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Key technologies for fast data access and retrieval 
(D7.2.1 – SGA2) 

 

 
Figure 1: Pilot system JURON 

The pilot system JURON has been used as testbed for most of the research and developments described in this 
Deliverable. JURON has been developed by IBM and NVIDIA as part of a Pre-Commercial Procurement during the HBP 
Ramp-up Phase. It is located at Jülich Supercomputing Centre (JUELICH-JSC). 
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1. Introduction 
This Deliverable represents the current status of the ongoing work in Task T7.2.3 of HBP SGA2, 
focusing on I/O behaviour and optimisation of applications in the context of the HBP. We present 
the use cases and technologies used in our work, then proceed to the analysis and conclude with our 
plans for the next phase of SGA2. 

2. Use cases 
We selected use cases from the HBP that were mature enough and already in production use at the 
beginning of SGA2, while still posing interesting challenges regarding their I/O behaviour. We did 
(and do) not consider changes to algorithms and methods, unless relevant for data access. These 
choices result in a set of applications weighted towards image processing, especially concerning 
large-scale files resulting from microscopic scans of brain sections. The results obtained from 
working with these image-processing applications can be translated into the following three general 
access patterns: 

1) regular access of fixed size, e.g. two-dimensional tiles of an image, 

2) random access of fixed size, including selecting overlapping units, and 

3) coordinated writes of variable sized blocks. 

These patterns cover a large portion of the design space, especially concerning machine learning, 
which tends to be balanced towards reading data. 

In addition, we chose NEST as a demonstrator for in-transit analysis of simulation data. This 
particular area requires processing of streaming data for interactive visualisation and analysis. 

2.1 NEST 
Collaboration with JUELICH-INM-6, JUELICH-JSC and NMBU in SP6 and SP7 

NEST is a spiking neural network simulator for models based on point neurons. Simulation proceeds 
in a series of discrete time steps, during which the neurons evolve independently. Due to the 
complexity of the emerging behaviours, there is an interest in interactive steering of simulations. 
This allows researchers to explore interesting phenomena in situ. Furthermore, multi-scale 
simulations are considered, where NEST provides input to more detailed models and/or receives 
inputs from more coarse-grained simulations. 

We investigated Universal Data Junction (UDJ) as a technology for this scenario. The test case uses 
a setup of 𝑁𝑁 neurons and 0.1 ⋅ 𝑁𝑁 synapses per neuron or 0.1 ⋅ 𝑁𝑁2 synapses in total. We expect roughly 
𝑓𝑓 ⋅ 𝛥𝛥𝛥𝛥  spikes per simulation step, where 𝛥𝛥𝛥𝛥 = 0.1𝑠𝑠  and 𝑓𝑓 = 10𝑠𝑠−1 . Voltage measurements are 
produced at the same rate per recorder. This results in small transfers, and implementations will 
have to be optimised for this case. 

2.2 HBP Brain Atlas 
The HBP Human Brain Atlas aims to offer an interactive, annotated virtual map of the human brain. 
The main type of data ingested is in the form of microscopic scans of preserved post-mortem human 
brains at a resolution of 1 μm, called a “section”. This results in a data volume of about 50 TB per 
fully scanned brain, which is then further processed and enriched by annotations. 

These augmentations are bundled with the original data and presented to the user interactively, 
using a web interface. To match the production rate of raw data, processing has to be largely 
automatic and high-performance. Analyses may build on-top of prior steps, effectively forming a 
directed graph. 



   
 

D7.2.1 (D43.1 D82) SGA2 M12 ACCEPTED 200731.docx PU = Public 28-Sep-2020 Page 6 / 18 
 

The Brain Atlas analyses pose an interesting challenge, due to the focus on extremely large images 
which have to be processed in small tiles. This makes high-performance I/O and extensive use of 
caching a necessity. We selected two of these for our analysis: Cell Segmentation and Label 
Propagation. The former is quite simple, while exhibiting an important prototypical I/O pattern, 
which allows rapid exploration of I/O strategies and technologies. The latter use case is more 
complex and accesses data in randomly selected tiles with a high degree of concurrency. 

2.2.1 Cell Segmentation 

Collaboration with JUELICH-INM-1 in SP2 and SP5 

The Cell Segmentation code identifies cells in large-scale brain images using classical image 
processing. The output comprises the boundaries, centroids and surface area of the recognised cells. 
Subsequent steps in the workflow may filter the cells in a region, based on their bounding box, to 
compute the cell density in particular areas of interest. 

A watershed algorithm, provided by the well-known OpenCV 1  library, is utilised for the 
segmentation. While considered the standard for image processing, OpenCV offers no facilities for 
parallelisation across processes or specialised (in particular: caching I/O). Consequently, the 
algorithm has been manually parallelised using the Message Passing Interface (MPI). The image is 
split into square tiles, which are then processed independently. The tiles are extended with an 
additional halo of 100 pixels to ensure that all cells are recognised. The list of tiles is distributed, 
round-robin fashion, between the available parallel tasks. Input images are stored in the TIFF format, 
with the bitmaps sliced in tiles of 256×256 pixels. Thus, reading the image results in many small read 
accesses. 

The Cell Segmentation application was studied with a focus on I/O performance optimisation, 
utilising HDF5 and Hecuba as back ends. We plan on adding DSS as a further back end, but the 
timeframe depends on the availability of Dynamic Shared Storage (DSS) on the testbed (see Section 
4). 

2.2.2 Label Propagation 

Collaboration with JUELICH-INM-1 in SP2 and SP5 

For the Brain Atlas, sections will be annotated with the area, e.g. the primary visual cortex V1. This 
annotation is done by human experts, which is a major bottleneck in the process. Therefore, machine 
learning, in the form of deep convolutional neural networks (CNN), is used to speed-up this process. 
The expert annotates a subset of the generated images, the resulting labels are learned by the 
network, and propagated to adjacent sections. The ratio of annotated to non-annotated sections is 
envisaged to be 1:120. In this document, we present studies on one configuration only, namely the 
reading of two brain sections. We plan on analysing a larger input set in the coming months. 

In this use case, we are concerned solely with training the CNN, which is both the time-consuming 
and I/O-intensive part, when compared to inference. The application consumes images in the form 
of chunked HDF5 files, which are generated from the original high-resolution 1 μm TIFF images. In 
this step, the resolution is reduced to 2 μm in order to allow a single GPU to process the full cortical 
depth.  

The training uses a distributed architecture based on Horovod 2, a library for MPI-based parallel deep 
learning commonly used on HPC clusters. Horovod handles aggregation of weights, after each mini-
batch, into the global weights. One training process per GPU is used, called the master. An additional 
number of tasks is configured to prepare batches of image tiles to be sent to their master processes. 
This includes reading the raw tiles and annotations — corresponding to the labels to be learned — 
and performing augmentation of these tiles. As this step includes rotation, more data is read from 

                                            
1 https://opencv.org/ 
2 https://github.com/horovod/horovod 

https://opencv.org/
https://github.com/horovod/horovod
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disk than for a non-rotated tile. The chunk size of the HDF5 files is chosen such that at most four 
chunks need to be read to fill a tile. The final model is stored as a HDF5 file on the global file system. 

In contrast to most deep learning applications, which process large databases of small images, this 
use case requires the processing of a small set of extremely large images. Small tiles are extracted 
from these large images, augmented on the fly and fed to the training process. This shifts the focus 
more towards the I/O part of the application, including augmentation. 

3. Technologies 

3.1 Hierarchical Data Format v5 (HDF5) 
HDF5 is a well-known library for file I/O in high-performance computing, data analysis and machine 
learning. It is developed and provided open source by the HDF group3. At a very high level, it offers 
functionality similar to a "file system in a file" in order to facilitate self-contained, self-describing 
datasets.  

We use HDF5 as an interface to parallel file systems, mainly driven from distributed applications 
using MPI. HDF5 offers drivers aware of and optimised for MPI applications. Therefore, HDF5 replaces 
and enhances the POSIX API as a means of writing and reading files in these applications. As the API 
is quite large, specific details of HDF5 will be discussed in the use case analyses where these 
different options were used. Further, HDF5 is extensible via the Virtual Object Layer (VOL). This has 
given rise to interest in using HDF5 as an API for other storage protocols, such as SWIFT and DSS. 

3.2 Hecuba 
Hecuba4 is a programming model for interaction with distributed storage developed at the Barcelona 
Supercomputing Center (BSC). Hecuba stores the actual data in a distributed database. However, it 
can provide a performance gain over the default database connectors. Currently, Hecuba is available 
as a Python library and provided under an open source license (Apache version 2.0). So far, support 
for Cassandra and ScyllaDB has been built-in, enabling manipulation of distributed datasets 
transparently. Through Hecuba, Python applications access persistent data such as regular objects 
stored in memory. To develop an application, the user describes the data model by extending a 
Hecuba class and instantiating as many objects as needed. The user can make the in-memory objects 
persistent or retrieve persistent data either by instantiating objects with an identifier or by calling 
their make_persistent methods. 

3.3 Distributed Shared Storage (DSS) 
As part of the HBP Pre-Commercial Procurement during the Ramp-up Phase, IBM developed 
Distributed Shared Storage (DSS), an InfiniBand (IB) Verbs provider to expose Linux blocks to remote 
and local clients. It is currently not publicly available, but it is expected to be made available as 
open source. DSS allows an application to treat such block devices as if they were shared memory 
regions and perform Remote Direct Memory Access (RDMA) via the well-known verbs interface. 
Furthermore, this interface is implemented as part of the Linux kernel in the form of the rdma_cm 
library. In particular, the aim is to utilise verbs as an access layer for Storage Class Memory (SCM) 
and Non-Volatile Memory (NVM). The testbed nodes have NVMe SSDs attached, which are addressable 
through DSS; see Section 4 for more information. By leveraging IB verbs, well-understood semantics 
for RDMA are offered to developers as an alternative to POSIX I/O, backed by a specific API that is 
part of the kernel. All operations are asynchronous; the developer is required to ensure data 
integrity, where necessary. Currently, DSS is still under active development and therefore not yet 

                                            
3 https://www.hdfgroup.org/ 
4 https://github.com/bsc-dd/hecuba 

https://www.hdfgroup.org/
https://github.com/bsc-dd/hecuba
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publicly available. We plan on implementing at least the I/O part of the Cell Segmentation use case 
when DSS becomes publicly available. Further work will be guided by our first results. As the 
interface is quite low-level, we are thinking about offering more easily accessible abstractions on 
top of DSS, including bindings for the Python programming language. 

3.4 Universal Data Junction (UDJ) 
Cray’s Universal Data Junction (UDJ) project aims to provide an interface between two, or 
potentially more, applications. The library is not yet publicly available, but will be made open source 
in the near future. It abstracts the concrete exchange method and handles consensus between 
participants. Similar functionality can be achieved with the MPI3 Open_port methods family, but 
with less flexibility regarding the transport layer. For our purposes, UDJ is a convenience layer on 
top of MPI3. 

3.5 OpenStack SWIFT 
SWIFT is part of the OpenStack ecosystem, providing a REST API to the object storage services of 
OpenStack5. Object stores are interesting alternatives to traditional POSIX file systems, including 
parallel and distributed file systems, as a different set of trade-offs has been chosen. Further, SWIFT 
is used as the archival storage solution in the ICEI project6 and installations exist or are planned at 
HBP/ICEI partner sites. SWIFT objects are organised in containers belonging to an account; below 
that, little to no structure is enforced. Access to accounts, containers, and objects is offered through 
the standard HTTP verbs. Objects can be segmented into — not necessarily uniform — chunks, that 
are catalogued using manifests. Overall, this allows for mappings between commonly used file access 
patterns and SWIFT containers and objects. 

We plan to investigate the use of SWIFT for direct data access in data processing. This includes 
performance analysis, optimisation of the application and performance exploration of basic SWIFT 
operations. Furthermore, a tiered caching mechanism is planned, that takes care of prefetching data 
from SWIFT to local storage and collecting local output, which is then written back to SWIFT objects. 
So far, basic testing on functionality and performance has been conducted. 

3.6 Conduit 
Conduit7 is a library developed by Lawrence Livermore National Laboratories for data exchange in 
multi-scale simulations. The library is distributed as open source (BSD-style license). Its primary 
focus is the description of data in a self-contained format. These descriptions are stored as trees of 
nodes, with leaves describing an array of primitive datatypes by a tuple of base address, offset 
relative to base address, stride between elements and size per element. This enables transparent 
handling of C-style structures. Data can be owned by a node; in which case, it is copied or external, 
thus eliding allocations and copies. Some additional functionality is offered by the Conduit library, 
such as exchange through MPI. Conduit does not include facilities to concatenate nodes, which is a 
common requirement in our use cases. We provide a small library8 that adds concatenation, which 
is not entirely trivial as for example structured data must be handled properly. 

  

                                            
5 https://www.openstack.org/  
6  Interactive Computing E-Infrastructure (HBP SGA ICEI); this project implements the federated Fenix 
infrastructure (https://fenix-ri.eu/) that the HPAC Platform will base its services on. 
7 https://github.com/LLNL/conduit  
8 Available upon request, please contact hpac-support@humanbrainproject.eu  

https://www.openstack.org/
https://fenix-ri.eu/
https://github.com/LLNL/conduit
mailto:hpac-support@humanbrainproject.eu
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3.7 Slurm 
Slurm9 is a well-known resource manager used on the majority of clusters in the TOP50010 list and is 
also used on many systems integrated in the HPAC Platform and in the ICEI project. The contributing 
Task T7.2.1 focusses on scheduling algorithms for data-intensive applications, specifically on 
methods for the co-allocation of compute and storage resources and allocating storage on distributed 
file systems, including support for data staging. It contributes by providing plugins to support the 
use cases investigated in Task T7.2.3. The main development starts by incorporating these design 
decisions into the implementation of a first prototype for a Slurm plugin. One of the main goals of 
the Task will be to continue to collaborate closely with Task T7.2.3 to fulfil the requirements 
relevant to the HBP use cases. A simulation environment was set-up, based on Docker11, and related 
technologies were evaluated. For the implementation, we are using a system which uses a global 
parallel file system such as GPFS, and a distributed file system, which makes the node-local storage 
resources accessible, such as BeeGFS12. For the next steps, we will focus on the main development 
of the scheduler extensions. 

The relevant use cases for the scheduler extensions are Cell Segmentation and Label Propagation. 
In both cases, the data is staged from GPFS to BeeGFS, processed and drained afterwards, and 
outputs are stored persistently. Finally, the storage allocation is released. However, this can happen 
in multiple ways; for example, the input data may be scaled down and stored in HDF5 files. We plan 
to enable the user to select a storage allocation, referred to as containers, by IDs which are used to 
identify locations on the fast storage to connect jobs and define workflows with data dependencies 
across job boundaries. For the implementation in Slurm, an extension of the generic burst buffer 
plugin is being considered for use in persistent burst buffer mode. Slurm provides only two 
implementations of burst buffers, whereas the plugin for Cray systems provides more features. 
Therefore, we will need to port essential features from the Cray plugin to the generic burst buffers 
as part of the work in Task T7.2.1. 

4. Hardware Testbed: JURON 
Our main testbed is the JURON13 cluster, one of the two HBP pilot systems that were developed in 
the context of a Pre-Commercial Procurement in the HBP Ramp-Up Phase. All experiments discussed 
in the following were performed on JURON. 

We summarise the hardware specifications in summary form below. The node topology is shown in 
Figure 2. One peculiarity of the setup is the connection to the site-global parallel file system. It is 
mounted on the login nodes and re-exported to the compute nodes via NFS. This results in a less-
than-optimal performance. JURON comprises 20 IBM S822LC nodes, which are dual socket POWER8’ 
systems. Each socket features 10 physical cores with 8-way symmetric multi-threading and is clocked 
at 2-4 GHz. 256 GB of RAM per node are configured. In addition, each node has 2 NVIDIA Tesla P100 
GPUs attached via NVLINK and a 1.1 TB NVMe SSD Disk. These SSDs are tied into a cluster-wide file 
system using BeeGFS. 

The nodes are connected through 4-channel EDR InfiniBand adapters (Mellanox ConnectX-4). 

                                            
9 https://slurm.schedmd.com/  
10 https://www.top500.org/  
11 https://www.docker.com/  
12 https://www.beegfs.io/  
13 https://hbp-hpc-platform.fz-juelich.de/?page_id=1073  

https://slurm.schedmd.com/
https://www.top500.org/
https://www.docker.com/
https://www.beegfs.io/
https://hbp-hpc-platform.fz-juelich.de/?page_id=1073
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Figure 2: Topology of a JURON SL822LC node 

5. Analysis of Use Cases 
In the following, we summarise our analyses of I/O behaviour the use cases presented above. We 
investigate avenues for optimisation and the application of different technologies. All studies below 
were conducted on the Power8 HBP pilot system JURON (see above). 

5.1 Cell Segmentation 

5.1.1 HDF5 

The output is written into a single HDF5 file in parallel via the HDF5 MPI-IO driver. As the test system 
possesses a number of local NVMe disks, we explored two options for storing the output, first to the 
site-global GPFS installation and second to the local BeeGFS, backed by the fast NVMe disks. Input 
images are stored in the TIFF format, which results in an internal representation consisting of small 
tiles with 256×256 pixels each. Thus, reading the image requires many small read accesses. First, an 
analysis of the original application was done. Here, the input is read from GPFS. Figure 2 shows the 
distribution of the read times over the complete run time using a tile-size of 512×512. With growing 
numbers of processes, the median read time increases and a greater number of large outliers occur. 
We conclude that the parallel accesses to the parallel file system interfere. We further analysed the 
total runtime as a function of the number of MPI tasks and the output destination, see Table 1. 
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Figure 3: Latencies of read accesses to GPFS in the original application 

As only a single image is used, we staged the full image into shared memory before entering the 
actual algorithm, using MPI3-shared memory windows. This results in less accesses to the file system, 
as only one task in a shared memory domain reads the image. 

Table 1: Total runtimes of Cell Segmentation with varying numbers of MPI tasks and output 
destinations 

Processes 
Original Input Input and Output 

GPFS [s] BeeGFS [s] Loading [s] GPFS [s] BeeGFS [s] GPFS [s] BeeGFS [s] 

20 3,521 1,861 32 3,493 1,751 1,538 1,615 

40 1,984 1,158 38 2,998 1,228 795 899 

80 2,162 967 42 2,356 755 543 645 

160 - - 77 1,858 687 220 280 

In the original version, the output is written to a sequential HDF5 file. The access pattern leads to 
many small and non-continuous writes to the parallel file system. To optimise the output phases, we 
use chunked HDF5 files instead. Figure 3 shows the impact on the read and write accesses. HDF5 
employs a read-modify-write pattern for chunked files, thus each write has a corresponding read 
access in the analysis. The final application runtimes are shown in Table 1. Remarkably, now it is 
faster to write directly to GPFS than to BeeGFS. The reason for this effect is not known yet. 
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Figure 4: Latencies of write requests to BeeGFS in the final version with sequential (upper 

panel) and chunked (lower panel) HDF files 

5.1.2 Hecuba 

We evaluated the impact of saving the images in distributed storage and considered data-location 
aware policies. Furthermore, we explored and evaluated the impact of different data models and 
technologies when performing queries on the results. We were able to adapt the application and 
compare the impact of storing the dataset on HFD5 files on GPFS versus Cassandra or Scylla. We also 
identified that GPFS was subject to high performance variability, whereas both Cassandra and Scylla 
suffered from little variance and scaled when adding nodes. In this aspect, Scylla delivered a higher 
throughput than Cassandra, resulting in slightly faster execution times. These tests were conducted 
on copies of the image on each local NVMe disk, to avoid the variability in performance introduced 
by GPFS. Early tests based on HDF5 over GPFS were conducted with segment sizes of 5000×5000 
pixels, which allowed a smaller memory footprint and better performance on GPFS than with smaller 
segments. Furthermore, having small blocks translated to an increase in the time spent reconciling 
blocks. Consequently, more reconciliation tasks were necessary and the number of pixels evaluated 
in this phase grew with smaller segments, resulting in notably slower bounds reconciliation. 
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Therefore, we kept working with 5,000×5,000 segment sizes. In Figure 4 the performance of the 
application after disabling the output can be observed. We used these values as a baseline for 
understand the I/O impact of the different storage solutions. In Figure 4, we also compare the 
baseline execution runtime with the runtime when using different back ends, to observe their 
impact. Nonetheless, having large segments resulted in an imbalance, since the amount of time 
required to process a block is directly related to the number of cells identified. The principal cause 
that prevents the application to scale when running on four or more nodes in parallel is the imbalance 
due to large blocks and a static distribution of work. In the cell segmentation application, NumPy 
arrays are used to store the results. Hecuba stores them at runtime without knowing their shape or 
data type in advance. The arrays are stored each in a separate table, which distributes the data 
among the nodes. This data model will be reviewed and evaluated in the future, to assess under 
which circumstances it is adequate. 

 
Figure 5: Effect of different storage back ends at runtime 

The left graph shows the overhead over the runtime when disabling output completely, shown on the right. 

The application code was greatly simplified by porting it to Hecuba. We eliminated synchronizations 
and kept the cell characteristics as soon as they were identified, which in HDF5 could not be done 
without a performance impact. An extract of the original cell segmentation main method and the 
adaptation to Hecuba can be seen in Table 2. 
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Table 2: Comparison of the original cell segmentation code with the adaptation in Hecuba 

Hecuba HDF5 

# Persistent objects already instantiated 
for (row, col, indexes) in local_slices: 
  # ... 
  # Write labeled data (numpy.ndarray) 
  data_table[rows[0],cols[0]] = labels 
  # Write cells information (numpy.ndarray) 
  cell_table[rows[0], cols[0]] = table 

# Persistent objects already instantiated 
total_table = None 
for (row, col, indexes) in local_slices: 
  # ... 
  total_table =  
      np.concatenate((total_table, 
          table), axis=0) 
  # Write labeled data 
  out_labeled[row[0]:row[1], 
              col[0]:col[1]] = labels 
 
table_length =  
    np.array(total_table.shape[0], 
    np.uint64) 
# Synchronize to unify the cells \\ information 
comm.Barrier() 
len_cells = np.zeros(comm.size, 
    dtype=np.uint64) 
comm.Allgather(table_length, len_cells) 
offsets = [0] + np.cumsum(len_cells).tolist() 
n_cells = len_cells.sum() 
n_features = total_table.shape[1] 
# Create and preallocate the cells \\ information 
out_file.create_dataset("cells", 
    shape=(n_cells, n_features), 
    dtype=np.float32) 
# Write cells information 
out_file["cells"][offsets[comm.rank]: 
    offsets[comm.rank + 1]] = total_table 

5.1.3 Summary 

We identified several opportunities for optimisation. First and foremost, relying on POSIX as a storage 
technology resulted in an I/O bottleneck. A large number of small read and non-sequential write 
operations result in sub-optimal performance. We partially removed the bottleneck by staging the 
data to local NVMe disks or MPI3-shared memory. Then, by saving the results, either as an HDF5 file 
on BeeGFS or using a distributed array in Cassandra, we were able to scale down the I/O steps of 
the application. 

Nevertheless, the imbalance of work items among processes becomes critical when launching the 
application on four or more nodes in parallel. In this scenario, half of the computation time is wasted 
by idling processes waiting for the slowest processes to finish. This performance issue can be 
mitigated by using smaller block sizes, which reduces the imbalance. This introduces a trade-off 
between imbalance and parallelisation overhead. Porting to Hecuba simplified portions of code 
required to synchronize metadata for HDF5 files or file creations and to simplify many of the file 
operations. 

5.2 NEST 
We investigate the in-transit processing of simulation data, based on a prototype scenario: a 
distributed producer, here NEST, writes data to single consumer process, represented by a simple 
custom visualisation of synaptic potentials. The transport of data is implemented using UDJ. For 
describing the data to be exchanged between applications, we leverage Conduit. Also, operations 
can be requested from the remote side by sending messages through Conduit nodes. We extended 
NEST with a new back end for the recording infrastructure that packages the voltage signal with 
metadata into a Conduit node. Each recorder maps to a sub-node. The visualisation is written in C++ 
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using the VTK library in an event driven style. It polls an UDJ endpoint for incoming Conduit nodes 
and unpacks these into corresponding commands (currently plot and quit) and the actual data portion 
(see Figure 5). The consumer application processes time series data that might have been generated 
by different processes on the NEST side. It therefore needs to concatenate data blocks from different 
producer processes under the same path in the node. For efficiency, we implemented this as a two-
step process: the back end in NEST will merge nodes over shared memory domains and only one 
process per domain initiates the communication. The consumer will thus receive one node per sender 
and merge these into a single final data node, see Figure 6. We noted that some of the features of 
Conduit did not work for our use case, namely passing structured external data via MPI. We do not 
present performance numbers in this document, as this is foremost a demonstration of the concept. 
UDJ is currently lacking functional support for asynchronous communication, which would allow us 
to overlap transfer and production of the update. This would effectively decouple the producer from 
the consumer, unless the communication takes more time than to produce the next step. This 
capability is planned to become available in future versions of UDJ. 

 
Figure 6: Logical layout for Conduit nodes transferred from NEST to visualisation 

Spikes are stored as an array of structures comprising each of an 8B timestamp and an 8B source ID, which is 
represented in Conduit as two-strided external arrays. Voltages are external contiguous arrays of 8B floating point 
numbers. 

 
Figure 7: Conceptual view of the merge and transfer process of a Conduit node from producer 

to consumer 
Nodes are generated by each task individually and merged by the recording back end into one node per shared 
memory domain. Each domain elects a leader which transfers the results through UDJ to the visualisation. 



   
 

D7.2.1 (D43.1 D82) SGA2 M12 ACCEPTED 200731.docx PU = Public 28-Sep-2020 Page 16 / 18 
 

5.3 Label Propagation 
The analysis of the label propagation use case is still work in progress. We present here first results 
with one input set of two brain sections on a conventional parallel file system and explore some 
options to tune HDF5 file access. Furthermore, we investigate in-memory caching. At the time of 
writing, the BeeGFS installation on our testbed is not functional, due to a longer maintenance period, 
but it is expected to become available again within the next weeks. Analysis of the use case with a 
local, fast file system will be conducted as one of the next steps. 

5.3.1 HDF5 

We investigate the following setup for the test case: A set of three images is processed using 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
processes and 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 GPUs, resulting in 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 master processes and (𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺) 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺⁄  slaves per 
master. The application was profiled using the Darshan I/O characterisation tool. We first collected 
the total runtime of the application in Table 3 and the data volume read and written in Table 4. The 
master processes are responsible for writing the finished model and perform no read operations. 
Note that HDF5 uses a read-modify-write scheme to update data. We restrict the analysis to I/O on 
HDF5 files, the remainder being logging to console and file — which can be turned off — and reading 
the source code and configuration. Based on the runtime of the application, which depends on the 
number of processes, it is obvious that the generation of training batches is a major factor. 

Table 3: Runtimes of the application before optimisation 

Nodes Cores (SMT) Processes GPUs Time [s] 

1 10 (1) 10 2 7,913 

1 20 (1) 20 2 3,965 

1 20 (2) 40 2 2,728 

1 20 (1) 20 4 9,233 

1 20 (2) 40 4 5,099 

Table 4: Transferred volumes per process before optimisation (10 tasks, 2 GPUs) 

 Read [MiB] Write [MiB] 

Master 227 220 

Slaves 1183 0 

The HDF5 library automatically caches accessed chunks in the Raw Data Chunk Cache (RDCC) when 
using the chunked data format. However, the default parameters are not optimal for large files and 
chunks. For the smallest configuration (ten tasks, two GPUs), we show the impact of increasing the 
RDCC size in Table 5. The RDCC provides a measurable benefit, but since it is not shared between 
processes, data sharing is not exploited. The batch generator accesses image tiles randomly, which 
could benefit from a shared cache. 

There are two options for a shared cache: using a local fast file system or using main memory. The 
latter is only feasible when a small number of sections is used, as each consumes 1.8 GB. Due to the 
random-access pattern, we stage the full images into memory and local storage. 

Finally, we studied the effect of compressing the on-disk dataset. Chunked HDF5 files can optionally 
apply a transparent filter pipeline to chunks while reading or writing. One such filter is compression 
with the GZIP deflate algorithm. Shuffling the data is accomplished by another filter at no 
measurable performance cost and may help the compression rate. Compression reduces the 
requirements on disk bandwidth at the cost of increased CPU load during reading, due to 
decompression. As the former is quite low on the systems under consideration, we expect an overall 
performance improvement. Compression adds a one-time cost during generation of the dataset. 
Compression is entirely transparent for the application; no changes are needed to read compressed 
files. We list the effects of the different settings combinations in Table 5. Since savings in bandwidth 
are expected to be the main benefit of compression, we did not test the actual application with 
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higher compression levels. While there is a minor impact on the runtime, the savings in storage are 
substantial. 

Table 5: Effect of dataset compression, staging, and RDCC on runtime 

Tasks GPUs Filter Staged File Size [GiB] RDDC [MiB] Runtime [s] 

10 2 None No 1.8 1 7,913 

10 2 None No 1.8 1,024 7,665 

10 2 None Yes 1.8 1 7,752 

10 2 GZIP 3 No 1.1 1 10,454 

10 2 GZIP 3 No 1.1 1,024 7,747 

10 2 GZIP 3 Yes 1.1 1 7,770 

20 2 None No 1.8 1 3,965 

20 2 None No 1.8 1,024 3,792 

20 2 None Yes 1.8 1 3,787 

20 2 GZIP 3 No 1.1 1 5,211 

20 2 GZIP 3 No 1.1 1,024 3,814 

20 2 GZIP 3 Yes 1.1 1 3,812 

Higher compression rates could not be achieved with GZIP, even when adding a pre-shuffle filter. 

6. Outlook 
In the coming months, we plan to extend our results in various directions. We will explore DSS as an 
alternative to traditional block or object based I/O and analyse feasibility in at least one use case. 
Due to ongoing developments and legal issues, DSS has not been in productive use so far. 
Furthermore, we will use our experiences for defining an API based on the requirements of the 
different use cases. We foresee two possible outcomes; one being an API defined and implemented 
by members of the HBP and the other could be a set of extensions to a well-known interface, such 
as HDF5. Both approaches have merits and shortcomings. Extending HDF5 lowers the barrier to entry 
for users, as HDF5 is an established product, and remove some of the complexities of implementation 
as only new back ends need to be developed. Offering a locally developed library would allow us to 
tailor the design specifically to the needs of the Project, but places the full burden of 
implementation and maintenance on the HBP, along with driving adoption and providing training. 
Potentially, such a solution could also offer higher performance, as the front end can accommodate 
some of the specifics of the back ends. Currently, we plan to provide back ends for SWIFT and 
potentially DSS, and we consider a translation layer between Conduit and our chosen API solution. A 
third alternative would be to use Hecuba as a surface API. The current public version of Hecuba 
offers a Python API and Apache Cassandra. BSC plans to explore SWIFT as a back end for Hecuba and 
to offer Fortran and C++ bindings, which would make Hecuba an interesting choice. In our experience 
so far, we often found the need to transfer large datasets from one storage tier to another, most 
commonly in the form of a preparatory staging step, followed by processing and finally persisting 
the results and cleaning-up the temporary storage. We will formalise this process in the SLURM 
workflow manager. If time allows, we plan to diversify our set of use cases, which currently has 
image processing as its main focus. We will further investigate the feasibility of tiered strategies, 
where data is staged first into local storage and then into memory. This is potentially beneficial, as 
the access to global storage is provided through a single gateway and thus all compute nodes share 
the available bandwidth. 
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Annex 1: Conduit Merge Library 
The Conduit library provides various ways to manipulate tagged tree data structures (Nodes). Notably 
absent is a method to concatenate leaves. This scenario commonly arises in distributed processing, 
where each task generates one slice of a larger dataset. From a user's standpoint, this omission is 
inconvenient, given the utility. 

We provide a small library that implements the method Node concat(Node const&lhs, Node const& 
rhs), which will concatenate arrays addressable via the same path in order. Leaves at different paths 
will be inserted into the result unaltered. We also offer overloads for handling collections of Nodes. 
As different paths can refer to memory located in a shared buffer, the implementation is not trivial. 
Therefore, we make this functionality available as a library. 

Note that the implementation can be further optimised, especially with regards to the allocation of 
the final data structure. Also, the concat operation is a special case of a general higher-order 
function mergeWith that applies a function Node f(Node const& lhs, Node const& rhs) to leaves at 
the same path and inserts the returned Node into the result at the same path. This could be further 
generalised to apply a Node of such functions to its arguments, where a function at a path is applied 
at all paths below unless explicitly overridden at a more specific path. If the need arises for these 
generalisations, our library will be extended accordingly. 
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