Cellular-resolution two-photon microscopy uncovers the spatio-temporal organization of the cerebellar granular layer activity

MARIALUISA TOGNOLINA

Department of Brain and Behavioral Sciences
University of Pavia, Italy

HBP Tea & Slides
2nd July 2020

marialuisa.tognolina@unipv.it
The cerebellar granular layer network
Detection of multiple signals

Dynamic processes occurring at multiple sites in living samples requires high throughput parallel acquisition of rapidly time-varying signals.

- Optical techniques
- Two-photon microscopy
 - Localized excitation (femtoliter)
 - High signal to noise ratio
- Laser beam-splitting

Submicrometer resolution

Simultaneous excitation of multiple sites
The SLM-2PM

- simultaneous excitation and recording from multiple sites with single cell resolution
- high throughput parallel acquisition of rapidly time-varying signals
- spatial and temporal resolution determined by digital camera performance

Gandolfi et al., 2014; Pozzi et al., 2015
SLM-2PM image of acute parasagittal cerebellar slice (220 µm thick) bulk loaded with Fura-2AM (50µg/2mL), 40X magnification.
Fast recording of calcium signals from multiple neurons

SLM-2PM image → Multi-spot illumination

acute cerebellar slice bulk loaded with Fura-2 AM (50µg/2mL)
40X magnification

selection of neurons for subsequent activity recordings
GrCs calcium responses elicited by an electrical stimulation of the mossy fibers
(10 pulses – 50 Hz repeated 4 times at 0.1 Hz)

$[\text{Ca}^{2+}]_i < \text{fluorescence}$
The GrCs activity is organized in **center-surrounds units**, with excitation prevailing in the core and inhibition in the surround.
Spatial organization of long-term synaptic plasticity

Control

Gabazine (10 µM)

CaR-P : 99.8 ± 6.5%, n=26 cells, p<0.01
CaR-D : -35.1 ± 3.9%, n=67 cells, p<0.01
No change : -3.7 ± 1.6%, n=47 cells, p=0.1

CaR-P : 86.8 ± 4.7%, n=217 cells, p<0.01
CaR-D : -48.6 ± 2.3%, n=51 cells, p<0.01
No change : -3.1 ± 1.7%, n=108 cells, p=0.8
Modeling the granular layer activity

800 x 800 x 150 mm³; 484,000 granule cells (GrCs); 914 Golgi cells (GoCs); 29500 Glomeruli (GLOMs).
The network activity was elicited by stimulating the GLOMs.

Python-NEURON.

E-I balance

Long-term plasticity

https://www.biorxiv.org/content/10.1101/2020.03.14.991794v1#xref-fn-1-1
Thanks for your attention!

For more questions, contact me at: marialuisa.tognolina@unipv.it

UNIPV
Egidio D’Angelo (DIRECTOR)
http://www-5.unipv.it/dangelo/

Neurophysiology lab
Francesca Prestori
Lisa Mapelli
Simona Tritto
Teresa Soda
Ileana Montagna
Teresa Sorbo
Anita Monteverdi
Danila Di Domenico
Claudia Casellato
Stefano Masoli
Stefano Casali
Martina Rizza
Alice Geminiani
Alberto Antonietti
Cristiano Alessandro
Robin De Schepper
Alessandra Ottaviani

Neurocomputational lab
Claudia Gandini Wheeler-Kingshott
Fulvia Palesi
Giovanni Savini
Nicolò Rolandi
Roberta Lorenzi
Marta Gaviraghi

Neuroimaging lab
Claudia Gandini Wheeler-Kingshott
Fulvia Palesi
Giovanni Savini
Nicolò Rolandi
Roberta Lorenzi
Marta Gaviraghi