

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 1 of 28

Project Number: 720270 Project Title: Human Brain Project SGA1

Document Title: D5.8.1 - Strategy and Architecture for HBP Data Viewers

Document Filename: D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx

Deliverable Number: SGA1 D5.8.1

Deliverable Type: Report

Work Package(s):

Dissemination Level: PU (= public)

Planned Delivery Date: SGA1 M12 / 31 March 2017

Actual Delivery Date:
Submitted: 31 May 2017; Rejected: 7 Aug 2017; Resubmitted: 31 January 2018;

ACCEPTED 09 Jul 2018

Authors: Jeff MULLER (EPFL; SP5); ; Timo DICKSCHEID (FJZ; SP2, SP5)

Compiling Editors: Roman VOLCHENKOV (UiO, SP5), Jan BJAALIE (UiO; SP5), Timo DICKSCHEID (FJZ;
SP2, SP5)

Contributors:

Timo DICKSCHEID (FJZ; SP2, SP5); Jeff MULLER (EPFL; SP5); Jan BJAALIE (UiO;
SP5); Dmitri DARINE UiO; (SP5); Michael DENKER (FZJ; SP5); Anna KRESHUK (UHEI;
SP5); Benjamin WEYERS (RWTH; SP7); Colin MCMURTRIE (CSCS; SP7);

Daniel MALLMANN (FJZ; SP5); Stefan EILEMANN (EPFL; SP7); Claudia HÄNEL
(RWTH; SP7);

Yann LEPRINCE (SP5);

Jonathan LURIE (Evans Lab, McGill University);

SciTechCoord Review:
EPFL (P1): Jeff MULLER, Martin TELEFONT

UHEI (P47): Martina SCHMALHOLZ, Sabine SCHNEIDER

Editorial Review: EPFL (P1): Guy WILLIS, Martin O’NEILL

Abstract:

Because there are a wide range of software systems and architectures which might
help users to visualise HBP-SP5 data, it was necessary to clearly establish the why,
what and how of the HBP Data Viewers. The approach taken is a common one,
staring with use cases, analysing requirements and then proposing an architecture
which should satisfy the requirements. It is expected that this document will serve
as a vital resource in SGA1 and a concrete starting point for a systematic
discussion of how visualisation server neuroscience in the HBP and beyond.

Keywords:

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 2 of 28

Table of Contents
1. Introduction ... 3
2. Considerations .. 3
3. Use cases .. 3

3.1 SP5-VA-UC01 - Analysis as a service and Embedded Visualisation Engines 3
3.2 SP5-VA-UC02 Large Volume and sub-volume alignment ... 4
3.3 SP5-VA-UC03a Integrated batch feature extraction and segmentation with ilastik 6
3.4 SP5-VA-UC03b Interactive segmentation and feature extraction in 2D and 3D 7
3.5 SP5-VA-UC04 Exploring human and rodent 3D atlases ... 8

4. Combined Requirements .. 10
4.1 Definitions .. 10
4.2 Essential features ... 11
4.3 Useful features .. 12
4.4 Potentially useful features .. 12

5. Architecture Component Candidates... 12
5.1 Neuroglancer - Multiprotocol web-based viewer .. 12
5.2 OpenSeadragon .. 17
5.3 DVID - Distributed Version Image Database .. 17

6. Proposed Architecture and Roadmap .. 19
6.1 Main categories of viewers required ... 20
6.2 Phase 1 .. 24
6.3 Phase 2 .. 25
6.4 Possible Future Phases ... 26

7. Conclusions... 28

List of Figures
Figure 1: Mock-up of the volume alignment tool interface, showing a source and target

volume side by side. .. 6

Figure 2: Mock-up of the HBP 3D web-based atlas viewer. 9

Figure 3: Distributed Version Image Database ... 17

Figure 4: Strategy and architecture for data viewers - Phase 1 25

Figure 5: Strategy and architecture for data viewers - Phase 2. 26

List of Tables
Table 1: Formats for viewers or data services .. 11

Table 2: Feature comparison matrix of Neuroglancer and other web-based viewers. 14

Table 3: Viewer strategy and architecture categories ... 20

Table 4: Currently used image viewers ... 21

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 3 of 28

1. Introduction
The purpose of this document is to describe the prioritised use cases which will be targeted
by the HBP Data Viewers and to define a future-proof architecture for their immediate
implementation. This architecture should also have reasonable efforts made to
accommodate later expansion of capabilities. The architecture will be defined in detail
where it is known, with a clear identification of areas for potential future investigation.

The document starts by outlining a range of use cases which should be addressed in some
way by the viewer architecture. Each use case includes its specific requirements and other
considerations. This is followed by a rationalised requirements list with prioritisation for key
use cases or portions of use cases. Potential candidates for integration into the system
architecture are documented. Finally, the document provides an architecture based on the
best candidates in the evaluated system component candidates.

2. Considerations
Basic viewers are needed for initial exploration of data, for example as a first step when
rapidly inspecting data retrieved after performing a query in the KnowledgeGraph.

Advanced viewers have a range of functionalities, determined by HBP use cases and
workflows. Advanced viewers usually combine several data categories. Basic viewers and
advanced viewers are either built using the same tool kits or built as separate efforts. Only
cost-benefit analysis is applied to evaluate viewer creation. Further, it should be clear that
basic viewers are very cheap to develop; in most of the cases we just reuse existing
frameworks and tools.

Choice of libraries and frameworks is not deemed critical for the development. The critical
point will be documentation and clarity of the shared code, facilitating maintenance and
co-developments. It is with this view that the candidates above are evaluated in the sections
below.

Finally, it should be remembered that the original 2D or 3D datasets are uploaded and stored
in FENIX. Viewers for these datasets will subsequently need acceleration structures either
internally [i.e. the Distributed Version Image Database (DVID)] or externally (i.e.
precomputed image pyramids for Neuroglancer)

The viewers then access those acceleration structures, not the original data. In the case of
the precomputed image pyramids of Neuroglancer: If you zoom in to a specific area of a
large image, then only those tiles (from certain level) needed to show the specific areas are
downloaded (in contrast to loading the whole image). The same applies to OpenSeadragon-
based viewers.

3. Use cases

3.1 SP5-VA-UC01 - Analysis as a service and Embedded Visualisation
Engines

3.1.1 Actors

Anna - an image processing expert; Benni - a microscopy expert producing volumetric data.

3.1.2 Success Scenario
1) Anna receives from Benni a link to a Tier0-curated volumetric dataset that he registered

to the Neuroinformatics Platform (NIP). The NIP dataset card that she finds there

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 4 of 28

contains a FENIX or Collab Storage URL pointing to the corresponding NIFTI file, which is
300GB in size. Anna now wants to analyse the data using Jupyter notebooks.

2) Anna reviews the metadata stored in the NIP, to ensure that the data was gathered
ethically and matches the requirements for her experiment.

3) Using the Storage URL, Anna can access the file from within a Jupyter notebook hosted
by the Collaboratory, and runs the data file through Numpy to gather statistics and create
visual plots.

4) Anna runs the data through an image filter to produce a new volume (also 300GB).

5) To inspect the filtered data, Anna uses notebook-embedded python code to load this
data into a 3D volumetric viewer embedded in the Jupyter notebook. The visual
presentation and navigation in the 3D view matches to the one used by the HBP 3D atlas
viewers.

6) She shares this notebook with Benni. Benni can see the same visualisations, and hereby
verify that the analysis makes sense.

7) Anna releases the processed data set to a public viewer instance. Here it can be viewed
through the internet by members of her image processing MOOC using their web
browsers.

8) Catherine, a MOOC student, loads up a public Collab page which contains the viewer
which Anna embedded and can view the processed volume overlaid with a standard
reference atlas.

3.1.3 Requirements
Due to divergent requirements on the consumer audience, it’s best to separate this into two
scenarios and consider each separately. One scenario involves small group collaboration and
the other involves a large group audience.

SP5-VA-UC01a: Small group collaboration:

1) Users: 2-10 at a time interacting with a single dataset.

2) Update frequency: 5-20 updates/hour during heavy update cycles.

3) Data lifecycle: Variable.

4) Some of the intermediate results would need to be tagged for long term storage.

5) Some would likely be uninteresting and could be deleted.

6) Data volumes: additional data volumes may be processed along with the original volume.
Volumes processed per update iteration could be as high as 1TB (3x300GB)/update.

SP5-VA-UC01b: Large group audience:

1) Users: 20-300 at a time interacting with a single dataset.

2) Update frequency: 1-2 updates/month during course preparation.

3) Data lifecycle: Final results.

4) Most results which were delivered to this group would need to be tagged for long term
storage.

5) Data volumes: additional data volumes may be visualised along with the original volume.
Volumes *accessed* per view could be as high as 1TB (3x300GB)/view. No use would need
to view all data interactively so special care would need to be taken to deliver only a
small subset of the interesting data.

3.2 SP5-VA-UC02 Large Volume and sub-volume alignment

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 5 of 28

3.2.1 Actors
Alex, a Post-Doc working on high-resolution histology.

3.2.2 Success Scenario
1) Alex uploads a high-resolution 3D reconstruction of a local brain region in the Collab,

which is represented as a NIfTI-2 file in the order of several hundreds of Gigabytes.

2) To make his datasets accessible for online atlas tools, Alex visits the Dataset registration
form:

a) Alex fills in minimal metadata

b) Metadata enters the KnowledgeGraph

c) Image data enters an instance of DVID

3) Alex views the dataset card, and clicks on a link to the volume alignment tool.

4) Before entering the tool, Alex is asked to select an HBP- supported reference template
from a list.

5) Alex is then automatically directed to a web-based partial alignment tool, which shows
a triplanar view of both the reference volume (target) and Alex’ new volumetric dataset
(source). The two views are displayed side-by-side (Figure 1). The appearance and
navigation of the triplanar views matches that of the HBP 3D atlas viewer closely, and is
therefore intuitive to Alex.

6) Alex adds corresponding landmarks between the source and target volumes (Figure 1).

7) Based on the corresponding landmarks, a spatial transformation is computed on Alex’s
request (affine, 4×4 matrix in projective geometry), and applied to warp the source data
volume closer to the target volume.

8) Alex can add, remove, or update landmarks, and iteratively refine the spatial
transformation by cycling through steps 6 and 7 repeatedly.

9) After being satisfied with the spatial alignment, Alex can store the resulting
transformation parameters it into the KnowledgeGraph where it becomes accessible to
the rest of the HBP tools.

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 6 of 28

Figure 1: Mock-up of the volume alignment tool interface, showing a source and target

volume side by side.
The tool allows to iteratively enter corresponding 3D landmarks to compute and refine a 3D spatial

transformation between the datasets.

3.2.3 Requirements
1) An interface for the user to upload an image and its metadata, and get it entered into

DVID so that it can be displayed by the tool. A range of input formats should be
supported, initially Nifti-1, Nifti-2 and HDF5 should be included.

2) For the incoming dataset: 2D image tiles (greyscale or RGB) are computed and served by
DVID

3) Tiles of the transformed image are served by DVID. Two approaches are possible:

a) (preferred) DVID can re-sample the image on the fly, with an affine transformation
passed as URL parameters (partially implemented for the imageblk datatype).

b) (fall-back) the tool can re-sample the image on the server side, creating a
transformed NIFTI file, which is then entered into DVID. This approach is less
preferable because the user must wait between for the whole re-sampling to be
performed before viewing the result.

4) For the often-used, large template images: 2D multi-resolution image tiles are pre-
computed and served statically over HTTP (0–1TB per template, less than 1–2
updates/year).

5) Infrastructure must support approximately 10 simultaneous users.

3.3 SP5-VA-UC03a Integrated batch feature extraction and
segmentation with ilastik

Actors

Ada, a researcher who needs to process large images; Billy, a student.

Success Scenario

1) Ada wants to analyse a large brain dataset she found in the Collab.

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 7 of 28

2) Billy, one of her students, has the task of training a pixel classifier to extract features in
this dataset using the ilastik pixel classification workflow. Billy either downloads a
smaller sub-volume or accesses the dataset directly from his local ilastik installation.
After Billy has finished training the classifier, he saves the ilastik project to an h5-file
and uploads it to the Collab for Ada to review. The project metadata contains links to
the dataset.

3) Ada opens her dataset in the HBP web viewer and selects a representative field of view.

4) She presses the “Process with ilastik” button in the viewer. A pop-up opens that lets Ada
select the appropriate ilastik-project containing the classifier. She confirms the selected
project and an ilastik process is started in headless mode on the server that processes
the current field of view. The result of the processing is a map of label probabilities for
every visible pixel.

5) After closing the pop-up, Ada can monitor the processing progress with a progress-bar
that appears in the viewer. Once the processing is finished, the progress-bar colour is
changed to green and it becomes clickable. Upon clicking, the additional image layers
(class probabilities) are loaded into the viewer.

6) Ada reviews the pixel classification results; in the web viewer she can see the original
image data overlaid with label-probabilities.

7) Ada is satisfied with the classification result on the data she is viewing. She presses
another button to start large-scale ilastik processing. She needs to select where the
results will be saved to and how much resources she wants to consume (how many cores
to book, how much RAM she can take on each core).

8) While she can keep watching the progress from the viewer, closing the viewer does not
terminate the processing on the server. The status of the computation can also be
observed in the Collab. The computation can be stopped at any time, with an option to
delete the intermediate results.

9) Link to Billy’s project is stored in the metadata of the results dataset.

Requirements:

1) A web-based viewer for the display of multiple large image (2D, 3D) datasets (raw data,
classification results…). It must be possible to overlay the different datasets in layers
and adjust transparencies and colour tables of the respective layers independently.

2) User controls connected aware of the web-viewer context (opened dataset(s)) have to
be provided that allow for processing the field of view with a selected ilastik project as
well as processing the whole volume.

3) The web-viewer context must be able to provide its viewing frustum to other browser
code via a direct JS API call or a low-latency server-side intermediary.

4) Event mechanisms (REST API) need to be implemented that allow for monitoring progress
of processing and trigger events, e.g. loading the processed data into the viewer, upon
its completion.

5) Indicators of processing progress and status (success, failed, with warning...).

6) Possibility to book computational resources and save potentially large result files, with
all appropriate metadata and KnowledgeGraph registration

7) (optional) Possibility to save snapshots of the current view with all the overlays at the
current transparency level

3.4 SP5-VA-UC03b Interactive segmentation and feature extraction
in 2D and 3D

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 8 of 28

Ada, a researcher who needs to process large images; Billy, another researcher.

Success Scenario

1) Ada finds an interesting dataset in the Collab.

2) She opens the dataset in the web viewer and wants to extract its features with ilastik.

3) She creates the appropriate number of labels and proceeds to label pixels with a brushing
tool. An eraser is available for the inevitable mistakes.

4) After adding at least one labelled pixel for each class and selecting the filters to be used
as classification features, she presses the “Update” button.

5) On the server, the ilastik service trains a classifier with the provided labels and features.

6) The service signals that it has finished and the viewer requests current classifier
predictions for the current field of view.

7) Ada reviews the predictions, changes her filter selection or adds more labels at the
locations where the predictions are wrong. She presses the “Update” button again.

8) Repeat steps 5-7 until Ada is satisfied with the predictions.

9) Ada presses a button to process the whole dataset. From this point on, the scenario
follows points 7-9 of SP5-VA-UC03a.

10) Ada saves the project into the Collab. If she saves the derived datasets, their metadata
contains a link to the project.

11) Billy finds another dataset with similar characteristics.

12) He opens Ada’s project, adds his dataset to it and continues the labelling, finally saving
his updated project under a different name.

Requirements:

• 2-way communication between the viewer and the ilastik service

− Invalidating the outdated viewer cache after classifier or parameter update

− Displaying the results as they come (the backend is computing block-wise), in the
corresponding overlay(s)

• Annotation support in the viewer, for displaying and transmitting to the backend:

− Pixel-level: brushing, erasing

− Object-level: clicking, selection

• Import and export of annotations.

• If the viewer supports a multi-scale pyramid, the back-end can serve down sampled
results, but the actual computation always happens at full resolution..

3.5 SP5-VA-UC04 Exploring human and rodent 3D atlases
3.5.1 Actors
Markus and Jeff, both neuroscientists

3.5.2 Success Scenario
1) Markus is planning to run a data analysis over a range of neuroimaging data, and looking

for a high-quality human brain parcellation that meets his needs.

2) He goes to the HBP website to look for help, finds a prominent link to the HBP human
and rodent atlas categories, and therein a range of recommended atlases.

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 9 of 28

3) Markus is attracted by the JuBrain atlas, and follows the website’s recommendation to
explore it in the 3D atlas viewer. By clicking on the link, he is presented an interactive
3D view of the MNI Colin 27 template, overlaid with numerous areas of the JuBrain
cytoarchitectonic atlas (Figure 2).

4) The atlas viewer also displays a hierarchical list of the JuBrain atlas nomenclature, from
which Markus selects a different area. The 3D viewer automatically changes the
viewpoint so that this area is highlighted.

5) Markus likes this dataset, and uses his web browser to bookmark the page he is looking
at. He wants to tell his colleague Jeff to have a look at this particular area, so he also
sends the URL to Jeff by email. When Jeff clicks on the URL, he sees the exact same
view onto the template and parcellation as Markus.

6) Besides inspecting the atlas in 3D, the viewer provides menus to select other HBP-
supported template spaces for rodent and human. Markus selects a different template,
which is then displayed. He realises that the list of parcellations is updated
automatically. After choosing a parcellation, the corresponding hierarchy of brain
regions is also refreshed.

7) Markus decides that the JuBrain atlas is the best choice for his project. He uses his
browser’s bookmark to go back to the JuBrain view. In the list of parcellations, he finds
a link that directly brings him to a NIP website showing the dataset card of the JuBrain
atlas. Here he reads all relevant metadata, and finds a link to download the most recent
version to his computer.

Figure 2: Mock-up of the HBP 3D web-based atlas viewer.

The central element is an instance of a triplanar volumetric viewer, together with a surface-based
rotatable 3D overview. The user can choose different template spaces, select from a list of parcellations
that correspond to a template space, and navigate a list of brain regions that correspond to the selected

parcellation.

3.5.3 Requirements

• A software component for web-based remote display of large volumetric datasets. The
view needs to display a triplanar view as well as a surface-based rotatable 3D overview,
and must be able to transparently overlay coloured parcellations/maps. It must provide

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 10 of 28

an API to accept control events, such as adjusting the view to display a specified 3D
coordinate. It must be compatible with the HBP image service standards.

• A dynamic hierarchical menu system to display template spaces, parcellations, and brain
regions according to the HBP atlas nomenclatures. Selection events in the menu need to
trigger API calls to the embedded viewer component.

• A clear URL scheme for storing persistent display settings and data view parameters. This
URL scheme must make it possible to share a view by sharing a URL.

4. Combined Requirements
The following requirements are predicated on a definition for an “atlas”. Previously this has
been loosely and inconsistently defined. To discuss this in concrete terms it is necessary to
define both “reference atlas” and “atlas” in detail.

4.1 Definitions
4.1.1 Reference atlas

This definition is largely based on the practices of the Allen Institute in their provision of
the Allen Brain Atlases.

Such a reference atlas contains:

1) Region-hierarchy.json - a tree of regions and sub-regions with an id space. The id space
is shared with the annotation volume below.

2) Annotation volume - unsigned 32bit integer id voxels -> links back to ids in the region
hierarchy.

3) Base imagery voxels - 16 bit grayscale voxels should be the same or higher resolution
than the annotation volume.

4) Coordinate space specification:

a) Spatial volume of a pixel

b) Origin

c) Landmarks of interest

d) Resolution/precision

5) Mesh hierarchy (optional).

4.1.2 Atlas
An atlas has fewer requirements:

1) Base imagery voxels -> 16 bit grayscale voxels should be the same or higher resolution
than the annotation volume.

2) One of:

a) Coordinate space specification

 Spatial volume of a pixel

 Origin

 Landmarks of interest

 Resolution/precision

b) Link to reference atlas coordinate space specification

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 11 of 28

4.2 Essential features
Requirements and evaluation criteria for the SP5 Image Service development in SGA1

Must have (SGA1):

1) HTTP delivery of 2D multi-resolution tiles - multiple data types must be supported.

2) HTTP delivery of 3D multi-resolution blocks - multiple data types must be supported.

3) HTTP delivery of 1D data - multiple data types must be supported.

4) Anisotropic volume support - impacts volumetric metadata requirements (see metadata
“should haves” below).

5) REST API.

6) Needs to be deployed/deployable to FENIX partner sites.

7) Supports web visualisation of 10s of terabytes for 50-100 concurrent users for released
atlases (reference or otherwise):

a) Option for anonymous access

b) Option for access control at the Collab or HPAC level

8) Supports interactive browsing and batch processing of 1-10 TBs for 2-10 concurrent users:

a) Access control at the Collab or HPAC level

9) Data delivery services should provide strong evidence of scalable cluster IO for batch
processing:

a) 50 MB/s from a single client thread

b) Evidence of scalability sufficient for 250 MB/s aggregated across ~10 client threads
(this might be a “should have”)

10) Provision of data to be delivered by the image service:

a) For data uploaded at the time of registration:

 Unique Identifier must be created.

b) For data in FENIX, prior to registration:

 Unique Identifier must be created.

11) Software and service components should have well defined responsibilities and APIs to
allow mixing and matching of various components to best satisfy evolving requirements
in current and future use cases.

12) Image viewers support:

a) Data delivery services must support at least one web-based viewer.

13) Arbitrary slicing for multi-resolution tiles

14) A dynamic hierarchical menu system to display template spaces, parcellations, and brain
regions according to the HBP atlas nomenclatures. Selection events in the menu need to
trigger API calls to the embedded viewer component.

15) A clear URL scheme for storing persistent display settings and data view parameters. This
URL scheme must make it possible to share a view by sharing a URL.

In addition, it is expected that the following formats should be supported by any of the
viewers or data services used in the architecture.

Table 1: Formats for viewers or data services

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 12 of 28

 Raster Vector

1D ? ?

2D TIFF*, JPEG*, PNG* SVG

3D NIFTI* STL, OBJ, X3D, NG meshes

*Requires pyramid pre-processing before viewing.

4.3 Useful features
Should have (in SGA1 and beyond):

1) 2D stacks filmstrip viewing capabilities.

2) API availability of viewer frustum information and other view metadata.

3) Data delivery services should provide strong evidence of scalable cluster IO for batch
processing with evidence of scalability sufficient for 250 MB/s aggregated across ~10
client threads.

4) 10GB should be <=20 s to ingest into image service.

5) API for delivery of mesh or geometric data in the atlas space.

a) Separately, there is a need for a workflow for generating these meshes.

6) 1TB volume should take <=12 h to ingest.

7) Stores volumetric metadata.

8) Support from big data analysis frameworks based on Spark.

9) HTTP Delivery of 2D+t multi-resolution tiles - multiple data types must be supported.

10) HTTP Delivery of 3D+t multi-resolution tiles - multiple data types must be supported.

4.4 Potentially useful features
Nice to have:

1) Caching hints in the service API - primarily for interactive use cases or iterative analysis
use cases.

2) Alternatives to HTTP in supported data delivery protocols.

5. Architecture Component Candidates

5.1 Neuroglancer - Multiprotocol web-based viewer
Neuroglancer is a non-official Google project for biological image visualisation. It supports
a range of important features.

https://github.com/google/neuroglancer

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 13 of 28

5.1.1 Main features

• Load and display volumetric data from different image services or web-hosted file
formats, and extract orthogonal 2D images.

• Efficiently and interactively perform oblique projections (non-orthogonal cuts through
the displayed volume).

• Loads and display 3D surface meshes.

• Display both voxel and surface data within the same space coordinate system.

• Show semi-transparent layers of multiple 3D volumetric datasets, specifically grey value
and indexed datasets (e.g. template volume + voxel parcellation).

5.1.2 General architecture
Neuroglancer is a purely client-side application. It is developed in Typescript that compiles
into JavaScript. Typescript allows the use of multiple new structures compared to standard
JavaScript, and makes a modular web app design easier to develop thanks to strong object
oriented capabilities. Typescript makes it easier to use concepts like inheritance and
interface. The data must be accessible via HTTP through one of several supported services
(see below). Neuroglancer does not support displaying local files on the user’s computer. It
relies on cross origin resource sharing (“CORS”), so the data server must explicitly allow
CORS in its configuration. If the project is hosted on an http, it can load https data only if
the related security settings are disabled on the web browser. Even though the project is
fully client side, its architecture is composed of two modules, launched in two independent
WebWorkers threads. One thread deals with user action and rendering, while the other
performs queuing, downloading and data pre-processing before being sent to rendering.
Having two independent threads allows having a responsive UI, even under high data
processing and loading. Since there is no shared memory between threads or sync system in
JavaScript, data are transferred from a thread to another using typed arrays. To compute
oblique slices, Neuroglancer uses the concept of a 3D textures. Since there is no native
support of 3D textures in OpenGL ES/WebGL, it simulates this concept with WebGL GLSL.

5.1.3 Supported data sources
A range of different image services and formats are supported, most importantly:

1) NDstore/Open Connectome. Neurodata NDstore provides a scalable database cluster for
the spatial analysis and annotation of high-throughput brain imaging data called
Neurodata Web Services. It opens the door to have applications use Neuroglancer as the
foundation of their viewer to overlay Human Connectome Project data repositories.

2) DVID. DVID stands for Distributed, Versioned, Image-oriented Dataservice. It was
developed by Janelia Research Campus (VA, USA). DVID is currently used in production
research at Janelia and is suitable for production use for other labs as well. It is a
candidate for the HBP image services and described in detail further below.

3) Web-hosted precomputed multi-resolution formats. Neuroglancer’s internal chunked
data structure can be stored on disk directly, in the form of JPEG files (one file per 3D
chunk, where the third dimension is stored as a concatenation of 2D images along the
vertical axis). This can then be accessed by Neuroglancer using the precomputed://
protocol when hosted on a publicly accessible web server. This format is amenable to
highly scalable distribution of data for datasets which don’t change frequently, i.e.
reference atlas releases.

5.1.4 Internal data representation
Independently of the data source, Neuroglancer arranges the voxels into chunks of data that
follow a regular 3D grid pattern. Chunk is the unit at which the whole volume is retrieved,
queued, transcoded (if necessary), copied to the GPU, and rendered. Octrees (3D quad trees)

https://www.typescriptlang.org/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 14 of 28

are used to spatially arrange the chunks efficiently. All the chunks are the same size, except
for the upper bound in each dimension. Chunks of different spatial resolutions can be used
to represent the same image volume (multi-scale representation). The most appropriate
scale is chosen on the fly, depending on the current zoom level. The chunks’ size is the
result of multiple trade-offs. The main ones are:

• A chunk has to be big enough to provide a large amount of data per second, knowing that
the number of concomitant HTTP requests is limited in most web browsers. The bigger
the chunks, the lower the number of chunks.

• It has to be small enough to allow a fast loading. Since only a small portion of each chunk
will be crossed by the plane, a large portion of it will be loaded but never used.

In practice, a 64x64x64 seems to be a good compromise.

5.1.5 Data compression
The data chunks are usually encoded in uint32 or uint64. Displaying a slice full screen on a
full HD monitor involves a large amount a chunks, especially if the slice is oblique and that
the standard three orthogonal projections are displayed. Since caching 1GiB in CPU and GPU
memory is not possible, Neuroglancer embeds a custom developed random access
compression process that guarantees the spatial continuity of the whole volume. The
compression processing takes advantage of the data type (uint) and the diversity of values
within each block. Depending on the diversity, each block is re-encoded using a possibly
smaller amount of bits per value. This number of bit per value is constant within a block but
varies from one block to another. Using only native types, the compressed chunks are easily
readable by GLSL (OpenGL shader language) and are faster to cache in memory.

5.1.6 Assessment
JUELICH has converted the full-resolution BigBrain (2015 release) to the “precomputed”
chunk format, and deployed a prototype of Neuroglancer serving the BigBrain. The
performance of this installation was promising. An obvious drawback is the lack of support
for loading local files in addition to distant HTTP. The user experience is not optimal -
shortcuts and controls are rather difficult to learn. At this time, we also compare
Neuroglancer against other web-based viewer solutions (Table 2).

Table 2: Feature comparison matrix of Neuroglancer and other web-based viewers.

Feature

Importance of
the feature

for a 3D atlas
viewer

Neuroglancer Shadernavigator OpenSeadragon Papaya

Ability to display
cross-sectional views
(obliques)

absolutely
required yes yes n/a no

Ability to display
images larger than
client-side working
memory

absolutely
required yes yes yes no

Ability to display
volumetric data

absolutely
required yes yes no yes

Display of 3D surface
meshes

absolutely
required yes no n/a yes

https://www.jubrain.fz-juelich.de/apps/neuroglancer/BigBrainRelease.2015/

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 15 of 28

Feature

Importance of
the feature

for a 3D atlas
viewer

Neuroglancer Shadernavigator OpenSeadragon Papaya

display of indexed
images (label
images)

absolutely
required yes ? yes yes

Displays both voxel
and surface data
within the same
space coordinate
system

absolutely
required yes no n/a yes

overlay intensity
view with labelled
image view with
custom transparency

absolutely
required yes ? yes yes

Supports DVID image
service

absolutely
required yes no no no

Support Nifti display
via http

absolutely
required yes ? n/a ?

Community uptake high

Active adoption
by several
communities in
the field: The
Openconnectom
e project
(neurodata.io)
has forked it.
The EM /
fruitfly
community is
using it. The
developers of
ilastik
mentioned that
it would be
their favorite
choice to
comply with.

None yet. The
software is in a
young development
stage, and not yet
very stable under
rotations / oblique
slicing.

High in the
neuroanatomy
community.
Several linked
software
projects, e.g.
microdraw.

Very high in
the
neuroimaging
community
(MRI, DTI)

Efficiency displaying
cross-sectional views
(obliques)

high high potentially high n/a n/a

Efficiency loading
canonical 2D views high high potentially high n/a high

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 16 of 28

Feature

Importance of
the feature

for a 3D atlas
viewer

Neuroglancer Shadernavigator OpenSeadragon Papaya

Efficiency when
displaying large
datasets at a coarse
scale

high

High when
using the
precomputed
tile backend.
Possibly poor
depending on
the use of other
backends.

potentially high high poor

Efficiency when only
displaying 2D views high

moderate, if
adjusting chunk
sizes to this use
case (allows
individual
setting of
anisotropic
chunk sizes per
slice view)

? nearly optimal poor

Support Gifti mesh
format yes no no n/a yes

Support Nifti display
for local files yes no ? n/a yes

Support
Openconnectome
ndimage service

yes yes no no no

Supports multi-
resolution mesh moderate no no n/a no

Support Nifti display
for backend-stored
files

moderate yes ? n/a yes

supports time series
for 2D data moderate no no no no

supports time series
for 3D data moderate no no no no

Supports URL
configuration for
data access from any
http service

moderate ? ? yes no

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 17 of 28

5.2 OpenSeadragon
5.2.1 Main features
1) Optimised 2D user experience: navigating 2D viewer is easy and intuitive – compared to

3D Neuroglancer-like applications.

2) Supported by many existing tools and applications: the formatting for tiles (as JPEGs or
PNGs), e.g. DeepZoom, is widely available, non-domain specific, and easily readable.

3) Low-cost new tools development using OpenSeadragon: OpenSeadragon
is an open-source, web-based JavaScript library for high-resolution zoomable
images. The viewer for p.2 is available out of the box. The library has a list of
plugins, e.g. scale-bar, SVG overlays, and filters, runs on both desktop and
mobile, and does not require WebGL (unlike Neuroglancer).

5.2.2 Assessment
While Neuroglancer theoretically can handle 2D cases, its user interface is not designed for
filmstrip viewing or for the viewing of yet-to-be-aligned image stack. Given the low cost and
potentially significant usability improvements from supporting a high quality 2D viewer,
OpenSeadragon should be considered for integration alongside Neuroglancer. The user
experience between the two should then be streamlined, so that they use the same mouse
and keyboard settings, as well as visual metaphors.

5.3 DVID - Distributed Version Image Database
DVID is a distributed, versioned, image-oriented dataservice written to support Janelia
Farm Research Center's brain imaging, analysis and visualisation efforts. See Figure 3.

Figure 3: Distributed Version Image Database

5.3.1 Main features

• Easily extensible data types that allow tailoring of access speeds, storage space, and
APIs.

• The ability to use a variety of storage systems by either creating a data type for that
system or using a storage engine, currently limited to ordered key/value databases.

• A framework for thinking of distribution and versioning of data similar to distributed
version control systems like git.

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 18 of 28

• A stable science-driven API that can be implemented either by native DVID data types
and storage engines or by proxying to other connectomics services like Google BrainMaps
or OpenConnectome.

• Note: This means that, in principle, other analytics systems could support the DVID API
for delivery of the same sorts of type extensible datasets, but under different analysis
regimens.

Pros:

• ”Wide” developer community.

• Good integration with other tools:

− Neuroglancer

− Ilastik

• Deeper evaluation already partially done by HBP developers.

• Version control.

• Type independent.

• Existing web UI is a decent starting point.

Cons:

• Medium maturity levels.

• Deeper performance evaluations with very large datasets will be needed.

• Access control and authentication is an afterthought.

• Handling of human data in a sufficiently secure manner is an outstanding integration
problem.

5.3.2 Assessment
Experience of the ilastik team:

We implemented support for reading DVID volumes primarily to support our collaboration
with DVID's designers, the FlyEM project at Janelia Research Campus. Using ilastik, one can
browse a (potentially very large) volume in DVID, and (for example) train a pixel classifier
on remote data. Ilastik has also proven to be a valuable tool for debugging external DVID-
based tools and workflows. The ilastik/DVID combination works well.

DVID exposes a simple REST API for retrieving 3D voxel data from a DVID data store. The API
is simple enough that communicating with DVID can be implemented relatively easily using
plain GET/POST commands via the popular 'requests' python module. But as a convenience,
the DVID project also offers the 'libdvid' package, which encapsulates DVID REST API calls
(and the necessary boilerplate code) into a C++/Python library. Ilastik uses libdvid for
communicating with DVID. Eventually, libdvid will incorporate optimised versions of the API
calls, such as enabling compression and/or raw block data transfers. Since ilastik already
uses libdvid, it will be easy for us to upgrade to these API enhancements.
Besides merely storing large volumes, DVID is designed with features for collaborative
volume editing. These features include git-like versioning of image data, and metadata
storage via access to DVID's underlying key/value database. These features comprise a large
portion of DVID's design and internal complexity, but ilastik has no direct need for such
features and therefore does not directly use them. These features could, however, be useful
for storage of metadata necessary for the KnowledgeGraph. Another feature that ilastik does
not exploit is DVID's ability to serve tiled image data (as opposed to 3D voxel blocks), as well
as multi-resolution voxel blocks. Multi-resolution tile/block viewers such as Neuroglancer,
BigDataViewer and CATMAID are all capable of using DVID's multi-resolution block streaming

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 19 of 28

APIs, with interactive speed. Unfortunately, current ilastik's viewer does not support multi-
resolution data sources, and so does not exploit this feature, either. Multi-resolution support
is, however, planned for the HBP web-based viewer, which we also plan to adapt to as a
possible ilastik front-end.

In summary, DVID appears to be a decent choice as a data service if it is well supported by
a viewer and multi-user versioned data editing is required.

6. Proposed Architecture and Roadmap
The proposed architecture is intended to be the subject of continual capability expansion
over the course of the HBP. Each Phase is intended to deliver an incremental improvement
in capabilities to satisfy a particular use case or set of use cases. To this end, it is essential
that the architecture be both performant and flexible providing well defined, well supported
API boundaries between services to allow replacement or substitution of services with
different performance criteria or add-on functionality as both the implementation and use
cases evolve with time.

Alignment of the viewer architecture strategy with image formats is based on the
neuroimaging format standardisation document (MS5.4.6 preliminary version, updated
version due M24). As it turns out, the most important 2D and 3D image standards that the
viewer architecture will have to support are:

● NIfTI for volumetric data (T1, T2, activation and probability maps);
● GIfTI for mesh-based surface representations;
● TIFF/BigTIFF, JPEG, PNG or laboratory-wise flavoured HDF5 for microscopy data. So

that they can be handled efficiently in the object storage, it is important for large
3D HDF5 datasets to be stored in appropriately sized chunks that can be used
during data ingest. This has to be communicated with the laboratories that
produce large HDF5 datasets and documented in the image standardisation
document (MS5.4.6).

The compatibility between image formats and viewers will be provided through the HBP
image service, which is envisioned to be based on DVID.There will also be a requirement for
an ingest service that converts incoming supported file formats into the internal format of
the image service. DVID provides such a system, but may require some adaptation to allow
efficient handling of data in formats that it does not currently support natively.

Further, we will focus on accelerating large and mostly static datasets. These are especially
large 2D tiles and strategic high-resolution volumes like the Big Brain. For such data, we rely
on the Neuroglancer precomputed tile format for 3D data, and single-image DZI (DeepZoom)
for 2D multiresolution data. The data can be rendered right away by Neuroglancer and
OpenSeadragon based viewers.

The viewer infrastructure will support the following storage resources.

1. Federated object storage hosted by the HPAC platform.
Current developments connect to CSCS’s Pollux system as the first and
representative system available. This system will be scaled at least to the needs of
the next ~5 years of HBP planning.

2. GPFS-based storage in the HPC centres.
3. Client-side storage for small images.

For some use cases, the system should allow users to display images from their
local computers, most often overlaid with HBP datasets. This is especially required
for neuroimaging, where users may want to overlay their own MRI scans with atlas
data without bringing their data physically into the HBP ecosystem.

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 20 of 28

6.1 Main categories of viewers required
As evident from the use cases and the resulting requirements analysis, viewers will have to
cover requirements of 1D, 2D or 3D neuroscience data. For each of the dimensions, the time
domain can be added, resulting in 6 categories of data, of which 1D snapshot data does not
require a viewer. In general, 1D data could easily be analysed, transformed and displayed
using scientist friendly tools in the Collaboratory’s Jupyter notebooks. This allows for much
richer interactions than would be possible with a GUI viewer.

The viewer strategy and architecture will thus have to cover the remaining 5 categories
(green):

Table 3: Viewer strategy and architecture categories

Data type Snapshot viewer
needed?

Time Series viewer
needed?

Server-side rendering
needed (SGA1)

1D data no possibly no

2D data yes yes no

3D data yes yes no

The viewer infrastructure includes the following viewer components.

● A multi-resolution 2D viewer for possibly large microscopic 2D imagery, with
additional support for moderately sized vector graphics to display 2D annotations.
The viewer will be based on OpenSeadragon. The core development of this viewer
is in T5.4.2.

● A multi-resolution 3D viewer for possibly large volumetric images, with additional
support for moderately sized meshes to display 3D segmentations like brain regions,
surfaces, or individual microstructures. This viewer will be based on Nehuba, HBP’s
extension of Neuroglancer. The core development of this viewer is in T5.4.3.

This set of viewers will cover very frequent needs of currently existing custom solutions to
navigate and interact with standard imagery. However, it will not attempt to replicate all
expert functionalities that individual laboratories or researchers used for working with their
data. For very specific individual workflows, we assume researchers continue using their
own tools. Table 4 provides a detailed list of current solutions with regard to our
considerations about whether to replace these tools by our core online components. For
example, activity data will usually be previewed by activation maps, for example, and users
will look at the time series from a Python notebook or similar expert tool that can connect
to the NIP through an API.

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 21 of 28

Table 4: Currently used image viewers

Solution Description Used by or for

How does it work with NIP viewer
infrastructure? Will it be replaced
in the unified future setup or co-

exist?

HBP developments

HiBoP Stand alone tool
for iEEG data
based on
C++/Unity,
developed by the
team of J.-P.
Lachaux

Visualising
intracranial EEG
data on individual
3D MRI

HiBoP will co-exist as an expert
viewer for client-side installation.
HBP is considering whether to
implement interfaces so HiBoP can
directly connect to HPB’s Image
service API. Some features will be
replicated in Nehuba to allow
previews of iEEG data that are
visually consistent with HiBoP

VisNEST System for
visualising NeST
simulations, using
coupled multiple
views and inter-
process
communication

Used to visualise
dynamic parameters
during a neural
network simulation,
such as calcium
concentrations

The system is used for in situ
visualisation of simulations running
on clusters, a setup largely
different from the NIP ecosystem. It
will coexist with the NIP viewer
infrastructure

Elephant
visualisation
component

Visualisation of
elphys recordings
for Elephant

Visualisation of
activity data
(spikes, LFP,...) and
resulting analysis
results from
simulation and
experiment
(planned SGA2
component)

The Elephant visualisation
component is planned as a stand-
alone library to generate
standardised graphics of datasets
that are able to be represented in
the Neo data model and for analysis
results resulting from functionality
of the Elephant library. It will co-
exist with NIP viewers as a tool for
experts performing data analysis. In
addition, it is planned to
investigate the feasibility of using
this component in conjunction with
other NIP viewer components to
allow users to visualise activity data
sets online, e.g., on a data landing
page for activity data

ESPINA Desktop software
for interactive 3D
segmentation of
microstructure in
electron
microscopy

Used by
neuroscientists to
interactively extract
e.g. neuron
morphologies from
EM data

This is a desktop application for
image segmentation, which
includes a viewer component. The
EM data and segmented
compartments typically used here
can be visualised in
Neuroglancer/Nehuba. Some of the
segmentation functionality can be
covered directly online through the

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 22 of 28

NIP by ilastik, once it is tightly
integrated

Nehuba HBP atlas
extensions to
Neuroglancer, a
web based
volumetric image
viewer

Visualisation of
possibly large
volumetric data and
parcellations online.
Already used for
reference atlases
and high-resolution
templates like the
Big Brain

Nehuba is a core part of the SP5
atlas tool suite, and currently being
extended by interactive
components to cover more use
cases than browsing of reference
atlases. This is the viewer that will
include the components for
interactive analysis with ilastik and
be used for overlaying volumetric
data with high-resolution atlases on
the web

PLIviewer Viewer developed
at RWTH
specifically for PLI
data

Specific solution for
visualising PLI
connectivity data,
currently used by
PLI experts

HBP would like to include similar
functionality in the Nehuba web-
based viewer (see previous entry).
A proposal to implement web-based
visualisation of high-resolution
connectivity was not accepted for
the SGA2 workplan, but will be
raised again for SGA3

BrainScales
activity and
network
viewers

Specific viewer for
monitoring
neuromorphic
computing

UHEI, BrainScales
users

This is not an image viewer, and
will co-exist as software for the
neuromorphic computing
community

SpiNNaker
activity and
network
viewer

Specific viewer for
monitoring
neuromorphic
computing

UMAN, SpiNNaker
users

This is not an image viewer, and
will co-exist as a software for the
neuromorphic computing
community

Community tools

Amira Commercial
general-purpose
biomedical 3D
visualisation

Visualise 3D volumes
and segmentations
offline (LENS)

Amira will co-exist as an offline
tool for individual experts. It can
be applied to data downloaded
from the NIP

Vaa3d Open-source
biomedical 3D
visualisation

Visualise 3D volumes
and segmentations
offline (LENS)

Vaa3d will co-exist as an offline
tool for individual experts. It can
be applied to data downloaded
from the NIP. The software is
extensible with plugins, and an
interface to connect to HBP
services could be implement, but is
not currently planned

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 23 of 28

Fiji Open-source
biomedical 3D
visualisation and
image processing
toolbox

General stand-alone
image viewing and
processing tool set
for the biomedical
imaging community

Fiji will co-exist as an offline tool
for individual experts. It can be
applied to data downloaded from
the NIP. The software is extensible
with plugins, and an interface to
connect to HBP services is feasible,
but is not currently planned

MRIcroN,
FSLView

Offline MRI
viewer

Many neuroimaging
researchers

As an offline solution only for small
data volumes, MRIcroN, FSLView
will co-exist. We will evaluate
navigation in Nehuba against the
user interaction used in these
viewers, to facilitate as much as
possible the use of atlas viewers
for neuroimaging users

MayaVi Python library
and client for
general purpose,
highly
customisable 3D
visualisation

Some expert
developers, data
analysts in SP1, SP2

MayaVi is more of a developer’s
tool. The NIP viewer architecture
is not intended to replace such
highly customisable general
purpose libraries, so they will
coexist

Brainvisa
Anatomist

multifaceted
viewer developed
at Neurospin

Neuroimaging
researchers

Brainvisa is a complex, stand-alone
neuroimaging tool suite. The
included viewer will co-exist with
HBP’s online services

Neurolucida Commercial
stand-alone tool
for neuron
tracing,
reconstruction,
analysis, and 3D
brain mapping

Some microscopy
labs

This is a comprehensive tool suite
specifically targeted to extract 3D
neuronal structures from high-
resolution 3D imagery. Some of its
functionality will also be provided
by the NIP ecosystem in upcoming
SGAs, especially interactive
segmentation for 3D brain
mapping. As such, HBP’s NIP will
provide free and lower threshold
access to these critical tools for
the neuroscientific community

Anywave Visualise MEG and
EEG recordings

Used by some
researchers in SP4

Anywave is a C++ based tool to
allow the interactive browsing of
EEG and MEG data time series. In
the context of visualising
electrophysiological data, it
complements the planned Elephant
Visualisation Component, which is
a low-level library to visualise
single unit and field potential data
from microelectrode recordings
and to provide views of analysis
results performed on such data.

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 24 of 28

The modular architecture of
Anywave might allow a deeper
integration of the tools via signal
processing plugins

McGill
BrainBrowser

Visualise MRI
volumes online

SP8 Solution can in the long term be
replaced by Nehuba, which can
provide most of the features as
well. Feature comparison to be
done together with SP8

OpenSeadragon Open source JS
library for
browsing multi-
resolution 3D
image data

SP1, SP5, SP2 for
browsing microscopic
slides

OpenSeadragon will be used as a
component for 2D web-based atlas
visualisation, complementing
Nehuba/Neuroglancer as a more
efficient solution for 2D high-
resolution images

6.2 Phase 1
Phase 1 is intended to focus on the tools necessary for widespread dissemination via so-
called released atlases. These include the Waxholm, Allen, Jubrain and BigBrain reference
atlases along with any other atlases that are expected to have a heavy user base. See Figure
4.

Objectives

1) Reference atlas file specification – define the files needed to make an atlas and add the
requisite support for those files to tools used in the phase 1 architecture.

2) Development of initial scripts to package a reference atlas for internet viewing.

3) Minimise unauthenticated access to atlases. Public and Read-only.

4) Reference atlas link(s) from the front-page of the new NIP page.

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 25 of 28

Figure 4: Strategy and architecture for data viewers - Phase 1

6.3 Phase 2
In this phase the goal is to increase the accessibility of atlases that are in-development using
Navigator, the volume alignment tools or extracted features from ilastik workflows (whether
initiated via ilastik-web or on a local cluster).

Make unreleased/in-progress atlas developments visible via the viewers.

1) Integration path for Oslo toolkit and ilastik.

2) Authenticated access to atlases. Read-only.

3) Authorisation controlled by the Collab, which owns the atlas.

This requires the following activities, broken down on a service by service level.

Navigator3

1) Support for OIDC authentication in navigator.

2) Port and testing of Navigator on PostgreSQL.

3) A deployment of Navigator to FENIX VMs using Postgres DB.

4) Add support for “release” of a Navigator project to the precomputed volume service.

DVID

1) Create a DVID app and bind a given DVID project to a Collab.

2) Enable OIDC authentication and Collab ACL authorisation.

3) Testing of DVID in production deployment environment.

4) Add support for “release” of a Navigator project to the precomputed volume service.

Ilastik

1) Add support for OIDC authenticated DVID to ilastik.

2) Test last two releases of ilastik with deployed DVID.

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 26 of 28

Neuroglancer, 3D

1) Load list of atlases or other datasets from Knowledge Graph.

2) Load an atlas’ respective annotation hierarchy according to HBP atlas standard.

3) Display annotation hierarchy viewer in a side panel for reference atlases.

4) Enable annotation hierarchy viewer control functions (potentially: transparency control,
visibility, hide others).

5) Improve 3d cut-plain view to be more intuitive to neuroscience and medical customers.

6) Authentication and authorisation support for OIDC.

OpenSeadragon, 2D

1) Load list of atlases or other datasets from Knowledge Graph.

2) Load an atlas’s respective annotation hierarchy according to HBP atlas standard.

3) Display annotation hierarchy viewer in a side panel for reference atlases.

4) Enable annotation hierarchy viewer control functions (potentially: transparency control,
visibility, hide others).

5) Authentication and authorisation support for OIDC.

Knowledge Graph

1) Provide a list of atlases via a permanent query that can be hardcoded into the HBP
deployments of Neuroglancer.

The resulting architecture for Phase 2 will integrate the atlas building tools of Navigator and
the analysis tools of ilastik with 2d and 3d viewers.

Figure 5: Strategy and architecture for data viewers - Phase 2.

6.4 Possible Future Phases

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 27 of 28

6.4.1 Multi-viewer, multi-controller coordination
SP5 expects to deploy a number of viewers, pragmatically selected for their applicability to
specific use cases. A viewer for a slice might want to exchange or sync view information. A
viewer for a movie may want to time sync with a view of MRI data. Additionally, it might be
desirable to create novel control widgets outside of the viewer itself. Some of the proof of
concepts implemented with another HBP project (https://github.com/HBPVIS/ZeroEQ)
suggest how this might work and why it would be useful.

6.4.1.1 Integration strategy

In principle, the main impediments are security considerations of running such a system in
a large-scale untrusted environment. Should the multi-viewer, multi-controller use case
come to the forefront in a future phase, it would be necessary merely to extend ZeroEQ with
appropriate encryption, authentication, and authorisation support. Subsequently,
applications with a clear need for multi-viewer or multi-controller support could be loosely
coupled using ZeroEQ or equivalent. This would open a wide range of extension scenarios.

6.4.2 Server-side rendering and High-fidelity viewers
As outlined above, the HBP does not have use cases that demonstrate a clear need for server-
side rendering in the current phase.

In the future there are a number of places which could change this picture. If the demand
for the interactive analysis of the large-scale detailed neuron simulations grows, high-
resolution remote visualisation may become an important tool for understanding network
simulations.

Similarly, if the need for extensive web visualisation of faster-than-real-time neural
simulation grows, server-side rendering tools might be necessary to visualise the massive
quantities of data those simulations are capable of producing.

In the atlasing domain, it is expected that HBP might benefit from the development of
server-side rendering. One strength of HBP’s atlases is the rich coverage of connectivity at
multiple scales, ranging from single axon measurements in 2-photon-imaging through
polarised light imaging at the micro- and mesoscales up to highfield and clinical DTI. In order
to allow visual exploration of such multiscale setups on the web, we like to include
visualisation of fibre tracts, orientation vectors, and advanced glyphs for tensors. While web
viewer solutions for such kind of data are now available (e.g.
http://www.nmr.mgh.harvard.edu/~rudolph/webgl/brain_viewer/brain_viewer.html), this
use case would require a multi-resolution streaming strategy for dense fields of surface-
based objects. Such a visualisation engine is in principle feasible, but would need to be
developed. An alternative solution for multi-scale connectivity, with a possible less optimal
user experience, is server-side remote rendering as described above.

6.4.3 Big-data analysis frameworks (Spark, etc.)
Interestingly enough, the data science community has focused their attention for large-scale
analysis problems on frameworks like Spark. The result is essentially a Jupyter notebook
with massive aggregate memory and IO capacity and the visualisations of choice are largely
2D. While 2D graphs may not look as pretty, the industry momentum in data science suggests
that appropriate projections of data to 2D visualisations is a *more* valuable tool for data
scientists. Such visualisations are trivially web-ready.

Moving in the same direction, the need for ever higher performance from popular tools in
the Collaboratory is already starting to become clear. As researchers push the envelope with
the science they share in the Collaboratory’s Jupyter notebooks, there is an obvious demand
for an interactive computing environment which surpasses the limits of a single machine.

The most obvious contender for this crown at the moment is a Jupyter notebook running in
front of a large multi-tenant Spark installation. Spark is seeing widespread application across

https://github.com/HBPVIS/ZeroEQ
http://www.nmr.mgh.harvard.edu/%7Erudolph/webgl/brain_viewer/brain_viewer.html

Co-funded by
the European Union

D5.8.1 (D73.1 D50 - SGA1 M12) ACCEPTED 180709.docx PU = Public 09 Jul 2018 Page 28 of 28

scientific domains from large-scale electrophysiology analysis
(https://www.youtube.com/watch?v=Gg_5fWllfgA) to bone microstructure analysis
(https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1617-y).

It is clear the precomputed volume format for the reference atlases is horizontally scalable
using standard HTTP CDN approaches, but the precomputed volume format will not be used
for large-scale read-write workflows. Here the architecture above promises to deliver.
Janelia Farms is the driver of the Fly-EM project (and by extension the DVID store) and has
made extensive use of DVID as the primary datastore for large-scale Ilastik and Spark based
image processing workflows. See https://github.com/janelia-flyem/DVIDSparkServices for
more details on the current state of this work.

7. Conclusions
The image service has to provide streaming of 2D and 3D image data to
the viewers for use cases where conversion into precomputed formats is
inefficient or not appropriate. This is especially the case for ad-hoc visualisation, e.g. for
monitoring interactive image analysis online, as in ilastik, or user data coming in. We will
fill this gap based on the DVID image service, and evaluate its performance in SGA2. The
worst outcome of this evaluation is that DVID is not efficient enough to deliver 3D data in
multi-resolution to our viewers. In this case, we will extend DVID in this regard in SGA2/3,
or implement a replacement component. We expect to be able to dedicate more resources
to the integration of the image service in SGA2 compared to SGA1.

https://www.youtube.com/watch?v=Gg_5fWllfgA
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1617-y
https://github.com/janelia-flyem/DVIDSparkServices

	1. Introduction
	2. Considerations
	3. Use cases
	3.1 SP5-VA-UC01 - Analysis as a service and Embedded Visualisation Engines
	3.1.1 Actors
	3.1.2 Success Scenario
	3.1.3 Requirements

	3.2 SP5-VA-UC02 Large Volume and sub-volume alignment
	3.2.1 Actors
	3.2.2 Success Scenario
	3.2.3 Requirements

	3.3 SP5-VA-UC03a Integrated batch feature extraction and segmentation with ilastik
	3.4 SP5-VA-UC03b Interactive segmentation and feature extraction in 2D and 3D
	3.5 SP5-VA-UC04 Exploring human and rodent 3D atlases
	3.5.1 Actors
	3.5.2 Success Scenario
	3.5.3 Requirements

	4. Combined Requirements
	4.1 Definitions
	4.1.1 Reference atlas
	4.1.2 Atlas

	4.2 Essential features
	4.3 Useful features
	4.4 Potentially useful features

	5. Architecture Component Candidates
	5.1 Neuroglancer - Multiprotocol web-based viewer
	5.1.1 Main features
	5.1.2 General architecture
	5.1.3 Supported data sources
	5.1.4 Internal data representation
	5.1.5 Data compression
	5.1.6 Assessment

	5.2 OpenSeadragon
	5.2.1 Main features
	5.2.2 Assessment

	5.3 DVID - Distributed Version Image Database
	5.3.1 Main features
	5.3.2 Assessment

	6. Proposed Architecture and Roadmap
	6.1 Main categories of viewers required
	6.2 Phase 1
	6.3 Phase 2
	6.4 Possible Future Phases
	6.4.1 Multi-viewer, multi-controller coordination
	6.4.1.1 Integration strategy

	6.4.2 Server-side rendering and High-fidelity viewers
	6.4.3 Big-data analysis frameworks (Spark, etc.)

	7. Conclusions

