 35.8 months. We examined whether 
people diagnosed as healthy (based on clinical scores) at their first visit developed memory 
impairment during follow-up, as a function of SVM predicted outcome (HC_AD vs. HC_HC). 
Five years after prediction at the first screening visit, clinical HC classified as AD patients 
had a survival rate of 66.6% (95% confidence interval [CI], 52% to 83%) in terms of 
conversion to memory impairment or dementia. On the other hand, HC_HC had an 83% 
survival rate (95% CI, 76% to 89%). Log-rank testing showed a significant difference in 
conversion time between the two groups (p= 4.3e-03). 

All AD related factors were tested for associations with conversion to memory impairment 
or dementia using Cox’s proportional hazard regression. After adjustment for gender, age, 
APOE-ε4 genotype and education, we found that, cognitively, HC subjects with atrophy 
had a 2.5-fold higher risk of developing memory impairment than those without.  
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Figure 5: Survival analyses 
Our methods identified that cognitively healthy individuals with atrophy have a 2.5 times higher risk of 

developing memory impairment than those without atrophy. 

Conclusion: Individuals with mismatched labels showed intermediate characteristics in 
both anatomy patterns and memory performance. This characterises different mechanisms 
related to AD. 

3.2.3 Informatics-based Model: Deep Learning for Automated Feature 
Extractions 

3.2.3.1 Objectives 

The increasing calculation power of computers has led to a rising interest in complex 
machine learning methods. In particular, the investigation of artificial neural networks 
with many hidden layers continuously results in promising new applications. These include 
image and face recognition, speech recognition and signal processing. Very recently, these 
deep learning networks have also been used in the classification of AD patients versus 
healthy control subjects, resulting in accuracies of up to 95%.5 

3.2.3.2 Methods 

We used MRI scans from the publicly available ADNI database. T1-weighted scans were 
used from 359 HCs and 284 mild AD patients. The groups were matched for age and 
gender. We tested two methods of feature extraction for training deep learning networks, 
both of which ensured the anonymity of the individual subjects, and resulted in 
manageable input vectors. The first of these was the classical region of interest (ROI) 
approach, using volumes of grey matter regions as input values. The second feature set 
consisted of a random set of two-dimensional sub-images extracted from each of the MRI 
scans. The pixel values of these patches were fed directly into the neural network for 
training and classification. The main difference between our study and previous attempts 
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to use small sub regions for AD diagnosis is that, in our study, no preliminary group 
comparison was performed to select affected brain regions. On the contrary, proper 
analysis of the classification results, based on randomly located training patches, can be 
used to locate affected grey matter regions in individual AD patients.  

One of the most widely used deep neural networks for classification is the stacked auto-
encoder. An auto-encoder contains three layers, the first (input) and last (output) layer of 
which are identical and known. These are connected to the neurons in the middle layer 
(the hidden layer) by means of weight matrices 𝑊𝑗𝑗, where the indices refer to connections 
from layer 𝑖 to layer 𝑗. There are no connections between neurons in a single layer. For a 
certain input vector, each neuron in the hidden layer produces an output value defined by 
the relation 𝑦 = 𝑓(𝑊21. 𝑥 + 𝑏2). The value y is called the activation of a neuron. The 
function 𝑓 can take any form, but because of its saturation properties, and advantageous 
mathematical properties, mostly sigmoid functions (varying from 0 to 1) or hyperbolic 
tangents (varying from -1 to 1) are used. The value 𝑏2 is a bias linked to each neuron in a 
hidden layer. Its value has to be optimised, together with the weights in 𝑊𝑗𝑗. In a second 
step, the output vector 𝑦  is used as input to reproduce the original input layer: 𝑥� =
𝑓(𝑊32.𝑦 + 𝑏3). The aim of an auto-encoder is to minimise the difference between 𝑥� and 𝑥, 
by finding an optimal value for 𝑊𝑗𝑗 and 𝑏𝑗. This way, an initial input vector can be encoded 
and decoded using the optimal weight matrices and bias vectors. If the number of hidden 
neurons is lower than the number of elements in the input vector, an auto-encoder can be 
used as a data compression mechanism. For this type of training, only input values are 
required; it is therefore called unsupervised learning. 

Several of the hidden layers can be stacked in order to capture more complex properties of 
the input, and these deep structures have been used successfully in many classification 
tasks. The top layer represents the classification label of the input vector, and once again 
the weights in the network have to be optimised to obtain good agreement with the given 
labels. Since output values are now compared to known labels, this technique is referred 
to as supervised learning. 

Due to the very high amount of parameters to fit, training the entire neural network based 
on an input vector and a classification label is very slow, and often results in low quality 
local optima. However, it has been shown empirically that unsupervised pre-training of 
each individual layer, followed by a supervised optimisation of the entire network, yields 
good results. 
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Figure 6: Feature extraction for a stacked auto-encoder containing two hidden layers 

3.2.3.3 Results 

Using volumes of grey matter ROI defined by a brain atlas, HC subjects were correctly 
classified in 75% of cases, and only 7% were misclassified. The performance accuracy is 
lower for AD classification (57% correct vs. 19% misclassified), but the misclassified 
subjects actually show structural properties of the HC subjects (almost no atrophy in 
temporal and hippocampal areas). Additionally, the MMSE scores of misclassified AD 
subjects were significantly higher than those of the true AD subjects. This could mean that 
we have identified a subgroup that needs a different label referring to a mild or early 
stage of the disease. 

The alternative approach for feature extraction, using random two-dimensional patches of 
normalised grey matter scans, resulted in distinctive results for HC and AD subjects. The 
most striking of these was the fact that patches from temporal and hippocampal regions 
performed much better for AD classification, whereas we noticed no significant variability 
in classification accuracy of individual patches for HC patients. It is, however, not 
straightforward to put a single label on a subject, due to the classification distribution of 
the patches. A possible approach might be to define a threshold of the number of correctly 
classified patches, above which the subject is supposed to be healthy. Based on our 
results, a possible threshold value might be 70%, leading to an accuracy of 84% for HC 
subjects, and 93% for AD subjects. 
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Figure 7: Results for classification based on random patches used as input features  
Histograms of well classified patches (top) per group. Location of patches showing the percentage of 
correct classifications for HC (middle) and AD (bottom). The size and colour of the dots refer to the 

percentage of correct classifications. 

3.2.3.4 Conclusion 

The results show that low-level features extracted from the scans without any preliminary 
knowledge, combined with a fairly easy deep learning scheme, has promising classification 
potential. Apart from being able to classify single subjects (which is not possible using 
statistical methods such as VBM), additional conclusions such as the definition of subgroups 
or finding brain regions affected by a disease may be possible. 

3.2.4 Informatics-based Model: Rasch model and factor analysis for learning 
disease severity 

3.2.4.1 Objectives 

Clinical diagnostic criteria for AD lack the power to reveal pathological changes in the 
brain, especially neurofibrillary tangles (NFT) deposition during Braak stages. The atrophy 
patterns detected by MR-scans correlate with NFT Braak stages. In this project, we 
propose to extract an index or a latent variable from the neuroimaging data to quantify 
the disease severity for each subject and regional vulnerability by applying factor analysis. 
Since the atrophy pattern correlates with the loss of neurons, this severity has a biological 
meaning and is independent of symptoms. We aim to test if the estimated severity 
significantly associates with clinical diagnosis and identify the regions highly weighted in 
calculating the severity. 
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3.2.4.2 Methods 

We collected ADNI T1-weighted MRI, including 343 cognitively normals, 731 mild cognitive 
impairments (MCIs) and 270 ADs, preprocessed with SPM12. The 114 grey matter regional 
volumes were extracted based on neuromorphometrics atlas then scaled by total grey 
matter volume and adjusted by age. We applied a factor analysis algorithm to estimate the 
disease severity using. In the post-hoc analysis, we compared the probability density 
distributions of the disease severity of the three clinical groups pair-wise by using a two 
sample T-test. To identify regional vulnerability, we applied linear regression. 

3.2.4.3 Results 

The three clinical groups have significantly different estimated severity (Fig. 8, below). 
Regions affected at early stages are highly weighted (Fig. 9).  

3.2.4.4 Conclusion 

The clinically diagnosed groups have significantly different distributions of severity but 
with a big overlap between them. This is expected due to the blurry clinical diagnostic 
criteria. 

 

Figure 8: The probability density distribution of the three clinical groups. 
In the post-hoc analysis, we applied a two sample T-test to compare each pair of groups: cognitive normals 

(CN) vs mild cognitive impairments (MCI), CN vs Alzheimer’s disease (AD) and MCI vs AD. Three pairs of 
groups showed significantly different distributions with p-value < 0.001. 



 

Co-funded by  
the European Union 

 

 

 

 

SP11_D11.4.4_2nd_Resubmission_FINAL PU = Public 26-Jan-2017 Page 24 / 89 
 

 

Figure 9: The regions highly weighted in estimating disease severity. 
In the post-hoc analysis, we applied linear regression to identify regional vulnerability. The top weighted 
regions are right entorhinal area, right parahippocampal gyrus, left entrohinal area, left parahippocampal 

gyrus. 

3.2.5 Informatics-based Model: Bi-clustering applied to gene expression and 
brain volumetric data  

3.2.5.1 Objectives 

The Ping-Pong Algorithm (PPA) is a bi-clustering method used to compare two datasets 
with one common dimension.6 In our application, these datasets are the gene expression in 
blood, and brain volumetric data from the Alzheimer's Disease Neuroimaging Initiative 
(ADNI), where the common dimension is the subjects. It returns a set of co-modules, where 
each co-module consists of a set of genes, subjects, and brain regions, such that the 
subjects exhibit similar (or opposite) profiles of expression for the corresponding genes and 
profiles of volume for the corresponding brain regions. The aim of this study was to 
identify potential biomarkers in blood and gain insight into the aetiology and progression 
of AD. 

3.2.5.2 Methods 

The algorithm uses a random weighted set of genes as a starting point (called a seed). It 
then selects subjects in which these genes deviate from the mean across subjects. Using 
these subjects, it then selects brain regions whose volumes deviate from the mean in these 
subjects. Using these regions, it selects a second vector of subjects for which the volumes 
of these regions deviate from the mean across subjects. Finally, it selects a new set of 
genes whose expression in these subjects deviates from the norm. This process is repeated 
until convergence is reached (i.e. the gene, subject, and region sets do not change from 
one iteration to the next). A more precise mathematical definition is given in Box 1. 
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3.2.5.3 Results 

Although ADNI subjects have (at most) a single gene expression analysis, most have 
multiple MRI scans. This allowed us to estimate the rate of change in brain volume (rather 
than the volume itself) and compare this to gene expression in blood. We selected subjects 
with at least two MRI scans and gene expression data between the first and last scans. The 
atrophy in each brain region was regressed to an exponential function. The slope of this 
function was used as an estimate for the rate of atrophy at the time when gene expression 
was taken. This rate of atrophy and the gene expression were then used as input for the 
PPA. 

The PPA does not use any information pertaining to the cognitive status of subjects, and is 
therefore liable to pick up co-modules relating to any number of covariates, such as age 
and gender. In order to select co-modules relevant to Alzheimer's disease, we performed 
Cox's proportional hazards modelling (with age and gender as covariates) and selected co-
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modules which were significantly associated with the diagnosis. P-values were corrected 
using false discovery rate (FDR) and only co-modules with an FDR below 0.1 were selected. 
These co-modules were then validated using ADNI subjects for which we have gene 
expression data but were not used in the first step (due to insufficient MRI data). Several 
co-modules were validated this way and their analysis is underway. 

3.2.5.4 Conclusion 

The analysis of these co-modules is mainly gene-centric. Bgee’s TopAnat showed that the 
co-module genes were enriched for expression in various regions of the brain. GeneMANIA 
allowed the construction of a network whose central genes have known roles in brain 
functions or have previously been implicated in various neurological pathologies, such as 
Alzheimer’s disease, Parkinson’s disease, or autism. These results further confirm the 
relevance of the co-modules found by PPA, however more analyses are required to 
elucidate the role of these genes in Alzheimer’s disease. 

3.2.6 Informatics-based Model: Bayesian Causal Model 

3.2.6.1 Objectives 

We aimed at designing, deriving equations and implementing the causal Bayesian model 
similar to the General Linear Model (GLM) for distributed Data. GLM is one of the most 
used models to estimated dependences between clinical, neuropsychological and 
neuroimaging variables. In our case the data are distributed in different hospitals and it is 
not possible to move them to a unique federation node where the GLM could be computed 
in a classical way. Therefore special equations should be developed that allow us to have 
reliable GLM estimations under this condition. The Bayesian Formalism provides us the 
necessary armamentarium to deal with it and offers general sophisticated ways to extend 
to other models and manage high dimensional and Multimodal Data. 

3.2.6.2 Methods 

In statistics, the GLM allows us to study the relationship between a dependent variable y 
and one or more explanatory variables (or independent variables) enclosed and denoted by 
A. 

The general problem is to solve the standard linear equation posed as following: 

 = +y Aβ ε    (1) 

y: vector of dependent variable, 1K ×   

A: Design matrix, matrix of regressors, K N×   

β : Vector of regression coefficients, 1N ×   

We have the special situation in the HBP Neuroinformatics Platform where data y and A 
are naturally split and distributed in different ‘M’ Hospitals. Additionally we cannot fetch 
the data to a common federation site to try to solve equation (1). This is not possible due 
to two main reasons: 1) the data volume is big enough that moving them to one common 
remote site is time consuming implying high data traffic; and 2) it is mandatory to preserve 
clinical data confidentiality, which is not fully guaranteed if exchanging data between 
hospitals and federation nodes is performed. Thus we have to find a method to estimate β  
combining aggregates coming from distributed hospital data and meet the main two points 
above. 

To determine β  under these conditions we make use of the Bayesian formalism. Through 
this approach, it is naturally possible to handle the issue of having distributed data over 
different databases located in different hospitals. We will take advantage of the known 
‘Divide and Recombine’ Bayesian paradigm.7 Here, there are two main cases: 1) Parallel 
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paradigm: when the data from different hospitals arrive in parallel and an estimate of β  is 
obtained with all hospital aggregates at the same time; and 2) Streaming Paradigm: the 
estimation of β  is updated every moment a new aggregate arrives from a specific Hospital 
until ‘M’ Hospitals are covered. 

 

Figure 10: General ‘Divide and Recombine’ parallel paradigm under HBP context. 

Divide and Recombine Bayesian paradigm: We suggest that [ ]1, , M=y y y  and 

[ ]1, , M=A A A , vectors iy are 1iK × , ( )1, ,i M=   that correspond to a design matrix 

iA with dimensions iK N× , where 
1

M

i
i

K K
=

=∑ . 

Using the Bayesian rule we calculate that the posterior probability of β can be expressed 
as: 

 ( ) ( ) ( )p p p∝ ⋅β y y β β   (2) 

where ( )p y β  is the likelihood and ( )p β  the prior probability for regression coefficients. 

Assuming that chunks of data are independent, we calculate that the likelihood can be 
expressed as: 

 ( ) ( ) ( ) ( )1 2 Mp p p p= ⋅y β y β y β y β   (3) 

where, 

 ( )
( )

( ) ( )
2

1
2 1 2

1, exp
22

N
Ti i

i i i i i iN
i

p N σ σ
σ p

−   = = − − −   
  

y β A β Θ y A β Θ y A β
Θ

  (4) 

Substituting this in equation (2), we obtain: 

 ( ) ( ) ( ) ( ) ( )1 2 Mp p p p p∝ ⋅ ⋅β y y β y β y β β   (5) 
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This can be rewritten as: 

  ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )( )

1 2

1 2
1

Mp p p

M
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p p p p p p
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−

⋅ ⋅ ⋅
∝

β y β y β y

y β β y β β y β β
β y

β

)))))))) ))))


  (6) 

Then the posterior probability of the regression coefficients will be expressed as a 
combination of the posterior probabilities using different chunks of data.  

If the posterior probabilities of each chunk ‘i’ of data is normally distributed, as follows, 
we obtain that: 

 ( ) ( ) ( ) ( ) ( )1
2 1 2
1 1ˆ ˆ ˆ, exp

22

T

i i i i i iN
i

p N
p

− = = − − − 
 

β y β Ψ β β Ψ β β
Ψ

  (7) 

Assuming that the prior probability ( )p β  is defined as: 

 ( )
( ) ( ) ( )

2
1

0 0 0 0 02 1 2
0

1ˆ ˆ ˆ, exp
22

N T

Np N λ λ
λ p

−   = = − − −   
   

β β Ψ β β Ψ β β
Ψ

  (8) 

We obtain that the posterior will be expressed as: 

 ( ) ( )
( )

( ) ( )1
1 22

1 1ˆ ˆ ˆ, exp
22

T

f f f f fN
f

p N
p

− = = − − − 
 

β y β Ψ β β Ψ β β
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  (9) 

where: 
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Figure 11: Divide and Recombine parallel paradigm for general linear model under HBP 
context. 

 ( )
1

1 1
0

1

1
M

f i
i

Mλ
−

− −

=

 = − − 
 
∑Ψ Ψ Ψ   (10) 

and 

 ( ) ( )
1

1 1 1 1
0 0 0

1 1

ˆ ˆ ˆ1 1
M M

ff i i i
i i

M Mλ λ
−

− − − −

= =

   = − − − −   
   
∑ ∑β Ψ Ψ Ψ β Ψ β   (11) 

The means ˆ
iβ  and covariance matrices iΨ  estimated for the ‘i’ chunk of data are 

expressed as: 

 ( ) ( )11 1 1 1
0 0 0

ˆ ˆT T
i i i i i i iσ λ σ λ

−− − − −= + +β A Θ A Ψ A Θ y Ψ β   (12) 

 ( ) 11 1
0

T
i i i iσ λ

−− −= +Ψ A Θ A Ψ   (13) 

For the case where data at each chunk iy  is considered independent and is standardised, 

we calculate that: =Θ I , I is the identity matrix, and 1iσ = . Also we assume that 0
ˆ 0=β . 

Based on these plausible assumptions (common in practice) we have that equations (12) 
and (13) become:  

 ( ) 11
0

ˆ T T
i i i i iλ

−−= +β A A Ψ A y   (14) 

 ( ) 11
0

T
i i i λ

−−= +Ψ A A Ψ   (15) 

Doing the specific maths, the estimator of β at the Federation node is expressed as: 

 ( )
1

1 1
0

1

1
M

f i
i

M
−

− −

=

 = − − 
 
∑Ψ Ψ Ψ   (16) 
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Where the local estimations (at hospital level) are estimated as: 

 ( ) 11
0

ˆ T T
i i i i iλ

−−= +β A A Ψ A y   (18) 
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0

T
i i i λ

−−= +Ψ A A Ψ   (19) 
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  (20) 

Finally after K hospital results arrived, the equations at the federation node will be 
expressed as: 

 

( ) ( )

( ) ( ) ( ) ( )( )
11 1 1

0

1 11 1 1 1
0 0

ˆ ˆ ˆ ˆ

K K
f f K

K K K K
f f f f K K

λ

λ

−− − −

− −− − − −

= + −

= + −

Ψ Ψ Ψ Ψ

β Ψ Ψ β Ψ β Ψ β
  (21) 

 

Figure 12: Divide and Recombine streaming paradigm for general linear model under 
HBP context. 

3.2.6.3 Results 

The above algorithm was implemented in scientific programming languages R and MATLAB. 
It was tested in the following example.  

3.2.6.4 Example 

During the study of AD it is interesting to know how morphometric variables (like grey 
matter volume, cortical thickness, etc.) covary between anatomical regions. The 
hippocampus is known as a key region related to AD; therefore, an interesting question is 
to study how grey matter volume changes in the right hippocampus induce changes in its 
counterpart the left hippocampus in AD patients. To answer this question, we use a linear 
regression model (developed above). The dependent variable will be the right 
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hippocampus volume in AD subjects (y variable), whereas the left hippocampus will be the 
main explanatory variable (in matrix A). Additionally, we add gender and age as other 
explanatory variables (in A) in order to minimise their influence in our results, and keep 
only the correlation between both hippocampi. 

3.3 Implementation status of algorithms, classifiers and models with 
the Medical Informatics Platform (MIP) 

This Task relies on data accessible through the Medical Informatics Platform (MIP) WP8.2, 
including data on the longitudinal study of the large cohort of “control” Alzheimer’s 
patients. 

This Task will identify biological signatures of brain disease and, ultimately, MIP end-users 
will be able to query the construct. End-users will also be able to compare the derived 
biological signatures of disease to standard classification (e.g. ICD-10). 

The next step is to create comprehensive, simple and causal models of brain diseases that 
can be run with live data collected by the MIP. The model will be executed locally within 
each hospital (preserving privacy). This step will allow us to collect additional clinical data 
for the definition of the subgroups (the causal models are described above). 
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The implementation within the MIP in the diagram below (data mining algorithms appear in red): 

 
Figure 13: Implementation of algorithms, classifiers and models within the MIP 
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3.4 Description of major use case(s) and target users 

Table 3: Major use cases and target users for the MIP 

SP8-UC-006  Biological Signatures of Diseases  

  Primary actor:  
Beth is a general user (GU). She is a clinician in neurology.   
Description: 
Beth is interested in taking forward personalised diagnostics using biological 
signatures of the disease.  
Preconditions:  
• The biological signatures of diseases produced by the data mining algorithms are 
available via the MIP Web Portal.  
• The variables that describe each disease signature cluster have been released and 
are available via the MIP Web Portal.   
Success scenario:  
1) Beth logs into the Collaboratory.  
2) She selects the Biological Signatures of Diseases service and uses the interface to 
classify her own patient by comparing his/her clinical and biological characteristics 
with the whole range of provided biological signatures of diseases using an optimal 
matching algorithm.  
3) She does this by selecting variables of interest – e.g. demographic data, blood 
cholesterol, neuropsychological scores, genetic burden, etc.  
4) She enters values for those variables.  
5) She retrieves a list of disease signatures ordered according to the best match. The 
distribution of values of the other unselected variables is also displayed along with 
their uncertainty – e.g. genotype, clinical scores and cardiovascular risk factors.  
6) She also retrieves a 3D brain map with highlighted anatomical regions affected by 
the particular disease corresponding to the optimally matched disease signature. She 
can compare the map with the anatomy pattern of her own patients.    
7) Depending on how well the disease signature cluster matches her criteria, Beth 
can add new variables to determine the stability of her classification in relation to 
the number of criteria or Variables used.  
8) She can compare the derived disease signature cluster to conventional clinical 
classification - e.g. ICD-10, DSM V classification.  
9) If needed, she can review her patients (data) to verify the derived disease 
signature cluster by similarity and by differences with other patients.  

SP8-UC-007 Biological Signatures of Diseases 

 Primary actor:  Nathalie is a GU. She is a researcher in pharmaceutical R&D. 
Preconditions:  
• The biological signatures of diseases produced by the data mining algorithms are 
available via the MIP Web Portal.  
• The Variables that describe each disease signature cluster have been released and 
are available via the MIP Web Portal.  
Description: 
Nathalie is interested in defining inclusion criteria and a set of non-invasive 
biomarkers for a clinical trial on a new drug for AD.   
Success scenario:  
1) Nathalie logs into the Collaboratory.  
2) She selects the Biological Signatures of Diseases service and uses the interface to 
retrieve the set of features of interest according to the provided disease signatures 
for dementia of the Alzheimer type.  
3) She identifies the features leading to the creation of homogeneously stratified set 
of rules she would apply to create the cohorts undergoing pharmacological 
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intervention.  
4) She uses the provided predictive tools to infer potential therapeutic targets and 
positive as well as adverse effects based on multi-scale information – e.g. molecular 
pathways, proteomics interactions, genetic profiles, etc. up to the 
system/behavioural level.  
5) She is now in a position to specify trials using well-defined homogeneous, and 
therefore small, cohorts to test the effects of a drug or cocktail of drugs that 
modulates the targets suggested by the rules that define her disease signature of 
interest. 

3.5 Documentation of models and related tools/applications 

Documentation and tutorials about the algorithm are accessible via the MIP Knowledge 
Base. 

Code source are available (https://github.com/LREN-CHUV/functions-
repository/blob/master/Guidelines.md). 
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4. Future Computing (WP11.3) 

4.1 Neuromorphic computing applications: state-of-the art, 
contributions and value of WP11.3 and future development in 
the HBP 

State-of-the-art 

Since the days of it’s inception by Carver Mead around the early 1980s neuromorphic 
computing has seen a development from purely bio-derived analog VLSI circuits to a more 
general approach that mimics only certain aspects of the brain relevant for a specific 
computational approach. Important new developments since those early days are the 
introduction of more digital functionality, motivated mostly by the rapid development of 
manufacturing technologies in the digital world enabled by Moore’s law. The current state-
of-the-art in neuromorphic computing reflects this development very clearly. At the time 
of the end of the HBP ramp-up-phase (RUP) there are 3 large, usable systems available 
worldwide for experiments and applications. Ordered according to their closeness to 
conventional von Neumann computing these are : SpiNNaker, TrueNorth and BrainScaleS. 

SpiNNaker, now also pursued as part of the Human Brain Project, is a many-core system 
with a packet routing architecture highly optimized for efficient spike transmission. It is 
effectively a massively parallel real-time simulator with 500.000 ARM cores that can be 
programmed by standard programming methods. Individual processors execute standard 
program code but their communication is event-driven and asynchronous like in the 
biological brain. 

TrueNorth maintains the use of purely digital circuitry but gives up the concept of 
algorithm controlled microprocessors. As such, it is a non-von Neumann computing 
machine. Specific digital neural circuits have been designed to implement one particular 
neuron model (LIF) and very basic synapses. The advantage of this approach are a very 
high degree of compactness and easy scalability to advanced process nodes. The system 
has very low energy cost per neural operation. As TrueNorth is a non-von Neumann 
machine without traditional programming models it needs specific software for 
configuration. Also, the simple neural functions implemented in neurons and synapses are 
far from biological realism. The system found several high-profile users in particular among 
government agencies in the US. 

The third approach, also pursued in the HBP, is called BrainScaleS. This system makes the 
largest step away from conventional digital computing towards substantial biological 
realism implemented as mixed-signal circuits with analog neurons and synapses 
communicating with binary spikes in continuous time. A 2-equation neuron model (AdEx) 
developed in the previous FACETS project with programmable parameters and synapses 
featuring short and long-term plasticity constitute the neural components of the system. 
Neurons can receive up to 16.000 synaptic input which makes them ideal models for 
cortical circuits. Like TrueNorth this system needs a custom software stack for 
configuration. 

Currently, all 3 systems have to be trained using software algorithms running on 
conventional computing systems. Training (or learning) is an important time consuming 
factor for neuromorphic systems. If different time scales from synaptic plasticity to 
structural changes in developmental processes are involved, a relative factor of a Million 
or more has to bridged in the artificial system. This is the single most important problem 
for conventional computer simulations which run much slower than real-time. With a slow-
down factor of 1000 or more, it is impossible to simulate just a single day-equivalent of 
learning. SpiNNaker and TrueNorth are real-time systems. This is an important step 
forward and of special importance for robotics applications which require real-time 
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performance. The BrainScaleS physical model implementation is special in that it has 
tuned all analog system parameters like conductances and capacitances to accelerate 
learning and emulation by a factor 10.000 with respect to biology. This is an important 
asset for slow learning but essentially excludes use in real time robotics applications.  

Current use cases for neuromorphic hardware are mostly demonstrators for basic neural 
micro-circuits like winner-take-all, attractor memory, synfire-chains, neural sampling 
units, AI states, cortical volume models and others. Applications in machine learning 
benchmarks are coming up at this moment in time. IBM has recently published a paper 
implementing deep networks on TrueNorth but with the entire learning process carried out 
offline. 

Neuromorphic computing in the HBP is building on 10 years of work in previous projects. 
Among those are the EU-FET funded projects FACETS, Brain-i-Nets and BrainScaleS as well 
as the national British project SpiNNaker. Most effort in the RUP was invested in ramping 
up the small prototype systems to full scale platforms. This was a major engineering work 
involving production and manufacturing of several 1000 printed-circuit boards, testing, 
cabling, system debugging and development of support firmware and software. In parallel, 
first prototype chips of the 2nd generation where designed, produced and partly tested. 
The 2nd generation design work received crucial inputs from SP11 (and SP4) in the HBP as 
described below.    

Contributions and value of SP11 (WP11.3) 

Subproject 11 in the HBP RUP was created to come up with very early applications of the 
basic research and technology work carried out in the HBP. In-line with the overall 
objectives of the HBP, applications have been created in the areas of future neuroscience, 
future medicine and future computing. Here, we give an evaluation of the application 
work in future computing. A detailed description of the results obtained in the 
corresponding tasks can be found in the following chapters. 

The idea of early applications turned out to be a challenge for the following 3 reasons : 

• With one exception (Task 11.3.1) all tasks started with a 6 months delay after 
project start because they where selected in an open call process. 

• The selection in the open call was carried out strictly according to scientific and 
technological excellence of individual proposals and not with the goal of a broad 
coverage of application areas. Still, the coverage is surprisingly good with a slight 
overrepresentation of vision related applications. 

• Application development was carried in parallel with the construction of the 
platform machines. As the generation 1 neuromorphic chip concepts were basically 
ready (as a result of previous projects), the hardware and software groups in the 
hosting subproject SP9 had to focus mostly on actual platform construction work 
rather than developing their basic design criteria. 

Still, all involved groups consider the joint work of SP11 and SP9 a very good success. All 
video conferences and physical meeting where held together and the input from SP11 to 
SP9 was very effective in the following areas : 

• Exploring and further developing the software tools to configure the HBP 
neuromorphic systems and analysing their data. 

• Pointing out flaws in the workflow. 

• Acting as early adopters (and multipliers) of the small-scale systems available from 
SpiNNaker and BrainScaleS. 

• Providing inputs to the design of the two early 2nd generation prototype chips 
developed and partly tested during the RUP. 
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The inputs to the design of 2nd generation prototype chips received important contributions 
from SP11 in terms of the following specific requirements : 

• The importance of a floating point unit in the SpiNNaker-2 ARM cores to implement 
more complex neuron models and plasticity rules. 

• The importance of an on-chip random number generator on SpiNNaker-2 for 
stochastic computing. 

• The decision on synapse precision required for the BrainScaleS-2 system. 

• The importance of parameter stability for the BrainScaleS-2 system. 

• The features and capabilities of the plasticity processing unit (PPU) on the 
BrainScaleS-2 chip.  

The specific work of the SP11 groups was carried out in 5 areas covering key applications 
for future neuromorphic computing :  

Data mining 

The development of neuromorphic data mining systems was successfully studied in two 
major use cases: Predictive maintenance and the application of neuromorphic compatible 
classifiers to non-uniform memory access (NUMA) scheduling in a combined online 
transaction processing (OLTP)/online analytical processing (OLAP) In-Memory Database. 

Multivariate data classification 

The implementation of spiking classifier networks was based on previous work carried out 
on the Heidelberg spiking neural network chip Spikey. The classifier design has been 
modified and adapted for implementation on different neuromorphic platforms. The 
researchers analysed how each implementation performs differently with varying model 
sizes (up to 30,000 neurons, 18 million synapses), with different number of classes (2-10 
digits), and when incorporating increasing numbers of “virtual receptors” (VRs) in input 
space (20 – 500+). The second part of the work focused on using a large model on higher 
capacity “large-scale” hardware. 

Robotics 

Porting the Cell Assembly Robot (CABot), a video game agent, to neuromorphic chips has 
been carried out for two major uses cases: the SpiNNaker agent; and, a cognitive model of 
categorisation model. The agent, though simple, works. The cognitive model is being 
published and categorises like the brain’s putative explicit system. 

Visual system I : Convolutional networks 

The exploitation of feedback in ultra-fast spiking visual architectures has been 
implemented as an event-driven Convolutional Neural Network architecture with optimized 
parameters to perform recognition of the card that has been programmed on a 4-chip 
Spinnaker board. 

Visual system !! :  Communication with spiking neurons 

Asynchronous computational retina work developed a pure, event-driven visual 
computational approach that uses precise timing mechanisms to design new computational 
techniques in visual processing. The task produced a full event-driven visual processing 
system linking a neuromorphic retina directly to the SpiNNaker system by an Asynchronous 
Event Representation (AER) bus. The architecture allowed the first real-time development 
and implementation of new, visual, event-driven computation techniques. 

Spike-based memory architectures 

The construction of spiking associative networks for neuromorphic computing systems led 
to the development of tools (spiking associative memory (SAM) generation, benchmark 
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generation, PyNNLess, performance analysis, parameter optimization) that are now open 
to all HBP users. For the neuromorphic researchers these tools simplify the hardware 
access and systematic hardware testing. These tools are especially helpful for the design 
of the next generation of neuromorphic hardware within HBP. 

Future development in the HBP with respect to applications 

The HBP decided not to follow-up on the concept of a dedicated application workpackage 
in the SGA1 phase. Instead, applications of neuromorphic computing are now part of the 
SP9 subproject proper. Out of the 5 application areas described above, the following areas 
and groups decided to continue in the project during SGA1 : 

• Multivariate data classification (Nowotny, Schmuker groups) 

• Robotics (Huyck group) 

• Spike-base memory architectures (Rückert group) 

In order to address a wider audience the following measures are currently taken in SGA1 : 

• Regular online application workshops 
https://www.youtube.com/watch?v=khRPnlDekIg 

• Advertising the HBP neuromorphic platform through the open guidebook 
https://electronicvisions.github.io/hbp-sp9-guidebook/ 

• Alignment with the US activities, especially in the application area 
https://www.src.org/calendar/e006125/ 

• Strong involvement in the co-design project 5 on learning and plasticity 

• Invitation of groups to work on applications as partnering projects. 

Concerning the last item in the list : Partnering projects (PPs) are an important asset of 
the HBP. The allow to attach groups or projects with their own funding as formal partners. 
Applications of neuromorphic computing appear to be an ideal case for PPs as funding for 
applications within the core project will always be limited to a few cases. SP9 will 
therefore actively search and invite European partners to join HBP as PPs working on 
applications of neuromorphic computing.   

In the SGA2 (starting April 2018) applications will be joined with benchmarking studies and 
a dedicated workpackage will be created within SP9, building on the successful concept of 
the application workpackage 11.3 in the RUP : 

Workpackage 5 : Applications and Benchmarks  Michael Schmuker 
Task 9.5.1: Neuronal signal processing   Michael Schmuker 
Task 9.5.2: Agent and Agent Components  Chris Huyck 
Task 9.5.3: Object recognition    Thomas Nowotny 
Task 9.5.4: Benchmarking     Ulrich Rückert 

The alignment with the technology development in SP9 will be very close and has already 
started in the current SGA1.  

In the following paragraphs the specific work carried out in the application tasks is 
described.              

4.2 T11.3.1 (SAP): Neuromorphic Data Mining Systems 

This report describes the results achieved at the end of the 30 months ramp-up phase of 
the HBP project. The activities were guided by the approach to identify neural networks 

https://www.youtube.com/watch?v=khRPnlDekIg
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://www.src.org/calendar/e006125/
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able to deal with real-world problems, but also simple enough to allow an implementation 
on a neuromorphic hardware system. These neural networks then need to be adopted in 
order to be able to process spikes. This is a prerequisite for a later implementation on the 
hardware systems. A major decision in enabling a classical neural network to process 
spikes is to select an appropriate encoding scheme. Since networks of spiking neurons are 
dynamic systems with a complex temporal behaviour, we decided to apply temporal coding 
and encode the information in the precise spike time of the neurons. In contrast to this, 
many algorithms are currently based on rate models. 

When the decision on the coding scheme is made, the next question is how to modify the 
synaptic weights in order to implement learning and to retrieve a previously stored weight 
value. The hardware systems implement the Spike-Timing Dependent Plasticity learning 
rule which will then be the preferred way to adjust weight values in an on-line mode. Off-
line learning would also an option, but to exploit the full advantages of adaptive systems 
on-line learning will be preferred. 

 

Figure 14: Minimalistic STDP memory network as described in the text. 

STDP will lead to weight changes based on the observed spike patterns and change the 
previously learned spike times, e.g. increased weights will lead to earlier spike times. To 
address the topic of spike time encoded memory, we implemented a “memory cell” 
utilizing STDP. The memory cell is depicted in Fig.13. It basically consists of the 3 neurons. 
An initial start signal t0 causes the pre neuron to spike, which in turn loops itself to keep 
spiking with a well-defined frequency (alternatively, a burst representing a high value 
could be injected in to pre). We found that this produces a short clocklike spike behaviour 
for a small time range. 

These spikes are transmitted through the STDP synapse and excite post. The neuron post 
will therefore spike at different points in time, depending on the currently stored weight. 
A spike of post excites an inhibiting node immediately, causing inhibition of pre after a 
short period of time which leads to one last spike of pre after post spiked. Inhibitions are 
depicted by dashed lines. Details will be described in an upcoming publication. 
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Figure 15: Simulation of a single memory network.  

This figure shows the plotted weight of the single STDP synapse for 8 different training 
scenarios. An iteration lasts for 100 ms. Until 5900 ms or 59 iterations, a reference signal is 

presented for training. From 6000 ms onwards, the system is in a "retrieve phase". 

This small network of neurons exhibit some interesting features as it produces stable 
states around certain weight values, leading to well-defined spike times. These desired 
spike times are induced via the injection of a training signal (tref). Updates of the weight 
values are performed by STDP during the training phase, STDP remains active also in the 
retrieval phase, leading to small variations around the stored values. The diagram above 
(Fig. 14), depicting the result of a simulation leading to 8 stable states. 

We plotted the simulation of a single learning component over 8000ms, thus 8 seconds, 
using training with a reference signal an STDP. It shows the oscillation behaviour and the 
resulting 8 learnable intervals for storing values of (13,14, …,20) ms. Note that all target 
values are already reached around 2000ms, thus 2 seconds or 20 iterations (100ms each). 
After that, the system remains in the corresponding interval with only little oscillation. At 
6000ms onwards, the system is running in retrieving mode. The oscillation variance grows, 
as it is expected from an unsupervised system, but still stays within small boundaries.  

These memory cells can be block wise combined to form bigger units and to implement 
networks with a larger number of states. E.g. combining three units will extend the range 
of trainable spike times from (13,.., 20) to (13,..,36) ms. 

 

Figure 16: Blockwise composition of three memory networks denoted as mn1 to mn3. 

Once these memory cells become available, they can be used to construct larger networks 
like the one mentioned in the previous report, the CMAC network. The classical (non-
spiking) model can, with the concepts described above, be transferred to a spiking version 
of the network. 

Implementations on the neuromorphic hardware systems are ongoing. In the meantime we 
managed to implement a preliminary version of the memory cell on the physical-model 
system and could identify stables states leading to well-defined spike times. 
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Figure 17: Preliminary results of the memory network implemented on the Spikey 
chip. Shown is the “retrieve phase” for a training scenario leading to a stable state 

after a ”burn-in” time. 

In the experiments depicted in the diagram (Fig. 1), we created a stable state leading to a 
spike time of about 28 ms with fluctuations < 1ms. An implementation leading to more 
states, similar to the simulation described above, is underway. This will be the 
prerequisite for the implementation of larger networks. 

4.2.1 Description and validation of software models for network architectures 
in neuromorphic hardware 

The cerebella model articulation controller (CMAC) has been introduced as a 
computational model of the mammalian cerebellum. Developed as an associative memory, 
it is capable of approximating a continuous nonlinear function from samples of the 
function’s input and output similar to a multi-layer perceptron (MLP) however only a small 
fraction of the network determines the actual output. Its focus lies on local generalisation: 
similar inputs produce similar outputs while distant inputs produce nearly independent 
outputs. This leads to very efficient and fast learning making it suitable for real-time 
adaptive control applications. 

The network described here implements a spiking version of the traditional CMAC. It 
applies two different encoding schemes, population coding and temporal coding, 
respectively. The non-linear transformation, f, is performed similar to the classical CMAC 
algorithm leading to a spatial representation of the input signal in the hidden layer. The 
main characteristic of the transformation remains the same, i.e. similar input signals will 
generate similar representations in the hidden layer. These connections are static and will 
not change. In the case of random connections, a soft winner-take-all (sWTA) circuit could 
be applied to subsets within the hidden layer selecting the L cells with the highest 
activation potential. 

 

Figure 18: Proposed spiking CMAC network 
The proposed network has temporal coding in the output layer g, while the transformation f is similar to 
the original CMAC wiring. The total output of the network is the average of all intermediate values Pj of 

the (at most) L active hidden neurons for a given input. Note that we use the previously described memory 
primitive for storing and training the connection of the hidden layer to the output cells. 

A state in the hidden layer is represented by L active cells, one in each of the sub-layers. 
Due to a fixed delay between the input and hidden layer, the activated cells will all spike 
at the same time, t0. This defines a reference point for the temporal coding which will be 
used to encode the information for the linear transformation between the hidden layer and 
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the output layer. In contrast to the classical CMAC network, the temporal CMAC has L 
output nodes, each fully connected to a subset of the hidden layer. Every subset triggers a 
single spike in the output layer and the specific spike time depends on the corresponding 
weights. 

We now apply two different training rules to adjust the weights and the corresponding 
spike times: one is using STDP, the other is based on the calculation of a “trend signal”. 
For every training iteration, the spike time tj - t0 (j ≤ L) of the output cell of each sub-
layer is shifted towards the target. In spiking models, this is encoded as synapse weight 
adjustments, as heavier weights lead to earlier spikes of the post connected neuron. The 
final output of the network is the weighted average of the spike times of active cells in the 

output layer: Result = � 𝑡�𝑤𝑗 ∗ 𝑎𝑗�/𝐿
𝐿

𝑗
. 

Cells which are involved in the training of a single target value will approach that value 
after a number of training iterations. Due to the generalisation property, some of the cells 
will participate in the training of more than one target value and the learning rule will 
lead to a spike time representing the weighted averages of those target values as they 
occur in the training data. The summands will therefore either be precise target values or 
weighted averages of the target values of neighbouring states avoiding extreme 
contributions as can be the case for the original CMAC. This will ensure good generalisation 
compromising the approximation accuracy. These models have been tested as part of the 
milestone MS211 in extensive software simulations as a candidate for an implementation 
on the neuromorphic hardware. Results of the PyNN simulation are shown in Fig. 19.  

  

Figure 19:  Single prediction simulation of the proposed temporal CMAC. 
Dashed lines mark the 16 distinguishable values by the memory primitive. The blue line depicts the target 

values, a sinus. Randomly sampled training points are depicted by stars. Finally, every possible point is 
tested, indicated by yellow dots. 

Parts of the network could be implemented on the Spikey system during activities leading 
to MS212 (Implementation of test networks on the HBP Neuromorphic Platform). 

4.2.2 Implementation of network architectures in the NCP and defined 
benchmarks  

Both use cases are selected to exploit the benefits of Neuromorphic Computing. The 
predictive maintenance use case builds on the implementation of a neural network in 
hardware with the goal to enable real-time processing of data streams using the intrinsic 
parallelism of neural algorithms and corresponding hardware implementations. An 
important factor (at least for some of the application areas) will be the low power 
consumption. A benchmark for the software implementation is the data set described in 
the Prognostics Data Challenge Dataset (PHM08 / NASA) and the results of the competition 
published on the respective web site. The software model based on an implementation of 



 

Co-funded by  
the European Union 

 

 

 

 

SP11_D11.4.4_2nd_Resubmission_FINAL PU = Public 26-Jan-2017 Page 44 / 89 
 
 

the CMAC as described above achieved results comparable to other (more complex) 
methods. A hardware implementation based on this data set is at the current stage beyond 
the scope of the Spikey system. As a proof-of-concept we implement a regression problem 
(approximating a non-linear function) in PyNN. 

The NUMA aware scheduling in the in-memory data base will only be possible with a very 
fast classifier, implemented in HW and located in proximity to the CPU. The benchmark is 
the performance achieved by a set of heuristic rules which works well under “normal” 
operational situation, however performance decreases significantly under higher system 
load. Experiments are ongoing to benchmark the performance of a classifier against the set 
heuristics under varying load conditions. 

4.2.3 Description of major use case(s) and target users of your application 

We looked at two different use cases, (1) Predictive Maintenance and (2) NUMA aware 
scheduling in an OLTP/OLAP in-memory data base.  

Predictive Maintenance 

The previous science report mentioned the activities to identify an application of neural 
networks in the area of predictive maintenance. It could be shown that a classical neural 
network, based on model described by Albus in 1975, is on the one hand able to deal with 
complex real world data sets, but on the other hand simple enough so that it can be 
implemented on the neuromorphic hardware systems of the NCP. 

The following diagram shows the result of the simulation, based on a publicly available 
data set (Prognostics Data Challenge Dataset, PHM08 / NASA). The results are comparable 
with results achieved by other (more complex) methods. An implementation in low-power 
hardware could potentially allow to move such prediction functionality into the devices. 
IDC (IDC FutureScape: Worldwide Internet of Things 2016 Top 10 Predictions) predicts that 
by 2019, 45% of all data created in Internet-of-Things scenarios will not be processed and 
stored at backend systems, but rather analyzed by devices at the edge of the network and 
directly acted upon locally. This could lead to significant benefits in terms of latency, 
reduction of data transmission, required network bandwidth and data storage. 

 

Figure 20:  Simulation of a predictive maintenance scenario. 
The left diagram shows the target function (remaining useful life) in days and the prediction by the CMAC 

network. The diagram on the right shows the behaviour of the selected 14 sensor values. 

The goal of the activity was to model the CMAC algorithm as a spiking neural network 
suitable for an implementation on the NCP. The selected approach is to take conventional 
neural network structures and adopt them to the spiking methodology. This is a 
prerequisite for a later implementation on the hardware systems.  

Application of neuromorphic compatible classifiers to NUMA scheduling in a combined 
OLTP/OLAP In-Memory Database 

The SAP HANA in-memory database system is a very high performance system underlying 
most of SAP’s newer solutions. To achieve consistently adequate performance without 
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having to design special purpose data access paths, clever low-level implementation 
techniques are employed that use robust, mostly brute-force algorithms that are fairly 
insensitive to variations in the data or effectiveness of traditional query processing 
optimisations. Queries are split into small jobs that are executed in parallel wherever 
possible. Many of these jobs are bottlenecked on access to data rather than computation, 
which makes relative placing of data and query processing jobs in machines where 
processors and memory are segregated into multiple interconnected clusters a difficult 
optimization problem. 

Dynamically scheduling jobs onto a modern machine with hundreds of cores and thousands 
of concurrent jobs is challenging (optimal scheduling is NP-hard and actual hardware 
exhibits dynamic behaviour that introduces uncertainty and noise into the optimisation 
parameters) and is infeasible to perform in software at the required speeds. 

“Optimal” scheduling in this context simultaneously tries to achieve best throughput (by 
utilizing as many of the resources in the machine in parallel as possible) as well as limiting 
the waiting time for completion of individual queries (which translates to the user-
perceived response times). Traditional databases split workloads of long-running OLAP 
(online analytical processing) queries and the short-running, but frequent OLTP (online 
transaction processing) queries between separate systems (OLTP database optimized for 
transactions, Business Warehouses for analytics). This approach not only doubles the 
systems count, but also leads to delays and inconsistencies between the systems. HANA 
tries to handle both types of query in a single database. For efficient resource utilization 
for OLAP, one wants close to 100% resource utilization, and for good interactive 
performance traditional OLTP databases have to limit utilization to around 40%. 

A “good” scheduler for such a mixed workload system will try to limit the latency impact 
of the resource hungry, longer queries on the shorter ones. For our experiments, we 
selected a set of nine “solvable” workload traces and computed an optimal schedule (i.e. 
the best one could do if one knew the future outcomes of current scheduling decisions as 
well as the future queries coming in). “Solvable” means that schedules exist that let all 
queries meet latency requirements and offer good throughput. Of course, completely 
overwhelming a machine with too much work means that work eventually becomes 
impossible to schedule and has to be solved by admission control. The goal of a good 
scheduler is to push the cut-off point where admission control has to shed workload from 
the typical 40% resource utilization point to as close to 100% as possible. 

Known heuristic schedulers either optimize for fair resource usage (round robin) or try to 
quickly get rid of queries (greedy), which lead to good minimal response times but 
sometimes to terrible worst-case latencies and eventual starvation, even when a better 
schedule could have avoided the problem. 

 

 

Figure 21: Illustration of CPUs with attached memory modules and interconnects 
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Our neural scheduler approach uses supervised training of classifiers that are 
implementable on neuromorphic hardware to approximate optimal scheduling decisions in 
real-time. 

The scheduling problem is reformulated as a classification problem by presenting the 
dynamic state of the system (load factors, queue lengths, etc.) together with the 
parameters of each job to a classifier. Supervised training happens under the guidance of a 
full system simulator that can calculate dynamic system parameters from first principles 
and can also simulate future outcomes of job placement decisions accurately. 

 

Figure 22: Distribution of minimum and maximum query response times across 9 
different workload traces (WL100-WL112).  

WL traces are based on the same queries and contain the same amount of overall work, but differ 
significantly in inter-query arrival times and clustering of query types. In particular, WL100, WL106, 
WL109 and WL110 have significant clustering of queries towards individual resources. The four different 
schedulers (Rr for naïve round-robin, GR for greedy, Hr for our neural scheduler, and Opt for the 
omniscient “teaching” scheduler used to train the Hr scheduler. Note the huge worst case latencies for 
both the round-robin and greedy schedulers. 

We compared the classifier-based scheduler on workload traces of 100,000 jobs each with 
different degrees of skew and saturation of bottleneck resources. Performance on 
workloads far off saturation or with even load distribution was indistinguishable (i.e. 
marginally better or sometimes worse) than either a naïve round robin heuristic or a 
somewhat more sophisticated “greedy” heuristic scheduler. Performance on heavily 
skewed workload (i.e. “hotspots” in resources) typically come within a factor of two of the 
(unachievable in practice) optimal schedule calculated by the “omniscient” scheduler, 
vastly outperforming naïve round-robin scheduling. Performance relative to the “greedy” 
heuristic scheduler was comparable for many of the workloads, but the classifier-based 
scheduler does a better job in managing the workload for all cases without exhibiting 
“long-runners”. More follow-on work will be required to either better characterize the 
workload or engineer features to be better able to capture the relevant dynamic aspects 
of the workloads. 

The workload traces used for the experiments are available publicly at 
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https://www.dropbox.com/s/a22dkvn9epj0735/HBP_4.1_NUMA_scheduling.zip 

The application Work Package WP11.3 ends with the completion of the HBP Ramp-Up 
Phase and therewith SAP’s involvement. Bi-lateral collaboration models are currently being 
discussed. 
  

https://www.dropbox.com/s/a22dkvn9epj0735/HBP_4.1_NUMA_scheduling.zip
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Table 4: Status of use cases for the NCP 

Use Case Data Set Classification 
and clustering 

Algorithms 
and 

Benchmarks 

Implementation 
status on NMPs 

Comments 

Predictive 
Maintenance 

PHM08/NASA for 
the software 
simulation, 
sinus curve for 
the PyNN 
implementation 

 

 

 

Regression 

 

CMAC  

Model 
implementation in 
PyNN, parts of the 
memory cell on the 
neuromorphic HW 
system  

Full data 
set to 
complex, 
therefore 
sinus curve 
selected 
for 
regression 

NUMA 
scheduling in 
in-Memory 
DB 

Generated by 
software model 

 

Classification 

CMAC and  
others 

Only software 
simulation at this 
stage  

Preliminary 
evaluation 
finished 

4.2.4 Documentation of software models and network architecture 

The software model and network architecture will be described in an upcoming publication 
(Online Trainable Spiking CMAC Network, by Björn DEISEROTH, Ulf BREFELD, Christian 
DEBES, and Frank GOTTFRIED). 

4.2.5 Outreach  

SAP is currently preparing a paper describing the work in detail, to be submitted shortly. 
The results were presented during a talk as part of the “Gesprächskreis Rhein-Neckar” 
which took place on 28.01.2016. SAP participated in all meetings of the Neuromorphic 
Computing Division (SP9/WP11.3) within the reporting period. 

4.3 T11.3.2 (MU): Port CABot3 to neuromorphic chips and extend 

Table 5: Status of model types and networks in WP11.3.2 

Model Type/ 
Network size  

Simulation 
Software 

Implementation Status 
(NM-PM1, NM-MC1) 

Parameters 
evaluated 

Comments 

Validate 
Models PyNN, Nest, 

SpiNNaker 
Tested existing models 
on all platforms. 
Developed new neural 
and synapse models on 
Nest and SpiNNaker 

Spikes appropriately. 

Simple learning 
works. 

Initial work 
was slow. 

Later work 
has been 
slow. 

 
Virtual Agent PyNN NM-MC1 Full CABot3 agent Closed 

Loop 

 
Virtual Agent PyNN NM-PM1 Code runs remotely 

but no agent. 
 

4.3.1 Describe and validate neural and synaptic models for neuromorphic 
systems 

Initially we needed to get things running in PyNN and SpiNNaker. We needed to use the 
standard neural models. Initial work with Izhikevich neurons failed because they could not 
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be inhibited without spiking. Subsequent work with a range of IF models worked, along 
with use of the standard plasticity model (STDP). Unfortunately, we could not bind with 
STDP, needing a form of short-term potentiation; consequently, we could not bind during 
Natural Language Parsing.    

In later work (end 2015), we developed our own neural and synaptic models to run on Nest 
and SpiNNaker. We have developed a fatiguing leaky integrate-and-fire (IaF) model, a 
short-term plasticity model, and a compensatory long-term plasticity model. 

CABot4 (MS309, M30) has not been completed. While a neural implementation of a 
cognitive model of learning has been developed, this has not been integrated into a new 
SpiNNaker agent. 

4.3.2 Implementation and performance of virtual agent and environment on 
neuromorphic systems 

The virtual agent runs on SpiNNaker. It is a simple agent in a simple environment, but can 
explore the environment, remember the coarse structure, respond to natural language 
commands, view the environment, and execute simple plans. It runs on both 4- and 48-
chip systems. For the full test, remembering the environment, current performance is 
around 75%. 

We wrote the virtual environment using Python and Tcl/TK. The environment had an agent 
that could perform four primitive actions: move forward, move backward, turn left, and 
turn right. The environment consisted of four rooms connected by four corridors. Each 
room had a unique shape in it: a red or blue pyramid or stalactite (up facing and down 
facing tetrahedrons).   

The agent, implemented on SpiNNaker in simulated neurons, responded to natural 
language commands typed in by a user. The agent was implemented by several 
subsystems, with the coarse topology shown in Figure 23. Subsystems could be tested in 
isolation, and used in the full agent. The Natural Language Processing (NLP) subsystem was 
implemented by a Finite State Automata to parse the predefined commands. This 
subsystem always succeeded both in isolation and in the full agent. 

The vision subsystem takes inputs from the virtual environments camera as pixels. This can 
vary in size, and has been tested on 20x20, 30x30, 40x40, and 50x50 as input. A simulated 
retina converts the pixels to a series of on-off and off-on receptors with 3x3, 6x6 and 9x9 
receptive fields. The outputs of these are passed to four angle, and eight edge detectors.   
All of the receptors and detectors are the same size as the input. So, with larger inputs 
performance is better, but the number of neurons increases rapidly. Finally, there are 
three 20x20 colour detectors (red, blue and green). These inputs are then passed on to 
object recognisers for recognising the four shapes and the corridors. These then activate 
vision facts, indicating that the appropriate object is in the visual field, and whether it is 
left, centre or right. It is difficult to measure performance with this, since it is not clear if 
(for instance) a one pixel pyramid is actually present in the environment. This largely 
works correctly with 20x20 input, and there is improved performance as the picture gets 
bigger. We have not noticed any false positives.   

The planning component is a spreading activation net derived from Maes work. There are 
goals (set by the NLP subsystem), modules, facts and actions. Actions are single neurons 
and the virtual environment interprets a firing of one of those neurons as an action. 

The cognitive map component memorises the configuration of the rooms. It associates the 
shape with the room. This supports the most complex command the system executes. 
There are four including “move to the room before the red pyramid.” The system must 
navigate between the rooms, and look for the room before the room that has the red 
pyramid.  
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The control subsystem supports the interplay between the NLP subsystem and the goal 
subsystem.  It is quite simple, and has not been seen to fail.  

 
Figure 23: Gross Architecture of Agent. Boxes represent subsystems instantated in 
simulated neurons. Arrows represent synaptic connections between subsystems. 

 

One of the major challenges was the communication between the agent and the SpiNNaker 
board. We developed systems for input to the board for vision and natural language and an 
output system for actions. Input relied on pixelating the image, and sending spikes if the 
pixel was over a threshold; this yielded a black and white map that was tested in several 
sizes. A parallel colour system was set up that thresholded the image for red, green and 
blue, but always in 20x20. The natural language parsing caused one neuron on the board to 
fire for starting the parse, and then one for each word. The output just read the spiking 
behaviour of the four action neurons. A real challenge for this was the timing. There was 
different behaviour if an input vision neuron fired once every 5 ms, to if it fired once every 
10 ms. 

The overall system executes thirteen commands. There are four primitive commands, two 
compound commands, two simple closed loop commands, the explore command, and four 
cognitive map testing commands. The four primitive commands include one for each 
primitive action, e.g. “move forward”. These performed perfectly every time we tested 
them. There are two compound commands: “move left” and “move right”. These require 
the agent to turn and then move forward. These also perform perfectly. Note that these 
six commands do not require an environment, and can function without a closed loop. The 
simple closed loop commands are “turn toward the pyramid” and “turn toward the 
stalactite”. If the vision system has recognised the shape on the left or right, these always 
perform correctly. The “explore” command causes the system to fill in the cognitive map. 
This is quite complex as the agent has to move between the rooms. The communication 
problem with the board causes some problems, and this works about 90% of the time, 
when the agent starts facing the shape with the door on its right. The tests of the 
cognitive map are similarly, but slightly less effective. These four commands are executed 
correctly about 80% of the time when the map is correctly filled in.  
An example of one of these runs can be found in the figure below. 
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Figure 24: Top down view of the path of agent through the virtual environment while 

learning the cognitive map.  
The agent starts at S, and moves are marked by the dots. 

The full system runs on the 4-chip SpiNNaker board with 20x20 visual input, but needs the 
larger 48-chip board for the larger visual fields. Aside from vision, the other subsystems 
have a constant number of neurons. 

NM-PM1 use was restricted to accessing chip over the internet. We managed a persistent 
cell assembly, which is the basis of most of the agents formal processing. A complete 
agent was not viable. 

4.3.3 Description of major use case(s) and target users of your application 

There are two major uses cases: The SpiNNaker agent, and a cognitive model of 
categorisation model. The agent, though simple, works. The cognitive model is being 
published and categorises like the brain’s putative explicit system. 

The cognitive model was for classification, and was based on classic psychological work 
from Shepard, Hovland and Jenkins (Learning and memorization of classifications, 1961). 
The system was developed in our own neural simulator with fatiguing leaky integrate and 
fire (FLIF) neurons and using compensatory (Hebbian) learning. It was a binary 
categorisation task, with each of eight items represented by three binary features, for 
example, black vs. white, large vs. small, and triangle vs. square. Each category consisted 
of four items. While there are 70 possible categories, these can be broken down into six 
types. For example, one type would categorise based solely on one feature (e.g. black vs. 
white or large vs. small), and another type was based on two features (e.g. black triangles 
and white squares vs. white triangles and black squares). Human subjects learn different 
types of categories more rapidly and more effectively than others. Our cognitive model 
mimicked some of this behaviour, though not the full task. It was proposed that this 
echoed the brain’s putative explicit system. This work is now in review at the journal 
Connection Science.  

Both the compensatory learning rule and a FLIF neural model have been implemented in 
SpiNNaker and Nest. We hope to translate this cognitive model to these platforms shortly. 
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4.3.4 Documentation of models and related experiments 

Website for the NEAL project is http://www.cwa.mdx.ac.uk/NEAL/NEAL.html. Code can 
be found there. A related DIC was filled in the Dataset_Information_Catalog/ 
Collaboratory. 

4.3.5 Outreach  

• Huyck, C., and Mitchell, I. Building Neuromorphic Embodied Cell Assembly Agents that 
Learn, International Conference on Biologically Inspired Cognitive Architectures, 
Cambridge, MA, USA, 7-9 November 2014. 

• Huyck, C., Evans, C. and Mitchell, I. A Comparison of Simple Agents Implemented in 
Simulated Neurons. Biologically Inspired Cognitive Architectures, 2015. 12: pp 9-19. 

• Harris, J., and Huyck, C. led working group on Neuromorphic Natural Language 
Processing at the Telluride Neuromorphic Cognition Engineering Workshop 2015. 

• Huyck, C., talk on Better Cell Assemblies at BICA 2015. 

• Huyck, C. (2015) Neural constraints and flexibility in language processing. Behavioral 
and Brain Sciences, 38. 

• Mitchell, I., Huyck, C., and Evans, C. PlaNeural: Spiking Neural Networks that Plan. 
(2016). International Conference on Biologically Inspired Cognitive Architectures, NY, 
NYU, USA. 

• Evans C., Mitchell, I., and Huyck, C. (2016). Programming with simulated neurons: a 
first design pattern. Conference on Psychology of Programming, Cambridge, UK. 

• Huyck, C., Kulkarni, R., A Spiking Half-Cognitive Model for Classification (Connection 
Science, in review). 
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4.4 T11.3.3 (CSIC): Exploitation of Feedback in Ultra-fast Spiking 
Visual Architectures 

 

Table 6: Status of feedback exploitation in ultra-fast spiking visual architectures 

Model PyNN 
Implementation 

Implementation Status 
(NM-PM1, NM-MC1) 

Benchmarks 
evaluated Comments 

ConvNets 
optimised 
event-driven 

Finished NM-MC1 (SpiNNaker) Yes (see Section see 
Section 4.4.1.1)  

Completely 
event-driven Finished NM-MC1 (SpiNNaker) Yes (see Section see 

Section 4.4.1.2)  

Standard 
SpiNNaker 
using event-
driven model 

Finished NM-MC1 (SpiNNaker) Yes (see Section see 
Section 4.4.1.3)  

Optimisation 
model Finished NM-MC1 (SpiNNaker) Yes (see Section see 

Section 4.4.2.2)  

Mismatch 
evaluation 
model 

Finished NM-MC1 (SpiNNaker) Yes (see Section see 
Section 4.4.2.3)  

4.4.1 Description and validation of the neuron models for symbol recognition 

Unlike frame-driven neurons, time has a crucial role in an event-driven neuron model. The 
state of the neuron evolves with time. In our work we have used signed event-driven 
spiking neurons. In such neurons the state of a neuron xj can take positive or negative 
values, and will trigger a positive output event when a positive threshold is reached, or a 
negative output event when a negative threshold is reached. 

 

Figure 25 (a)Typical state evolution and spike production sequence for a signed spiking 
neuron with leak and refractory period 

A positive output event will be produced when the positive threshold xthj is reached, and a negative 
output event will be produced when the negative threshold –xthj is reached. 
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Figure 25: (b) Detail of compact ConvNet implementation on SpiNNaker. 

Figure 25(a) shows an example of neural state evolution and spike production. Based on 
the presented neuron model, we have developed three different implementations using 
the SpiNNaker platform. In all the systems, the description of the multi-layer vision 
systems has been done in PyNN matching the Function number 11.3.3.1. 

4.4.1.1 ConvNets optimized implementation 

One of the peculiarities of a ConvNet (Convolutional Neural Network) architecture is the 
weight sharing property. The weights of the kernels that connect two neurons in two 
different feature maps do not depend on the absolute neuron position but just on the 
relative positions of the two neurons in the origin and destination feature maps. Because 
of that “weight sharing” property the number of synaptic weights that must be stored for a 
neuronal population is highly reduced compared to populations with full connectivity and 
independent non-shared weights. To optimize the processing speed, the original SpiNNaker 
support software PACMAN has been modified to admit a special “convolution connector”. 
The “convolution connector” is shared by all the neurons belonging to the same 
convolutional feature map population and contains the kernel weights which are stored in 
the local data tightly coupled memory (DTCM) of the corresponding population. This 
solution avoids the reading of the kernel weights from the external RAM each time an 
event arrives to the convolution module. Each time an event arrives to a convolution 
module, depending on the source population of the incoming event, the corresponding 
kernel is read from DTCM memory and the neuron states of the neighbour pixels are 
updated correspondingly. If any of the updated neurons overcomes the firing threshold an 
output event is generated and sent to the next processing layer without waiting for any 
timer, as is done in the conventional implementation of neural systems on Spinnaker. That 
way, the implemented ConvNet is truly event-driven. 

Another characteristic of the ConvNets is that most of the neuron parameters (such as 
neuron voltage thresholds, voltage reset level, leakage rate, and refractory time) are 
shared by all the neurons in the same population. Only the particular neuron state and 
firing times are individual for each neuron. In the original PACMAN 103 version, all the 
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neuron parameters are replicated and stored individually for each neuron in the SpiNNaker 
DTCM. Thus the DTCM capacity sometimes limits the number of neurons that can be 
implemented per core. The PACMAN 103 version was modified to distinguish between the 
parameters that are individual for each neuron and the parameters shared by the whole 
population. With this approximation, we are able to implement 2048 convolution neurons 
per core, where this number is determined by the maximum number of addressable 
neurons by the implemented routing scheme. 

Figure 25(b) shows schematically how the modified PACMAN implements a convolution 
module spread over multiple cores in a SpiNNaker system. In a ConvNet, a source 
population of size NxsxNys is projected onto one or more destination Feature Maps. Each 
event (xs,ys) produced in the source population is projected onto each destination Feature 
Map by projecting the corresponding kernel (shown as a red box in Figure 25(b)) around the 
destination coordinate. All neurons inside the red box will update their state by adding the 
corresponding kernel weight. In order to parallelize this process in SpiNNaker, each 
destination Feature Map (of size NxxNy) can be split into segments (of size hxNx). Each core 
will hold, in its DTCM, data common to the full Feature Maps (such as threshold Vth, 
refractory time TR, leakage time TL, resting potential Vrest, size of full Feature Map NxxNy, 
size of source population NxsxNys, and projection kernel Kj), and specific data for each 
neuron (such as state, time of last output spike, time of last input spike, and state flags). 
The parallelization degree is determined by parameter ‘h’ in Figure 25(b), and results in a 
design compromise: the smaller h is, the more cores operate in parallel to implement the 
same Destination Feature Map, and the more events per unit time can be processed, but 
this consumes more cores (SpiNNaker resources) and a smaller ConvNet can be mapped 
onto a given number of SpiNNaker chips; on the other hand, by setting h at the maximum 
possible number such that a core can host a maximum number of neurons, the most 
compact mapping with minimum cores is achieved, at the cost of limiting event 
throughput. Consequently, parameter ‘h’ should be set keeping in mind the compromise 
between SpiNNaker resources (cores) consumption and throughput (speed). 

 

4.4.1.1.1 Experimental set-up and results 

The event-driven Convolutional Neural Network architecture with optimized parameters to 
perform recognition of the card has been programmed on a 4-chip Spinnaker board. To test 
the recognition rate we have used a test sequence of 40 32x32 tracked symbols obtained 
from the events recorded with a DVS. In an attempt to achieve real time recognition while 
at the same time reproducibility of the recordings, we loaded the events sequence in a 
data player board. The data player board stores the addresses and timestamps of the 
recorded events in a local memory and reproduces the events through a parallel AER link in 
real time (see Figure 26). A splitter board reproduces the event-flow in two separate AER 
links. One of them enters a commercial FPGA prototyping Raggestone Board. The 
Raggestone board is programmed to convert the parallel AER events coming into its input 
connector to the Spinnaker input accepting events coded in a 7-to-10 bit protocol. In a 
similar way, the board converts output events generated by the SpiNNaker hardware to the 
parallel AER protocol and sends them through a separate AER output link. The output of 
the SpiNNaker board coming through the Raggestone board is combined with the replica of 
the input stimuli (generated by the splitter board) into one single AER event flow using a 
merger board. That way, we have the input stimuli synchronized with the SpiNNaker 
classifier outputs. As can be observed in Figure 26, events coming out of the merger board 
are fed into a jAER board that timestamps the arriving events and sends them to a 
computer through a USB-2.0 connection. 
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Figure 26: Experimental set-up. 

We first tested the correct functionality of the ConvNet for card symbols classification 
programmed on the SpiNNaker board at low speed. This is done by introducing a slow-
down factor at the recorded stimulus events timestamps. For this experiment, we 
multiplied by a factor of 100 the timestamps of all the events of the sequence that was 
reproduced by the data player board. In order to maintain the same classification 
capability as the ConvNet architecture optimized for card symbols recognition, we had to 
multiply all the neuron timing parameters (refractory time and leakage time) by the same 
factor of 100. 

The classification is considered successful if the number of output events of the correct 
category is the maximum. The mean of the success classification rate was 97% for the 30 
repetitions of the experiment, with a maximum 100% and a minimum of 93% in the success 
classification rate. Once we had checked that the SpiNNaker ConvNet classifier 
functionality was correct (with a conservative slow-down factor of 100), we tested its 
maximum operation speed. For that purpose, we repeated the experiment for different, 
less conservative slow-down factors. We repeated the classification of each test sequence 
30 times, measuring the classification success rate as explained above. We tested the 
following slow-down factors: [1, 2, 5, 15, 20, 25, 30, 50, 100, 200]. A ‘1’ slow-down factor 
means real time operation. For slow-down factors higher than 25, the mean successful 
classification rate was higher than 90%. However, for slow-down factors lower than 25, the 
recognition rate suffered from a progressive degradation (down to about 20% for real 
time). The main reason behind this loss of performance was the loss of events due to 
communication saturation. 

Note: Extended documentation of this section can be found in the paper “Serrano-
Gotarredona, T.; Linares-Barranco, B.; Galluppi, F.; Plana, L.; Furber, S., "ConvNets 
experiments on SpiNNaker," in Circuits and Systems (ISCAS), 2015 IEEE International 
Symposium on Circuits and Sytems, vol., no., pp.2405-2408, 24-27 May 2015”. 

4.4.1.1.2 Feedback Exploration 

The symbol recognition spiking ConvNet topology used throughout Task T11.3.3 is a purely 
feed-forward topology, like any ConvNet in general (spiking or non-spiking). In T11.3.3 the 
central objective (besides developing all corresponding ConvNet infrastructure and sensor 
interfacing) was to explore and exploit the impact of introducing feedback in this type of 
topology. Two types of feedback mechanisms were explored: 

a) Lateral feedback within a Feature Map 

b) Returning feedback from a Feature Map to its prior Population(s). 
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The starting feedforward spiking ConvNet, although capable of very high speed in 
simulations, suffered from an explosion of event number in the 2nd and 3rd layer. This 
hampered the speed in hardware realizations. By introducing lateral inhibitory feedback in 
a Feature Map, the total output event rate in that Feature Map was reduced, while at the 
same time the contrast sensitivity of the produced outputs was increased. However, this 
was only possible by suppressing all negative output events, and having the network only 
produce positive output events. Consequently, this implies the need to modify the starting 
signed neuron model and corresponding benchmarking ConvNet topology used throughout 
Task T11.3.3. This is beyond the scope of T11.3.3, although this goal is being pursued as a 
continuation of this work in a separate project. 

We also investigated the impact of projecting back events from a destination Feature Map 
to a prior Feature Map by using the same kernel weights as a backward projection, 
although attenuated. This would implement a kind of attentional mechanism by enhancing 
the activity in a prior layer that gave rise to the activity in the destination layer. We 
tested this approach by progressively increasing the retroprojecting weights, starting from 
zero. However, similarly to the case of lateral inhibitory feedback, this retroprojecting 
feedback only shows benefits (reduction of event rate and increase of signal contrast) if 
the negative output spikes are suppressed. Consequently, the starting ConvNet topology 
using signed neurons needs to be modified to use only unsigned output events. This 
requires the network to be redesigned and retrained under the unsigned neuron model. 
This again is beyond the scope of T11.3.3, although it is presently being pursued in a 
separate project. 

 

4.4.1.2 Completely event-driven neuron implementation 

In this approach, we modified the standard partition and configuration manager (PACMAN) 
release from the University of Manchester to make a spike-driven PACMAN for the 
SpiNNaker platform. 

In the original PACMAN, there is a millisecond time-step so that each neuron is updated 
every millisecond. There are two major disadvantages for this millisecond time-step. First, 
temporal precision will be limited to 1ms. Second, even without any incoming activity, 
neurons continuously update every millisecond. If someone wants more accuracy (like very 
fast visual processing and object recognition) or if someone cares more about power 
efficiency, a neuron that just becomes updated immediately after receiving a spike might 
be preferable. We are especially interested to work with micro-second precision because 
the output of our DVS retina sensor has micro-second precision. 

Note: Extended documentation of this section is under preparation for a paper 

4.4.1.3 1ms time step implementation using the standard SpiNNaker software 

This implementation was done using the latest available SpiNNaker software version 
(20015.005 – Arbitrary). A new neuron model compatible with the standard models was 
created to implement the event-driven neuron model. 

The new neuron model is inspired in the IF_curr_exp model with some particularities. Our 
Event-driven neuron fires positive and negative spikes. 
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4.4.1.3.1 Experimental set-up and results 

 

Figure 27: Experimental set-up of the system. 

Figure 28 shows the recognition performance at different slow rates. It can be seen that 
with slow-rate 10 it already has an optimum recognition performance, almost 100%. With 
lower slow rates (1 and 2) the recognition performance decreases abruptly. 

 

Figure 28: Recognition capability in different slow rates. 

4.4.2 Implementation of benchmark architecture on the NCP 

4.4.2.1 Interfacing between AER sensors and SpiNNaker (Functions 11.3.3.4 and 
11.3.3.5) 

The aim of this task is to connect neuromorphic systems to our AER (Asynchronous Event 
Representation) sensor and pre-processing hardware. This pre-processing hardware is 
dedicated hardware for communicating through the AER protocol. We developed an 
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interface for importing and exporting spikes from SpiNNaker chips and visualising them on 
a computer using jAER software and AERmini2-boards. This task can be divided into the 
following subtasks: 

4.4.2.1.1 SATA communication between AER-Node board and Spinn-FPGA 

We developed a firmware that communicates the field-programmable gate array (FPGA) of 
the AER-NODE board and the FPGAs of the SpiNNaker platform using the serial advanced 
technology attachment (SATA) communication link. The firmware is capable of sending the 
incoming spikes from the AER sensor to the SATA link and receiving spikes from the SATA 
link at 3 Gbps. 

4.4.2.1.2 Speed improvement between Spinn-FPGA and SpiNNaker chips 

Present day commercial FPGAs operate typically in synchronous mode, thus making it 
necessary to incorporate synchronisers when interfacing with asynchronous chips. This 
introduces extra latencies and precludes pipelining, deteriorating transmission speed, 
especially when sending multi-symbols per unit communication packet. We present a 
technique that learns to estimate the delay of a symbol transaction, thus allowing a fast 
pipelining from symbol to symbol. The technique has been tested on links between FPGAs 
and SpiNNaker chips, achieving the same throughput as fully asynchronous synchroniser-
less links between SpiNNaker chips. The links have been tested for periods of over one 
week without any transaction failure. 

Note: Extended documentation of this section can be found in Yousefzadeh et al. (2016)8. 

4.4.2.1.3 Receiving spikes form SpiNNaker and interfacing with AERmini2 board to 
visualize in jAER 

As mentioned before, the FPGA of the AER-Node board receives the output spikes from the 
SpiNNaker platform. The AER-Node board merges the incoming spikes from the AER sensor 
with the incoming spikes from the SpiNNaker platform, converts the packets into pixels 
and sends them to the AERmini2 board.  

Displaying both sources helps to verify the correctness of the neural network 
implementation in SpiNNaker platform and gives us an idea of the system delay. 

4.4.2.2 Improvement in the optimisation process (Function 11.3.3.2) 

The aim of this task is to perform exhaustive parameter optimizations by exploiting the 
real-time and accelerated-time capabilities of the two hardware platforms. 

Our approach to change the neuron parameters during the simulation time is to send a 
message from a host computer to the neurons telling the new value for the parameter to 
be changed. To do this, we use a “config neuron” interfacing with the host computer using 
the UDP protocol and connected to a subset of neurons. 

The host computer sends an MC packet with PAYLOAD using the KEY of the “config neuron” 
and the message arrives to all the neurons connected to the “config neuron” with that 
KEY. When a neuron receives a message with PAYLOAD, it decodes the parameter to 
change and the value to assign and changes the value of its parameter. The PAYLOAD can 
be a 32-bit field; therefore, if four parameters are going to be changed, we need 2 bits for 
the parameter codification and 30 bits for the value of the parameter. 

Figure 29 displays a summary of the time and number of iteration results extracted from 
running the optimization process at different slow-rates. The number of iterations varies 
depending on the initial values used for the optimisation algorithm. The initial values were 
generated randomly between specific limits. From the obtained values with the proposed 
approach, the time that the standard SpiNNaker software will need to do it is calculated 
(last column of Figure 29). We can see a significant time reduction in the optimization 
process with the proposed approach. The time reduction is more noticeable when the 
relation between the loading time and the simulation time is bigger. As it was mentioned 
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before, using more complex neural networks increases the loading time, and therefore the 
optimisation time with the standard software will be extremely increased. However, the 
increase in the loading time is insignificant for the proposed approach. 

Slow_rate Number of 
iterations 

Time with the proposed 
approach in s (in h) 

Time with standard 
software in s (in h) 

1 2160 32749 s (9 h) 334800 s (93 h) 

2 1584 23852 s (6 h) 245520 s (68 h) 

5 1130 23008 s (6 h) 180800 s (50 h) 

10 138 3689 s (1 h) 22770 s (6 h) 

50 1500 128068 s (35 h) 330000 s (91) 

100 1440 203678 s (56h) 381600 s (106) 
 

Figure 29: Optimization process time and number of iteration results. 

Note: Extended documentation of this section is under preparation for a paper 

4.4.2.3 Results of the mismatching effect (F11.3.3.7, F11.3.3.8, F11.3.3.9) 

The aim of this task is to artificially add controlled variability into the SpiNNaker platform 
in order to analyse natural mismatch impact of other platforms implemented using analog 
circuit techniques, like the HBP PM-NM. This will allow us to study the impact of variability 
and analyse the degradation of the system. 

Figure 27 shows the hardware setup used for the measurements. The event generator 
reproduces the recording of the symbols sequence. This event generator is connected 
through an adapter to the RaggedStone2 board that maps the AER events to SpiNNaker 
packets and sends them to the Spinn-5 board using the parallel port. The Spinn-5 board is 
connected to the network, so that it can interface with a host computer using Ethernet for 
gathering the results or modifying the neuron parameters. 

The SpiNNaker platform, as a digital platform, stores the values of the kernels and neuron 
parameters in a binary representation. To analyze the effect of the mismatch in a 
hardware network, a random variation is applied to kernels and neuron parameter values 
in the SpiNNaker platform. A relative coefficient (RC), from 0 to 100, was applied to each 
kernel and parameter value as a standard deviation to obtain the random variation using a 
Normal distribution. 

The following results show the mean (with an ‘*’) and the standard deviation (with an error 
bar) for each parameter and kernel value for 5 measurements using different RC values. 

All the experiences are done with a slow-down factor of 50. This factor showed a good 
recognition performance in the optimization process. 

4.4.2.3.1 Parameter mismatch 

The mismatch of three neuron parameters is analysed: v_threshold, refractory time and 
leakage rate. These parameters have been identified as the most significant parameters 
for the recognition of the poker card symbols. 

 V_threshold 

Figure 30 shows the effect of increasing the RC in the poker card recognition performance. 
“All layers” line represents the result of applying random variations with the specific RC in 
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all layers. It can be seen that with an RC of 20% the mean of recognition falls under 80% 
and with an RC of 30% the recognition mean is less than 50%. “Layer 1”, “Layer 2”, “Layer 
3” and “Layer 4” lines represent the result of applying random variations only to layer 1, 
2, 3 and 4 respectively.  

 

Figure 30: V_threshold parameter mismatch by layers and compared to all layers. 

 Refractory time 

Figure 30 shows the effect of the refractory time mismatch. It can be seen that for RC 
higher than 20% it starts to decrease the recognition percentage. SpiNNaker software has 
an inherent 1 ms time step, therefore depending on when the event happens, it can have 
an inherent maximum refractory time of 1 ms. This is a reason why for low RC values there 
are small changes in the recognition percentage. 

 

Figure 31: Effect of refractory time mismatch. 

 Tau_m (Membrane Time Constant) 

With the increase of RC the recognition percentage decreases. However, with the largest 
RC value (70%) the recognition is higher than 90%. Therefore, this parameter mismatch 
does not have much impact on the recognition performance. 

4.4.2.3.2 Kernel values mismatch 

This section describes the results of applying random variations on the kernel values. The 
measurements are done layer by layer, applying the variations only to one layer, and 
leaving the others without the variation, and for all the layers, applying the variations to 
all the layers at the same time. 

Figure 32 shows the effect of increasing the RC when generating the random variations. It 
can be seen that all the layers behave in the same way with the increase of RC. Up to an 
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RC value of 10%, the mean values of the recognition percentage are over 90%. This means 
that the kernels are robust to mismatch. 

 

Figure 32: Effect of kernel mismatch with the increase of RC. 

With these results, we can say that the most critical parameter is v_threshold. The system 
tolerates an RC of 10% in the kernel values without a decrease in the recognition 
performance. Therefore, the poker card convolutional neural network (CNN) shows a 
robust behavior to parameter and kernel value variability. Furthermore, with this study we 
have proved the capability of SpiNNaker to perform mismatch analysis. 

4.4.3 Description of major use case(s) and target users of your application 

Our experiments with SpiNNaker relate to vision based applications using special event-
driven cameras, also called DVS. In principle, our experiments have focused on single-
SpiNNaker-PCB cases, which easily allows for scenarios with portable robotic systems. 
However, our ConvNets based approach extends immediately to Deep-Neural-Networks, as 
ConvNets are a particular case of the latter. Therefore, we can expect to scale up our 
poker-card ConvNet prototyping systems to highly scaled-up versions which require the 
extensive use of both HBP remote NCP platforms. Note that biological visual systems use a 
large percentage of the neurons in the brain. Visual processing is extremely neuron-
hungry. Consequently, we foresee that our studies can be used as a starting point for for 
elaborate neuro-scientific studies of visual systems, as well as real-world artificial 
applications on mobile platforms. 

4.4.4 Documentation of models and related experiment set-up 

As mentioned in Section 4.3.1 a new event-driven model is implemented in SpiNNaker 
using three different approaches. and Figure 25 shows a possible block diagram and sate 
evolution of the event-driven model. 

Sections 4.4.1.1, 4.4.1.2 and 4.4.1.3 describe respectively the three implementations of 
the event-driven model using SpiNNaker. Each implementation has advantages and 
disadvantages. Depending on the aim of the experiment, e.g. recognition performance, 
latency, software version compatibility and so on, the implementations show different 
results. 

Using this event-driven model, the poker card convolutional neural network is 
implemented to analyse its performance. Figure 33: shows the network design used for the 
poker card recognition CNN. 
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Figure 33: Poker card convolutional neural network. 

The experimental set-up used for each experiment is shown in Figures 26 and 27. All the 
experimental set-ups are equivalent, in some cases we use our own dedicated hardware 
AER-NODE, and in others we use the Raggestone board. For the first case the connection to 
the SpiNN-5 board is through the SATA link and for the second case the connection is 
through the parallel port. 

By the end of the Project the source files of all the implementations will be delivered 
along with the dataset and the instructions to configure and run the experiments. 

4.4.5 Outreach 

During the development of the work described, the CSIC group has had extensive research 
interaction and exchange of visitors between the groups of Prof. S. FURBER at Manchester 
Univ. and of Prof. R. BENOSMAN at UPMC, Paris, France, both part of the HBP consortium. 
The work developed has contributed to the outreach of participating in two new H2020 
projects and two new industrial contracts, one with Samsung and one with a new UPMC 
spin-off Chronocam. 

Papers, Conference Presentations or Posters 

• Yousefzadeh, A.R., Plana, L.A., Temple S., Serrano-Gotarredona, T., Furber, S.B., and 
Linares-Barranco, B. Fast Predictive Handshaking in Synchronous FPGAs for Fully 
Asynchronous Multi-Symbol Chip Links. Application to SpiNNaker 2-of-7 Links," IEEE 
Transactions on Circuits  and Systems II: Express Briefs, 2016. PP:1-1. 

• Serrano-Gotarredona, T., and Linares-Barranco, B. "Poker-DVS and MNIST-DVS. Their 
History, How They were Made, and Other Details," Frontiers in Neuromorphic 
Engineering. Frontiers in Neuroscience. 2015. 9:481. doi: 10.3389/fnins.2015.00481. 

• Serrano-Gotarredona, T., Linares-Barranco, B., Galluppi, F., Plana, L., and Furber, S., 
"ConvNets experiments on SpiNNaker," in Circuits and Systems (ISCAS), 2015 IEEE 
International Symposium on Circuits and Systems, 2015. pp.2405-2408, 24-27 May 2015. 

4.5 T11.3.4 (UNIBI): Spiking Associative Networks for Neuromorphic 
Computing Systems 

Table 7: Status of spiking associative network models for neuromorphic computing 
systems 
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Model Implementation status Benchmarks evaluated Comment 

SAM-PyNN SAM simulations PyNN/Nest 16 Done 

SAM-ESS SAM emulations with ESS 4 Done 

SAM-Spy Runnig on Spikey NM-hardware 4 Done 

SAM-PM Running on NM-PM-1 2 Ongoing 

SAM-SNN Running on SpiNNaker 4 Done 

SAM-MC Running on NM-MC-1 2 Ongoing 

4.5.1 Implementation of benchmark architecture on the NCP 

Within the Project we successfully implemented a generic software prototype of an SAM in 
PyNN based on leaky IaF neurons. The SAM has a single layer structure with feedback and 
the synapses of the IaF neurons are binary or analogue. This prototype is now used as a 
benchmark network for the neuromorphic hardware platforms and to experience the 
effects of parameter variations on the behaviour of SAMs. We specified 16 different 
versions of SAMs with PyNN and simulated them with NEST. The simulation results act as 
the desired SAM behaviour and will be compared later on with the results from the 
hardware implementations.  

As a next step we simulated SAMs (e.g. 224 neurons with 224 synapses each and 1024 
neurons with 1024 synapses each) with the Heidelberg hardware emulator (ESS: Executable 
System Specification). With the help from the Heidelberg and Dresden groups we improved 
the ESS simulations so that they are now closer to the expected results of the real 
hardware. The implementation on the virtual hardware is the first and necessary step to 
implement SAMs on the Heidelberg HBP hardware NM-PM-1 (Function 11.3.4.4). As a 
second step we mapped the simulated SAMs (PyNN/Nets, ESS) on all SP9 hardware 
platforms (Spikey, NM-PM-1, SpiNNaker, NM-MC-1) and studied the effects on SAM 
behaviour quantified by the selected performance measures storage capacity, retrieval 
time, energy consumption, and robustness (Functions 11.3.4.5 and 11.3.4.6).  

We started with the simulation of connected neuron populations (cell assemblies) on NM-
MC-1. As a first approach we adapted the spike-counter model from Knoblauch 
(“Synchronization and pattern separation in spiking associative memories and visual 
cortical areas” (2003), PhD-Thesis). Assisted by the Manchester group, we start to run 
larger numbers of populations on NM-MC-1. 

We achieved our first milestone “SAM implementation on virtual hardware (ESS)” on 
schedule (M19). The defined KPIs have been fulfilled as well: 16 SAMs were implemented in 
PyNN, 2 benchmark parameter sets (one for each neuromorphic platform) generated, and 8 
SAMs successfully tested on HBP neuromorphic platforms. The final milestone “SAM 
implementation on HBP hardware” is almost done and will be reached in time (M30). 

4.5.2 Description and usage of implemented SAM models to compare different 
execution environments (benchmark development) 

All 16 different versions of the generic SAM model were implemented in PyNN and 
simulated with NEST first (Function 11.3.4.1). For systematic testing we used two 
automatically generated test pattern sets (> 1 million sparsely coded patterns), one for 
NM-PM-1 and one for NM-MC-1. We developed a software tool for automatically analysing 
simulation outputs (spike trains) and for comprehensive reporting of the performance 
evaluation (Function 11.3.4.2). For a more detailed analysis of the parameter influences 
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on SAM behaviour we implemented a specified program package for an automatic 
generation of SAM benchmark data sets (Function 11.3.4.3). With these tools we can 
compare conveniently the different execution environments for the neuromorphic 
platforms as well as their performance. 

4.5.3 Description of major use case(s) and target users of your 
application/tools 

The developed tools (SAM generation, benchmark generation, PyNNLess, performance 
analysis, parameter optimization) are open to all HBP users. For the SP9 researchers these 
tools simplify the hardware access and systematic hardware testing. These tools are 
especially helpful for the design of the next generation of neuromorphic hardware within 
HBP. 

Also, performance and memory bottlenecks in the software stacks of the current HBP 
target platforms have been identified that hinder scalability of the SAM benchmarks. In 
this way, the developed benchmarks and tools have already provided valuable feedback to 
the developers of software stacks and are used as test beds for proposed and prototyped 
countermeasures. Finally, the benchmarks and tools target the designers of software 
abstractions for the modelling of spiking neuronal networks, because these abstractions 
need to scale to future larger neuromorphic hardware platforms and meaningful evaluation 
requires dependable reference test cases. 

4.5.4 Documentation of models (and tools) with related experiment set-up 

Based on our generic implementation of spiking associative networks in PyNN we are now 
able to simulate different architectures with currently up to 10,000 neurons in order to 
analyse the effect of parameter variations on associative memory system performance. In 
order to simplify systematic simulation runs on all platforms we developed the Software 
Abstraction Layer PyNNLess as a unified simulation backend. PyNNLess supports the easy 
development of SAM experiments that transparently work on HICANN physical model (NM-
PM-1), its ESS emulation, SpiNNaker (NM-MC-1), and the NEST software simulator (version 
2.2 or 2.4). PyNNLess forms a software layer above PyNN. This layer hides the differences 
between the PyNN versions 0.7 and 0.8 (as required by the different HBP target Platforms) 
and handles current limitations in hardware backend binding. A tried and tested stable 
version of PyNNLess has been released (GitHub repository hbp-sanncs/pynnless). This 
version has already been used to run test cases and the several representative neural 
associative memory (NAM) experiments remotely on hardware backend.  

The accompanying AdExpSim tool (GitHub repository hbp-sanncs/adexpsim) was 
implemented for parameter optimisation and for faster design space exploration. The first 
phase of the NAM parameter space exploration has to cope with objective functions that 
are step functions, like the number of desired neuron spikes. In this phase, promising 
parameter constellations have to be selected quickly based on a simplified idealised model 
of a small slice of the full NAM, as are starting points for the second phase. A 
reformulation of this piecewise constant functions as continuous functions has been 
developed. Such continuous functions avoid that the optimisation algorithm gets caught in 
the plateaus of the original step function. The continuous reformulation of the step 
function is based on the lowest interference voltage required at the most critical point in 
time to trigger an additional spike. It is thus a continuous completion of a discrete 
objective that uses robustness against interference to grade parameter constellations with 
the same number of neuron spikes. Now we can automatically compute an adequate 
parameter set for SAM implementations on Spikey and HICANN. 
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4.5.5 Outreach 

Bielefeld University (UNIBI) participated in all video conferences of the Neuromorphic 
Computing Division (SP9/WP11.3) within the reporting period. We attended the HBP 
Summit in Madrid (September 2015) and contributed to the presentations of SP9/SP11. 
Together with the groups from KTH Stockholm and UHEI Heidelberg we contribute to the 
definition of benchmark sets for spiking associative memories. Project results were 
presented at the second HBP Education Summer School (Obergurgl) and the 3rd HBP 
Education Workshop (Manchester). 

4.6 T11.3.5 (UMPC): Asynchronous Computational Retina 

Table 8: Internal milestones for T11.3.5 

Internal 
Milestone Name 

11.3.5.1 Interface to connect one ATIS camera into SpiNNaker 

11.3.5.2 Interface to connect two ATIS cameras into SpiNNaker 

11.3.5.3 Hardware implementation: Stimulation platform 

11.3.5.4 Hardware implementation: Database platform 

11.3.5.5 Computational model: Visual motion 

11.3.5.6 Computational model: Retina model 

11.3.5.7 Computational model: Stereovision 

This task developed a pure, event-driven visual computation approach that uses precise 
timing mechanisms to design new computation techniques in visual processing. The task 
produced a full event-driven visual processing system linking a neuromorphic retina 
directly to the SpiNNaker system by an Asynchronous Event Representation (AER) bus. The 
architecture allowed the first real-time development and implementation of new, visual, 
event-driven computation techniques. We implemented event-driven early vision models 
and 3D stereovision in the SpiNNaker board using a precise timing mechanism. 

The neuromorphic retina (Asynchronous Time-based Image Sensor, ATIS) used in this work 
is an event-based time-domain, developed by members of the team, which encodes the 
visual scene with 304x240 pixel resolution. It contains an array of fully autonomous pixels 
that combines a luminance change detector circuit and a conditional exposure 
measurement block. These sensors are novel vision devices that, like their biological 
counterparts, are driven by “events” occurring within the scene, as opposed to 
conventional image sensors that are driven by artificial timing and control signals (e.g., a 
frame clock) with no relation to the source of the visual information. The ATIS output fits 
the SpiNNaker massively parallel multi-core architecture. It benefits from SpiNNaker’s 
ability to simulate millions of neurons, and makes use of its computing power to develop 
and map event-driven computation architecture. 

4.6.1 Hardware implementation: Interface to connect one ATIS camera into 
SpiNNaker (Milestone 11.5.3.1) 

The ATIS camera used in this work is composed of two electronic boards. The first, 
denoted the sensor board contains the ATIS chip itself with all its required components. 
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The second is an Opal Kelly XEM3010 FPGA board housing a XC3S1500-4FG320 Spartan-3 
FPGA from Xilinx. 

We designed an interface board, which can be plugged in between these two existing PCBs 
(see Fig. 33) in order to add the driving electronics and connectors required to interface 
the ATIS camera to the SpiNNaker system. This interface board contains the connector 
required for the SpiNNaker link9,10 and the linking logic. A view of this PCB is presented 
Fig. 31, showing the different components sitting on the board. 

 

Figure 34: Interface board used to feed data from an ATIS camera to SpiNNaker 
The interface board sits in between the sensor board and the FPGA board driving the camera. 

ATIS events occupy a routing space of 9 + 8 + 1 = 18 bits, as the x coordinate can be 
mapped in the 0-304 range, the y=coordinate can be mapped between 0-239, and the 
polarity bit can assume values in the 0, 1 range accordingly to the light intensity change 
direction. 

An original SpiNNaker event on the other side is represented by a 32-bit routing 
key/address (8+8 for the x,y chip coordinates, 5 bits for the core coordinate and 11 bits for 
the neuron id within a core). ATIS events need therefore to be projected in the 32-bit 
routing space of SpiNNaker. This is done using the techniques described in this report 
which derive from Plana (2013).10 

Both solutions rely on the idea to represent the spiking sensor as a virtual SpiNNaker chip, 
external to an original physical mesh and to convert the addresses to the same format used 
by SpiNNaker. By doing so the sensor can seamlessly be integrated in the network 
simulated on SpiNNaker; the sensor itself, using the board described in Section 1 emits 
spikes which are no different than the ones produced by other SpiNNaker chips; its 
interconnection is therefore transparent to the system. In other words, spiking sensors are 
assigned fictional, virtual chips, which are not physically present on a SpiNNaker board. 
Sensors directly feed their spiking data into the SpiNNaker interconnect through the 
bespoke SpiNNaker link or through the SATA interface. 

The mapping mechanism and the SpiNNaker packet structure are shown in Figure 35 (after 
Plana, 2013).10 
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Figure 35: SpiNNaker packet structure and event to MC packet mapping. 

Injecting spikes from a single ATIS silicon retina into SpiNNaker follows the same technique 
presented in Galluppi et al. (2014),11 they both rely on using the link provided in chip 0,0 
for both boards. A region of interest of 128 × 128 pixels is selected from the original ATIS 
sensor space, and are assigned a virtual chip 254,254 and injected in chip 0,0. During the 
mapping process extra neural applications, called Proxy, are responsible for the translation 
from the virtual routing key (254,254) to a key which is physically present in the same chip 
where the Proxy application is loaded, generally chip 0,0. After the packet translation the 
AER packet containing the address of the event can be routed in the SpiNNaker system as 
any other MC packet. 

 

Figure 36: Designed interface board plugged between an ATIS camera and the 
SpiNNaker system. 

4.6.2 Hardware implementation: Interface to connect two ATIS cameras into 
SpiNNaker (Milestone 11.3.5.2) 

 
Connecting two ATIS cameras on the 4-chip SpiNNaker board was developed with the same 
approach: the two available SpiNNaker links on the 4-chip board were used to inject 
spikes. 
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Figure 37: Designed interface boards plugged in two ATIS cameras feeding data into the 
SpiNNaker system. 

Moving to the Spin-5 platform (42 chips) required to develop a new interface for the two 
cameras: this board does not have a dual SpiNNaker link. Work from Yousfadeh et al., 
(2016)8 was used in order to achieve this: an AERNode board receives events from both 
cameras, merges them and sends them to the SpiNNaker board through the SATA 
bidirectional connection (Xilink High Speed inter FPGA connection AURORA 12. The AER 
protocol defined in section 1 was used to inject events through SpiNN5 FPGAs.10 The F1-L01 
link (chip 0, 0, link West from PFGA F1 - Figure 36) was used to inject the spikes in the 
platform. 

 

Figure 38: SpinnakerSpiNN5 hardware description and FPGAs links. 

Such a bus reaches up to 2Meps (events per second). 

As the ethernet outcoming link was limited to 64 keps (one UDP packet per event per 
millisecond), the same link was used to send the events back to the AERNode Board,13 and 
then back to the computer through an AER-USB mini2 board14. 
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4.6.3 Hardware implementation : stimulation platform (Milestone 11.5.3.3) 

The aim of this platform is to create automatically a database for shape recognition with 
the ATIS sensor. Due to its high temporal resolution, this platform should be able to move 
the desired shape at a high speed (typ. 3 𝑚. 𝑠−1 ). The shapes are displayed on an 6" 
electronic ink display from Visionect, 15  which presents the advantage, compared to 
standard displays, to be continuous and thus match the high temporal resolution of the 
ATIS sensor, thuis avoids avoiding flickering. 

Two high-dynamic axis were used, powered by two NEMA 23 (1.8deg per step, 24-48V 
nominal @ 100W) stepper motors. 

 

Figure 39: XY platform - 1a) & 1b) Y axis. 2) X axis. 3) Eink display. 4) Electronics. 

 

As the maximal frequency for the stepper drivers was 200kHz, the possible speeds 
were : 

  Steps per 
Revolution  

 200   400   800   1600   3200   6400   12800  

𝑉𝑚𝑚𝑚(𝑚. 𝑠−1)   62.83   31.42   15.71   7.85   3.93   1.96   0.98  

𝐴𝑚𝑗𝑚 to reach 
𝑉𝑚𝑚𝑚(𝑚. 𝑠−2)  

 4934,8   1233,7   308,4   77,1   19,3   4,8   1.2  

𝑉𝑚𝑚𝑚 with 
𝐴𝑚𝑚𝑚 =

15𝑚. 𝑠−2(𝑚. 𝑠−1)  

 3.46   3.46   3.46   3.46   3.46   1.96   0.98  

4.6.4 Generate datasets for tests and evaluation of computational models 
(Milestone 11.3.5.4) 

With the stimulation platform described in Section 3, a database was recorded for the 
testing and evaluation of computational models. 
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Figure 40: Capture of a moving bar in the database. 

4.6.5 Computational model: Visual motion (Milestone 11.3.5.5) 

For computing the optic flow we use a slightly modified version of the model presented in 
Giulioni et al. (2016) 16. The original model, inspired by the neural circuitry found in the 
rabbit’s retina by Barlow and Levick (1965) 17  is based on inhibition-based direction-
sensitive (DS) units, combined in motion detectors. A single DS unit provides information 
only if the object moves in its preferred direction (see Figure 42), otherwise it stays silent. 
To extract a 2D time-of-travel vector we combined four DS units together in a single 
motion detector (see Figure 43, upper panels). The four DS units share the same start 
(orange) neuron while they have four different stop neurons mapped onto the retina 
macropixels such that they are selective to upwards, downwards, leftwards or rightwards 
movements. Correspondingly, each 2D motion detector has four output counters. The 
number of spikes emitted from a counter neuron is inversely proportional to the detected 
speed. Inhibitory currents are set so as to immediately shut down the neuron’s activity, so 
as to relay speed information. Our complete model comprises 64 × 64 × 4 direction 
sensitive units for a total of 64 × 64 motion detectors. Each motion detector receives input 
from a 2 × 2 macropixel of the original retinal resolution (128 × 128) through a subsampling 
population which acts as a robust edge detector. 
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Figure 41: Number of neurons needed for a simulation versus the number of pixel 
Two limits are represented : the small 4 chips SpiNN3 board, and the big 48 chips SpiNN5 board. 

 

Figure 42: Simplified principle 
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Figure 43: On a moving bar 

 

Figure 44: Moving bar and optical flow 
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Only 32x32 pixels were implemented on the small board. On the SpiNN5 one, we scaled 
this up to a 64x64 ROI, leading to the use of N cores and M neurons. 

 

Figure 45: CounterClockwise rotation of a pen, speed and direction are encoded among 
the HSV map. 

Computational model: Retina model (Milestone 11.3.5.6) 

In SpiNNaker software available neural models are implemented in a mixed time/event-
driven fashion. These models use the Timer event to periodically update the state of the 
simulated neurons with a given timestep. Parallel to that update process, incoming spikes 
to the implemented neural population are processed through the Packet Received Event. 
This event looks up the different synaptic weights and delays relative to each connection. 
When the synaptic delay has been retrieved, the future contribution of the spike to the 
membrane potential of a given neuron is stored in its associated Post-Synaptic Potential 
buffer (PSP buffer). To implement the actual delay, the PSP buffers are ring buffers 
comprising one cell per simulation timestep. This introduces a big memory footprint when 
modelling delays bigger than a few timesteps. In order to circumvent this memory 
limitation we decided to implement these delays independently from the rest of the neural 
simulation We have therefore proposed a dendritic delay model which uses a proxy neural 
population to implement larger delays. 18  One dendritic delay core implements one 
particular delay value. When a packet containing a spike is received, it is stored in a ring 
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buffer in DTCM (local memory of the core). Then, a second process schedules events to 
dispatch these spikes after the given delay of the core has elapsed. This allows very 
compact and efficient code because events are output in their order of arrival. 

Because there are a large number of cores available in a typical SpiNNaker machine, using 
one core per delay value is not troublesome. Moreover, one could configure a network 
where a spike goes several times through the same delay core to implement multiples of a 
base delay: if one core implements a delay of 100 ms, it can be used to realize a delay of 
300 ms by routing events three times through the core before delivering the spike to its 
target neuron. 

We use these dendritic delays populations in the retinal model so as to cope with the 
temporal delays used to implement the alpha-functions characterizing the current 
response of the cells to an event. These delays can range from a few milliseconds to 
several hundred milliseconds on SpiNNaker – see Table 1 in Lorach et al. (2012)19 and  
Lagorce et al. (2015)18. 

 

Figure 46: Normalized membrane potential responses for (a) OnBeta Cells, (b) OffBeta 
Cells, (c) OnDelta cells for an input spike at t = 200ms for different weights. 
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Figure 47:  

4.6.6 Computational model: Stereovision (Milestone 11.3.5.7) 

4.6.6.1 Temporal coincidence 

Detecting temporal coincidence between two spikes is a widely used feature in spiking 
neural networks. As a consequence, we decided to implement a dedicated core for this 
task instead of using standard IaF neurons which would introduce an unnecessary 
overhead. Each neuron simulated by this core has two types of synaptic input and a time 
window. When an incoming spike is received on one input, the core will output a spike if 
another spike was received on its second input in the given time window. We added a 
refractory period to this process to limit the maximum firing rate of the neurons if 
required. 
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Figure 48: Model used to detect sub-millisecond spike synchrony for sound localisation. 
The model consists of three synchrony detectors where each is activated by a different input interaural 
time difference (ITD). To achieve this result, each detector is directly connected to one ear whereas the 

second input comes from a dendritic delay population. For positive ITDs, spikes from the right ear are 
delayed. For negative ITDs, spikes from the left ear are delayed. In this experiment, spike trains from the 

two ears are simulated for three sound sources localized at positions producing expected ITDs. 

To test the dendritic delay and synchrony detector models, we simulate a standard 
network used for sound localisation. This model is presented in Figure 48 and results are 
presented in Figure 49. For each ear, we consider a population of neurons representing 10 
different frequency channels (Panel (a) in Fig.49). We start by generating spike trains with 
an interspike interval (ISI) of 100 µs for each of these channels and we feed them in the 
right ear (red dots). Then, this simulated sound is shifted in time according to the input 
interaural time differences (ITDs) corresponding to values compatible with human hearing: 
−30 (phase (1)), 0 (phase (2)) and 30 µs (phase (3)) to generate the input spikes for the left 
ear (blue dots). Some noise is then added independently to spikes from each ear and each 
channel by jittering each spike randomly between −5 and 5 µs to get the actual input 
presented in Figure 49(A). Each ear is then input in delay lines and synchrony detectors 
such as to detect the corresponding ITDs, synchrony detectors are, because of their 
associated delay lines, centred around −30, 0 and 30 µs with a window of 15 µs. These 
detectors are colour coded in Fig. 49(B) with detectors for ITDs −30, 0 and 30 µs 
respectively corresponding to red, blue and green dots. We can see that the different 
input ITDs are correctly extracted by the architecture for each phase of the input pattern. 
This model, while being simple and related to auditory information processing, shows how 
synchrony detection can be exploited in a biologically inspired model to compute 
information; it is worth noting that the same architecture hereby used is also used as the 
basis of the stereovision model to compute disparity. 

4.6.6.2 Stereovision 

We perform stereovision using the asynchronous high temporal resolution properties of the 
ATIS camera as developed in Rogister et al. (2012). 20 The combination of spatial and 
temporal constraints fully uses the high temporal resolution of neuromorphic retinas. It 
allows us to produce an optimal stereo algorithm that is able to perform stereo 
computation by detecting coactive pixels laying on the same epipolar lines. We illustrate 
how the model works through an example on a single epipolar line. We first characterize 
the model running a simple example on synthetic data, modelling a moving bar. In the first 
experiment the bar moves horizontally, parallel to the plane containing the two cameras. 
This corresponds to pixels (neurons) in the epipolar lines being successively activated with 
a certain speed and offset. In particular in our simulated experiment we chose a speed of 1 
pixel every 10 ms and an offset of 10 pixels. Stimulation starts at t = 100 ms, and spans the 
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whole length of an epipolar line (64 pixels). Figure 50 shows the raster plots for the 
neurons in the two epipolar lines, where neurons get activated at the same time but with a 
spatial offset of 10 pixels. Figure 51 shows the activation of the neurons in the disparity 
plane. As the line is moving parallel to the cameras, the disparity does not change; this 
corresponds to the activity in the disparity plane moving in a diagonal shifting position, but 
not disparity. In order to evaluate the disparity, we plot therefore the difference between 
the coordinate of each epipolar line as represented in the disparity plane or, in other 
words, the difference between the X and Y coordinate. Figure 52 shows the results of this 
computation, with a constant disparity of -10. 

 

Figure 49: Input and output plots 
Top plot (a) shows the input spikes to the system. It is comprised of the spikes (5 channels, red dots) from 
the right ear and the spikes (5 channels, blue dots) from the left ear. They correspond to a sound source 
positioned at ITD −30 µs for the first third (phase (1)) of the input stimulus, then ITD 0 µs for the second 
third (phase (2)) and 30 µs for the last part (phase (3)). Bottom plot (b) presents the outputs of the three 

synchrony detectors of the network configured to respond to ITDs −30 µs (red), 0 µs (blue) and 30 µs 
(green). We can see that for each channel, the detector with its preset ITD fired correctly in each phase of 

the experiment. 
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Figure 50: Stimulation starts at t = 100 ms, and spans the whole length of an epipolar 
line (64 pixels).  

The figure shows the raster plots for the neurons in the two epipolar lines, where neurons get activated at 
the same time but with a spatial o set of 10 pixels. 

 

Figure 51: Raster plot of the neurons in the disparity plane. 
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Figure 52: Disparity computed as the difference between the coordinate of each 
epipolar line as represented in the disparity plane. 

In other words, the difference between the X and Y coordinate. Disparity is constant as the bar moves 
parallel to the cameras. 
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Figure 53: Raster plot of the epipolar line populations. 
At the beginning of the stimulation the bar activates the left and right edge of the two epipolar lines 

respectively, corresponding to a maximum disparity; the bar starts moving away from the camera, hence 
moving towards the centre of each epipolar line, where they meet at the end of the stimulation; this 
corresponds to a location where disparity is equal to zero, when the bar is far away from the cameras 

(theoretically at infinity). 

 

Figure 54: Raster plot of the neurons in the disparity plane. 
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Figure 55: Disparity computed as the difference between the coordinate of each 
epipolar line as represented in the disparity plane. 

In other words, the difference between the X and Y coordinate. Disparity decreases as the bar moves 
further away from the cameras. 

We then repeat the experiment, this time simulating a line moving perpendicularly to the 
camera plane, spanning the whole overlapping visual field, starting close the cameras and 
moving further away. This corresponds to an opposite activation in the two epipolar lines: 
at the beginning of the stimulation the bar activates the left and right edge of the two 
epipolar lines respectively, corresponding to a maximum disparity; the bar starts moving 
away from the camera, hence moving towards the centre of each epipolar line, where they 
meet at the end of the stimulation; this corresponds to a location where disparity is equal 
to zero, when the bar is far away from the cameras (theoretically at infinity). The 
temporal activation of the two epipolar lines can be observed in Figure 53 showing their 
raster plot. For one epipolar line the first neuron is activated at the beginning of the 
simulation, and as time passes by activity shifts towards the center. The second epipolar 
line population shows the opposite pattern of activation; the last neuron fires at the 
beginning of the simulation, and then activity shifts towards the middle neuron. The same 
central neuron is activated at the end of the simulation, when the disparity is equal to 0. 
Figure 54 shows the activity in the disparity plane, Figure 55 shows the calculation of the 
disparity computed as in the previous case. It can be observed from the Figure that 
disparity starts from a maximum and then decreases until 0, in line with our expectations 
and the stimulus design. 
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Figure 56: Live demo of disparity computation from the input from two ATIS. 
When the stimulus is close to the cameras the disparity, colour coded in the horizontal bar, is higher and 

encoded in darker colours. 

 

Figure 57: Live demo of disparity computation from the input from two ATIS. 
When the stimulus is far away the disparity, color coded in the horizontal bar, is lower and encoded in 

lighter colors. 

This same experiment is repeated by taking inputs from the two cameras and feeding them 
live on SpiNNaker. The following figures show different cases, obtaining waving an hand in 
front of the cameras. We show the events coming from each silicon retina and the result of 
the disparity computation. The horizontal position represents the location of the 
stimulation, while the colour encodes the disparity value: bigger levels of disparity 
corresponds to darker shades of grey or, in other words, to the stimulus being closer to the 
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camera (Figure 56). Likewise, lighter shades of grey corresponds to a lower level of 
disparity, representing an object further away (Figure 57). 

4.7 T11.3.6 (UOS): Implementing a Spiking Classifier Network on 
HiCANN 

Table 9: Data sets, neuron models, classifiers and implementation status in T11.3.6 

Data set Neuron 
Model 

Classifier Implementation status 
(NM-PM1, NM-MC1) 

Parameters 
evaluated 

Comments 

Enose  
timeseries 
recordings 
of 20 odours 

Spiking 
classifier GeNN  GPU – Titan Black 

Num. odors 
(classes), neuron 
count, virtual 
receptor (VR) 
count 

Initial work was 
funded by EPSRC 
eFutures 

MNIST Spiking 
classifier GeNN  GPU – Titan Black 

Num. digits 
(classes), neuron 
count, virtual 
receptor (VR) 
count 

This work adapted the 
classifier design to 
handle the static, 
high dimensional 
MNIST dataset 

MNIST Spiking 
classifier 

PyNN/ 
SpyNNAker 

SpiNNaker SPiNN3 (NM-
MC1) 

Num. digits 
(classes), neuron 
count, virtual 
receptor (VR) 
count 

An implementation of 
the design was 
created for the 
SpiNNaker platform 
(4-chip SpiNN3 board) 

MNIST Spiking 
classifier 

PyNN/ 
SpyNNAker 

SpiNNaker SPiNN5 (NM-
MC1) 

Num. digits 
(classes), neuron 
count, virtual 
receptor (VR) 
count 

An implementation of 
the design was 
created for the 
SpiNNaker platform 
(49-chip SpiNN5-
board) 

(1): E.g.: Performance, speed, power, etc. 

4.7.1 Description of data sets, neuron models (or counts) and classifier in 
experimental set-up 

Initial work on the neuromorphic classifier targeting a dataset of Enose time series 
recordings of 20 odors received EPSRC eFutures funding and was completed under HBP. 
The work then switched focus to obtaining a reasonable classification performance from 
the full MNIST hand-written digit recognition dataset. This is a high dimensional dataset 
comprising tens of thousands of observations. The classifier design has been modified and 
adapted for implementation on different neuromorphic platforms. We have analysed how 
each implementation performs differently with varying model sizes (up to 30,000 neurons, 
18 million synapses), with different number of classes (2-10 digits), and when incorporating 
increasing numbers of “virtual receptors” (VRs) in input space (20 – 500+). The second part 
of the work focused on using a large model on higher capacity “large-scale” hardware. We 
used the SPiNN5 SpiNNaker board for this as availability of the HICANN “wafer-scale” 
platform was delayed. 

The implementation on the various platforms is detailed and compared in a paper in 
Frontiers In Neuroscience (see Outreach). The findings and conclusions of the subsequent 
“scaling-up” exercise are detailed in our milestone report (see Outreach). 
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4.7.2 Implementation of classifier architecture on Neuromorphic Computing 
Platform and evaluated parameters 

Comparative implementation of the same classifier design using three contrasting 
neuromorphic computing platforms under a set of evaluated parameters is fully detailed in 
our publication (Diamond et al, Front. Neurosci 2016; see Outreach). The implementation 
on the large scale SpiNN5 board is detailed in our milestone report (see Outreach). The 
implementations on the SPiNN3 and SPiNN5 have been released for general use as open 
source software (see Outreach).  

4.7.3 Description of major use case(s) and target users of your application 

The primary use case is to investigate a generic pattern recognition model applicable to 
run on neuromorphic hardware. Target users are users in research and development who 
want to employ neuromorphic classifiers in their work, and researchers who want to 
explore derived classifier concepts in their own research. 

4.7.4 Documentation of experimental set-up 

Documented implementations of the experimental setup on the SPiNN3 and SPiNN5 have 
been made publically available as a github repository. See project “spinnaker-
neuromorphic-classifier” (https://github.com/alandiamond/spinnaker-neuromorphic-
classifier/). A related DIC was filled in the Dataset_Information_Catalog/ Collaboratory. 

4.7.5 Outreach 

Journal Papers, peer reviewed: 

• Diamond, A., Nowotny, T., and Schmuker, M. Comparing Neuromorphic Solutions in 
Action: Implementing a Bio-Inspired Solution to a Benchmark Classification , on Three 
Parallel-Computing Platforms. Frontiers in Neuroscience, 2016. 9:491. 
doi:10.3389/fnins.2015.00491. This paper has received over 400 views in its first 2 
weeks of publication. 

• Diamond, A., Schmuker, M., Berna, A., Trowell, S., and Nowotny, T. Classifying 
continuous, real-time e-nose sensor data using a bio-inspired spiking network modeled 
on the insect olfactory system. Bioinspiration and Biomimetics (in print). This work was 
partly funded by the HBP and examines the use of this classifier model on 
neuromorphic GeNN/GPU platform to classify real chemical sensor responses. The 
paper has been accepted for publication (as of January 2016). 

Conference Presentation and Poster: 

• Diamond, A., Schmuker, M., Yavuz, E., Turner, J., and Nowotny, T. (2015). 
Implementing neuromorphic Computing with Large, High-Dimensional Data Sets Using 
GeNN - a Meta-Compiler for Neuronal Modelling on General Purpose GPU-Accelerators. 
BIH2015 –International Conference on Brain Informatics and Health, London, UK, 30 
August – 2 September 2015. p21. 
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Annex A: Overview Component-Task linkage SP11_RUP to SGA1 

RUP Task Component Description Component 
Owner 

Component 
type 

*DIC/
PLA 

Related SGA1 Use Case(s) 

T11.1.1 HBP visual 
crowding 

Python source code for a NEST simulation of visual cortex that 
investigates visual crowding. Includes an analysis script that is 
related to the draft document describing the model and its 
relation to psychophysical data. 

Greg Francis Software   

T11.1.2 Source code 
for 
integrated 
brain-body 
control 

 Florian Röhrbein Software  SP10 - Manipulation 
experiments with 
humanoid robots and 
human avatars 

 

SP10 - Mouse rehabilitation 
experiment in the 
Neurorobotics platform 

T11.2.1       

T11.3.1 Software 
model and 
network 
architecture 

Description in upcoming publication: Online Trainable Spiking 
CMAC Network by Deiseroth B., Brefeld U., Debes Ch., and 
Gottfried F. 

SAP Publication  This task ended in RUP and 
has no link to SGA1. 

T11.3.2 NEAL Code There is java and python code to run simulations on SpiNNaker, 
HiCANN, in Nest and in standalone java. 

Chris Huyck Software   

T11.3.3 Source code, 
data-set, and 
configuration 

Source files of implementations along with the dataset and 
instructions how to configure and run the experiments. 

Bernabe Linares Software  This task ended in RUP and 
has no link to SGA1. 
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T11.3.4 Spiking 
associative 
network 
simulation 
and 
evaluation 
software and 
data 

Platform-neutral implementation of associative memory 
benchmarks with supporting software for running simulations 
on different target platforms, primarily the HBP neuromorphic 
hardware platforms. Also includes software tools to support 
design space exploration of system and neuron parameters and 
evaluate the results. 

Michael Thies Software  SP10 - Manipulation 
experiments with 
humanoid robots and 
human avatars 

 

SP10 - Mouse rehabilitation 
experiment in the 
Neurorobotics platform 

T11.3.5 How to run a 
retina model, 
stereo vision 
and optic 
flow models 
on a 4-chip 
SpiNNaker 
board 

Software, PyNN scripts and interface examples on how to run 
the retina model, stereo vision and optic flow models on the 4-
chip SpiNNaker board. 
The files contained in this directory are used to initialize, 
configure, start and stop the interface between the ATIS 
camera and the 4-chip SpiNNaker board. 

Ryad Benosman Software  This task ended in RUP and 
has no link to SGA1. 

T11.3.6 Spinnaker-
neuromorphic 
classifier 

As an output, the SpiNNaker implementation for large-scale 
version of neuromorphic classifier network, including the C-
based library developed for live spike injection and collection 
is available alongside the earlier spike-source based classifier 
model for SpiNNaker. The repository is available at the GITHUB 
project "spinnaker-neuromorphic-classifier". 

Alan Diamond Software   

*DIC: Dataset Information Card – HBP internal management tool 

*PLA: Project Lifecycle App - HBP internal management tool 
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