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SP9 Neuromorphic Computing Platform 
- Results from SGA2 Year 2 (D9.6.2 – SGA2) 

 

 

 

Figure 1: The BrainScaleS (upper image) and SpiNNaker (lower image) machines. 
These machines form the HBP Neuromorphic Computing Platform, offering accelerated learning and programmable 
flexibility respectively. 
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1. Overview 
The SP9 Neuromorphic Computing Platform is part of the Human Brain Project’s EBRAINS research 
infrastructure, offering open access to two of the world’s leading neuromorphic (brain-inspired) 
computing systems. SpiNNaker (Spiking Neural Network Architecture) is a many-core digital 
computer incorporating a million ARM processor cores, and is the world’s largest neuromorphic 
computing system. BrainScaleS employs physical emulation, wherein analogue electronic circuits 
model the equations of the biological components directly, and is the world’s fastest neuromorphic 
computing system. Together, these two systems form the EBRAINS Neuromorphic Computing 
Platform and, as such, are the world’s only openly accessible neuromorphic computing resources. 

Significant advances over the last 12 months of SGA2 included the demonstration on SpiNNaker of 
the first robust, real-time implementation of the cortical microcircuit, paving the way for a real-
time multi-area cortical model in SGA3, published in the Philosophical Transactions of the Royal 
Society A: Mathematical, Physical and Engineering Sciences, in December 2019. The development of 
a range of novel learning algorithms on the BrainScaleS-2 prototype chip are also noteworthy. SP9 
has, with CDP5, contributed to the development of novel theories of computational principles, 
including learning-to-learn (L2L) and learning based upon dendritic computation, both of which are 
broadly applicable to neuromorphic systems. A gradient descent algorithm, e-prop, promises to bring 
the capabilities of backpropagation in artificial neural networks to spiking neural networks in a 
biologically-plausible mechanism, opening up the prospect of the wider applicability of spiking 
networks to industrially-relevant applications. All of these novel learning algorithms will be 
developed and applied to the Neuromorphic Computing Platform during SGA3. 
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2. Introduction 
During the two years of SGA2, the field of neuromorphic computing received increased attention; in 
particular, with the growing presence of the Intel Loihi chip across the academic research 
community. Loihi is not a full product, so companies cannot build product plans around it; rather, it 
is a “research prototype”, available to the academic community, which Intel is using to explore the 
future potential of such a product. 

Over the same period, there has been a growing expectation that neuromorphic technology has 
something to offer in the commercial AI domain, perhaps by reducing the very high power demands 
of conventional artificial neural network (ANN) solutions. Event-based AI, or bio-AI, has intrinsic 
properties that, when correctly realised, offer the prospect of significant power reduction, though 
there are still challenges in delivering this advantage. Training ANNs is now highly developed through 
frameworks such as Tensorflow and Keras, so one approach is to train an ANN and then convert it 
into a spiking neural network (SNN) for the inference phase. However, the simplest conversion 
approach, which is to use rate-based encoding, where the firing rate of an SNN neuron corresponds 
to the activation output of the ANN neuron, to replace a digital multiplication with multiplication 
by repeated addition, and confers no fundamental advantage. To show an advantage, the SNN must 
use an encoding other than rate-based, and some interesting alternatives are just beginning to 
emerge from work carried out in SP9. Key Result KR9.6 reports on applications developed after M12 
that exploit the 2nd-generation features of the hardware platforms. These applications include tools 
for mapping deep networks on SpiNNaker-2, hyper-parameter optimisation, structural plasticity, 
Bayesian sampling and others that are relevant for potential applications of HBP hardware in 
Artificial Intelligence. 

Of course, the major focus of SP9 is on developing neuromorphic computing systems that contribute 
to brain science through the EBRAINS infrastructure. Here there has been solid progress over the last 
12 months of SGA2 in improving the stability and capabilities of the supporting software stacks, and 
this has been demonstrated in the speeding up the cortical microcircuit model on SpiNNaker, from 
a 20x slow-down when reported in May 2018 to real-time in December 2019. Parallel advances on 
BrainScaleS have demonstrated a suite of novel learning algorithms. 
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3. Key Result KR9.1: Both first-generation 
machines integrated into Joint Platform 

3.1 Outputs 

3.1.1 Overview of Outputs 

3.1.1.1 List of Outputs contributing to this KR 

• Output 1: Neuromorphic Computing Platform Remote Access Service (C3042) 

• Output 2:  SpiNNaker Neuromorphic Computing System (C2) 

• Output 3:  BrainScaleS-1 (C1) 

3.1.1.2 How Outputs relate to each other and the Key Result 

Output 1 is used to submit jobs to and extract results from Output 2 and Output 3. Outputs 2 and 3 
are the first generation machines (namely SpiNNaker and BrainScaleS respectively) which are 
integrated into the Joint Platform as part of this KR. 

3.1.2 Output 1 

The Neuromorphic Computing Platform Remote Access Service (C3042) enables users to run 
simulations/emulations on the BrainScaleS, SpiNNaker and Spikey systems by submitting jobs to a 
central queue, and then retrieving the results once the simulation is complete. The core of the 
service is a web service with a REST API (C344), with authentication using the HBP identity service. 
Users can submit jobs using a Collaboratory app (Job Manager app; C343), through a Python client 
(C345), or on the command line (part of C345). The service also has a number of other components, 
such as a job statistics dashboard (C371) and a resource/quota management service (C369, C370). 

In the last year, the Job Manager app has had a number of minor improvements, but the major 
advancements have been in the back end. We have deployed a service for load-balancing and failover 
(C1638), to increase the availability of the REST API and Collaboratory apps. These services are 
currently running on two separate machines, using the ICEI VM infrastructure at CSCS. A load-
balancing service routes requests alternately to the two servers, and detects if one of the servers is 
not responding (in which case, a monitoring service alerts the platform maintainers). We have also 
developed Knowledge Graph (KG) schemas, based on the W3C PROV standard, for neuromorphic 
simulations, models, and results (C377), and periodically synchronise the job database with the KG, 
so that neuromorphic workflows can be fully integrated with other tools available on the 
HBP/EBRAINS infrastructure. We are in the process of rewriting the REST API to communicate directly 
with the KG, avoiding the need for the periodic synchronisation. 

Progress vs State of the Art & Recent Developments 

The criterion for “beyond state of the art” for SGA2 is “Worldwide unique integration of 
neuromorphic computing machines into the HBP-JP”. We consider that this criterion has been 
satisfied. 

Component Link to URL 

C3042 - SP9 
Neuromorphic 
Computing 
Platform 

Software Repository 
https://github.com/HumanBrainProject/hbp_neuromorphic_platform 
https://github.com/HumanBrainProject/hbp-neuromorphic-client 

Technical 
Documentation https://www.hbpneuromorphic.eu/developer_guide/index.html 

https://github.com/HumanBrainProject/hbp_neuromorphic_platform
https://github.com/HumanBrainProject/hbp-neuromorphic-client
https://www.hbpneuromorphic.eu/developer_guide/index.html
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Component Link to URL 
Remote 
Access 
Service 

User Documentation 
https://collab.humanbrainproject.eu/#/collab/51 (community 
account required. Request at: neuromorphic@humanbrainproject.eu) 
https://electronicvisions.github.io/hbp-sp9-guidebook/ 

3.1.3 Output 2: SpiNNaker related 

The SpiNNaker machine continues to be accessible from the Joint Platform via Output 1. The service 
has been updated to reduce the turnaround time when accessing jobs via the Joint Platform, by pre-
cloning the git modules required to operate the machine. These are then updated if required and 
any branch or tag changes are then made before the job is run. 

The SpiNNaker machine has also been made available through Jupyter notebooks, which are 
authenticated using the HBP authentication service. This allows the users to make use of the 
SpiNNaker machine in a more interactive way. The SpiNNaker-Neurorobotics Platform (NRP) 
interface has also been deployed through these Jupyter notebooks, so users can start their own NRP 
instance on a host machine adjacent to the SpiNNaker machine. 

Component Link to URL 

C2 - SP9 
SpiNNaker 
Neuromorphic 
Computing 
System 

Software Repository https://github.com/SpiNNakerManchester/RemoteSpiNNaker 

Technical 
Documentation Integrated into code 

User Documentation 
https://collab.humanbrainproject.eu/#/collab/51 (community 
account required. Request at: neuromorphic@humanbrainproject.eu) 
https://electronicvisions.github.io/hbp-sp9-guidebook/ 

3.1.4 Output 3: BrainScaleS-1 related 

The BrainScaleS-1 has been accessible from the Joint Platform via Output 1. During the reporting 
period, its hardware and software infrastructure was completed and enhanced in several aspects, 
as described in the following paragraphs. 

Component Link to URL 

C1 - SP9 
BrainScaleS-1 
Neuromorphic 
Computing 
System 

Software Repositories https://github.com/electronicvisions/ 

Technical Documentation Integrated into code and internal specification 

User Documentation https://electronicvisions.github.io/hbp-sp9-guidebook/ 

3.1.4.1 Migration Raspberry Pi3/4 

Updated BrainScaleS-1 systems are equipped with a newer version of Raspberry Pis, either with 
version 3B+ or 4. An upgrade-kit was developed for the existing systems. The software stack is 
updated to the newer version. The new Raspberry Pis have several advantages over the former ones. 
Now the Raspberry Pis boot over PXE and therefore don’t need sd-cards anymore. Maintenance of 
the Raspbian Linux distribution used now is also easier and the BrainScaleS-1 monitor- and control-
software is integrated in the continuous integration tool-chain. The Raspbian linux distribution has 
been upgraded too. The old one-core processor of the Raspberry Pi 1B was working at its limit. The 
new Raspberry Pis have additional CPU cores, which are useful for extensive monitoring features 
closer to the BrainScaleS-1 modules. 

https://electronicvisions.github.io/hbp-sp9-guidebook/
https://github.com/SpiNNakerManchester/RemoteSpiNNaker
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://electronicvisions.github.io/hbp-sp9-guidebook/
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3.1.4.2 Analysis of cooling concept of BrainScaleS-1 

The cooling concept of the BrainScaleS-1 modules was analysed with regard to noise reduction, 
efficiency and power consumption. All of these aspects were improved by optimising air guidance 
through the module and exchanging selected fans, while keeping cooling performance equal. As a 
result, some of the fans could be slowed down to 50% of their full speed, which also reduced the 
noise level. The power consumption of all fans could be decreased from around 180W to 70W. 

Additionally, a wafer temperature regulation system was developed. This pid regulator controls the 
fan speed to keep the wafer temperature constant at 48°C. 

3.1.4.3 Firmware Improvements for power supply boards 

The power supply boards of the BrainScaleS-1 module received a new firmware. Calibration of sensor 
data on the boards returns a more accurate state of the system, in terms of current consumption 
and operating point of the analogue circuits. Furthermore, the stability increased as new protection 
routines were installed and this also reduced the number of repairs required. For example, a current 
shunt on one board would burn under certain conditions; this situation can now be detected in 
advance and handled. As a result, no repair has been required since the firmware update. 

3.1.4.4 Testing and integration of new wafer set 

Wafer modules using wafers of the new HICANN v4.1 wafer set uncovered errors regarding 
communication with some HICANNs. To ensure that these errors were not introduced by the assembly 
procedure, a method for testing the wafers before the assembly had to be established. Therefore, 
an automated test suite for a wafer prober was developed and was used to test all components of 
the wafers of the new HICANN v4.1 wafer set. The tests that were integrated into the automated 
test suite covered High-Speed connection, slow control connection and power tests. Each type 
showed errors or irregularities at different HICANNs on each wafer in a low percentage range. These 
errors do not hinder wafer usage, but they do reduce the amount of resources that each wafer can 
provide. 

The assembly process has started, using the wafers with the lowest error rates. Four wafers have 
been assembled and integrated into the BrainScaleS-1 system and this process is still ongoing. 

3.1.4.5 Integration of new Analogue-to-Digital (ADC) subsystem into 
software framework 

The communication layer for the ADC subsystem has been developed. It allows for configuration of 
the ADC front-ends, trigger sources and recording lengths for all channels. Additionally, aggregated 
and compressed data can be retrieved from SDRAM and are re-assembled into separate traces. The 
hardware abstraction layers required for integration into the current BSS-1 software stack are in 
development. 

3.2 Validation and Impact 

3.2.1 Actual and Potential Use of Output(s) 

Output 1 (Neuromorphic Computing Platform Remote Access Service): 

The service is in use and provides an easy, installation free “first contact” with both NMC systems, 
directly integrated in the HBP Joint Platform Collaboratory. The service can also easily be used for 
training. 

Output 2 SpiNNaker: 
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Users continue to use the SpiNNaker machine via the Joint Platform, with over 8,000 jobs in total 
completed to date (up from around 5,000 at the start of April 2019), submitted by 88 users (up from 
69 at the start of April 2019). The SpiNNaker machine provides the HBP Research Infrastructure with 
a computing system capable of performing large-scale brain simulations, executed in real-time, 
allowing users to explore the performance of large-scale networks executing for longer durations. 
The Jupyter service has executed 14,660 runs, generated by 161 users, on the SpiNNaker machine 
since the service was started. Both the batch service and the Jupyter notebook service have been 
validated through continued interaction with users of the service, via the SpiNNaker mailing list and 
the HBP Support service. 

Output 3 BrainScaleS-1: 

The BrainScaleS-1 platform has reached a state where it can demonstrate the feasibility of wafer-
scale integration for neuromorphic computing, based on accelerated analogue physical models. In 
total, almost 400,000 jobs have been completed (c. 90,000 jobs since April 2019) by more than 70 
users (40 users in the last 90 days). These numbers include jobs submitted via the collab interface, 
Jupyter, and the local batch submission system. 

As soon as a wafer-scale version of the BrainScaleS-2 ASIC is available, the BrainScaleS platform will 
be capable of emulating the dynamics of learning and development of large networks of structured 
neurons in a time-continuous model, with an unprecedented energy efficiency. 

The contributions of the individual tasks to the output are as follows: 

The new Raspberry Pis improve the software maintainability and extend the possible monitoring and 
alerting options for the BrainScaleS-1 modules. 

The cooling optimisations reduce the power consumption of the cooling system, which saves energy 
and costs, and expands the lifetime of components, because fans don’t always run at full speed now. 

The new power supply firmware reduced the number of repair actions. 

The integration of the new HICANN v4.1 wafer set into the system increases the number of accessible 
chips with improved analogue neuromorphic circuitry. 

The new ADC subsystem improves the readout capability and thus will allow faster and more accurate 
HICANN calibration results. 

4. Key Result KR9.2: Comprehensive software suite 
for the operation of neuromorphic machines 

4.1 Outputs 

4.1.1 Overview of Outputs 

4.1.1.1 List of Outputs contributing to this KR 

• Output 1: Multicompartmental models in PyNN (C349) 

• Output 2: SpiNNaker Neuromorphic Computing System (C2) 

• Output 3: App for machine-learning with neuromorphic hardware (C1656 & C1644) 

• Output 4: MPI-SpiNNaker (C3045) 

• Output 5: Neuromorphic Benchmarks (C2735) 

• Output 6: MUSIC library (C347) 

• Output 7: Hardware integration (C1810) 
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• Output 8: CSA library (C1769) 

• Output 9: BrainScaleS-1 Software 

• Output 10: BrainScaleS-2 Software 

4.1.1.2 How Outputs relate to each other and the Key Result 

Output 2 provides the software for executing PyNN models on SpiNNaker. Currently, this has not 
been updated to work with Output 1. 

Output 3 relies on Output 2 as one of its target platforms. New concepts introduced by Output 1 
have been considered in the design, but cannot yet be deployed. 

Output 5 relies on Output 2 and Output 9, as these are targeted by the benchmark suite. 
Improvements to those Outputs may improve benchmark results, and benchmarking may lead to 
improvements in the respective software stacks of the platforms. 

4.1.2 Output 1: Multi-compartmental models in PyNN 

The next-generation BrainScaleS and SpiNNaker chips will allow multi-compartment neuron models, 
with non-linear mechanisms such as calcium dynamics. To support such models, work on extensions 
to PyNN began in SGA1 and continued in the first year of SGA2. In the second year of SGA2, we 
continued this work, adding support for the specific calcium and NMDA models that will be available 
in the BrainScaleS 2 chip (see Schemmel et al., 2017; https://arxiv.org/abs/1703.07286). 

Component Link to URL 

C349 - PyNN  

Software Repository https://github.com/NeuralEnsemble/PyNN/tree/mc 

Technical 
Documentation https://neuralensemble.org/docs/PyNN/2.0/developers_guide.html 

User Documentation https://neuralensemble.org/docs/PyNN/2.0/ 

4.1.3 Output 2: SpiNNaker Neuromorphic Computing System 

The SpiNNaker software continues to be improved. A prototype has been written which allows the 
execution of the 1mm2 cortical microcircuit to be executed in real time on the platform. 
Additionally, this network has been executed for 12 hours without any faults. We believe that this 
is the first time that this network has been run, both in real time and for such a duration, on any 
hardware, including HPC systems. 

In addition, the software has been updated to run jobs that use even larger shares of the machine’s 
resources, through the improvement of the routing table compression and routing key allocation 
algorithms. A network with around 8 million neurons and over 800 million synapses has been 
executed, using over 200 SpiNNaker boards. 

The software development has concentrated on making the platform more stable, and on improving 
the documentation. To this end, the data-loading and extraction protocols have been refactored to 
ensure correct operation. The code documentation has been reviewed and completed where parts 
were missing. 

The SpiNNaker platform is now considered to be at TRL6. This is demonstrated in four key areas that 
can be used to describe this TRL: 

• Prototype implementations of the software demonstrated on full-scale realistic problems: The 
software can run the cortical microcircuit which has a realistic number of inputs, and a prototype 
exists for running this in real time. The software has also successfully run a neural network across 
over 200 SpiNNaker boards. 

https://arxiv.org/abs/1703.07286
https://github.com/NeuralEnsemble/PyNN/tree/mc
https://neuralensemble.org/docs/PyNN/2.0/developers_guide.html
https://neuralensemble.org/docs/PyNN/2.0/
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• Partially integrate with existing hardware/software systems: The software integrates with the 
latest version of PyNN and Neo. The SpiNNaker system has been integrated with the HBP 
Collaboratory and with Jupyter notebooks, and there is a proof-of-concept integration with the 
HBP neurorobotics platform. There have also been some successful runs of the SNNToolbox 
software with SpiNNaker. SpiNNaker has also been successfully used with real robots, including 
a basic integration with MiroBot and deeper integration with the TUM Pushbot. 

• Limited documentation available: There is actually extensive documentation; including training 
documentation, in the form of installation instructions, lab manuals and presentations; hardware 
documentation, in the form of the chip datasheet and implemented protocol documentation; 
and user documentation, in the form of API-level documentation of the code. 

• Engineering feasibility fully demonstrated: The large SpiNNaker machine has been built and 
successfully tested at different scales of operation. The software has also been shown to run 
large networks on the 1 million core machine. 

Component Link to URL 

C2 - SP9 
SpiNNaker 
Neuromorphic 
Computing 
System  

Software Repository https://github.com/SpiNNakerManchester/sPyNNaker8 

Technical Documentation https://spinnaker8manchester.readthedocs.io/en/latest/ 

User Documentation https://spinnakermanchester.github.io/ 

4.1.4 Output 3: App for machine-learning with neuromorphic 
hardware 

The app for graphical neuromorphic model building (C1655) from SGA2 year one has been extended 
to support modular network components as an enabler for its practical use to describe larger 
machine-learning experiment set-ups (C1656). Modular components go beyond classical visual 
grouping of multiple network entities into a single node. Each module encapsulates expert 
knowledge about robust implementation techniques for typical subtasks on neuromorphic hardware. 
Only externally relevant neuron and synapse parameters are exposed in a consolidated inspector 
view. Coordinated sharing of consistent parameter sets in the module is expressed by the type 
concept for neurons and synapses in the underlying visual language. Module configuration in the 
editor includes scaling of the internal architecture and changes to the number of externally visible 
input or output ports. 

The library of available composable modules (C1644) is provided as templates of ultimately PyNN-based 
generator functions for the module architecture. For example, the winner-take-all module provides a 
very universal sub-network, while the module for a head direction network is specific to the robotics 
domain. Beyond local installation of the app, deployment as a client-side web app inside the 
Collaboratory allows seamless remote access to the large-scale SP9 neuromorphic hardware platforms. 

 
Figure 2: App for graphical neuromorphic model building  

Local app inspecting the parameters of a winner-take-all module instance (left) and embedded collaboratory app (right) 

https://github.com/SpiNNakerManchester/sPyNNaker8
https://spinnaker8manchester.readthedocs.io/en/latest/
https://spinnakermanchester.github.io/
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Progress vs State of the Art & Recent Developments 

Usage of a formally defined, typed visual language and structurally variable modules, with template-
based code generation, is an advance beyond existing graph editors for visual descriptions of network 
architectures. 

Component Link to URL 

C1656 - SP9 App for 
machine-learning with 
neuromorphic 
hardware 

Software 
Repository https://github.com/hbp-unibi/NeuroCoCoon 

Technical 
Documentation 

https://github.com/hbp-
unibi/NeuroCoCoon/blob/master/Installation.md 

User 
Documentation 

https://github.com/hbp-
unibi/NeuroCoCoon/blob/master/Usage.md 

C1644 -Library of 
modular and 
composable sub-
networks for 
computing with 
neuromorphic 
hardware systems 

Software 
Repository 

https://github.com/hbp-
unibi/NeuroCoCoon/tree/master/ncc/src/de/unibi/hbp/ncc/lan
g/modules 

Technical 
Documentation 

https://github.com/hbp-
unibi/NeuroCoCoon/blob/master/Extending.md 

User 
Documentation 

https://github.com/hbp-
unibi/NeuroCoCoon/blob/master/Usage.md 

4.1.5 Output 4: MPI-SpiNNaker 

Flexible on-line reconfiguration and memory management system for SpiNNaker 

The SpiNNaker neuromorphic architecture is increasingly used, not only for real-time simulation of 
brain-scale biological neural networks, but also to support innovative brain-inspired computational 
paradigms. In both domains, there is increasing demand for flexibility, in terms of network 
configuration and run-time redesign of network parameters and simulated neurons models. Due to 
the intrinsically high parallelism and complexity of the interconnected processing units, broadcasting 
updates to the cores is time consuming. Hence, static solutions, where the network is re-loaded 
from an external host, are highly inefficient. To address these requirements, we have designed the 
Application Command Protocol (ACP), which provides a mechanism to remotely trigger the execution 
of high-level op-codes by the cores and manage their application memory. We have demonstrated 
ACP in two SNN applications: i) SNN configuration, where simulation data are efficiently generated 
through ACP in the memory of computing nodes and ii) SNN reconfiguration, where ACP is used to 
change SNN network parameters at runtime and to easily switch from learning to test phase in a SNN 
classification application. The ACP protocol enabled a more flexible computational model and 
memory management system. 

Message Passing Interface Component for SpiNNaker 

Several studies have shown that neuromorphic platforms allow flexible and efficient simulations of 
SNN by exploiting the efficient communication infrastructure optimised for transmitting small 
packets across the many cores of the platform. However, the effectiveness of neuromorphic 
platforms in executing massively parallel general-purpose algorithms, while promising, is still to be 
explored. In the case of SpiNNaker, the implementation of MPI must deal with a resource limit, both 
in terms of memory and computing power. However, it can take advantage of the technology offered 
by on-chip routers, thereby obtaining efficient communication. The MPI-SpiNNaker software stack 
creates a simple working framework, offering a universally known programming model capable of 
making the SpiNNaker architecture available for a wide range of applications, both synchronous and 
asynchronous. (Benchmark in Urgese et al. 2019) 

Component Link to URL 

C3045 
Software Repository 

https://github.com/neuromorphic-polito/SpinACP.git 
https://github.com/neuromorphic-polito/SpinMPI.git 

Technical Documentation  

https://github.com/hbp-unibi/NeuroCoCoon
https://github.com/hbp-unibi/NeuroCoCoon/blob/master/Installation.md
https://github.com/hbp-unibi/NeuroCoCoon/blob/master/Installation.md
https://github.com/hbp-unibi/NeuroCoCoon/blob/master/Usage.md
https://github.com/hbp-unibi/NeuroCoCoon/blob/master/Usage.md
https://github.com/hbp-unibi/NeuroCoCoon/tree/master/ncc/src/de/unibi/hbp/ncc/lang/modules
https://github.com/hbp-unibi/NeuroCoCoon/tree/master/ncc/src/de/unibi/hbp/ncc/lang/modules
https://github.com/hbp-unibi/NeuroCoCoon/tree/master/ncc/src/de/unibi/hbp/ncc/lang/modules
https://github.com/hbp-unibi/NeuroCoCoon/blob/master/Extending.md
https://github.com/hbp-unibi/NeuroCoCoon/blob/master/Extending.md
https://github.com/hbp-unibi/NeuroCoCoon/blob/master/Usage.md
https://github.com/hbp-unibi/NeuroCoCoon/blob/master/Usage.md
https://github.com/hbp-unibi/snabsuite
https://github.com/neuromorphic-polito/SpinMPI.git
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User Documentation  

4.1.6 Output 5: Neuromorphic Benchmarks 

In the second half of SGA2, the black-box benchmark framework SNABSuite (C2735) was extended 
to support more application driven benchmarks. Most notably, the framework now includes 
benchmarks on solving constraint satisfaction problems with the help of winner-take-all 
architectures (Ostrau et al., 2019), classification benchmarks on the MNIST hand-written digits 
dataset, and central parts of a simultaneous localisation and mapping algorithm. The coupling to 
BrainScaleS has been improved, increasing the efficiency of the evaluation and utilising more 
features of the software stack. Furthermore, all benchmarks can be executed on Nvidia GPUs using 
the GeNN code-generation framework. The target TRL 6 has been reached, as a full software pipeline 
has been set into place, which automatically executes all benchmarks on SpiNNaker, BrainScaleS and 
NEST on a regular basis (Figure 3). 

Progress vs State of the Art & Recent Developments 

Benchmarking of neuromorphic hardware is a hot topic (for example, see the comment by Intel’s 
Mike Davies in Nature Machine Intelligence, 2019). To our knowledge, SNABSuite is the only 
framework that incorporates several benchmarks and covers several hardware systems at the same 
time. Of a similar nature is the current endeavour to simulate the full-scale cortical microcircuit 
model on SpiNNaker, NEST, and GeNN, which is reported in several publications. However, these use 
platform-specific implementations, which is contrary to our approach. 

 
Figure 3: Benchmark work-flow: from an application to the tracking of results in the web-service. 

Component Link to URL 

C2735 - 
SNABSuite 

Software Repository https://github.com/hbp-unibi/snabsuite 

Technical Documentation https://hbp-unibi.github.io/SNABSuite/index.html 

User Documentation https://github.com/hbp-
unibi/SNABSuite/blob/master/README.md 

https://github.com/hbp-unibi/snabsuite
https://hbp-unibi.github.io/SNABSuite/index.html
https://github.com/hbp-unibi/SNABSuite/blob/master/README.md
https://github.com/hbp-unibi/SNABSuite/blob/master/README.md
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4.1.7 Output 6: MUSIC library 

The MUSIC communication framework enables modular development of neuronal network models 
and tools, and supports integration of neuromorphic hardware with HPC and neurorobotic hardware. 

During the second half of SGA2, a new version of the MUSIC main development line was released 
(v1.1.16). This release partly serves as a reference point for current MUSIC users, but also as a 
preparation for an upcoming new release series supporting multiple communication algorithms (v2). 
In addition, a first version of MUSIC with a novel API, supporting user-requested features such as 
dynamic ports, has been released (v3.1.0) The two development lines (v1-2 and v3) will run in 
parallel, until the novel API has gained acceptance in the community. 

Component Link to URL 

C347   SP9 
MUSIC 
library 

Software Repository https://github.com/INCF/MUSIC 

Technical Documentation https://github.com/INCF/MUSIC/wiki/files/music-manual.pdf 

User Documentation https://github.com/INCF/MUSIC/wiki 

4.1.8 Output 7: Hardware integration 

The MUSIC SpiNNaker-adapters are software components which allow any MUSIC-aware software to 
interface with SpiNNaker. 

During the second half of SGA2, the MUSIC SpiNNaker-adapters were improved and bugs fixed. 
Additional examples of their use have been written. 

Component Link to URL 

C1810 -
MUSIC - 
hardware 
integration 

Software Repository https://github.com/incf-music/spinnaker-adapters 

Technical Documentation  

User Documentation https://github.com/incf-music/spinnaker-
adapters/blob/master/README.md 

4.1.9 Output 8: CSA library 

CSA (Connection-set algebra) is a formalism for expressing neuronal network connectivity. Novel 
connectivity patterns can be constructed in an abstract manner from basic patterns, using operators 
in a way that allows for efficient parallel instantiation of connections. A demonstration 
implementation in Python exists (https://github.com/INCF/csa). During the second half of SGA2, 
the novel C++ implementation was finalised and released (v1.0.0) and three releases of the Python 
implementation were made (v1.1.8, v1.1.10, v1.1.12). 

Component Link to URL 

C1769 -SP9 
Connection-
set algebra 
library 

Software Repository https://github.com/INCF/libcsa 

Technical Documentation  

User Documentation  

4.1.10 Output 9: BrainScaleS-1 Software 

The operating system (Müller et al. 2020a) was continuously developed, including the addition of 
new features, user wishes and bug fixes. Among these, the following improvements were put in 
place: 

• HICANN chips on a wafer can be influenced by neighbouring chips when they are in an undefined 
state. To guarantee no mutual influence, an automated initialisation was added to the SLURM 
resource allocation mechanism. When requesting HICANNs, neighbouring chips are identified and 

https://github.com/INCF/MUSIC
https://github.com/INCF/MUSIC/wiki/files/music-manual.pdf
https://github.com/INCF/MUSIC/wiki
https://github.com/incf-music/spinnaker-adapters
https://github.com/incf-music/spinnaker-adapters/blob/master/README.md
https://github.com/incf-music/spinnaker-adapters/blob/master/README.md
https://github.com/INCF/csa
https://github.com/INCF/libcsa
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a database checked to see if they are already in a defined state. If not, they are initialised and 
marked in the database to shorten setup times of following runs. 

• A feature was added that retries to initialise the on-wafer bus network, based on verification 
measurements from on-chip test features. 

• A configuration mode was added that allows the HICANNs to be configured incrementally, without 
user interaction. The automated configuration tracks the configured state and re-configures only 
the components with settings that were changed between two executions. This allows faster and 
less error-prone iterative experiments. 

Component Link to URL 

C1 - 
BrainScaleS-1 
Neuromorphic 
Computing 
System 

Software Repositories https://github.com/electronicvisions/ 

Technical Documentation Integrated into code and internal specification 

User Documentation https://electronicvisions.github.io/hbp-sp9-guidebook/ 

4.1.11 Output 10: BrainScaleS-2 Software 

In pursuit of the software specification in reference document D9.2.1 - SGA2, the following additions 
and developments were carried out (Müller et al. 2020b): 

• The abstraction of the FPGA instruction set now fully implements write and read operations to 
and from all on-chip register types, the event communication and ADC response data, as well as 
FPGA SPI devices. Building and execution of a timed sequence of register-like write and read 
accesses, in the form of a “playback programme”, is fully implemented. Event support, logging 
and printout improvements have been added to the now-complete transport-layer formatting 
library “hxcomm”. 

• Most full-custom chip configuration entities have been abstracted into corresponding container 
types, enabling configuration of: synapses, synapse drivers, neurons, readout-chains and routing, 
plasticity processor unit programme loading, execution control and result fetching, amongst 
other things. 

• In addition, the implementation of containers in the logical configuration layer has been started. 
The array and matrix shape of configuration entities on the chip, e.g. the synapse matrix or 
parallel-column-ADC readout has been realised as alike container structures simplifying access. 
An “atomic” neuron container, embodying digital configuration alongside analogue parameters 
belonging to the said neuron, has been developed as a structured abstract representation. 

• Verification of software changes was enhanced by an automation of the hardware simulation 
framework for the continuous integration workflow. Upload of a change to the code review 
service automatically triggers a build of the software suite and a startup of a hardware simulator 
instance. Software unit tests are automatically verified, connecting to the started simulator 
instance. 

• The automatically generated C++-Python wrapper source code, as well as the Python-only parts 
of the interfaces, have been migrated from Python 2 to Python 3. 

• In-code documentation of C++ sources using doxygen has been extended to almost full coverage 
in hxcomm, as well as fisch; it also covers the essential parts of the low-level configuration, 
logical configuration and experiment control layers (haldls, stadls and lola). Building the 
documentation is integrated in the build flow alongside of the shared library for C++ or Python 
libraries. For internal use, UHEI’s Jenkins continuous integration server builds and deploys the 
documentation as a html-based website. Publishing this code documentation to the live “SP9 
Guidebook” is work-in-progress. 

• Extensions for the custom vector unit of the PowerPC-based plasticity processor unit have 
successfully been ported from gcc 4.9.4 to gcc 8.1, which acts as a full replacement. In addition, 
we now support the usage of “embedded” C++17. 

https://github.com/electronicvisions/
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://sos-ch-dk-2.exo.io/public-website-production/filer_public/e7/2c/e72c28e7-ab44-46b7-8e07-7770a720079c/d921_d581_d91_sga2_m12_accepted_190723.pdf
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Component Link to URL 

C457 - SP9 
BrainScaleS 2 
Neuromorphic 
Computing 
System 

Software Repositories https://github.com/electronicvisions/ 

Technical Documentation D9.2.1, also in-code documentation 

User Documentation https://electronicvisions.github.io/hbp-sp9-guidebook/ 

4.2 Validation and Impact 

4.2.1 Actual and Potential Use of Output(s) 

• Output 1 (Multi-compartmental models in PyNN). This functionality is still in the early stages of 
development. As yet, we are not aware of any users. Within the HBP, the Arbor development 
team plans to implement support for the multi-compartment PyNN API during SGA3. 

• Output 2 The SpiNNaker software is deployed as discussed in KR1. In addition to this, the 
software integration tests are run before any major changes are integrated into the main 
software, with these and some additional longer-running tests based on various user-provided 
scripts being run on a daily basis. This ensures that any breaking changes to the software are 
detected early. 

• Output 3 (App for machine-learning with neuromorphic hardware). Development versions of the 
app have been used in introductory spiking neural network courses for master and PhD students. 
The current refined version of the app is considered stable enough for such controlled guided 
classroom scenarios on the order of 10–20 participants. 

• Output 4 We tested the new SW library for the porting on SpiNNaker of a parallel DNA sequence-
matching algorithm implemented by using the MPI programming paradigm. In the test, all cores 
of the board are configured for executing in parallel an optimised version of the Boyer-Moore 
(BM) algorithm. Exploiting this application, we benchmarked the SpiNNaker platform in terms of 
scalability and synchronisation latency. Experimental results indicate that the SpiNNaker parallel 
architecture allows a linear performance increase with the number of used cores and shows 
better scalability than a general-purpose, multi-core computing platform (Urgese  et al., 2019). 

• Output 5 (Neuromorphic Benchmarks). With the increasing interest in benchmarks, we expect a 
growing number of users for the web-service, which is tracking benchmark results. It requires 
and uses the full tool-chain of the SP9 infrastructure, and contributes in form of the 
aforementioned web-service. 

• Output 6 (MUSIC). MUSIC has been used as a middleware in the SPORE NEST module for studying 
synaptic plasticity with online reinforcement learning since 2017 (Kaiser et al., 2019, Kappel et 
al., 2018) as well as interfacing neuronal simulators to ROS (Weidel et al., 2016, Bahaguna et al. 
2018) and the OpenAI gym (Jordan et al., 2017).  

• Output 7 (Hardware integration) A demonstrator application interfacing SpiNNaker with robotic 
hardware, using MUSIC SpiNNaker-adapters, is being developed. 

• Output 8 (CSA) CSA is used in the HBP Neurorobotics Platform (NRP) and has been used as an 
intermediate language in the generation of neuronal network connectivity from visual 
representations (Herbers, 2017). 

• Output 9 (BSS-1) and Output 10 (BSS-2): The developments and added features for both BSS-1 
and BSS-2 operating systems are used by all users of the neuromorphic hardware, especially the 
experiments carried out and described in KR 9.3. 

https://github.com/electronicvisions/
https://electronicvisions.github.io/hbp-sp9-guidebook/
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4.2.2 Publications 

• Brocke, Ekaterina. “Method development for co-simulation of electrical-chemical systems in 
Neuroscience.” Doctoral thesis TRITA-EECS-AVL ; 2020:9, KTH Stockholm. (Output 6, P2398) 
Relevance: the thesis describes an extension of MUSIC towards multiscale co-simulatio 

• Urgese, Gianvito, Francesco Barchi, Emanuele Parisi, Evelina Forno, Andrea Acquaviva, and 
Enrico Macii. "Benchmarking a Many-Core Neuromorphic Platform with an MPI-Based DNA 
Sequence Matching Algorithm." Electronics 8, no. 11 (2019): 1342, DOI 
10.3390/electronics8111342. (Output 4, P2286) 

• Oliver Rhodes, Luca Peres, Andrew G. D. Rowley, Andrew Gait, Luis A. Plana, Christian 
Brenninkmeijer and Steve B. Furber. “Real-time cortical simulation on neuromorphic hardware”. 
Philos Trans A Math Phys Eng Sci. 2020 Feb 7;378(2164):20190160. DOI:10.1098/rsta.2019.0160 
(Output 2, P2299) 

• Ostrau, Christoph, Christian Klarhorst, Michael Thies, and Ulrich Rückert. "Comparing 
Neuromorphic Systems by Solving Sudoku Problems." In Conference Proceedings: 2019 
International Conference on High Performance Computing & Simulation (HPCS). 2019. 
(Output 5, P2047)  

• Eric Müller, Sebastian Schmitt, Christian Mauch, Sebastian Billaudelle, Andreas Grübl, Maurice 
Güttler, Dan Husmann, Joscha Ilmberger, Sebastian Jeltsch, Jakob Kaiser, Johann Klähn, Mitja 
Kleider, Christoph Koke, José Montes, Paul Müller, Johannes Partzsch, Felix Passenberg, Hartmut 
Schmidt, Bernhard Vogginger, Jonas Weidner, Christian Mayr, Johannes Schemmel “The 
Operating System of the Neuromorphic BrainScaleS-1 System”, 2020a, arXiv 2003.13749 (Output 
9, P2490) 

• Eric Müller, Christian Mauch, Philipp Spilger, Oliver Julien Breitwieser, Johann Klähn, David 
Stöckel, Timo Wunderlich, Johannes Schemmel “Extending BrainScaleS OS for BrainScaleS-2”, 
2020b, arXiv 2003.13750 (Output 10, P2491) 

5. Key Result KR9.3: Operational prototype of a 2nd 
generation BrainScaleS chip featuring on-chip 
local plasticity and non-linear dendritic processing 

5.1 Outputs 

5.1.1 Overview of Outputs 

5.1.1.1 List of Outputs contributing to this KR 

• Output 1: Deep learning with time-to-first-spike coding 

• Output 2: Sampling-based Bayesian computation 

• Output 3: Structural plasticity 

• Output 4: Control of criticality and computation 

• Output 5: Insect-inspired navigation 

• Output 6: Spiking Heidelberg Digits 

• Output 7: BrainScaleS-2 setups 

http://kth.diva-portal.org/smash/record.jsf?pid=diva2:1388512
https://doi.org/10.3390/electronics8111342
https://10.0.4.74/rsta.2019.0160
https://arxiv.org/abs/2003.13749
https://arxiv.org/abs/2003.13750
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5.1.1.2 How Outputs relate to each other and the Key Result 

The research/tests described here make use of the BrainScaleS-2 chips [Schemmel, 2020] and serve 
as validation of the manufactured hardware systems and the necessary software environment. 

Component Link to URL 

C0457: SP9 BrainScaleS 2 
Neuromorphic Computing 
System 

Technical 
Documentation 

Starting to appear at: 
https://electronicvisions.github.io/hbp-sp9-
guidebook/pm/bss2.html 

User Documentation 
Starting to appear at: 
https://electronicvisions.github.io/hbp-sp9-
guidebook/pm/bss2.html 

5.1.2 Output 1: Deep learning with time-to-first-spike coding 

 
Figure 4: Feed-forward network for fast inference 

For fast inference, we train a feed-forward network (Figure 4A) that uses time-to-first-spike coding, 
for both input and classification (B). We analytically derived differentiable equations for the spike 
time of leaky integrate-and-fire neurons [Goeltz, 2019] that provide learning rules based on error-
backpropagation. On a sample data set (C) with inference on BrainScaleS-2 and update calculation 
on a host, training succeeds fast (D) and neurons coding correct classes (E, red) decrease their spike 
time compared to wrong classes (blue). The speed of inference (about 10μs per pattern) is 
independent of emulated network size, classification of larger data sets is work in progress. 

5.1.3 Output 2: Sampling-based Bayesian computation 

 

https://electronicvisions.github.io/hbp-sp9-guidebook/pm/bss2.html
https://electronicvisions.github.io/hbp-sp9-guidebook/pm/bss2.html
https://electronicvisions.github.io/hbp-sp9-guidebook/pm/bss2.html
https://electronicvisions.github.io/hbp-sp9-guidebook/pm/bss2.html
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Figure 5: Network of LIF neurons for Bayesian inference 

Networks of LIF neurons can perform Bayesian inference through sampling on probability 
distributions defined over binary variables [Petrovici, 2016]: During post-spike refractoriness, a 
neuron is considered to be in the state z=1, and z=0 otherwise (Figure 5A,B). We used contrastive 
Hebbian learning with updates calculated on a host PC, and monitor the Kullback-Leibler divergence 
to the target distribution (C) [Billaudelle, 2019b]. After training, the network reliably performed 
Bayesian inference on its target distribution (D). 

5.1.4 Output 3: Structural plasticity 

 
Figure 6: Structural plasticity on BrainScaleS-2 

We utilise the event routing scheme inherent in the BrainScaleS-2 architecture (Figure 6A) to 
efficiently implement structural plasticity [Billaudelle, 2019a]. During learning, the connectome 
emerges from a pool of potential connections. The synaptic fan-in of a neuron is kept constant over 
time, resulting in a sparse connectivity structure. Our structural plasticity algorithm leads to the 
formation of receptive fields closely resembling the topology of the data set (B). It converges to an 
optimal classification performance independent of the imposed sparsity level (C), here for the Iris 
data set. 

5.1.5 Output 4: Control of criticality and computation 

 
Figure 7: Influence of criticality on task performance 

https://doi.org/10.1103/PhysRevE.94.042312
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We developed a spiking network with on-chip synaptic plasticity for which the distance to criticality 
can be easily adapted by changing the input strength [Cramer, 2019a]. With this setup, we then 
demonstrate a clear relation between criticality, task-performance and information-theoretic 
fingerprint. The critical state is assumed to be optimal for any computation in recurrent neural 
networks, because criticality maximizes a number of abstract computational properties. Whereas 
the information-theoretic measures all show that network capacity is maximal at criticality, this is 
not the case for performance on specific tasks: Only the complex, memory-intensive tasks profits 
from criticality (Figure 7B), whereas the simple tasks suffer from it (A). Thereby, we challenge the 
general assumption that criticality would be beneficial for any task, and provide instead an 
understanding of how the collective network state should be tuned to task requirement to achieve 
optimal performance. 

5.1.6 Output 5: Insect-inspired navigation 

 
Figure 8: Virtual insectoid agent on BrainScaleS-2 

A virtual insectoid agent on BrainScaleS-2 uses path integration to navigate back home after 
spreading out randomly [Billaudelle, 2019b]. The network is schematically depicted next to the 
activity histogram (Figure 8A). Information flows from the sensory layer at the top through an 
integration and a steering layer to the motor neurons at the bottom. A typical trajectory of the 
virtual insect which turns to random looping around the home position upon reaching it is shown in 
(B). (C) shows an overlay of 100 trajectories like that, each with a different random outbound 
journey. 
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5.1.7 Output 6: Spiking Heidelberg Digits 

 
Figure 9: Representation of the Spoken digits dataset 

Spiking neural networks are the basis of versatile and power-efficient information processing in the 
brain. To accelerate the development of spiking neural network models, objective ways to compare 
their performance are indispensable. Presently, however, there are no widely accepted means for 
comparing the computational performance of spiking neural networks. To address this issue, we 
introduce a general audio-to-spiking conversion procedure and provide two novel spike-based 
classification datasets [Cramer 2019b, Figure 9]. The datasets are free and require no additional 
pre-processing, which renders them broadly applicable to benchmark both software and 
neuromorphic hardware implementations of spiking neural networks. 

5.1.8 Output 7: BrainScaleS-2 setups 

 
 

Figure 10: BrainScaleS-2 HICANN-X setup 

We developed new HICANN-X setups which can readily be used for experiments. Fourteen of them 
are already located in our laboratory. First experiments have been successful. In Figure 10, next to 
the photo of one of the setups, the synapses’ correlation sensors are characterised. The plot shows 
means and standard deviations of all 32,768 synapses which are located in one quadrant of the chip. 
The timing of pre- and postsynaptic spikes is measured in every synapse. If presynaptic events are 
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followed by postsynaptic ones, these positive delays result in causal amplitudes (blue); the inverse 
order implies anti-causal correlation (orange). These correlations can be processed making use of 
the local microprocessor, allowing for weight updates and on-chip learning based on spike-timing 
dependent plasticity (STDP). 

5.2 Validation and Impact 

5.2.1 Actual and Potential Use of Output(s) 

The outputs are first test- and demonstration uses of the Key Result (the chip + system) and at the 
same time show some of the potential of the systems. The exploitation of the BrainScaleS-2 single-
chip (and then also multi-chip) systems for research and, potentially, industrial use is planned for 
SGA3. The BrainScaleS-2 chips/systems developed and tested in SGA2 will become part of the 
EBRAINS platform in SGA3. 

5.2.2 Publications 

• [Billaudelle, 2019a] S. Billaudelle, B. Cramer, M. A. Petrovici, K. Schreiber, D. Kappel, J. 
Schemmel, and K. Meier, “Structural plasticity on an accelerated analog neuromorphic hardware 
system” arXiv preprint arXiv:1912.12047, 2019 (Output3, P2240) 

• [Billaudelle, 2019b] S. Billaudelle, Y. Stradmann, K. Schreiber, B. Cramer, A. Baumbach, D. Dold, 
J. Göltz, A. F. Kungl, T. C. Wunderlich, A. Hartel, E. Müller, O. Breitwieser, C. Mauch, M. Kleider, 
A. Grübl, D. Stöckel, C. Pehle, A. Heimbrecht, P. Spilger, G.Kiene, V. Karasenko, W. Senn, M. A. 
Petrovici, J. Schemmel, K. Meier, “Versatile emulation of spiking neural networks on an 
accelerated neuromorphic substrate” arXiv preprint arXiv:1912.12980, 2019 (Output 5, P2241) 

• [Cramer, 2019a] B. Cramer, D. Stöckel, M. Kreft, M. Wibral, J. Schemmel, K. Meier, V. 
Priesemann, “Control of criticality and computation in spiking neuromorphic networks with 
plasticity”, arXiv preprint arXiv:1909.08418, 2019 (Output 4, P2355) 

• [Cramer, 2019b] B. Cramer, Y. Stradmann, J. Schemmel, F. Zenke, “The Heidelberg spiking 
datasets for the systematic evaluation of spiking neural networks”, arXiv preprint 
arXiv:1910.07407, 2019 (Output 6, P2356) 

• [Goeltz, 2019] J. Göltz, A. Baumbach, S. Billaudelle, O. Breitwieser, D. Dold, L. Kriener et al., 
“Fast and deep neuromorphic learning with time-to-first-spike coding” arXiv preprint 
arXiv:1912.11443, 2019 (Output 1, P2239) 

• [Schemmel, 2020] Johannes Schemmel, Sebastian Billaudelle, Phillip Dauer, Johannes Weis 
“Accelerated Analog Neuromorphic Computing” arXiv 2003.11996 (BrainScaleS-2) 

6. Key Result KR9.4: Operational prototype of a 
second generation SpiNNaker chip featuring 10-
fold improved energy efficiency, 144 Cortex 
M4F and 36 GIPS/Watt per chip 

6.1 Outputs 

https://arxiv.org/abs/1912.12047
https://arxiv.org/abs/1912.12980
https://arxiv.org/abs/1909.08418
https://arxiv.org/abs/1910.07407
https://arxiv.org/abs/1912.11443
https://arxiv.org/abs/2003.11996
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6.1.1 Overview of Outputs 

6.1.1.1 List of Outputs contributing to this KR 

Output 1: SpiNNaker next generation (NM-MC2, SGA2) chip (Component id: C2628), demonstrating 
new key chip hardware feature for >10-fold energy efficiency improvement 

6.1.2 Output 1: SpiNNaker next generation chip 

Measurements of the SpiNNaker2 prototype JIB1 have been performed, with focus on the energy 
efficiency of the processing elements (PE) for neuromorphic and machine learning applications, with 
the following main results: 

• Power measurement results of the PE at 250MHz from 0.50V supply voltage 

o CoreMark Benchmark achieving 20uW/MHz (20pJ/operation) 

o Matrix multiplication using 16x4 MAC arrac (int8) achieving 3.4Tops/W. 

• Operational chip-to-chip Links at 1GBit/s/lane with 4pJ/Bit energy consumption. 

A JIB2 test chip has been implemented, which contains at least one instance each of theSpiNNaker2 
building blocks, as shown in Figure 11. 

 
Figure 11: JIB2 test chip 

 

These macros include: 

• LPDDR4 Memory interface (PHY+Controller) for external DRAM connection 

• Processing Element (PE) and Quad-Processing Element Cluster (QPE) 

• Chip-to-Chip Spike Communication Links (horizontal and vertical instance) 

• Host-Interface (Ethernet and FPGA connection) 

• SpiNNaker Router 

• Periphery Block (Management processor, GPIO) 

The tape out-ready layout of the JIB2 test chip is shown in Figure 12: 
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Figure 12: Tape-out ready layout of the JIB2 testchip 

With this, all SpiNNaker2 components can be validated in a silicon prototype before integrating them 
in the final SpiNNaker2 chip, with the full scaling of 152 PEs, 6 Chip-to-Chip Links and two LPDDR4 
memory interface instances. 

The following table shows the updated performance of the HPB SpiNNaker2 prototypes, compared 
to SPiNNaker1. 

Table 1: SpiNNake-2 prototype performance, compared to SpiNNaker-1 

 SpiNNaker 
1 [1] 

SpiNNaker2 
prototype 

from SGA1 [2] 
(C467) 

SpiNNaker2 
prototype JIB1 

from SGA2  
(C2628) 

SpiNNaker2 
prototype 
JIB2 from 

SGA2  (C2628) 

SpiNNaker2 
(estimation) 

Processing Element Features 

Technology 130nm 28nm 22nm FDSOI 

PE clock frequency 200MHz 125MHz to 
500MHz 200 to 400MHz 150 to 300MHz 

PE MAC accelerator no no Yes Yes 

PE neuromorphic 
accelerators (exp, 

PRNG) 
no yes Yes 

Power Management no 

Dynamic voltage 
and frequency 
scaling (3 
levels) 

Dynamic voltage and frequency scaling (2 levels), 
adaptive body biasing 

Nominal Supply 
Voltage 1.2V 0.70V to 1.0V 0.40V to 0.60V 0.50V to 0.80V 

PE processor energy 
efficiency 

[pJ/operation] at 
room temperature 

130 
(measured) 45 (measured) 

20 (measured 
simulations with 
neuromorphic 
testcase) 
Efficiency 
enhancement 
compared to 
SpiNNaker1: 
11.8x 

20 (estimated from sign-off 
simualtions with neuromorphic 
testcase) 
Efficiency enhancement compared 
to SpiNNaker1: 11.8x 

PE Peak throughput 
MAC per second 0.10G 0.25G 25.60G 19.20G 
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 SpiNNaker 
1 [1] 

SpiNNaker2 
prototype 

from SGA1 [2] 
(C467) 

SpiNNaker2 
prototype JIB1 

from SGA2  
(C2628) 

SpiNNaker2 
prototype 
JIB2 from 

SGA2  (C2628) 

SpiNNaker2 
(estimation) 

Total MAC  per Chip 1.6G 1.0G 0.204T 0.153T 2.9T 

Neuromorphic Benchmark Example 

Relative time per 1 
Nengo time Step 

Update (relative), 
100 input 

dimensions 

1 0.4 
<0.1 
Performance enhancement compared to SpiNNaker1: 
>10x 

6.2 Validation and Impact 

6.2.1 Actual and Potential Use of Output(s) 

The SpiNNaker-2 prototypes (Santos, JIB1, JIB2) will continue to be available within the HBP and will 
be used to support various science projects, in SGA3, including in particular small-scale robotics 
activities. 
The full SpiNNaker2 chip will be used outside the HBP to build the SpiNNcloud system under a EUR 8 
million grant from the Saxony Science Ministry, and the European Regional Development Fund 
(ERDF). Further commercial opportunities will be sought for industrial applications of variants of the 
chip in the fields of automotive and robotics applications. 

6.2.2 Publications 

• Y. Yan et al., "Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype," in IEEE 
Transactions on Biomedical Circuits and Systems, vol. 13, no. 3, pp. 579-591, June 2019. DOI 
10.1109/TBCAS.2019.2906401 (P1828) 

o Relevance: showing the implemented prototype in action 

7. Key Result KR9.5: Two novel theories of 
computational principles: learning-to-learn 
(L2L) and network learning based on dendritic 
computation 

7.1 Outputs 

7.1.1 Overview of Outputs 

7.1.1.1 List of Outputs contributing to this KR 

• Output 1:  Output 1: Learning-to-learn (L2L) applied to e-prop 

• Output 2: Application of L2L to Reservoir Computing  

• Output 3: L2L for robotics 

https://doi.org/10.1109/TBCAS.2019.2906401
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7.1.1.2 How Outputs relate to each other and the Key Result 

The Outputs describe the application of the L2L theory to different training settings for 
neuromorphic hardware. 

Component Link to URL 

C2549 - SP9 Learning-to-Learn methods to 
learn many tasks from few examples 

Technical/User 
Documentation https://igitugraz.github.io/L2L/ 

7.1.2 Output 1: Learning-to-learn (L2L) applied to e-prop 

One of the main impediments for more wide-spread application of neuromorphic hardware is the 
lack of powerful on-chip learning methods for recurrent networks of spiking neurons (RSNNs), and 
the large number of training examples that are needed for learning, even for artificial neural 
networks. TU Graz has developed the e-prop algorithms (Bellec et al., 2019b) for on-chip training of 
RSNNs that are currently being implemented on SpiNNaker at the University of Manchester. In order 
to tackle the second problem, reducing the required number of training examples, TU Graz has 
combined e-prop with Learning-to-Learn (L2L). 

The setup of L2L involves an infinitely large family F of learning tasks C. In general, learning is 
carried out simultaneously in two loops: the inner loop and the outer loop, see Figure 13B. In the 
inner loop, a neural network N is concerned with solving specific tasks C. On the other hand, the 
outer loop is responsible for increasing the learning speed in the inner loop. To achieve this, some 
parameters of N (termed hyper-parameters) are optimised in an outer loop optimisation to 
encourage fast learning of a randomly drawn task C from F. Outer loop training, which can be 
implemented by various optimization methods, proceeds on a much slower time scale than the inner 
loop, which allows integration of performance evaluations from many different tasks C of the family 
F. One can interpret this outer loop training as an analogue to longer-term evolutionary and 
developmental processes, as well as prior learning, in brain networks that install abstract prior 
knowledge about the structure of the family F in the hyper-parameters of N. 

In the combination of L2L with e-prop, TU Graz trained an auxiliary RSNN in the outer loop (shown 
at the top of Figure 13A) that produces learning signals for a main RSNN. This outer loop training can 
be seen from the functional perspective as corresponding to the optimisation of neuromodulatory 
systems, which are known to provide target-specific learning signals in the brain, through evolution. 
As family F of tasks, we chose in our first demonstration the set of all possible movements of a two-
link arm (see Figure 13C). 

It was demonstrated in Figure 13D, E that L2L enables in this application one-shot learning of new 
arm movements. In fact, the RSNN could solve this movement control task without first generating 
an inverse model. 

Interestingly, the learning signals that were emitted by the auxiliary RSNN, which had been 
optimised in the outer loop on this family F of tasks, differed quite strongly from the learning signals 
(gradients) that are used by backpropagation through time (BPTT), see Figure 13F. This suggests that 
e-prop, in combination with L2L, can surpass even the offline BPTT learning method, by making use 
of prior knowledge of the types of tasks that are to be learned. 

https://igitugraz.github.io/L2L/
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Figure 13: Scheme and performance of L2L with e-prop 

A) Learning architecture of L2L with e-prop. In this demo the angular velocities for the joints were controlled by an 
RSNN. An auxiliary RSNN (error module) produces suitable learning signals for the main RSNN. B) Scheme of the two-
tiered optimization procedure in L2L. C) Randomly generated target movements (example shown) had to be 
reproduced by the tip of an arm with two joints. D) Demonstration of one-shot learning for a randomly sampled target 
movement. During the training trial the error module sends learning signals (top row of Panel F) to the network. After 
a single weight update the target movement can be reproduced in a test trial with high precision. E) One-shot learning 
performance improved as the optimization in the outer loop proceeds. F) Comparison of learning signals emitted by 
the error module to learning signals as computed with BPTT. 

7.1.3 Output 2: Application of L2L to Reservoir Computing 

Reservoir computing is a common computing and learning paradigm in neuromorphic hardware. 
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In Subramoney et al. (2019), TU Graz investigated the extent to which one can improve the 
computing and learning performance by using L2L to optimise the reservoir in the outer loop of L2L. 

Specifically, L2L was applied to an RSNN as reservoir, and its hyper-parameters were optimised in 
the outer loop with BPTT. It was found that the learning speed and performance of this reservoir 
was substantially enhanced through L2L, see Figure 14. Secondly, TU Graz applied L2L to a new form 
of reservoir, where not even a linear readout is adapted for specific tasks, and showed that this 
tends to enable even faster learning. In this particular case, the reservoir learned to retain task-
relevant information in its own network dynamics. 

 
Figure 14: Learning-to-learn a nonlinear transformation of a time series 

A) Different tasks arise by sampling second order Volterra kernels according to a random procedure.  Input time series 
are given as a sum of sines with random properties. To exhibit the variability in the Volterra kernels, three examples 
where different Volterra kernels are applied to the same input are shown. B) Learning performance in the inner loop 
when adapting the linear readout, both for the case of a reservoir with random weights, and for a reservoir that was 
trained in the outer loop by L2L. Performance at the indicated time window is shown in Panel C. C) Sample 
performance of a random reservoir and of an optimized reservoir after readouts have been trained for 10 seconds. 
Network activity shows 40 neurons out of 800. 

7.1.4 Output 3: L2L for robotics 

While long-term learning of cognitive and motor skills requires synaptic plasticity, behaviour often 
requires much faster learning, sometimes within a single or a few trials. One of the important 
components of behaviour is the ability of the brain to predict how the body responds to its motor 
commands; that is, perform motor prediction. Inspired by recent evidence in biology, TU Graz used 
L2L to develop a method for fast learning of motor prediction, that uses only the internal dynamics 
of an LSNN (an RSNN that includes adapting neurons), without any synaptic plasticity. In a first 
demonstration with a simple two-link arm model (Figure 15), it was shown that the network could 
adapt,-without using synaptic plasticity, to arms with different link lengths and masses, within a few 
100ms. 
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Figure 15: Learning-to-learn for a simple robotic arm:  

A) Illustration of the two-link arm model with states given by the angle of the links, and the motor command applied 
on both the joints. B) Architecture for LSNN with inputs and outputs. All the weights are only updated in the outer 
loop training using BPTT, and remain fixed during testing. C) Mean error over all test episodes during the 1 second of 
inner loop learning. D) Target trajectories and network prediction for one sample test episode for an arm with 
previously unseen link lengths and masses. 

7.1.5 Output 4: Network learning based on dendritic 
computation 

Based on the experimental results of Matthew Larkum and others, TU Graz developed a supervised 
learning rule for a multi-compartment model of a pyramidal neuron, based on the role of dendritic 
Ca+2 spikes and demonstrated that this new learning rule enables a neuron to learn difficult 
sequence prediction tasks. A preprint of the planned journal publication is available. 

7.2 Validation and Impact 

7.2.1 Actual and Potential Use of Output(s) 

The Output descriptions above show the application of L2L to different training problems/situations. 

7.2.2 Publications 

• P1997: Subramoney, A., Scherr, F., & Maass, W. (2019). Reservoirs learn to learn. In: Reservoir 
Computing, K. Nakajima, I. Fischer, eds., Springer 2020. arXiv preprint arXiv:1909.07486. 

https://anandsubramoney.com/files/l5p.pdf
https://arxiv.org/abs/1909.07486
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• P1998: Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. 
(2019). A solution to the learning dilemma for recurrent networks of spiking neurons. bioRxiv, 
738385. DOI 10.1101/738385 

• P2460: Rao, A., Subramoney, A., Legenstein, R., Maass, W.: A biologically motivated rule for 
supervised learning with spiking neurons. Preprint 

8. Key Result KR9.6: Applications exploiting the 
new features of second generation systems  

8.1 Outputs 

8.1.1 Overview of Outputs 

8.1.1.1 List of Outputs contributing to this KR 

• Output 1: Mapping Deep Neural Networks (DNNs) to the SpiNNaker architecture. 

• Output 2: Learning-to-Learn (L2L) applied to reinforcement learning on BrainScaleS 

• Output 3: BrainScaleS applications. 

• Output 4: Applications developed in CDP5. 

Component Link to URL 

C2549 - SP9 Learning-to-Learn 
methods to learn many tasks 
from few examples 

Technical/User Documentation https://igitugraz.github.io/L2L/ 

8.1.1.2 How Outputs relate to each other and the Key Result 

Output 1 is part of the SpiNNaker2 development and specifically demonstrates that this platform can 
be applied to solving deep-learning problems. 

Output 2 demonstrates the utility of the second generation features of the BrainScaleS-2 system in 
finding optimised parameters for plasticity rules in specific tasks. 

Output 3 sums all outputs reported by the BrainScaleS-2 team that exploit the second-generation 
features of that system. 

Output 4 summarises the outputs produced by CDP-5 “Biological deep learning” that exploit the 
second-generation features of HBP hardware. 

8.1.2 Output 1 - Mapping DNNs on SpiNNaker2 

Work was done on distributed mapping of deep neural networks (DNNs) onto the SpiNNaker2 
architecture, exploiting the speed-up gained by the multiply-accumulate hardware accelerators in 
each SpiNNaker2 processing element. Results show that hardware acceleration leads to a full 
utilisation of off-chip memory bandwidth resources. Data reuse strategies alleviate this limitation, 
resulting in a factor 3 faster DNN layer execution. As a result, complete DNN visual benchmark 
networks like VGG-16 or ResNet-50 can be processed in a few tens of milliseconds. 

Progress vs State of the Art & Recent Developments 

http://dx.doi.org/10.1101/738385
https://plus.humanbrainproject.eu/publications/2460
https://anandsubramoney.com/files/l5p.pdf
https://igitugraz.github.io/L2L/
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The recent developments enable mapping DNNs on SpiNNaker more rapidly and efficiently than the 
previous state of the art. 

8.1.3 Output 2 - Learning-to-Learn (L2L) applied to 
reinforcement learning on BrainScaleS 

The use of analogue neuromorphic hardware requires cumbersome hand-tuning of hyper-parameters 
and details of learning algorithms. On the other hand, neuronal networks in the brain have been 
optimized by evolutionary and developmental processes. TU Graz and UHEI showed that one can 
apply this biological paradigm also to analogue neuromorphic hardware. More specifically, it was 
shown that agents, implemented on the HICANN-DLS, can learn very efficiently from rewards, 
provided that the underlying hyper-parameters and details of the plasticity rule are optimized for 
this type of task by L2L (Figure 16). The results have now been published in a journal (Bohnstingl et 
al., 2019). 

Progress vs State of the Art & Recent Developments 

The new developments have confirmed previous work towards L2L on BrainScaleS and have now been 
peer reviewed and published in a journal. 

 

Figure 16: L2L on Brainscales 
A) Schematic of the L2L setup. In the inner loop a neuromorphic agent learns a specific task Ci by reinforcement 
learning. The outer loop optimises learning performance of the agent on all tasks from the family of tasks. B) Learning 
performance of the neuromorphic agent w/ and w/o L2L on a family of Markov decision processes. TD(λ) is a baseline 
learning algorithm. 

8.1.4 Output 3 - BrainScaleS applications 

A number of applications have been developed that exploit the second-generation features of the 
BrainScaleS architecture. These Outputs include: 

• Deep learning with time-to-first-spike coding 

• Sampling-based Bayesian computation 

• Structural plasticity 

• Control of criticality and computation 

• Insect-inspired navigation 

• Spiking Heidelberg Digits 

These Outputs are described in detail in KR9.3. 
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8.1.5 Output 4 - Structural plasticity on BrainScaleS-2 

CDP 5 has reported an additional application that exploits the second-generation features of the 
BrainScaleS-2 hardware. 

An efficient implementation of structural plasticity was proposed and its functionality demonstrated 
on the BrainScaleS-2 system. The plasticity rule enables neurons to dynamically select a set of 
suitable synapses, out of a pool of potential connections. This policy optimises performance, while 
at the same time maintaining a sparse connectome. It makes extensive use of the PPU plasticity 
processing unit that is available in BrainScaleS-2. 

The results demonstrate how to employ on-chip structural plasticity in BrainScaleS-2 and can be 
applied to other learning frameworks. This expands the set of experimental scenarios that are 
amenable to emulation on BrainScaleS-2 and also offers similar potential for other neuromorphic 
architectures (Billaudelle et al., 2019a and b). 

A detailed report is available in D9.4.2. 

8.2 Validation and Impact 

8.2.1 Actual and Potential Use of Output(s) 

The reported outputs have been used to demonstrate the viability of 2nd-generation features of the 
HBP hardware and to provide palpable examples, showing how to use them in scientific experiments. 
They lead the way to future use of the 2nd-generation HBP hardware platforms after SGA2. Since the 
2nd-generation hardware systems are only in prototype stage and have not been made accessible to 
the public, we cannot report on usage, the user base or user feedback. Their future development 
will be pursued outside of the HBP, so any potential exploitation is to be determined in the 
respective follow-up projects. 

8.2.2 Publications 

• T. Bohnstingl, F. Scherr, C. Pehle, K. Meier, and W. Maass, “Neuromorphic Hardware Learns to 
Learn”, Frontiers in Neuroscience 13:483, 2019, DOI 10.3389/fnins.2019.00483 (P1901) 

o Demonstrates how Learning-to-Learn can be implemented and applied on HBP hardware. 

• Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, Andreas 
Baumbach, Dominik Dold, Julian Göltz, Akos F. Kungl, Timo C. Wunderlich, Andreas Hartel, Eric 
Müller, Oliver Breitwieser, Christian Mauch, Mitja Kleider, Andreas Grübl, David Stöckel, 
Christian Pehle, Arthur Heimbrecht, Philipp Spilger, Gerd Kiene, Vitali Karasenko, Walter Senn, 
Mihai A. Petrovici, Johannes Schemmel, Karlheinz Meier “Versatile emulation of spiking neural 
networks on an accelerated neuromorphic substrate, arXiv preprint arxiv: 1912.12980, 2019a 
(P2241) 

• S. Billaudelle, B. Cramer, M. A. Petrovici, K. Schreiber, D. Kappel, J. Schemmel, and K. Meier, 
“Structural plasticity on an accelerated analog neuromorphic hardware system” arXiv preprint 
arXiv:1912.12047, 2019b.(P2240) 

o Demonstrates how 2nd-generation features of the BrainScaleS hardware can be used to 
implement Structural plasticity. 

https://doi.org/10.3389/fnins.2019.00483
https://arxiv.org/abs/1912.12980
https://arxiv.org/abs/1912.12047
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9. KR9.x: Results by SP9 not under the KR9.1-6 
In addition to the work directly contributing to the six SP9 Key Results, considerable research and 
maintenance work was also done, which does not fall directly into the Key-Results categories. 

9.1 Outputs 

9.1.1 Overview of Outputs 

The KR9.x section describes results of the work in SP9 in SGA2 year 2, which do not belong directly 
into the KR1-6 sections 

9.1.1.1 List of Outputs contributing to this KR 

• Output 1: Use Cases (SGA2-SP9-UC001, SGA2-SP9-UC002, SGA2-SP9-UC003) 

• Output 2: Continuously running the first generation SpiNNaker and BrainScaleS machines 

• Output 3: Embedding next generation wafers 

• Output 4:  NEAL Components and Agents 

• Output 5: L2L system for few shot object recognition 

• Output 6: Event-based electronic olfaction with SpiNNaker 2 

• Output 7: Additional theory advances 

o E-prop: A biologically plausible and hardware friendly approximation to optimal gradient 
descent learning of recurrent SNNs 

o Deep Reinforcement Learning (Deep RL) with recurrent SNNs 

o Efficient ANN-to-SNN conversion for state-of-the-art image classification with few spikes per 
image 

o A theory of brain computation as basis for the design of more powerful SNN architectures 

o New learning methods for spike-based robot control 

9.1.2 Output 1: Use-cases 

9.1.2.1 SGA2-SP9-UC001 Open loop run of a complex spiking network 
with input data, output data and network reconfiguration by 
learning 

SpiNNaker has demonstrated support for this Use Case with a number of example networks. The 
cortical microcircuit example is a complex spiking neural network, with 80,000 neurons and 0.3 
billion synapses, and has input data in the form of Poisson spikes from the surrounding brain, and 
output data in the form of the spikes recorded. The output data were verified against the NEST 
simulator, and statistical analysis showed that the results were valid. 

The cortical microcircuit example does not include learning, however. Network configuration by 
learning has been demonstrated with a different example in the form of the use of Structural 
Plasticity and STDP in the solving of the MNIST data set (Bogdan et. al. 2018). Again, this has input 
data, in the form of the digits to be recognised, and output data, in the form of the categories of 
the digits recognised. 
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BrainScaleS has demonstrated support for this Use Case in the context of time-to-first-spike coding. 
The network is one of the first neuromorphic implementations of classification with spike timing 
only, compared to the less efficient rate coding. The learning is done iteratively, with the chip-in-
the-loop. Time-to-first-spike has been implemented successfully on both generations of BrainScaleS. 

Spike-based sampling is also used to demonstrate open-loop learning on the BrainScaleS-2 platform 
where it is shown that neurons can perform Bayesian inference through sampling on probability 
distributions defined over binary variables. 

Work has also been done to bring a version of the cortical column to the first generation system in 
the context of parameter translation and mapping studies. 

9.1.2.2 SGA2-SP9-UC002 Closed loop run of a complex spiking network 
with input data, output data and network reconfiguration by 
learning 

SpiNNaker has demonstrated support for this use case in a number of examples. Of particular note 
is the work on using the e-prop learning rule on SpiNNaker in conjunction with a grasping robot. The 
input to this network was a DVS sensor on a robotic head. The events were then fed to a neural 
network with eProp learning running on SpiNNaker in real-time, using the live-spike-streaming 
features of the software. The network was then trained to recognise four classes of objects, one of 
which was just “background” with 200 samples. The output of the network was the motion of the 
grasping of the appropriate object. The network performed with an accuracy of over 99%. 

BrainScaleS has demonstrated support for this Use Case with several networks; for example, showing 
structural plasticity and learning on-chip, simulating a virtual environment for insect navigation, as 
well as the control of critically with liquid computing as a possible application. For the latter, a 
clear relation between criticality, task-performance and information-theoretic fingerprint was 
demonstrated. The structural plasticity algorithm leads to the formation of receptive fields closely 
resembling the topology of the data set, allowing efficient and automatic use of the limited hardware 
resources. 

9.1.2.3 SGA2-SP9-UC003 Learning-to-learn (LTL) in a complex spiking 
network with input data, output data and network reconfigu-
ration by learning  

See the KR9.5: L2L descriptions 

9.1.3 Output 2: Continuously running the first generation 
SpiNNaker and BrainScaleS machines 

The large neuromorphic compute systems SpiNNaker-1 (1 million core machine in Manchester, C2) 
and BrainScaleS (Wafer scale analogue physical compute system in Heidelberg, C1) are continuously 
operated and maintained for project-internal and public access. The public “Getting started” page 
for both systems can be found on the HBP public website at: 
https://www.humanbrainproject.eu/en/silicon-brains/start/. 

https://www.humanbrainproject.eu/en/silicon-brains/start/
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Figure 17: Cumulative NMC job count via NMPI - from the NMPI dashboard 

Both systems are accessible via Jupyter Notebooks from the HBP Collaboratory, using an NMPI web-
front end. 

In addition to this “low barrier to entry” access, for “power” access, there is also faster direct access 
to the machines. Most jobs on the BrainScaleS-1 were performed using direct access. 

 
Figure 18: BrainScaleS job count – all jobs, including NMPI submitted jobs 

Component Link to URL 

C0001 — 
BrainScaleS-1 

Technical 
Documentation 

https://flagship.kip.uni-
heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specific
ation_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65 

User 
Documentation http://electronicvisions.github.io/hbp-sp9-guidebook/ 

https://nmpi.hbpneuromorphic.eu/dashboard/
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
http://electronicvisions.github.io/hbp-sp9-guidebook/
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Component Link to URL 

C0002 - 
SpiNNaker-1 

Technical 
Documentation https://spinnakermanchester.github.io/docs/ 

User 
Documentation https://spinnakermanchester.github.io/ 

9.1.4 Output 3: Embedded next generation wafers 

A mechanical demonstrator for embedding next generation wafers into PCBs has started to be 
fabricated. The wafer has a diameter of 300mm and one redistribution layer with daisy chain 
segments of 50 µm line width and 150 µm via landing pads. In total, there are around 300,000 vias 
between wafer and redistribution layer. The wafer is fully covered with such chain segments, which 
are deposited by semi-additive copper technology. The fabrication of this demonstrator has 
progressed to wafer fabrication, which included the thinning and polishing of the wafers to a final 
thickness of 250 µm. Remaining tasks to be completed are the embedding of the wafers into the 
PCBs, via formation and routing at PCB level, as well as electrical measurements. 

9.1.5 Output 4:  NEAL Components and Agents 

The NEAL project has developed Python PyNN classes for neural components that can be run in both 
Nest and SpiNNaker. Separate systems have been developed to run on BrainScaleS.  

The Python codes are available on http://www.cwa.mdx.ac.uk/NEAL/neal.html. Each runs in NEST 
and SpiNNaker software. Automated tests are included with the software. There are tutorials for all 
six components, and for the finite state automata pattern. The two patterns are the finite state 
automata (FSA) and the timer. The six components, which make use of the patterns, are: natural 
language parsing, planning, associative memory, natural language generation, rule based system, 
and cognitive mapping. 

The components can be readily customised. Cognitive mapping, associative memory, natural 
language generation and planning can be specialised with simple python code. Generation and 
associative memory can be specialised with text files specify the language or memory structure; 
interaction can be specified with simple python code. 

The components and patterns for BrainScaleS are the associative memory, finite state automata, 
parser, and timer. 

The SpiNNaker and NEST code is from the same code base, with a switch at the beginning of each 
particular run to select the back end. While systems may vary in some firing details between the 
SpiNNaker and NEST runs, overall higher-level emergent behaviour is the same. Extensive tests are 
provided to assure that the systems run as intended. 

Tutorials are provided for the FSA, parser, generator, associative memory, cognitive maps and 
planner. Several of these tutorials have agents associated with them, though these agents run in a 
stand-alone environment instead of the NRP. Agents in the NRP have been developed, but the 
volatility of the development of the environment has meant that these agents do not always run in 
the current NRP. 

Component Link to URL 

C3158 -
Neural Rule 
Based 
System 

Software Repository www.cwa.mdx.ac.uk/NEAL/neal.html 

Technical Documentation  

User Documentation www.cwa.mdx.ac.uk/NEAL/neal.html 

https://spinnakermanchester.github.io/docs/
https://spinnakermanchester.github.io/
http://www.cwa.mdx.ac.uk/NEAL/neal.html
http://www.cwa.mdx.ac.uk/NEAL/neal.html
http://www.cwa.mdx.ac.uk/NEAL/neal.html
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9.1.6 Output 5: L2L system for few shot object recognition 

Standard artificial neural networks have achieved superhuman accuracy for object recognition; 
however, they usually require a large number of labelled examples and long sessions of supervised 
training. On the contrary, in animals (even insects), learning is unlikely to be supervised in the same 
way. Typically, animals require fewer samples to learn to recognise a concept. 

We have investigated a spiking neural network with architecture inspired by insects' mushroom body 
(MB) to solve a few-shot recognition problem. The input to our model are characters from the 
Omniglot dataset, which are transformed into rank-order coded spikes by a bio-inspired algorithm. 

 

The model consists of a two-layered spiking network. The hidden layer further expands the input 
activity into a hyper-dimensional space to ease the output layer’s classification task; furthermore, 
neurons in the hidden layer sample the input with a distant-dependent connectivity rule. The output 
layer activity is used to recognise the input, unique recognition is achieved by changing synaptic 
efficacy, via a simple spike-time-dependent plasticity rule and competition, with a soft-winner-
takes-all circuit. 

Animals have the advantage of millions of years of evolutionary refinement of their recognition 
mechanisms. Here, we tune the hyper-parameters of our model (e.g. parameters for the network 
architecture and the learning rule) with a learning-to-learn methodology inspired by evolution. 

We are currently investigating meta-learning algorithms and parameters which best suit our 
problem. For example, a network recognising a single alphabet of Omniglot and fine-tuned by a 
genetic algorithm. In this experiment, the normalised average fitness rapidly grows as generations 
pass (see figure below). 

 
The current model has been tested to run on both the SpiNNaker neuromorphic system and GPUs 
(through GeNN). Furthermore, we have implemented the model so that it can also utilize the greater 
resources provided by the Juwels computer cluster (both GPU or CPU units). 

The model was deliberately built with elements that are compatible with the BrainScaleS I and 
BrainScaleS II platforms. While the current research was not performed on these platforms, the 
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models in the future could make use of the 10,000x (or 1,000x for BrainScaleS II) speed-up for the 
costly neural simulation during the learning-to-learn phase.  

In the future, we also plan to exploit the temporal nature of the input spikes by developing a more 
complex learning rule. 

Component Link to URL 

C3157 

Data Repository https://github.com/chanokin/convert_to_roc  

Technical Documentation  

User Documentation https://github.com/chanokin/convert_to_roc 

C2631 - 
Neuromorphic 
network 
model for 
object 
recognition 

Model Repository https://github.com/chanokin/l2l-omniglot 

Technical Documentation  

User Documentation https://github.com/chanokin/l2l-omniglot 

9.1.7 Output 6 - Event-based electronic olfaction with 
SpiNNaker 

An event-based, electronic gas sensing system has been developed and implemented using metal-
oxide sensors and absolute-deadband sampling and event generation. Various sensors implement 
these principles for vision (DVS, ATIS) and audition (DAS), but so far there is no equivalent for 
olfaction. We set out to find whether the same principles could be applied to gas sensing with metal-
oxide sensors, and if they could potentially assist in mitigating known issues such as slow responses 
and baseline drift. To demonstrate the capabilities of the event-based approach to gas sensing, we 
developed implemented a spiking network that can resolve time delays between events generated 
from sensors 5cm apart, when exposed to pulses of odorants in turbulent airflow. The network 
enabled an estimation of the direction of the odour source. 

The network was implemented on SpiNNaker (SPiNN-3) and deployed on an omnidirectional robot 
together with two sensor units. In source localisation experiments, that robot was capable of locating 
and navigating to a pulsed odour source. 

Future work in SGA3 will focus on integrating this olfactory front-end into a spiking cognitive 
architecture via subcortical relay networks. A real-time capable implementation on SpiNNaker will 
enable olfactory and, when combined with e.g. visual input, multimodal navigation, learning and 
inference in stationary and robotic sensing systems. 

https://github.com/chanokin/convert_to_roc
https://github.com/chanokin/convert_to_roc
https://github.com/chanokin/l2l-omniglot
https://github.com/chanokin/l2l-omniglot
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Figure 19: Electronic olfaction 
A) The test setup. B) Primary sensor spike trains (yellow/purple) and direction detections (green/red) in real-time 
experiments. Right image: the gas sensor. 

9.1.8 Output 7: Additional theory advances 

9.1.8.1 Topic 1: A biologically plausible and hardware friendly 
approximation to optimal gradient descent learning of 
recurrent SNNs: e-prop 

This new learning method for recurrent SNNs promises to be substantially more powerful than 
previous methods. In fact, it enables SNNs trained by e-prop to approximate for several difficult 
benchmark tasks from current ML/AI the performance of LSTM networks trained by BPTT. But in 
contrast to the latter, it can be applied to highly energy-efficient spike-based hardware. 
Furthermore, it provides competitive performance on hard benchmark tasks such as TIMIT (phoneme 
recognition). A journal version of the preprint Bellec et al., 2019, P1198 is currently under review. 
The code for e-prop will be made public in March 2020, along with a revision of the paper according 
to the reviewer recommendations. E-prop is currently implemented on SpiNNaker by the University 
of Manchester. 

9.1.8.2 Topic 2: Deep Reinforcement Learning (Deep RL) with 
recurrent SNNs. 

TU Graz showed in Bellec et al. (2019, P1198), that e-prop provides, for the first time, a powerful 
online Deep RL method that can be implemented on spike-based neuromorphic hardware. This 
enables spike-based neuromorphic hardware to approach the performance level of state-of-the-art 
ANNs in AI. 

An RSNN can learn with this method to win Atari games, just from observing raw pixel input and 
getting rewards while playing the game, see Figure 19. 
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9.1.8.3 Topic 3: Efficient ANN-to-SNN conversion for state-of-the-art 
image classification with few spikes per image  

In order to achieve competitive performance by SNNs on hard image classification benchmark tasks, 
such as CIFAR 10 or Imagenet, it appears to be necessary to first train ANNs and then port the solution 
to SNNs. However, the resulting spike-based network only runs in an energy-efficient mode if it uses 
only a few spikes per image, rather than using rate coding of analogue values. Two new methods for 
ANN-to-SNN conversion that yield sparsely active SNNs have been reported in Stöckl & Maass, 2019 
(P2406) and Stöckl & Maass, 2020 (P2407). 

9.1.8.4 Topic 4: A theory of brain computation as basis for the design 
of more powerful SNN architectures 

A model for the online formation of associations between assemblies of “concept cells” has been 
accepted for publication by a very selective neuroscience journal: Pokorny et al., 2019 (P2279). This 
model has provided a basis for a new theory of brain computation, which has been presented in the 
invited talk by Christos Papadimitriou (Columbia University) at the HBP 2020 Summit. This theory 
was described in detail in the paper Papadimitriou, C.H., Vempala, S.S., Mitropolsky, D., Collins, 
M., Maass, W. (2020) Brain computation by assemblies of neurons, which is currently under review 
by the prestigious journal PNAS (Proc. of the National Academy of Sciences of the USA) (preprint  
DOI 10.1101/869156, P2408). 

 
Figure 20: Application of e-prop to the Atari game Pong 

http://dx.doi.org/10.1101/869156
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a) Here the player (green paddle) has to outplay the opponent (light brown). A reward is acquired when the opponent 
cannot bounce back the ball (a small white square). To achieve this, the agent has to learn to hit the ball also with 
the edges of his paddle, which causes a less predictable trajectory. b) The agent is realized by an LSNN. The pixels 
of the current video frame of the game are provided as input.. c) Sample trial of the LSNN after learning with reward-
based e-prop. From top to bottom: probabilities of stochastic actions, prediction of future rewards, learning dynamics 
of a random synapse (arbitrary units), spiking activity of 20 out of 240 sample leaky integrate-and-fire (LIF) neurons 
and 20 out of 160 sample adaptive LIF neurons (ALIF). d) Learning progress of the LSNN trained with reward-based e-
prop, reported as the sum of collected rewards during an episode. The learning curve is averaged over 5 different 
seeds. Comparison results for LSTM networks with BPTT and feedforward ANNs with backprop from Mnih et al. (2016). 

9.1.8.5 Topic 5: New learning methods for spike-based robot control 

New methods for online learning of spike-based robot controller were presented in Kaiser et al., 
2019 (P1526) 

9.2 Validation and Impact 

9.2.1 Actual and Potential Use of Output(s) 

The running large scale NMC systems are the NMC part of the HBP joint infrastructure for 
neuroscience. The NMC systems are demonstrated in use-cases. 

The presented new theory work (especially e-prop) may become the foundation for a much wider 
applicability of spiking neural networks.  

9.2.2 Publications 

• Bogdan Petruț A., Rowley Andrew G. D., Rhodes Oliver, Furber Steve B. “Structural Plasticity on 
the SpiNNaker Many-Core Neuromorphic System”, Frontiers in Neuroscience, 2018, vol. 12 DOI : 
10.3389/fnins.2018.00434  (Output 1, P1460) 

• Huyck: A neural cognitive architecture, Cognitive Systems Research, Vol. 59, 2020, DOI 
10.1016/j.cogsys.2019.09.023 (Output 4, P2338) 

o Relevance: Makes use of the rule based and other components as the basis of a prototype 
of a compete cognitive architecture implemented in spiking neurons 

• Michael Hopkins, Garibaldi Pineda-García, Petruţ A. Bogdan and Steve B. Furber. “Spiking neural 
networks for computer vision”, Interface Focus 8: 20180007. DOI 10.1098/rsfs.2018.0007 (P1459) 

• Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2019). 
A solution to the learning dilemma for recurrent networks of spiking neurons. bioRxiv, 738385, 
DOI 10.1101/738385, (Output 7, topic 1+2, P1998 

• Stöckl, C., & Maass, W. (2019). Recognizing Images with at most one Spike per Neuron. arXiv 
preprint arXiv:2001.01682. (Output 7, topic 3, P2406) 

• Stöckl, C., & Maass, W. (2020). Classifying Images with Few Spikes per Neuron. arXiv preprint 
arXiv:2002.00860 (Output 7, topic 3, P2407) 

• Pokorny, C., Ison, M. J., Rao, A., Legenstein, R., Maass, W., & Papadimitriou, C. (2019). STDP 
forms associations between memory traces in networks of spiking neurons. Cerebral Cortex, 2019 
DOI 10.1093/cercor/bhz140 (Output 7, topic 4, P2279) 

• Jacques Kaiser, Michael Hoff, Andreas Konle, J. Camilo Vasquez Tieck, David Kappel, Daniel 
Reichard, Anand Subramoney, Robert Legenstein, Arne Roennau, Wolfgang Maass & Rüdiger 
Dillmann (2019) Embodied Synaptic Plasticity With Online Reinforcement Learning 
10.3389/fnbot.2019.00081 (Output 7, topic 5, P1526) 

https://doi.org/10.3389/fnins.2018.00434
https://doi.org/10.1016/j.cogsys.2019.09.023
https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2018.0007
https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2018.0007
https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2018.0007
https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2018.0007
http://doi.org/10.1098/rsfs.2018.0007
http://dx.doi.org/10.1101/738385
https://arxiv.org/abs/2001.01682
https://arxiv.org/abs/2002.00860
http://dx.doi.org/10.1093/cercor/bhz140
http://dx.doi.org/10.3389/fnbot.2019.00081
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10. CDP5 Results: links to KRc5.1, KRc5.2, KRc5.3 
and KRc5.4 in Deliverable D9.4.2 

SP9 Partners contributed to CDP5 results, as described in the Deliverable D9.4.2 "CDP5 -Biological 
deep learning: Results for SGA2 Year 2". 

11. Conclusion and Outlook 
Overall the SP9 work in SGA2 has gone according to plan, and the Neuromorphic Computing Platform 
is well-placed to contribute to significant brain science outcomes in SGA3. The decision taken during 
SGA2 not to fund the large-scale 2nd-generation neuromorphic systems in SGA3 required some 
adjustments to the SGA2 work. The related science work in SGA3 has been adapted, either to work 
with the large-scale 1st-generation systems, or with small-scale 2nd-generation prototypes, but these 
adjustments have been accommodated in the SGA3 planning. Overall, the software support and the 
neuromorphic systems themselves are well-prepared to support the range of uses of the 
Neuromorphic Computing Platform planned for SGA3. 

The two neuromorphic computing systems supported by the HBP continue to offer the only openly-
accessible neuromorphic computing resources available anywhere in the world, and continue to 
represent world-leading capabilities in terms of scale (SpiNNaker) and speed (BrainScaleS), despite 
the technologies upon which they are built being over ten years old. The 2nd-generation systems 
employ more up-to-date technologies with far greater commercial potential, but scaling these up is 
now outside the remit of the HBP. A EUR 8 million grant from the Saxony Science Ministry has been 
secured to support the scaling-up of SpiNNaker-2 to form SpiNNcloud, a datacentre neuromorphic 
cloud service for German industry in the Saxony region. TU Dresden and UMAN are discussing setting 
up a joint company for the wider commercial exploitation of SpiNNaker-2 technology. 

In summary, work during the last 12 months of SGA2 has gone to plan, with necessary changes being 
made in response to external factors. The Neuromorphic Computing Platform is ready for service 
and fully capable of meeting the expected demands that will be placed upon it by the exciting 
science tasks planned for SGA3. 
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