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Figure 1: SP3 studies brain activity and cognitive functions from rodent to humans and robots 

The Systems and Cognitive Neuroscience subproject (SP3) of the Human Brain Project asks: How does the brain 
produce cognitive phenomena such as memory and consciousness? Researchers simulate behavioural and cognitive 
processes and brain states, validate experimental protocols and acquire datasets. We study how cognitive functions 
and brain states can be measured and compared between animal, human and computational systems. 
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1. Overview  
SP3 delivered datasets, models and software to understand cognitive processes, such as sleep, 
memory and consciousness, from the microscopic level in rodents to human behaviour and robotics.  

In two years, we have advanced modelling of bottom-up, lateral and top-down integration in 
recurrent convolutional and auto-encoding neural networks. Networks have been scaled up to real-
world image classification tasks and are being used to explain and predict high-resolution human 
fMRI data, and electrophysiological, optogenetic and 2-photon calcium imaging rodent data.  

In relation to sleep, we present experimental data, analysis tools, modulation techniques, 
theoretical models and simulations of deep sleep, coma and anaesthesia states, of the transition to 
wakefulness and of their complexity. The prototype of a multiscale, multi-methodology, 
modular workflow leveraging state-of-the-art information technology is a preview of how we plan to 
offer this body of knowledge to the public through EBRAINS.  

Regarding perception, in order to understand how different unimodal (sensory) object features get 
integrated into coherent, multi-modal object representations, we acquired human brain imaging and 
rodent electrophysiological recordings, set up pipelines for data curation and analysis with the HBP 
platforms. We developed models of multisensory integration, spatial memory and navigation, and 
brain-inspired robots. A predictive coding model was integrated in a robot and shown to improve 
place recognition. These multi-level data are integrated into a theory for multisensory integration 
and neural compression, storage and reconstruction of memories.  

We studied the basis for conscious, awake brain states and experience, such as perception and 
dreaming, as opposed to dreamless sleep, anaesthesia, or coma. Experimental data and computer 
models were collected, developed, and combined, in order to understand these processes across 
levels and species, from brain cells to behaviour and from rodents to humans. We have established 
ethical methods for measuring consciousness and improving the life of individuals with the associated 
pathologies and published a neurophilosophical framework for defining criteria of consciousness in 
animals, non-verbal humans and machines. 

Finally, we have developed and integrated models of the motivational and action selection systems 
on the cognitive architecture of the robot MiRo. Such models were centred mainly around the 
dynamics and interaction of subcortical regions like the hypothalamus and the basal ganglia. These 
models will be made available via EBRAINS and the Neurorobotics Platform (NRP). 

2. Introduction 
Since April 2018, SP3 has contributed to provide rodent and human datasets, analysis tools, methods, 
and biologically plausible computational models of the brain to the neuroscience community, aiming 
to understand aspects of cognition in multiple scales in an integrated and collaborative manner with 
the HBP platforms and other SPs. 

We studied cortical contextual processing of systems neuroscience at different levels (neuronal 
signalling, interactions between cortical layers, within cortical columns, between neighbouring 
areas, and between remote cortical areas). We have expanded the study of contextual processing 
beyond visuospatial and multi-sensory context to include temporal context. Key Result KR3.1 (deep 
neural network models for visual recognition with novel context-modulation units) was achieved 
through a collaborative effort of three institutions (UGLA, KNAW and UBER), each developing a 
sophisticated understanding of large-scale neural interactions and network models that integrate 
recurrent information processing in context-sensitive object recognition. This experimental work 
produced high-resolution human functional MRI data and electrophysiological, optogenetic and 2-
photon calcium imaging rodent data to inform neural network models. 

Furthermore, we investigated the cortical activity during sleep and the mechanisms that support the 
transition to higher complexity states and to wakefulness, with a specific focus on different states 
of consciousness. Key Result KR3.2 (sharing experimental data, simulation models and analysis tools 
relying on novel concepts and approaches to characterise high-resolution spontaneous and perturbed 
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multi-areal slow wave activity (SWA)) was achieved in a joint effort of five institutions (UMIL, 
IDIBAPS, IBEC, ISS and INFN). This laid the basis for the investigation of the cognitive functions of 
sleep and also contributed to the achievement of KR3.5. We provided HBP platforms with 
simultaneous scalp high-density electroencephalography (HD-EEG) and intracranial 
electroencephalography (Stereo-EEG) human datasets, rodent micro-electrocorticography (micro-
ECOG), modulation methodologies and multiscale models of sleep, anaesthesia and excitability. 
Also, connectivity and parameters for simulation of whole cortical mouse hemisphere activity have 
been inferred from wide-field optical imaging data of SWA, provided by LENS. A collaboration of 
Work Packages in SP3 (WP3.2 and WP3.4) led to the integration of data, analysis pipelines and models 
into a prototype of EBRAINS multiscale, multi-methodology workflow. 

For achieving Key Result KR3.3, we gained empirical insights in multisensory pattern completion in 
the brain, and compared firing rate responses from simulated neurons to firing patterns recorded 
from behaving rodents and humans. The role of episodic memories (conglomerates of information 
from multiple modalities) was investigated in both rodents and humans and in relation to information 
processed from different senses (e.g. auditory, visual) and domains (e.g. object-information, scene 
information). Also, we examined how unimodal cues are completed towards coherent multimodal 
memories at episodic retrieval in rodents and the environmental influence in self-motion and visual 
integration by taking advantage of a virtual environment. We successfully acquired behavioural data 
on multimodal integration and retrieval of episodic memories in humans and rodents which informed 
computational models of multisensory predictive coding (KR3.5). Together with the HBP 
Neuroinformatics Platform we built a use case for analysing synchrony amongst ensembles in cortex 
and hippocampus in the context of multisensory object recognition.   

Consciousness research studies the brain’s capability of conscious representations of the world and 
itself. For achieving Key Result KR3.4 (gather different measures of consciousness and their 
generalisation from different functional states and anaesthesia conditions in humans, animal models, 
computer simulations and neuromorphic circuits), four institutions (UIO, ULG, UMIL, UVA) 
collaborated to improve our understanding of neuronal mechanisms of consciousness. We have tested 
hypotheses in rodents and humans, and developed improved, theoretically driven methods for 
objective assessment of brain states and consciousness, for clinical and basic scientific purposes. 
Structural and functional brain imaging, scalp electroencephalography (EEG), combined with 
magnetic stimulation (TMS), were used in humans, and EEG, stimulation, and 2-photon imaging in 
animals, to record spontaneous brain activity, responses to cortical perturbations, and sensory 
evoked potentials, combined with computer simulations in brain network models. Moreover, we 
published a theoretical framework outlining criteria for consciousness in non-verbal humans, animals 
and machines. 

Finally, to advance the Mammalbot architecture (a collaboration of Work Packages WP3.5 and 
WP3.3) in SGA2 we have focused on the motivational and action selection subsystems. We modelled 
the motivational system both at the dynamical and neuronal levels with a focus on the phenomenon 
of motivational conflict widely studied in the field of ethology. The neuronal models have focused 
on the interaction of the homoeostatic state representation by the hypothalamus and the 
dopaminergic reward system. Dopamine, in turn, works as the main interface with the subcortical 
action selection system; the basal ganglia. A complementary model was produced that implements 
cross-modal predictions and recall by way of multimodal predictive coding. This model was 
incorporated in the WhiskEye robot and shown to improve place recognition in a VR environment 
(with SP10). The major Outputs produced in this 2-year period of the Specific Grant Agreement 2 
are presented in this document, organised per Key Result and their impact. 

3. Key Result KR3.1 
We will develop deep neural network models for visual recognition with novel context-modulation 
units. These units have separate integration sites for bottom-up driving input and for contextual 
input and will be informed by high-resolution human brain imaging and neuronal recordings (2-
photon calcium and electrophysiology data from mouse somatosensory and visual cortices) relating 
to temporal expansion of context in neuronal computations. 
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3.1 Outputs 
Key Result (KR3.1) is a combination of modelling and experiments, culminating in biologically 
plausible, contextual processing in deep recurrent neural networks at a scale capable of tackling 
modern image classification. This Key Result also delivers multi-level, cross-species data 
investigating contextual processing and temporal expansion in humans (high-resolution fMRI) and 
rodents (electrophysiological, optogenetic and 2-photon calcium imaging). 

3.1.1 Overview of Outputs 

3.1.1.1 List of Outputs contributing to this KR 

• Output 1: Neural networks for flexible visual recognition and predictions  

• Output 2: Human fMRI data for predictions in time and space  

• Output 3: The role of feedback, inhibition and attention in learning  

• Output 4: Apical amplification of human and rodent pyramidal neurons 

3.1.1.2 How Outputs relate to each other and the Key Result 

Outputs produced to accomplish this Key Result relate to biologically plausible neural network 
models, as well as functional human and rodent data for improving models. Output 1, which involves 
modelling, depends on Outputs 2, 3 and 4. Outputs 2, 3 and 4 investigate multi-level brain processes 
involving non-feedforward signals and stand-alone. Outputs are made available in the EBRAINS 
Knowledge Graph upon publication. Paradigms were developed between labs, providing 
complementary data informing neural network models. 

3.1.2 Output 1: Neural networks for flexible visual 
recognition and predictions  

Previously, we developed neural network models incorporating biologically inspired recurrent 
connections. We expanded models to process real-world images using bottom-up and lateral (BL) 
convolutional connections, endowing networks with robust performance dominance over state-of-
the-art feedforward models. Network behaviour compares to human behaviour and learned lateral 
connectivity in early network layers compares to lateral connectivity in human early visual areas. 
We have submitted a manuscript (pre-print: P2284). We investigated similarities between human 
early visual cortex and a deep-learning neural network with encoder/decoder (autoencoder) 
architecture, trained to reconstruct occluded scenes. This network architecture has been compared 
to the brain’s feedforward encoding of data and top-down decoding of data to generate scene 
predictions.  

Table 1: KR3.1 Output 1 Links 

Link to URL 

Model Repository 
(feedforward and recurrent 
neural network) 

https://github.com/cjspoerer/rcnn-sat  

Technical Documentation https://www.biorxiv.org/content/10.1101/677237v3 (P2284) 

User Documentation https://github.com/cjspoerer/rcnn-sat/blob/master/README.md 

Model Repository (NEST) https://github.com/sepehrmn/nest-simulator/tree/bpid_kp_2017  

Technical Documentation https://doi.org/10.1016/j.bandc.2015.09.004 (P1092) 

User Documentation https://nest-simulator.readthedocs.io/en/latest/  

https://github.com/cjspoerer/rcnn-sat
https://www.biorxiv.org/content/10.1101/677237v3
https://github.com/cjspoerer/rcnn-sat/blob/master/README.md
https://github.com/sepehrmn/nest-simulator/tree/bpid_kp_2017
https://doi.org/10.1016/j.bandc.2015.09.004
https://nest-simulator.readthedocs.io/en/latest/
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Software Repository (NEST) https://github.com/sepehrmn/nest-simulator/tree/bpid_kp_2017 

Technical Documentation https://www.biorxiv.org/content/10.1101/677237v3 (P2284) 

User Documentation https://github.com/cjspoerer/rcnn-sat/blob/master/README.md  

3.1.3 Output 2: Human fMRI data for predictions in time and 
space 

We investigated whether we can read out brain predictions about upcoming scenes. Subjects were 
exposed to a virtual reality apartment. We recorded fMRI during navigation through the partially 
occluded virtual apartment (to isolate top-down signal content). We could read out the identity of 
a future room from occluded brain areas while subjects were moving through the first room. 

An important aspect of brain processing is where contextual information is transmitted from. We 
investigated functional connectivity using fMRI and occluded movies. We correlated cortical 
feedback activity in primary visual cortex with activity in higher areas during scene occlusion. We 
compared fMRI data from occluded early visual cortex with layers of an autoencoder network 
processing the same scenes (see Output 1). The network was more similar to brain activity than a 
classical supervised network, indicating that neural network models of vision should incorporate 
cortical feedback (P2107). 

Table 2: KR3.1 Output 2 Links 

Link to URL 

Data Repository 

DOI: 10.25493/QX7C-WSR and 10.25493/82YA-0HU Technical Documentation 

User Documentation 

3.1.4 Output 3: The role of feedback, inhibition and attention 
in learning  

We developed an approach to image neuronal responses in dendritic tufts, the dendrite connecting 
the tuft to the cell body, and the cell body itself using in vivo two-photon microscopy of calcium 
signals in awake mice performing a visual task. We developed a software package for analysing 
calcium imaging data for subcellular structures. We adapted a visual occlusion paradigm from 
humans (in collaboration with Outputs 1 & 2) to mice to study feedforward and feedback processing 
in primary visual cortex (V1) in a multiscale, multi-species manner. 

We developed behavioural tasks in which mice learn to respond to visual stimuli that are 
hypothesised to require feedback processing for identification. We found that higher cortical brain 
regions provide feedback to V1. Using two-photon microscopy and advanced methods to selectively 
manipulate neuronal activity, we found subsets of neurons that do not stimulate, but actually inhibit 
other visual neurons, playing crucial roles in integrating feedforward and feedback signals. 

We examined how neural activity in monkey primary visual cortex changes during learning of complex 
shapes. Neural activity was higher at the border of the figure and weakly suppressed on the 
background prior to learning. After learning, shape backgrounds became strongly suppressed. If 
attention was directed away from the shape, the background was released from suppression. Results 
show that visual experience and attention both cause suppression of neural activity related to 
irrelevant stimuli in visual cortex, thus creating more accurate neural models of our environment 
(P2423). 

Table 3: KR3.1 Output 3 Links 

Link to URL 

Data Repository https://kg.ebrains.eu/search/instances/Dataset/684eff17-358f-431d-849a-
8b81332a1f19 (embargoed)  Technical Documentation 

https://github.com/sepehrmn/nest-simulator/tree/bpid_kp_2017
https://www.biorxiv.org/content/10.1101/677237v3
https://github.com/cjspoerer/rcnn-sat/blob/master/README.md
https://kg.ebrains.eu/search/instances/Dataset/322bef65-40c1-485d-9942-35df2b0204d9
https://kg.ebrains.eu/search/instances/Dataset/de7a6c44-8167-44a8-9cf4-435a3dab61ed
https://kg.ebrains.eu/search/instances/Dataset/684eff17-358f-431d-849a-8b81332a1f19
https://kg.ebrains.eu/search/instances/Dataset/684eff17-358f-431d-849a-8b81332a1f19
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User Documentation 
and 
https://github.com/Leveltlab/SpectralSegmentation  

Dataset Repository 
https://kg.ebrains.eu/search/instances/Dataset/f5a6cbf3-7d74-4210-b8f1-
236a9b44ea19  Technical Documentation 

User Documentation 

3.1.5 Output 4: Apical amplification of human and rodent 
pyramidal neurons  

The apical amplification theory hypothesizes that depolarisation of the apical dendrites of 
neocortical pyramidal neurons can enhance response to the somatic inputs that specify a cell’s 
selective sensitivity. To test this hypothesis, we developed paradigms and tested behavioural, 
recording and theoretical approaches. We described the XOR operation in human dendrites (P2281). 
We described how apical dendritic coupling with layer 5 pyramidal neurons relates to consciousness. 
We described a novel cortico-cortical pathway that links deep layer 6 with input to pyramidal 
neurons. 

To test the effect of visual stimuli on visual and somatosensory responses 1) we are training mice to 
use visual cues (moving random dots) to guide behaviour, while we image from cortical soma and 
dendrites using prisms; 2) we are training head fixed mice to use both visual or tactile stimuli to 
detect novel objects; and 3) we are training mice in a two choice discrimination of images used in 
human fMRI (in collaboration with Outputs 1 & 2). 

Table 4: KR3.1 Output 4 Links 

Link to URL 

Data Repository https://doi.org/10.12751/g-node.57a01e 
and 
https://www.jneurosci.org/content/early/2019/10/30/JNEUROSCI.1809-
19.2019?versioned=true  

Technical Documentation 

User Documentation 

3.2 Validation and Impact 

3.2.1 Actual and Potential Use of Output(s) 

Modern AI neural networks depend primarily on feedforward connections to transform data into 
meaningful task representations. Network models in Output 1 are robustly dominant due to added 
lateral or top-down connections. Therefore, these networks could have substantial impact on the AI 
community (P2284). 

The autoencoder network described in Outputs 1 & 2 outperformed a classical supervised network 
in describing human cortical feedback activity, indicating that neural network models of vision will 
benefit from cortical feedback (P2107). Additionally, Output 3 describes how attention affects 
neuronal activity when the visual system processes objects. These results are valuable for artificial 
models incorporating attention. 

Output 4 has described an expanded capability of human layer 2/3 pyramidal neurons, which were 
thought to share qualities with artificial neuronal networks and rodent neurons of the same class. 
This Output has shown that human neurons are uniquely capable of solving the XOR logic problem 
(P2281), making them more computationally sophisticated than previously thought. This discovery 
could inspire the AI community in designing computational units. 

https://github.com/Leveltlab/SpectralSegmentation
https://kg.ebrains.eu/search/instances/Dataset/f5a6cbf3-7d74-4210-b8f1-236a9b44ea19
https://kg.ebrains.eu/search/instances/Dataset/f5a6cbf3-7d74-4210-b8f1-236a9b44ea19
https://doi.org/10.12751/g-node.57a01e
https://www.jneurosci.org/content/early/2019/10/30/JNEUROSCI.1809-19.2019?versioned=true
https://www.jneurosci.org/content/early/2019/10/30/JNEUROSCI.1809-19.2019?versioned=true


 
 

  
 

D3.6.2 (D20.2 D38) SGA2 M24 ACCEPTED 200903.docx PU = Public 24-Sep-2020 Page 11 / 31 
 

3.2.2 Publications 

Publications produced during achievement of KR3.1 relate to neural network models (from Output 
1) or human data (Output 2) and rodents (Outputs 3 & 4) to inform network models. Data come from 
experiments probing non-feedforward brain processes, signals often missing from models of visual 
recognition (P2284) and working memory (P2423). The importance of non-feedforward brain signals 
is discussed in P2107 and P2281. 

• P2284 (Output 1): Spoerer C.J., Kietzmann T.C., Kriegeskorte N. (2019): Recurrent networks can 
recycle neural resources to flexibly trade speed for accuracy in visual recognition. BioRxiv. doi: 
10.1101/677237 

• P2107 (Output 2): Morgan A.T., Petro L.S., Muckli L. (2019): Scene Representations Conveyed by 
Cortical Feedback to Early Visual Cortex Can Be Described by Line Drawings. J Neurosci. 39:47, 
pp. 9410-9423. doi: 10.1523/JNEUROSCI.0852-19.2019. 

• P2423 (Output 3): van Vugt B., van Kerkoerle T., Vartak D., Roelfsema P.R. (2020) The 
contribution of AMPA and NMDA receptors to persistent firing in the dorsolateral prefrontal cortex 
in working memory. J Neurosci. 40:12, pp. 2458-2470. doi:10.1523/JNEUROSCI.2121-19.2020 

• P2281 (Output 4): Gidon A., Zolnik T.A., Fidzinski P., Bolduan F., Papoutsi A., Poirazi P., 
Holtkamp M., Vida I., Larkum M.E. (2019) Dendritic action potentials and computation in human 
layer 2/3 cortical neurons. Science. 367:6473, pp. 83-87. doi:10.1126/science.aax6239. 

4. Key Result KR3.2  
A collab including experimental data, simulation models and analysis tools relying on novel concepts 
and approaches to characterise high-resolution spontaneous and perturbed multi-areal slow wave 
activity expressed under different levels of activation at different scales (multiunit, LFP in rodents, 
intracranial and scalp recordings in humans). 

4.1 Outputs 
The Key Result (KR3.2) is a multiscale, multi-methodology, combination of experimental data (in 
rodents and humans), simulation models and modular analysis pipeline workflows applicable to both 
experimental data and simulation outputs regarding cortical slow wave activity expressed under 
deep-sleep and anaesthesia in physiologic and pathological conditions. It has been designed in strict 
cooperation with SP5 as an exemplar design of the EBRAINS conceived modular workflows. 

4.1.1 Overview of Outputs 

4.1.1.1 List of Outputs contributing to this KR 

The following is a list of key Outputs produced during the period M1-M124 of SGA2 (April 2018 – March 
2020): 

• Output 1: Cortical multiscale data in mouse in different brain states and in models of cognitive 
deficits 

• Output 2:  Data curation and containers for simultaneous scalp HD-EEG and intracranial EEG 
recordings 

• Output 3: Analysis pipeline for experimental (and simulated) SWA 

• Output 4: Whole mouse cortical hemisphere simulation with connectivity inferred from 
experimental activity 

• Output 5: Photo-modulation of SWA and brain state transitions with PAI 
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4.1.1.2 How Outputs relate to each other and the Key Result 

“Cortical multiscale experimental data in mouse about different brain states under physiological and 
pathological conditions (Output 1)” and mesoscale and macroscale data in humans, “simultaneous 
scalp High-Density EEG (HD-EEG) and intracranial EEG recordings both in wake and sleep (Output 
2)”, both made available in the EBRAINS Knowledge Graph, are among the key inputs to the available 
prototype of “Analysis pipeline for experimental (and simulated) SWA (Output 3)”, designed and 
developed in cooperation with SP5. This analysis pipeline is also: applied to simulation results 1) to 
characterise simulated SWA and 2) to infer from experimental SWA activity essential parameters, 
like functional connectivity, for the “simulation of SWA activity at the scale of a whole cortical 
hemisphere in mouse (Output 4)”. The objective of taking control of the underlying molecular 
mechanisms is addressed by the “Output 5: Photo-modulation of SWA and brain state transitions with 
PAI”, about the design and experimentation of a photoswitchable muscarinic neuromodulator.  

4.1.2 Output 1: Cortical multiscale data in mouse in different 
brain states and in models of cognitive deficits 

This Output is a product of T3.2.3 (IDIBAPS; P1996) and it is the basis for T3.2.1 (ISS) and T3.2.5 
(INFN) models and analysis pipelines. It includes SWA data acquired with 32 electrodes ECoG data 
on both wild-type mice and two transgenic models of cognitive deficit that occur in children: 
Williams-Beuren syndrome (WBS) and fragile X syndrome (FXS). Several structural and functional 
brain alterations are characteristic of this syndrome, as well as disturbed sleep and sleeping 
patterns. This Output is key for the analysis pipelines described as Output 3. 

Table 5: KR3.2 Output 1 Links 

Link to URL 

Data/Model Repository Propagation modes of slow waves: DOI: 10.25493/WKA8-Q4T 
Williams-Beuren Syndrome: DOI: 10.25493/DZWT-1T8 
Fragile X Syndrome: DOI: 10.25493/ANF9-EG3 

Technical Documentation 

User Documentation 

4.1.3 Output 2: Data curation and containers for 
simultaneous scalp high definition-EEG and intracranial 
EEG recordings  

The group at the University of Milan (UMIL) produced two datasets of simultaneously recorded scalp 
HD-EEG and intracranial EEG (P2341). These datasets are now curated and findable in the KG and 
can be used to study how specific brain dynamics, such as slow waves, are generated during sleep 
and propagate from their sources (Pigorini et al., [dataset]), employing ground-truth-based 
methodologies (Mikulan et al. [dataset, article under review]). Thus, they provide the first direct 
link between mesoscale and macroscale in humans. 

Table 6: KR3.2 Output 2 Links 

Link to URL 

Data Repository 
Pigorini et al. DOI: 10.25493/30W7-0WK  
Mikulan et al. DOI: 10.25493/NXN2-05W 

Technical Documentation 

User Documentation 

Data Repository 
Pigorini et al. DOI: 10.25493/30W7-0WK  
Mikulan et al. DOI: 10.25493/NXN2-05W 

Technical Documentation 

User Documentation 

Data Repository Pigorini et al. DOI: 10.25493/30W7-0WK  
Mikulan et al. DOI: 10.25493/NXN2-05W Technical Documentation 

https://kg.ebrains.eu/search/instances/Dataset/7866daf2-7064-4fa0-b6a2-0b1c899ba35f
https://kg.ebrains.eu/search/instances/Dataset/2ead029b-bba5-4611-b957-bb6feb631396
https://kg.ebrains.eu/search/instances/Dataset/be893c8d-d6b6-4a14-8bd3-00686fb42efd
https://kg.ebrains.eu/search/instances/Dataset/a3e9cd95-d601-40ed-b5fa-e5a9fd01005a
https://kg.ebrains.eu/search/instances/Dataset/f557d71e-fe11-43d7-8225-7c2d432f34b9
https://kg.ebrains.eu/search/instances/Dataset/a3e9cd95-d601-40ed-b5fa-e5a9fd01005a
https://kg.ebrains.eu/search/instances/Dataset/f557d71e-fe11-43d7-8225-7c2d432f34b9
https://kg.ebrains.eu/search/instances/Dataset/a3e9cd95-d601-40ed-b5fa-e5a9fd01005a
https://kg.ebrains.eu/search/instances/Dataset/f557d71e-fe11-43d7-8225-7c2d432f34b9
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User Documentation 

4.1.4 Output 3: Analysis pipeline for experimental (and 
simulated) Slow Wave Activity  

SWAP (Slow Wave Analysis Pipeline) and SOAP (Slow Oscillation Analysis Pipeline) are products of the 
cooperation among INFN, ISS and IDIBAPS (Joint P2226), with the contribution of optical data 
acquired with GECI (Genetically Encoded Calcium Imaging) technique from CDP1 HBP partner LENS 
and the constant cooperation with SP5 on the suits for data analysis (Elephant, Neo and Snakemake; 
Julich-INM6) and for the data curation. SWAP and SOAP are provided to the public through the GitHub 
repositories listed in Table 7.  

Table 7: KR3.2 Output 3 Links 

Link to URL 

Software Repository 

https://github.com/INM-6/wavescalephant (SOAP pipeline) Technical Documentation 

User Documentation 

Software Repository 

https://github.com/INM-6/wavescalephant (SWAP pipeline) Technical Documentation 

User Documentation 

4.1.5 Output 4: Whole mouse cortical hemisphere simulation 
with connectivity inferred from experimental activity  

In cooperation, INFN, ISS and IDIBAPS demonstrated the feasibility of large-scale spiking simulations 
of cortical SWA and asynchronous wake-like states at the scale of a cortical hemisphere, and at 
biological neural and synapses densities (Joint P2025). The functional connectivity and other 
parameters for simulation of SWA activity of a whole hemisphere of the wild type mouse have been 
inferred from calcium imaging GCaMP-6f recording (field of view: 4mmx5mm, pixel resolution: 50x50 
µm2, temporal resolution: 40ms) provided by the SP1 partner LENS (Joint P1575). The data and 
simulation results are among those that can be analysed using the SWAP and SOAP analysis pipelines 
Outputs. The connectivity and other parameters that are essential to calibrate the simulations of 
cortical SWA are inferred using a likelihood maximisation technique that progressively increases the 
match between experimental data and the results of mean-field simulations.  

Table 8: KR3.2 Output 4 Links 

Link to URL 

Model Repository https://kg.ebrains.eu/search/instances/Model/fa08c511f9b444922b0975f538b
10abd (Mean-field model of SWA, whole mouse hemisphere), 
https://github.com/PierStanislaoPaolucci/2020WholeMouseCortHemisphMFsim  
and  
https://kg.ebrains.eu/search/instances/Model/cea3e597-2fbd-4022-bbfc-
a64b9fa49d68 (Large-scale spiking model of SWA and AW), 
https://github.com/APE-group/201903LargeScaleSimScaling  

Technical Documentation 

User Documentation 

4.1.6 Output 5: Photo-modulation of Slow Wave Activity and 
brain state transitions with PAI  

The objective is the photo-modulation of SWA and transitions to higher complexity states taking 
control of the underlying molecular mechanism. Several light-regulated muscarinic ligands have been 
developed and characterised (agonists, antagonists). The most exhaustive characterisation has been 

https://github.com/INM-6/wavescalephant
https://github.com/INM-6/wavescalephant
https://kg.ebrains.eu/search/?facet_type%5b0%5d=Model&q=capone#Model/fa08c511f9b444922b0975f538b10abd
https://kg.ebrains.eu/search/?facet_type%5b0%5d=Model&q=capone#Model/fa08c511f9b444922b0975f538b10abd
https://github.com/PierStanislaoPaolucci/2020WholeMouseCortHemisphMFsim
https://kg.ebrains.eu/search/?facet_type%5b0%5d=Model&q=paolucci#Model/cea3e597-2fbd-4022-bbfc-a64b9fa49d68
https://kg.ebrains.eu/search/?facet_type%5b0%5d=Model&q=paolucci#Model/cea3e597-2fbd-4022-bbfc-a64b9fa49d68
https://github.com/APE-group/201903LargeScaleSimScaling


 
 

  
 

D3.6.2 (D20.2 D38) SGA2 M24 ACCEPTED 200903.docx PU = Public 24-Sep-2020 Page 14 / 31 
 

performed and published with the molecule named PAI (P1785). PAI (Phthalimide-Azobenzene-
Iperoxo) is designed by introduction of an azobenzene photoswitch into the molecular structure of 
a muscarinic (M2 mAChR) agonist (phthalimide-iperoxo). Using the photoswitchable muscarinic 
neuromodulator PAI, synchronous slow wave activity was transformed into a higher frequency 
pattern in the cerebral cortex. 

Table 9: KR3.2  Output 5 Links 

Link to URL 

Data Repository 

DOI: 10.25493/9V51-TJT Technical Documentation 

User Documentation 

Data Repository 

DOI: 10.25493/9V51-TJT Technical Documentation 

User Documentation 

4.2 Validation and Impact 

4.2.1 Actual and Potential Use of Output(s) 

The interest in the topics addressed by KR3.2 is demonstrated by several facts. The special issue of 
Frontiers in System Neuroscience dedicated to the topic of brain states got in less than one year 
more than 240,000 views, and the joint papers P2226 (validating Output 3) and P2025 (validating 
Output 4) alone got more than 23,000 views. The workflow designed for the Use Case SGA2-SP3-
UC002 (KR3.2 and KR3.4) under the guidance of INFN, in cooperation with SP5, has been adopted as 
an exemplar demonstration and prototype about how EBRAINS should design modular multiscale, 
multi-methodology, multi-species frameworks. The proposed KR3.2 pipeline has already been 
applied, outside the framework of KR3.2 original partners, also to wide-field calcium imaging data 
in rodents acquired by the SP1 partner LENS. KR3.2 Outputs got a strong interest also from SP4 
partners, and at the HBP 2020 summit, a session dedicated to KR3.2 Outputs laid the basis for a joint 
live paper about multiscale, multi-species, multi-methodology investigation of brain states, their 
complexity and their transitions.   

4.2.2 Publications 

Publications produced during achievement of KR3.2 include rodent data (P1996 related to Output 
1), human data (P2341, Output 2), analysis pipeline for data and simulations (P2226, Output 3), large 
scale simulations (P2025, Output 4) and optomanipulation (P1785, Output 5).  

• P1996: “Altered Neocortical Dynamics in a Mouse Model of Williams–Beuren Syndrome”. Dasilva, 
M., et al.  (2019). Molecular Neurobiology, 1-13. (Output 1, peer-review validation). DOI: 
10.1007/s12035-019-01732-4 

• P2341: “Simultaneous human intracerebral stimulation and HD-EEG: ground-truth for source 
localization methods”. Ezequiel Mikulan, et al. (2020) bioRXiv. (Output 2, currently under final 
stages of peer review).  DOI: 10.1101/2020.02.14.948984 

• P2226: “Analysis Pipeline for Extracting Features of Cortical Slow Oscillations”. De Bonis, et al. 
Frontiers in Systems Neuroscience, Vol. 13. (2019). (Peer-review validation of Output 3). DOI: 
10.3389/fnsys.2019.00070 

• P2025: “Scaling of a Large-Scale Simulation of Synchronous Slow Wave and Asynchronous Awake-
Like Activity of a Cortical Model With Long-Range Interconnections”. Elena Pastorelli, et al.  
Frontiers in Systems Neuroscience, Vol. 13. (2019). (Peer review validation of Output 4). DOI: 
10.3389/fnsys.2019.00033  

https://kg.ebrains.eu/search/instances/Dataset/d1a381b3-fa2f-4801-89ca-7cacf61ec2b3
https://kg.ebrains.eu/search/instances/Dataset/d1a381b3-fa2f-4801-89ca-7cacf61ec2b3
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• P1785: "Rationally designed azobenzene photoswitches for efficient two-photon neuronal 
excitation". Cabré, G., et al. Nature Communications, 10 (1): 907 (2019). (Peer review validation 
of the key methodology used in Output 5). DOI: 10.1038/s41467-019-08796-9 

5. Key Result KR3.3 
Acquisition of brain imaging and electrophysiological recording, models of multisensory integration 
and spatial memory and navigation, and brain-inspired robots (i.e. visual-tactile rodent-like robot 
and a humanoid robot). 

5.1 Outputs 
The collaborative effort of experimental, computational and theoretical scientists made it possible 
to achieve Key Result (KR3.3). This Key Result delivered brain imaging (rodent and human) and 
electrophysiological (rodent) datasets and models of multisensory (tactile/visual) interaction 
integrated with spatial memory and navigation in artificial and physical systems in robots. In a 
collaboration with SP5, we created a data pipeline to feed models which could be incorporated into 
robots (WhiskEye, MiRo). 

5.1.1 Overview of Outputs 

5.1.1.1 List of Outputs contributing to this KR 

• Output 1: Multi-area electrophysiology along the rodent cortico-hippocampal hierarchy during 
multisensory object-discrimination 

• Output 2: Systems-level functional data on multimodal integration of episodic memories in 
humans 

• Output 3: Models of spatial/episodic memory dynamics for robotic system 

• Output 4: Visual-tactile mobile robot "WhiskEye" for multi-modal, spike based spatial memory 
system 

• Output 5: Rodent physiology: self-motion and visual integration 

• Output 6 (Output 5 of KR3.5): Models of the motivational system and its integration with the 
action selection mechanisms in the Mammalbot architecture - This Output contributes to both 
KR3.3 and KR3.5. 

5.1.1.2 How Outputs relate to each other and the Key Result 

Output 1 and Output 2 allow interspecies comparisons of coherent episodic memory retrieval. The 
different approaches investigate this process on different time resolutions and anatomical scales. 
While the human FMRI (Output 2) investigates these processes on a layer-specific level in humans 
across a variety of brain regions, the rodent work (Output 1 and Output 5) complements this by 
disentangling cellular and population-level mechanisms related to precise temporal spike dynamics 
both in memory and sensory systems. This is of particular interest as mechanistic hypotheses 
regarding episodic memory mechanisms like pattern separation and pattern completion have rather 
been defined at the population-level and the translational evidence in humans has been sparse. To 
bridge that gap between micro-, meso- and macrolevel understanding of brain function we record 
data from the same brain regions (Medial Temporal Lobe) in humans and rodents and integrate our 
findings.  

Strong interactions exist between Output 1 & 2 and Output 3, 4, and 6 as the empirical data inform 
the development of neurorobotic models. For successful episodic memory and multisensory 
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integration, the interplay of multiple brain structures and mechanisms is required. Empirical 
research in rodents and humans allows us to identify these at a functional level with various levels 
of specificity. In turn, neurorobotic models are used to test specific predictions flexibly by 
alternating model components. It is easier and more efficient to change parts of an existing model 
and test the effects than to perform empirical studies that require animal/human resources. Besides, 
robots are good models to test cognitive architectures, as they must process and act in their 
environment in real-time and as the sampling by artificial sensors is constrained by actual real-world 
sensory statistics (e.g. whisker kinematics). 

5.1.2 Output 1: Multi-area electrophysiology along the rodent 
cortico-hippocampal hierarchy during multisensory 
object discrimination 

We demonstrated that rats can be trained to reliably discriminate between different objects, based 
on visual and/or tactile input. We performed simultaneous multi-area ensemble (multi-cell) 
recordings in the visual and barrel cortices, as well as in perirhinal cortex and hippocampal CA1 
region to understand how object-related memory content is retrieved and distributed across the 
cortico-hippocampal areas. Electrophysiology datasets are used to compare to predictive coding 
models. The next step is to compare firing rate responses from simulated neurons to firing patterns 
recorded from behaving rodents.  

In a collaboration with SP5, we registered the data acquired from different subjects to the Waxholm 
reference rat atlas by reconstructing the full tetrode tracks. The coordinates of reconstructed 
tetrode tracks and recording locations, together with the metadata describing the experiment, were 
uploaded to the EBRAINS platform. The dataset contributes to the development of an analytical 
pipeline for the detection of moments on which cells synchronise their firing patterns (Use Case 
SGA2-SP3-UC003: https://wiki.ebrains.eu/bin/view/Collabs/sga2-sp3-uc003/). While specific 
analytical methods might work under specific circumstances, it is not given that all methods 
generalise for the variety of dynamics (non-stationarity of firing rates, etc), associated to different 
cell types and brain regions. The multi-area electrophysiology in this experiment is subjected to 
HBP’s analytical pipelines which we develop together with SP5 (Neural Activity Resources). 

Table 10: KR3.3 Output 1 Links 

Link to URL 

Dataset repository 
https://kg.ebrains.eu/search/instances/Dataset/963885a239e8d99e845ef0c1
b38cdf01 (embargoed) Technical Documentation 

User Documentation 

5.1.3 Output 2: Systems-level functional data on multimodal 
integration of episodic memories in humans 

We acquired datasets to investigate multimodal integration and retrieval of episodic memories in 
humans. The first dataset allows to investigate pattern completion across domains (scene – object) 
in retrosplenial, hippocampal, entorhinal and perirhinal cortices. Functional data acquisition (3 
Tesla) in a cohort of younger adults has been finished successfully. Data analysis started and results 
are interpreted in close collaboration with Output 1. The second dataset allows to investigate 
multisensory integration and pattern completion across domains (scene – object) and sensory inputs 
(auditory – visual) in the entorhinal-hippocampal circuitry as well as to identify the functional 
topography of convergence zones. We successfully transferred the behavioural task into a functional 
MRI paradigm for 7 Tesla imaging and finish data acquisition in younger healthy adults. Finally, we 
provide the first empirical data in humans on the involvement of hippocampal subfield CA3 in 
comprehensive recollection of multi-element events via pattern completion. These human data are 
compared to rodent data (Output 1) and used to inform models, robots and the Mammalbot 

https://wiki.ebrains.eu/bin/view/Collabs/sga2-sp3-uc003/
https://kg.ebrains.eu/search/instances/Dataset/963885a239e8d99e845ef0c1b38cdf01
https://kg.ebrains.eu/search/instances/Dataset/963885a239e8d99e845ef0c1b38cdf01
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architecture. To enable comparison between different methodological modalities we share our data 
in the EBRAINS platform (Table 11). 

Table 11: KR3.3  Output 2 Links 

Link to URL 

Data Repository 
https://kg.ebrains.eu/search/instances/Project/d1f6a09f-7b52-4b3d-
9d18-4c88f62b0723    Technical Documentation 

User Documentation 

Data Repository 

DOI:  10.25493/RSJX-G3U Technical Documentation 

User Documentation 

Data Repository 

https://kg.ebrains.eu/search/instances/Dataset/7269d1a2-c7ad-4745-
972c-10dbf5a022b7  

Technical Documentation 

User Documentation 

5.1.4 Output 3: Models of spatial/episodic memory dynamics 
for robotic systems 

In a close collaboration of two partners (USFD and UWE) to develop multimodal spatial navigation 
capability for the WhiskEye robot, we have developed models of hippocampal “replay” that are 
being integrated into the animal-like robot MiRo. Hippocampal replay has been speculated to play 
important roles in mnemonic functioning, such as memory formation, retrieval and planning (P1710). 
By developing and augmenting these models for a spatial navigation task application in a robot, we 
hope to better understand how hippocampal replay contributes to memory capabilities when tested 
in realistic environments, whilst simultaneously contributing to bioinspired robotic mnemonic 
capabilities. 

Table 12: KR3.3  Output 3 Links 

Link to URL 

Model Repository https://collab.humanbrainproject.eu/#/collab/79081/nav/535286 

Technical Documentation https://github.com/mattdoubleu/robot_replay-conceptual_proof 

User Documentation https://github.com/mattdoubleu/robot_replay-conceptual_proof 

Model Repository https://github.com/dcam0050/docker_starter   

Technical Documentation https://github.com/dcam0050/docker_starter   

User Documentation https://github.com/dcam0050/ssm   

Report  P1710: https://royalsocietypublishing.org/doi/10.1098/rstb.2018.0025  

5.1.5 Output 4: Visual-tactile mobile robot "WhiskEye" for 
multi-modal, spike based spatial memory system 

The integrated visual-tactile mobile robot platform called WhiskEye, developed in the previous 
phase of the HBP, has been ported into the robot simulator adopted by the Neurorobotics Platform 
in the HBP. The cognitive architecture (Output 5 of KR3.5) that controls WhiskEye also connects to 

https://kg.ebrains.eu/search/instances/Project/d1f6a09f-7b52-4b3d-9d18-4c88f62b0723
https://kg.ebrains.eu/search/instances/Project/d1f6a09f-7b52-4b3d-9d18-4c88f62b0723
https://kg.ebrains.eu/search/instances/Dataset/aaca9deb-6cea-4339-a221-254dffeedcda
https://kg.ebrains.eu/search/instances/Dataset/7269d1a2-c7ad-4745-972c-10dbf5a022b7
https://kg.ebrains.eu/search/instances/Dataset/7269d1a2-c7ad-4745-972c-10dbf5a022b7
https://collab.humanbrainproject.eu/#/collab/45330/nav/311439
https://github.com/mattdoubleu/robot_replay-conceptual_proof
https://github.com/mattdoubleu/robot_replay-conceptual_proof
https://github.com/dcam0050/docker_starter
https://github.com/dcam0050/docker_starter
https://github.com/dcam0050/ssm
https://royalsocietypublishing.org/doi/10.1098/rstb.2018.0025
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the simulated platform and has been used to gather simulated data sets as WhiskEye explores its 
environment (Figure 2). These data have been used to develop a multi-modal spatial memory system 
that incorporates a predictive coding network for casting sensory information into a joint latent 
space suitable for place recognition and localisation (collaboration with UvA, KR3.5, and SP10). The 
grid cell model of the navigation system (termed pose cell network) is based on a continuous 
attractor network of spiking neurons and has been instantiated into the SpiNNaker neuromorphic 
computing system for real-time robotic experiments.  

Visual tactile datasets that were captured from the simulated WhiskEye can be found in the EBRAINS 
repository for public access. These will be in the form of rosbags for ease of extraction and 
portability into the robotics community. The technical documentation and user guide for the NRP-
based WhiskEye are available on GitHub via links on the HBP collaboratory (Table 13). 

  

Figure 2: Physical WhiskEye platform in Bristol and the simulated platform available on the 
NeuroRobotics Platform 

Table 13: KR3.3  Output 4 Links 

Link to URL 

Data Repository DOI: 10.25493/2ZBM-J1S   

Technical documentation https://collab.humanbrainproject.eu/#/collab/70961/nav/481270  

User documentation https://collab.humanbrainproject.eu/#/collab/70961/nav/481270  

Software Repository https://github.com/benef23/nrp_whiskeye_robot/blob/master/README.md  

Technical documentation 
https://collab.humanbrainproject.eu/#/collab/70960/nav/481265  

User documentation 

5.1.6 Output 5: Rodent physiology: self-motion and visual 
integration 

The relative influence of self-motion and environmental sensory inputs on the firing of place and 
grid cells within a given animal has not been quantified, it is not known whether the two cell types 
integrate these inputs separately or combine them to provide a single holistic representation. Virtual 
reality (VR) was used in our experiment to manipulate the relationship between physical self-motion 
signals and environmental visual information, so that we can compare their relative influences on 
the scales of the characteristic 2D spatial firing patterns of place and grid cells. Our results show 
that place cell firing patterns predominantly reflect visual inputs, while grid patterns reflect a much 
greater influence of physical motion. Thus, even when recorded simultaneously, place and grid cell 
firing patterns differentially reflect environmental information and physical self-motion, and need 
not be mutually coherent. This progress can help to elucidate the way we represent environmental 
location and potentially how we organise conceptual knowledge.  

https://kg.ebrains.eu/search/instances/Dataset/7246bb9d-5f8c-4281-a142-ab931f824f9c
https://collab.humanbrainproject.eu/#/collab/70961/nav/481270
https://collab.humanbrainproject.eu/#/collab/70961/nav/481270
https://github.com/benef23/nrp_whiskeye_robot/blob/master/README.md
https://collab.humanbrainproject.eu/#/collab/70960/nav/481265
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Table 14: KR3.3  Output 5 Links 

Link to URL 

Data Repository 
DOI:10.25493/R6ZZ-400 

Technical documentation 

User documentation https://osf.io/uk68w/  

5.2 Validation and Impact 

5.2.1 Actual and Potential Use of Output(s) 

KR3.3 Outputs are an important contribution to the interdisciplinary and multimodal approach within 
the HBP. The acquired datasets are being used to test and validate analysis pipelines (SGA2-SP3-
UC003) and atlas registration workflows from the Human Brain Project Infrastructure. One example 
is the reconstruction of tetrode tracks in 3D Waxholm reference atlas space (Output 1, in 
collaboration with SP5 - WP5.1, WP5.2 and WP5.4). The workflow demonstrated that precise 
recording locations could be extracted and that subtle differences in recording locations could 
intuitively be visualised across different experiments. A second example is the application and 
validation of the analytical pipelines “Time 2 Fire” (SGA2-SP3-UC003) to identify significant Unitary 
Events (events on which units synchronize their firing-rate, with WP5.7).  

High resolution human fMRI datasets (Output 2) inform neurocomputational models and robotics. 
They allow a translation between microlevel results from animal studies to system-level approaches 
that need to be considered to successfully mirror brain function with neurorobotics. Moreover, a 7 
Tesla fMRI dataset is supporting the development of specific co-registration algorithms that are 
important to register one type of brain image to another, contributing to KR3.1, in collaboration 
with Lars MUCKLI. 

The models produced in close alignment with the datasets collected (Outputs 3 and 4) are available 
for public access and can be used for simulating multisensory integration and/or spatial and episodic 
memory dynamics in artificial and physical systems. Our data will provide insight into actual human 
brain function at the meso- and macrolevel. Accordingly, our findings on multisensory integration of 
episodic memories may be used by e.g. the Neurorobotics Platform for the verification of models.  

The HBP research infrastructure integrates these interdisciplinary and multilevel data in various 
atlases and open resources. We herein contribute especially to the EBRAINS (e.g. Timo DICKSCHEID), 
the Virtual Brian (e.g. Petra RITTER) and inform the Neurorobotics Platform. The acquired datasets 
and results from ongoing analyses will additionally inform the Mammalbot approach and linked to 
data and models as we provide a larger, systems-level approach and can identify brain regions in an 
explorative manner that are important for multi-sensory integration of memories (see Output 5 of 
KR3.5). 

5.2.2 Publications 

The following publications show the circuit of multisensory processing (P1651) from a biological and 
computational approach (P1816, P1710 and P2221) and provide the first empirical evidence in 
humans for a specific involvement of hippocampal subfield CA3 in holistic recollection and cortical 
reinstatement of memories via pattern completion (P1960). For decades, such involvement has been 
suggested by animal research and computational models.   

• P1651: Guido T. Meijer, Paul E.C. Mertens, Cyriel M.A. Pennartz, Umberto Olcese, Carien S. 
Lansink.  The circuit architecture of cortical multisensory processing: Distinct functions jointly 
operating within a common anatomical network. Progress in Neurobiology (2019). 174(1-15). 
Output 1. 

https://kg.ebrains.eu/search/instances/Dataset/e675d539-6932-415c-8ece-f9017fb30893
https://osf.io/uk68w/
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• P1960: Grande, X., Berron, D., Horner, A. J., Bisby, J. A., Düzel, E., & Burgess, N. (2019). Holistic 
recollection via pattern completion involves hippocampal subfield CA3. Journal of Neuroscience, 
39(41), 8100-8111. Output 2. 

• P1710: Prescott, T., Camilleri, D., Martinez-Hernandez, U., Damianou, A., Lawrence, N.D. (2019) 
Memory and Mental Time Travel in Humans and Social Robots. The Royal Society. DOI: 
10.1098/rstb.2018.0025. Output 3. 

• P2221: Keisuke Sehara, Viktor Bahr, Ben Mitchinson, Martin J. Pearson, Matthew E. Larkum, 
Robert N. S. Sachdev.  Fast, flexible closed-loop feedback: Tracking movement in “real-
millisecond-time” (2019). eNeuro - Society for Neuroscience.  Output 4. 

• P1816: Chen, G., Lu, Y., King, J. A., Cacucci, F. & Burgess, N. Differential influences of 
environment and self-motion on place and grid cell firing. Nat Commun10, 630 (2019). Output 5. 

6. Key Result KR3.4  
A collab to gather different measures of consciousness and their generalisation from different 
pathophysiological (e.g. brain injuries), physiological functional states and anaesthesia conditions 
in humans, animal models, computer simulations and neuromorphic circuits. 

6.1 Outputs 
Key Result (KR3.4) is a combination of modelling, software and experiments, that result into 
procedures to assess brain complexity measures in humans, in rats and in silico systems. This Key 
Result also delivers TMS/EEG data of human patients, in-vivo rat data and computer code for analysis 
and simulation. It also contributes, with data, models and algorithms, to a modular workflow of 
KR3.2.  

6.1.1 Overview of Outputs 

6.1.1.1 List of Outputs contributing to this KR 

• Output 1: Test measures and mechanisms of consciousness in rats 

• Output 2: Consciousness measures in healthy humans 

• Output 3: Mechanisms of brain complexity and consciousness 

• Output 4: Understanding the impact of lesions on brain complexity 

• Output 5: Ethical, legal and social challenges 

• Output 6: Multimodal integration of human structural and functional connectivity measures 

6.1.1.2 How Outputs relate to each other and the Key Result 

Outputs 1, 2, 3 and 6 quite directly relate to Key Result KR3.4 as they produce data that can be used 
to calculate promising measures of consciousness for animals (Output 1), humans (Outputs 2 and 6), 
and thalamocortical models (Output 3) in different states. In this way, the proposed measures can 
be tested in normal, pathological, and simulated physiological states related to changes in 
consciousness. In brief, measures based on notions of complexity, connectivity, and information 
integration seem to behave most consistently with consciousness states and in accordance with 
intuitive relations to consciousness across states and model systems. 
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6.1.2 Output 1 - Test measures and mechanisms of 
consciousness in rats 

The Perturbational Complexity Index (PCI) measures the complexity of the electroencephalographic 
response to local stimulation (e.g. electric) of the cortex and it has been proposed as reliable 
measure of consciousness in humans. We adapted the PCI method in rats in vivo and tested it by 
comparing wakefulness to anaesthetised states. We tested clinically relevant anaesthetics, like 
propofol and sevoflurane, but also ketamine, which is known to produce “dream-like” experiences 
in humans with behavioural unresponsiveness. Cortical complexity dropped from wakefulness to 
general anaesthesia induced by propofol and sevoflurane. By contrast, ketamine anaesthesia induced 
an intermediate level of complexity. We then investigated possible mechanisms underlying the 
break-down of PCI and found evidence for a possible role of neuronal bistability in the reduction of 
complexity and functional connectivity. We also compared PCI results with other proposed measures 
of consciousness based on spontaneous EEG activity (e.g. Lempel-Ziv Complexity, Coalition Entropy, 
Phi-star and Phi-geo). Lempel-Ziv Complexity (in range 25-45 Hz) correlated the best with PCI and 
allowed a better discrimination of brain states. We also developed and provided a protocol for 
disconnecting brain hemispheres in rats. The method describes the custom tools and the procedure 
for a sagittal cut of corpus callosum that minimises cortical damage. All the collected data and 
Matlab/Python codes for analysis will be available in the HBP Knowledge Graph soon after revision 
and shared with the community. 

Table 15: KR3.4  Output 1 Links 

Link to URL 

Data Repository https://doi.org/10.25493/S0DM-BK5  
and  
https://doi.org/10.25493/5ZJY-PHB  

Technical Documentation 

User Documentation 

Data Repository 

https://doi.org/10.25493/8CQN-Y8S Technical Documentation 

User Documentation 

Data Repository 

https://doi.org/10.25493/QZVT-MYM Technical Documentation 

User Documentation 

6.1.3 Output 2 - Consciousness measures in healthy humans 

In order to test, compare, and further develop measures of consciousness in healthy humans, we 
applied some of the most promising measures from electrophysiological recording (e.g. based on 
complexity and connectivity) in control and novel clinical conditions. Results appear to be in 
accordance with predictions from the integrated information theory of consciousness and previously 
published results, except for uni-hemispheric anaesthesia which did not show a clear drop in 
complexity in the anaesthetised hemisphere. In addition, a comprehensive review of various 
electrophysiological measures of consciousness has been performed which shows among other that 
measures of complexity perform consistently in classification of conscious states. Sharing of results 
and data, as well as analysis and collection of new data from novel conditions are in progress. An 
early version of a package of measures of consciousness is available online (KR3.4) and will be 
expanded and added to the HBP Knowledge Graph. 

Table 16: KR3.4 Output 2 Links 

Link to URL 

Data Repository 
https://kg.ebrains.eu/search/instances/Project/62e1a139-c331-45a1-a1d6-
e9c222d3c52d?group=public Technical Documentation 

User Documentation 

https://doi.org/10.25493/S0DM-BK5
https://doi.org/10.25493/5ZJY-PHB
https://doi.org/10.25493/8CQN-Y8S
https://doi.org/10.25493/QZVT-MYM
https://kg.ebrains.eu/search/instances/Project/62e1a139-c331-45a1-a1d6-e9c222d3c52d?group=public
https://kg.ebrains.eu/search/instances/Project/62e1a139-c331-45a1-a1d6-e9c222d3c52d?group=public
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6.1.4 Output 3 - Mechanisms of brain complexity and 
consciousness 

Using our multi-area Hill-Tononi thalamo-cortical network model (see Output 4 in KR3.5) we are 
investigating the cellular and network mechanisms underlying brain states associated with 
consciousness and unconsciousness. Similar to [1] and [2], transition from a wake-like state to a 
sleep-like state is affected by increasing the AMPA, persistent sodium, potassium leak and 
sodium/calcium-activated potassium conductance. At the cell level, alternating depolarised UP and 
hyperpolarized DOWN states are evident in sleep, and these give rise to slow oscillations in the LFP 
as observed experimentally. Also consistent with observation [3], a measure of LFP complexity and 
two measures of LFP variability were found to decrease during simulated sleep. Similarly, the state-
transition perturbational complexity index was higher in wake than sleep, as reported in [4], while 
the spectral exponent was less negative in wake than sleep, as in [5]. A paper reporting these results 
is in preparation. Code and parameter values necessary to reproduce key figures in this paper will 
be uploaded to the public database ModelDB.  

References: [1] Hill & Tononi, 2004. J. Neurophysiology 93: 1671-1698. [2] Esser, Hill & Tononi, 2009. 
J. Neurophysiology 102: 2096-2111. [3] Schartner et al, 2017, doi: 10.1093/nc/niw022. [4] Comolatti 
et al., 2019. Brain Stimulation 5: 1280-1289 . [5] Colombo et al., 2019. NeuroImage 189: 631-644. 

Table 17: KR3.4 Output 3 Links 

Link to URL 

Model Repository https://kg.ebrains.eu/search/instances/Model/c996a8fed0868b82e8e7d9b00
3ca38e6  

Technical Documentation https://github.com/ricardomurphy/Multiarea-Hill-Tononi-thalamocortical-
network-model  

User Documentation https://github.com/ricardomurphy/Multiarea-Hill-Tononi-thalamocortical-
network-model  

6.1.5 Output 4 - Understanding the impact of lesions on brain 
complexity 

We have revisited the pipeline underlying the computation of the Perturbational Complexity Index 
(PCI) previously introduced as a neurophysiological TMS/EEG marker of the potentiality for 
consciousness in severely brain-injured patients The pipeline, which also contributes to the Use Case 
SGA2-SP3-UC002 (https://github.com/thierrynieus/PerturbationalComplexityIndex), is coded in 
Python, includes an updated version of the original PCI Lempel-Ziv algorithm (PCI_LZ [1]) and can 
alternatively be run at the sensor level (P1719). The overall work confirms that the classification of 
brain-injured patients based on PCI is in line with previous studies.  

We conducted TMS/EEG studies on patients with severely injured brains and with cortical strokes. 
In the former study, we observed a loss of complex EEG responses as the cortical circuits fell into 
silence (OFF-period) upon receiving a TMS input (P1516). In another study we assessed the impact 
of focal cortical lesions on brain complexity. In a group of patients, we found that complexity is 
reduced locally in the perilesional area as compared to the contra-lateral intact area.  

PCI was also generalised to whole-brain simulations and to cerebellar brain slices. In the simulations 
we demonstrated that PCI is higher in the ‘wake’-like state with respect to ‘sleep’ and ‘anaesthesia’-
like states. In the cerebellar slice experiments, we adapted the original definition of PCI to account 
for the different signal sources and analysed PCI for different mossy fibre inputs.  

[1] Casali, A. G. et al. 2013, doi:10.1126/scitranslmed.3006294.   

Table 18: KR3.4 Output 4 Links 

Link to URL 

Data Repository https://doi.org/10.25493/WBJX-2M0  

https://kg.ebrains.eu/search/instances/Model/c996a8fed0868b82e8e7d9b003ca38e6
https://kg.ebrains.eu/search/instances/Model/c996a8fed0868b82e8e7d9b003ca38e6
https://github.com/ricardomurphy/Multiarea-Hill-Tononi-thalamocortical-network-model
https://github.com/ricardomurphy/Multiarea-Hill-Tononi-thalamocortical-network-model
https://github.com/ricardomurphy/Multiarea-Hill-Tononi-thalamocortical-network-model
https://github.com/ricardomurphy/Multiarea-Hill-Tononi-thalamocortical-network-model
https://github.com/thierrynieus/PerturbationalComplexityIndex
https://doi.org/10.25493/WBJX-2M0


 
 

  
 

D3.6.2 (D20.2 D38) SGA2 M24 ACCEPTED 200903.docx PU = Public 24-Sep-2020 Page 23 / 31 
 

Technical Documentation 
https://github.com/iTCf/lesions_and_complexity  

User Documentation 

Software Repository 

https://doi.org/10.25493/5TNA-R5P  Technical Documentation 

User Documentation 

Software Repository 

https://github.com/thierrynieus/PerturbationalComplexityIndex  Technical Documentation 

User Documentation 

6.1.6 Output 5 - Ethical, legal and social challenges 

This Output tackles the ethical, legal and social implication of working on consciousness disorders. 
We have developed questionnaires for clinicians and caregivers to debrief opinions and impressions 
of using brain stimulation in mediating human consciousness. We also created questionnaires for 
patients’ relatives and professional caregivers about end-of-life decision making for patients with 
disorders of consciousness, which aims to improve the understanding of decisions on the 
(dis)continuation of life-sustaining treatment in this population. Data are still being analysed. Last, 
we are organising an international Ethical Symposium for scientists, caregivers, patients and families 
but for practical reasons, it will be held during SGA3. We also developed a theoretical framework 
for assessing consciousness in animals, machines and non-verbal humans (P2013). 

Table 19: KR3.4 Output 5 Links 

Link to URL 

Report  P2013: DOI: 10.3389/fnsys.2019.00025 

6.1.7 Output 6 - Multimodal integration of human structural 
and functional connectivity measures 

We acquired multimodal datasets using electroencephalography (EEG) combined (or not) with 
transcranial magnetic stimulation (TMS), and magnetic resonance imaging (MRI) in physiological, 
pathological, and pharmacological modifications of consciousness. These data are shared through 
the HBP Knowledge Graph, and resulted in several publications (P2324, P2211, P2116, P1944, P1941). 
We also directed our efforts toward sharing our patients’ data and models through the Medical 
Informatics Platform (MIP). 

Table 20: KR3.4 Output 6 Links 

Link to URL 

Data Repository 

https://doi.org/10.25493/G8E3-DQE Technical Documentation 

User Documentation 

6.2 Validation and Impact 

6.2.1 Actual and Potential Use of Output(s) 

A preliminary release of a Python package for computing promising measures of consciousness from 
spontaneous activities is available online, useful for analysis of brain activity recordings. The Python 
module to compute the different versions of the perturbational complexity index is being used in 
ongoing studies and in published works. 

https://github.com/iTCf/lesions_and_complexity
https://doi.org/10.25493/5TNA-R5P
https://github.com/thierrynieus/PerturbationalComplexityIndex
https://www.frontiersin.org/articles/10.3389/fnsys.2019.00025/full
https://doi.org/10.25493/G8E3-DQE
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Datasets from electrophysiological and structural imaging recordings from humans and rats in 
different conditions that have been used for testing measures and theories of consciousness are 
currently being shared through the EBRAINS platform following curation (Output 1 & 6 ). Code for an 
expanded, multi-area, thalamocortical network model can be used to investigate cellular and 
network mechanisms thought to be associated with consciousness in humans. The surgical protocol 
for disconnecting brain hemispheres in rats (Output 1) will be published in the Knowledge Graph and 
it could be useful to study “split-brain syndrome” and to investigate the impact that alterations of 
network connectivity might have on cortical dynamics. 

6.2.2 Publications 

P2333 is a review paper relevant for all Outputs (1 to 6), addressing the problem of islands of 
awareness that have important implications for debates about the nature of consciousness. P1718 is 
a doctoral thesis produced on electrophysiological markers of consciousness, work which started in 
SGA1 and was finalised in SGA2, finding several markers to distinguish consciousness states in 
patients and healthy volunteers. P2370 is relevant for Output 1 and describes methods and results 
for reproducing Perturbational Complexity Index in rats in vivo. P1516 shows that loss of brain 
complexity after severe injuries is due to a pathological tendency of cortical circuits to fall into 
silence (OFF-period) upon receiving an input, a behaviour typically observed during sleep (Output 
4). P2013 brings a framework for measuring consciousness in both biological and artificial systems 
(Output 5). P2324 confirms that the dataset of Output 6 has been efficiently acquired, and the 
results of this publication show that local short-range communication of brain regions in α-band is 
stronger in patients with disorders of consciousness compared to healthy states, which suggests that 
information is segregated in local regions in these patients. 

• P2333: Bayne, T., Seth, A. K., and Massimini, M. (2020). Are There Islands of Awareness? Trends 
in Neurosciences 43, 6–16. doi:10.1016/j.tins.2019.11.003. Whole WP. 

• P1718: Juel, B. E. (2019). Electrophysiological Markers of Consciousness: Measures of 
connectivity, complexity, and signal diversity in EEG for distinguishing between conscious and 
unconscious brain states. http://urn.nb.no/URN:NBN:no-71069. Output 2. 

• P1516 Rosanova, M., Fecchio, M., Casarotto, S., Sarasso, S., Casali, A. G., Pigorini, A., et al. 
(2018). Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of 
unresponsive wakefulness syndrome patients. Nature Communications 9. doi:10.1038/s41467-
018-06871-1. Output 4. 

• P2013: Pennartz, C., Farisco, M. Evers, K. (2019) Indicators and Criteria of Consciousness in 
Animals and Intelligent Machines: An Inside-Out Approach. DOI: 10.3389/fnsys.2019.00025 
Output 5. 

• P2324: Mortaheb S, Annen J, Chatelle C, Cassol H, Martens G, Thibaut A, Gosseries O, Laureys S. 
A Graph Signal Processing Approach to Study High Density EEG Signals in Patients with Disorders 
of Consciousness. Conf Proc IEEE Eng Med Biol Soc. 2019 Jul;2019:4549-4553. Output 6. 

• P2370: Arena A., Comolatti R., Thon S., Casali A.G., Storm J.F. (2020). General anaesthesia 
disrupts complex cortical dynamics in response to intracranial electrical stimulation in rats. 
BioRxiv. https://doi.org/10.1101/2020.02.25.964056. Output 1. 

  

http://urn.nb.no/URN:NBN:no-71069
https://doi.org/10.1038/s41467-018-06871-1
https://doi.org/10.1038/s41467-018-06871-1
https://doi.org/10.1101/2020.02.25.964056
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7. Key Result KR3.5  
Computational modelling of multisensory deep predictive coding with potential use in AI and 
robotics. 

7.1 Outputs 
Key Result KR3.5 aims to deliver comprehensive and neurobiologically plausible cognitive 
architectures for biomimetic agents. It also delivers seven different modelling components that 
target different phenomena in the brain such as encoding and retrieval of memory during sleep, 
object recognition, conscious and unconscious states, multisensory integration for place recognition, 
and motivation and action selection using large-scale cortical neural network models. These models 
are integrated into a single architecture for biomimetic robots. 

7.1.1 Overview of Outputs 

7.1.1.1 List of Outputs contributing to this KR 

• Output 1: Deep-sleep induced normalisation and association of memories improving awake 
classification 

• Output 2: Deep Predictive Coding Network accounts for response properties of visual neurons 

• Output 3: Multisensory integration for place recognition in robots 

• Output 4: Multiarea Hill-Tononi thalamocortical network model 

• Output 5: Motivational and action selection subsystems of the Mammalbot architecture 

7.1.1.2 How Outputs relate to each other and the Key Result 

The focus of this Work Package has been to improve our understanding of multisensory information 
processing in the brain by means of biologically plausible computational models and illustrate 
applications of these models in real world AI and robotics problems. Deep predictive coding models 
developed (Output 2) provide a means to study multisensory integration in lower as well as higher 
cortical areas. Further, their application for place recognition in robotics (Outputs 3) has 
demonstrated the performance improvement that can be achieved by these models in comparison 
to traditional approaches. Expanding these models by incorporating observations from studies on 
sleep (Output 1) will further help in improving the performance of these models on AI and robotics 
problems. These enhanced models contribute as components of the cognitive Mammalbot 
architecture (Output 5) that brings together motivational and action selection subsystems present 
in the brain. 

Furthermore, Output 1 of KR3.3 (Electrophysiology) provides empirical evidence to restrain and 
inform KR3.5 (deep network for predictive coding), thereby making it more biologically plausible. 
While the biological plausibility of models can improve our fundamental understanding of sensory 
processing and memory processes by the brain, a second aim is to test the applicability of these 
models in real-world situations, the robots must deal with comparing their performance to other 
existing models.  

7.1.2 Output 1: Deep-sleep induced normalisation and 
association of memories improving awake classification 

While disconnected from external input and from the duties associated with wakefulness, animal 
brains are free to optimise internal representations, create novel association and plans and recover 
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optimal working points for reduced energetic costs of activity. Future generations of bio-inspired 
artificial intelligence will benefit from the introduction of mechanisms inspired from those observed 
in brains during sleep. 

Human brains spend about one-third of their life-time sleeping and sleep is present in every animal 
species that has been studied. This happens notwithstanding two negative facts: the danger caused 
by sleep, that diminishes the capability to defend against predators and other threats, and the 
reduction of time available for activities targeting immediate reward. Sleep must therefore serve 
essential functions. In June 2019, we published the paper P2024 demonstrating that sleep-like slow 
oscillations improve visual classification in a thalamo-cortical spiking model through synaptic 
homeostasis and memory association. The corresponding NEST model has been released through the 
EBRAINS Knowledge Graph. A network of spiking AdEx neurons is trained (STDP plasticity) to encode, 
retrieve and classify images of handwritten digits. Then, sleep-like oscillations are induced. A 
differential homeostatic process is observed. Slow oscillations induce both an unsupervised 
enhancement of connections among groups of neurons associated to instances of the same class 
(digit) and a simultaneous down-regulation of stronger synapses created by the training. This is 
reflected in a hierarchical organisation of post-sleep internal representations. This promotes higher 
performances in post-sleep retrieval and classification tasks and creates hierarchies of categories in 
integrated representations.  

Table 21: KR3.5 Output 1 Links 

Link to URL 

Model Repository https://kg.ebrains.eu/search/instances/Model/97670076281ccbdc38ea2c2d7
6a64e64, https://github.com/PierStanislaoPaolucci/2019thalCort-SNN-SO-
AW-mem 

Technical Documentation 

User Documentation 

7.1.3 Output 2: Deep Predictive Coding Network accounts for 
response properties of visual cortical neurons 

We have developed a method for training deep neural networks using a neurobiological principle of 
predictive coding. These networks employed a network architecture which was developed to 
reproduce the idea of increasing receptive field sizes across the cortical hierarchy. We analysed 
trained models to study neuronal properties like sparseness, selectivity, image selectivity, etc. Our 
results indicate that many response properties of cortical neurons are reproduced by these deep 
networks without being explicitly imposed on the network. For instance, the networks exhibit an 
increase in average selectivity across successive layers in the model which has also been reported in 
experimental data. Additionally, we also identified a possible reason for inconsistent results 
reported on sparseness in experimental literature. 

We have modelled multi-compartment Layer 5 context-sensitive neurons and Layer 2/3 additive 
neurons using information theoretic learning rules. These neurons have been implemented in large 
networks for simulations. Such networks are capable of completing AI-style tasks and are compared 
to cortical architectures. These neuron models have been delivered to NEST for integration into the 
package. Validation of these models is being completed by the NEST development team. 
Additionally, we have implemented non-feedforward connections in deep learning frameworks to 
tackle object recognition tasks (see KR3.1, Output 1). 

Table 22: KR3.5 Output 2 Links 

Link to URL 

Model Repository 

https://gitlab.com/shirindora/msi_pc/ Technical Documentation 

User Documentation 

Model Repository https://github.com/sepehrmn/nest-simulator/tree/bpid_kp_2017, 
https://nest-simulator.readthedocs.io/en/latest/  Technical Documentation 

https://kg.ebrains.eu/search/instances/Model/97670076281ccbdc38ea2c2d76a64e64
https://kg.ebrains.eu/search/instances/Model/97670076281ccbdc38ea2c2d76a64e64
https://github.com/PierStanislaoPaolucci/2019thalCort-SNN-SO-AW-mem
https://github.com/PierStanislaoPaolucci/2019thalCort-SNN-SO-AW-mem
https://gitlab.com/shirindora/msi_pc/
https://github.com/sepehrmn/nest-simulator/tree/bpid_kp_2017
https://nest-simulator.readthedocs.io/en/latest/
https://nest-simulator.readthedocs.io/en/latest/
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User Documentation 

Model Repository https://github.com/sepehrmn/nest-simulator/tree/bpid_kp_2017 

Technical Documentation https://www.biorxiv.org/content/10.1101/677237v3 

User Documentation https://github.com/cjspoerer/rcnn-sat/blob/master/README.md 

7.1.4 Output 3: Multisensory integration for place recognition 
in robots 

We report on the development of a model for integrating multisensory information in a predictive 
coding network. Building on that work (see Output 2), we used the model for a practical application 
in robotics. More specifically, the representations inferred from a deep neural network trained using 
predictive coding on visual and tactile sensory inputs were used for the problem of place recognition 
in navigating robots. The results obtained from the model clearly show that the representations 
obtained from the model outperform the traditional models used for this problem. This work was 
done using simulation of the WhiskEye robot in Gazebo with SP10 and work on application of the 
model in the actual platform (WhiskEye) is being carried out in collaboration with Martin PEARSON 
at University of West England. 

Table 23: KR3.5 Output 3 Links 

Link to URL 

Model Repository https://collab.humanbrainproject.eu/#/collab/70961/nav/481270 
and 
https://github.com/aalto-intelligent-robotics/ViTa-SLAM 

Technical Documentation 

User Documentation 

7.1.5 Output 4: Multiarea Hill-Tononi thalamocortical 
network model 

The cellular and network mechanisms underlying brain states and conditions permitting or 
suppressing conscious experience remain elusive. Computational models of neuronal networks can 
help interpret experiments and generate testable predictions. With these considerations in mind, 
we have implemented in the neural simulator NEST a ‘toy brain’ comprising left and right 
hemispheres, each with three cortical areas and associated thalamic nuclei. Each neuronal layer 
comprises hybrid conductance-based/integrate-and-fire neurons based on [1]. Intrahemispheric 
connectivities are based on [2], with modifications to synaptic weights to enhance the propagation 
of the response to trans-cranial magnetic (TMS) stimulation. Interhemispheric connectivities are 
based on [3]-[6]. For comparison with ECoG and EEG data, the principal output of the model is the 
local field potential (LFP) estimated as a weighted sum of synaptic current magnitudes [7]. The 
implementation allows modification of network parameters via text files or python functions. 
Parameters for wake and sleep are provided. As observed experimentally, cells exhibit irregular 
asynchronous activity in the wake state, but synchronised UP and DOWN states with associated slow 
LFP oscillations during sleep. The model also reproduces results obtained with various candidate 
measures of consciousness. These results are described in more detail under Output 3, KR3.4.  

References: [1] J. Neurophysiology 93: 1671-1698. [2] J. Neurophysiology 102: 2096-2111. [3] J. 
Comparative Neurology 168: 313-343. [4] Ann. Rev. Neuroscience 27: 419-451. [5] Nature 
Neuroscience 10: 663-668. [6] Nature Neuroscience 18: 170-181. [7] Plos Computational Biology 11: 
e1004584. 

Table 24: KR3.5 Output 4 Links 

Link to URL 

Model Repository https://github.com/ricardomurphy/Multiarea-Hill-Tononi-thalamocortical-
network-model Technical Documentation 

https://github.com/sepehrmn/nest-simulator/tree/bpid_kp_2017
https://www.biorxiv.org/content/10.1101/677237v3
https://github.com/cjspoerer/rcnn-sat/blob/master/README.md
https://collab.humanbrainproject.eu/#/collab/70961/nav/481270
https://github.com/aalto-intelligent-robotics/ViTa-SLAM
https://github.com/ricardomurphy/Multiarea-Hill-Tononi-thalamocortical-network-model
https://github.com/ricardomurphy/Multiarea-Hill-Tononi-thalamocortical-network-model
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User Documentation 
https://kg.ebrains.eu/search/instances/Model/c996a8fed0868b82e8e7d9b00
3ca38e6 

7.1.6 Output 5: Motivational and action selection subsytems 
of the Mammalbot architecture 

By means of our implementation and integration of the hypothalamus and basal ganglia models, we 
showed that it is possible to satisfy multiple, conflicting internal drives with a modification of 
attentional salience in response to sensory inputs and simulated homeostasis. Such conflicts are 
modelled using principles of dynamical systems that drive the internal processing of the homeostatic 
parameters in the robot. 

We developed and studied a neuronal model of the interaction of the main regions involved in 
motivated behaviour in mammals. In particular, our current version of the model includes: a 
homeostatic representation mechanism based upon the structure of the dorsomedial hypothalamus 
(Hammel mechanism); a model of the lateral hypothalamus and the modulation of the ventral 
tegmental area’s dopaminergic neurons; and a feedback loop through the nucleus accumbens that 
generates different patterns of dopaminergic output as a result of the internal state. 

The resulting cognitive architecture, as implemented for the robot MiRo is shown in Figure 3. The 
general framework is expected to be compatible with other robotic platforms like WhiskEye, which, 
having a bespoke control system adapted to its hardware, shares the same biomimetic principles. 
Indeed, the tool chain used in Mammalbot is expected to abstract away hardware-specific aspects 
and allow seamless integration on specific robots. 

The biomimetic component of the architecture is focused on the motivational and action selection 
subsystems, along with the spatial attention module. We are collaborating closely with UWE to 
integrate multimodal spatial navigation capabilities based upon models of the hippocampus. Basic 
learning strategies have been implemented as a result of the modulation of learning rules in the 
corticostriatal synapses by the emergent dopamine signal from our model. Finally, we are studying 
the potential integration of depth perception and predictive coding models into the Mammalbot.  

We have additionally developed a graphical user interface (GUI) compatible with the MiRo platform 
that displays both static and dynamic information about the model's internal state, so that observers 
may better understand the processes driving the robot's motivated behaviour.  

Table 25: KR3.5 Output 5 Links 

Link to URL 

Model Repository https://github.com/ABRG-Models/MammalBot  

Technical documentation https://collab.humanbrainproject.eu/#/collab/45330/nav/311439  

User documentation https://github.com/ABRG-Models/MammalBot  

https://kg.ebrains.eu/search/instances/Model/c996a8fed0868b82e8e7d9b003ca38e6
https://kg.ebrains.eu/search/instances/Model/c996a8fed0868b82e8e7d9b003ca38e6
https://github.com/ABRG-Models/MammalBot
https://collab.humanbrainproject.eu/#/collab/45330/nav/311439
https://github.com/ABRG-Models/MammalBot
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Figure 3: MiRo’s current implementation of the Mammalbot architecture 

7.2 Validation and Impact 

7.2.1 Actual and Potential Use of Output(s) 

The “Sleep-memory interaction in a thalamo-cortical spiking model” has been released through 
GitHub (https://github.com/PierStanislaoPaolucci/2019thalCort-SNN-SO-AW-mem) and EBRAINS KG 
(https://kg.ebrains.eu/search/?facet_type[0]=Model&q=paolucci#Model/97670076281ccbdc38ea2c
2d76a64e64). It is a contribution of WP3.5 to the CDP5 (Plasticity). The combination of this simplified 
model with the final SGA2 results of WP3.2 (large scale spiking simulations of Slow Wave and 
Asynchronous activity) lay the basis for the planned SGA3 study on the interaction between brain 
states and memories in large scale networks. Furthermore, it is conceivable that recurrent multi-
areal multi-level networks employed in future Bio-inspired Artificial Intelligent systems will need to 
enter in specific brain-states to normalise, optimise and associate their internal representations. 
The multi-area Hill-Tononi thalamocortical network model is currently being used within WP3.4 (UiO 
and Milan) to simulate brain states underlying consciousness and unconsciousness. The model is now 
publicly available and may be of interest to other researchers investigating the neurobiological basis 
of consciousness. A multi-sensory extension of the deep predictive coding model (Output 2) was 

https://github.com/PierStanislaoPaolucci/2019thalCort-SNN-SO-AW-mem
https://kg.ebrains.eu/search/?facet_type%5b0%5d=Model&q=paolucci#Model/97670076281ccbdc38ea2c2d76a64e64
https://kg.ebrains.eu/search/?facet_type%5b0%5d=Model&q=paolucci#Model/97670076281ccbdc38ea2c2d76a64e64
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developed and implemented in a biomimetic navigating robot both in physical world (Output 3) and 
a virtual platform (AALTO, SP10). 

7.2.2 Publications 

Publications produced during achievement of KR3.5 relate to how sleep-like slow oscillations improve 
visual classification in a thalamo-cortical spiking model (Output 1; P2024), deep predictive coding 
model of the visual hierarchy (Output 2; P2345) and its multi-sensory extension and implementation 
in a navigating biomimetic robot (Output 3; P2129), and methods used in designing and implementing 
the cognitive architecture of motivation and action selection in a biomimetic robot (Output 5; P2340, 
P2344). 

• P2024: C. Capone et al. (2019) “Sleep-like slow oscillations improve visual classification through 
synaptic homeostasis and memory association in a thalamo-cortical model” Scientific Reports, 
Vol. 9, No. 1. DOI: 10.1038/s41598-019-45525-0 

• P2129: O. Struckmeier, K. Tiwari, S. Dora, M. J. Pearson, S. M. Bohte, C.M.A. Pennartz, V. Kyrki. 
2019. MuPNet: Multi-modal Predictive Coding Network for Place Recognition by Unsupervised 
Learning of Joint Visuo-Tactile Latent Representations. arXiv:1909.07201v1 [cs.RO]. 

• P2340: Ling, F., Jimenez-Rodriguez, A., & Prescott, T. J. (2019, December). Obstacle Avoidance 
Using Stereo Vision and Deep Reinforcement Learning in an Animal-like Robot. In 2019 IEEE 
International Conference on Robotics and Biomimetics (ROBIO) (pp. 71-76). IEEE. 

• P2344: Edmondson, L. R., Rodriguez, A. J., & Saal, H. P. (2019). Nonlinear scaling of resource 
allocation in sensory bottlenecks. In Advances in Neural Information Processing Systems (pp. 
7543-7552). 

• P2345: S. Dora, S.M. Bohte, C.M.A. Pennartz. 2020. Deep predictive coding accounts for 
emergence of complex neural response properties along the visual cortical hierarchy. bioRxiv 
doi: 10.1101/2020.02.07.937292. 

8. Conclusion and Outlook  
SP3 has developed models that integrate recurrent information processing in context-sensitive 
object recognition. These brain-inspired network architectures are able to outperform equivalent 
networks utilising simpler cortical architectures. Models have been inspired by data investigating 
cortical contextual processing at multiple levels of systems neuroscience. These data include high-
resolution human fMRI data, rodent electrophysiology, rodent optogenetic and 2-photon calcium 
imaging data, as well as human sub-neuronal electrophysiology data for investigating the information 
processing properties of human neurons. Studies have substantially expanded our understanding of 
the processing capabilities of dendrites, single neurons and cortical areas. Experimental data 
obtained as part of KR3.1 have been collected to inform neural network models and are being made 
available upon publication for use in devising computational and cortical architectural design 
hypotheses. 

We have also created the foundations needed to offer to the community a multiscale, multi-
methodology, multi-species corpus of knowledge about brain-states and their transitions. In 
particular, in KR3.2 we focused on cortical slow wave activity expressed under deep-sleep and 
anaesthesia in physiologic and pathological conditions, and transitions to higher complexity states. 
We combined experimental data (in rodents and humans), simulation models and modular analysis 
pipeline workflows applicable to both experimental data and simulation outputs. Also, achieving 
KR3.2 laid the basis for the investigation of the cognitive functions of sleep (interplay between deep-
sleep and memories) conducted in WP3.5, leading to KR3.5. Another important contribution has been 
the design, in cooperation with SP5, in the framework of Use Case SGA2-SP3-UC002, of a prototype 
of the analysis workflows that will be adopted in EBRAINS during SGA3. 

The architecture of our brain allows us to rapidly and efficiently construct a representation of the 
outside world based on different streams of sensory information. The acquisition of human and 
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rodent recordings used as the biological ground for modelling multisensory integration and spatial 
memory in artificial and physical (robotic) systems (KR3.3) contributed to the development of a 
visual-tactile robot (WhiskEye), and offered models of important aspects of cognition (memory and 
perception) run on the HBP platforms. We have succeeded in delivering the majority of the data 
planned and this was sufficient to achieving the project goals. The data are being used to define the 
computational predictive coding models of object representation and memory, which in turn have 
been used to drive robot behaviour. In parallel, we have worked with SP5 on mapping our unique 4-
area ensemble recordings on the Waxholm space and on the prototype pipeline Time2Fire (SGA2-
SP3-UC003) to analyse spike synchrony. The outlook is to expand these successful collaborations in 
SGA3 (SGA3 WP2 and WP3 interactions) and construct multi-area spiking models performing object 
recognition. 

The work done for achieving KR3.4, “ConsciousBrain” consisted mainly of developing methods and 
measures for tracking conscious states. In order to accomplish this, we have explored mechanisms 
of conscious and unconscious states such as bi-stability, information integration, structural and 
functional connectivity. Through broad application of methods and analysis in rodents, models, and 
humans, we have broadened the basis for empirical investigations into consciousness and also 
released tools and data for the broader scientific community. These results have increased our 
understanding of underlying brain mechanisms and dynamics in patients with disorders of 
consciousness, and offer promising future pathways to help such patients. In addition, with validation 
and extension of tools to rodents and models, future mechanistic investigations can be performed 
to better understand how contents and states of consciousness are generated and modulated. 
Finally, we developed a theoretical framework for assessing consciousness in animals, AIs and non-
verbal humans. 

Through the motivational and action selection mechanisms we developed, we demonstrated the 
possibility of a successful integration of such subsystems in a biomimetic robotic platform in order 
to generate diverse behaviours that satisfy internal needs. Additionally, by means of simulations, 
we were able to advance our understanding of how the dopaminergic reward system serves as an 
interface between the internal state and the motor system. All this, along with the tools developed 
to visualise and integrate the different models at the technical level, has shown to be critical in the 
understanding of the generation of complex exploratory and goal-oriented behaviours. As part of our 
future work we will focus on the development of a framework that allows a seamless integration of 
such architecture in a robotic platform. Additionally, thanks to the progress done to date, we are in 
a position of better understanding the interaction between the underlying brain regions, in order to 
test hypothesis and generate predictions about a wide range of phenomena grounded on motivation 
and motivational conflict. 
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