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Figure 1: Experimental inter-areal connectivity data from axonal tracing studies in macaque 

and a predictive relationship. 

(A) Strength of long-distance connections given as the Fraction of Labelled Neurons (FLN) in the M132 parcellation 
[2]. (B) Hierarchy of the connections provided as the fraction of Supragranular Labelled Neurons (SLN) in M132. SLN 
is an indicator of feedforward/feedback connectivity [3]. (C) Exponential relationship between the FLN and the 
shortest distance through white matter. (D) Existence/absence of connections from CoCoMac database [1] for the 
relevant areas in the FV91 parcellation. See KRc4.1 Output 4. 
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1. Overview 
Humans are continuously required to interact with a complex, dynamically changing environment. 
Our brain does thus not operate in a vacuum, but forms a closed loop with the surroundings in which 
it is embedded. This has important implications for the study of action and perception and their 
interrelatedness within an ever-changing environment, as one can only be fully understood in context 
of the others. For example, human vision is only sharp near the centre of fixation and quickly drops 
with increasing distance from fixation. In order to recognise objects around us, it thus necessary to 
perform eye-movements and integrate information over several fixations. A by-product of these eye 
movements is that static objects move across the retina and the perceptual system needs to correct 
for object displacement and disentangle it from object motion. Eye movements thus need to be 
understood in terms of object recognition and vice versa. Co-design project 4 (CDP4) is aimed at 
understanding the mutual interactions between action and perception by combining neuroimaging 
(using tools such as fMRI), neurocomputational modelling, machine learning and robotics. Our focus 
lies specifically on visual as well as visually-guided actions, such as eye movements, for object 
recognition (SGA1 & SGA2) and hand-eye coordination for object manipulation (SGA2: reaching & 
grasping; SGA3: in-hand manipulations).  

With respect to object recognition, we have identified functional components necessary for this task 
and developed computational models for each of them. Over the next 12 months, we will train a 
deep learning architecture to perform object recognition in light of the aforementioned image blow-
up and will subsequently translate the computational strategy it develops to biologically realistic 
brain models.  

With respect to object manipulation (reaching), we have set up a robotic arm in a virtual 
environment and will now train it to reach towards visually striking objects. 
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2. Introduction  
The brain enables autonomous agents to interact meaningfully with a dynamic environment. That 
is, the brain forms a closed loop with the surroundings in which it is embedded through its sensory-
motor apparatus. How the integration of sensory and motor function is achieved and how perception 
and action mutually affect each other constitute important questions in neuroscience. For instance, 
the sharp drop-off in visual acuity with eccentricity forces the visual system to perform saccadic eye 
movements and to integrate information across “snapshots” of the visual scene. These eye 
movements, in turn, affect perception and they lead to blur, retinal displacements and the 
requirement to distinguish eye- from object movements. Similarly, tasks such as reaching and 
grasping require tracking of object and hand location in space as well as continuous translation 
between coordinate frames (e.g. retinotopic vs body-centred). 

Co-Design project 4 (CDP4) fuses computational modelling, deep learning, experimentation and 
robotics to understand how the brain coordinates such visually-guided actions. To do so, it follows a 
top-down approach. That is, it starts by identifying and implementing functional components 
relevant to the task. Implementation may involve developing computational models based on 
existing neuroscientific data (these modelling efforts occur largely within KRc4.1). It may, however, 
also involve utilisation of goal-driven deep (reinforcement) learning to let a neural network uncover 
potential solutions for performing ecologically valid visuomotor tasks (these efforts - largely based 
on behavioural data and labelled image databases - occur largely within KRc4.3). Subsequently, 
functional components are integrated into a single large-scale, closed-loop, visuomotor architecture 
for deployment with robotic systems (KRc4.1). These architectures are continuously refined to 
increase their biological realism. This occurs in a modular fashion as individual functional 
components may, for instance, be translated from a rate neuron to a spiking neuron implementation, 
independent from other components. The architecture may furthermore serve as a virtual patient, 
to model disorders resulting from damage to the system. The “saccades for object recognition” 
architecture is especially suited to investigate attention deficits (hemispatial neglect) resulting from 
stroke (KRc4.2) since it places strong emphasis on attention (saliency) and attention-based decision 
making (target selection). At the same time, studying hemispatial neglect is important for developing 
a biologically realistic and ecologically valid visuomotor architecture. As neural information 
processing requires taking the body and its environment into account, understanding of normal 
functioning of (components of) the visuomotor architecture requires examination of abnormal 
performance it produces in light of ablations and disruptions.  

Co-Design project 4 is organised around three Key Results (KRs). 

KRc4.1: Visuo-motor integration neuronal network model  

By collaborative efforts with SP4 and SP7, efficient network simulations in NEST allow to build novel 
large-scale neural network models that actually perform challenging visuo-motor integration tasks 
while being based on state-of-the-art knowledge about the architecture of the brain as well as on 
novel insights from beyond the state-of-the-art sub-millimetre human functional brain imaging. By 
collaborative efforts with SP10, the visuo- motor integration model runs on the Neurorobotics 
Platform. The neurorobotics implementation allows to generate realistic behavioural data. 

KRc4.2: Lesioning parietal and frontal areas of eye movement model to explain unilateral spatial 
neglect stroke and TMS treatment effects 

The implemented visuo-motor system will integrate simplified modules of about 20 cortical and sub-
cortical areas involved in visual stimulus processing, saliency calculation, target selection and motor 
planning. The established computational-anatomical relationship and asymmetric attention shifting 
architecture allows to simulate lesions of the model (link to CDP1) that are related to saliency, 
attention and motor planning producing neurological symptoms observed in unilateral spatial neglect 
patients. Furthermore, we will have access to neglect patients that are currently treated with TMS 
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stimulation allowing to model reduced inhibition from the contra-lesional hemisphere. The effects 
of TMS will be integrated in the neural network model.  

KRc4.3: Application of Visuo-Motor Integration Model to User Input Data 

The visuo-motor model integrates state-of-the art architectural and functional knowledge of how 
the brain controls eye movement (version 1 [SGA1]) and grasping (version 2 [SGA2]) supporting the 
interpretation of the user’s neuroimaging, electrophysiological and behavioural data. Since the 
visuo-motor integration model is implemented in NEST and linked to a (virtual) robotic system, 
researchers can run the model with their own visual stimuli as input and compare the predicted 
behaviour with their own empirical data. 

3. Key Result KRc4.1: Visuo-motor integration 
neuronal network model 

3.1 Outputs 

3.1.1 Overview of Outputs 

1) NEST 2.16.0 (component title: Continuous dynamics code in NEST, leader: Markus DIESMANN, id: 
C510, type: software) 

2) Integrated target selection & saccade generation system (component title: Visuo-motor 
integration model performing eye movement and reaching tasks, leader: Rainer GOEBEL, id: 
C2632, type: model) 

3) Output 3 was moved to KRc4.3 

4) Multi-area model of cortical network at neuronal resolution (component title: Multi-area model 
of cortical network at neuronal resolution. leader: Sacha VAN ALBADA, id: C730, type: model) 

3.1.2 Output 1 

Modelling work by researchers at UM in Task T2.2.1 (Visuo-motor integration model performing eye 
movement and reaching tasks; component id C2632) in collaboration with JUELICH led to further 
extensions of integration methods for continuous-time population models first introduced in NEST 
2.14.0. These extensions have been integrated into the NEST simulator and were released with NEST 
2.16.0 as part of Task T7.3.1: Exascale solvers for phenomenological models. 

This output has an upstream dependency on component C209 in task T7.3.4: NEST - The Neural 
Simulation Tool. 

3.1.3 Output 2 

For Task T2.2.1 (Visuo-motor integration model performing eye movement and reaching tasks; 
component id C2632), researchers at UM have integrated two previously separate modules of visuo-
motor integration, target selection and saccade generation [1], into a unified model. While 
integration of these models was successful, each module was implemented using different neuron 
dynamics. Current efforts are devoted to implement both modules using the same dynamics. This 
provides the opportunity to increase the biological realism of the combined model by choosing for 
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more accurate descriptions of population dynamics than employed previously. For instance, neural 
populations within the target selection module will be split into excitatory and inhibitory pools. 
However, while these population models yield valuable insights regarding functional dynamics, the 
coarse-graining inherent in this approach neglects the possibly rich internal dynamics of neural 
populations and intricate interactions with other populations on the single-neuron level. Therefore, 
and to further increase the biological realism, JUELICH started to implement the mechanisms of 
saccade generation and target selection using functional spiking neural networks (SNNs).  

This output has an upstream dependency on component C1857 embedded in Task T4.4.5: Models of 
sensorimotor integration. 

Reference 

[1] Gancarz G, Grossberg S, A neural model of the saccade generator in the reticular formation, 
Neural Networks 11.7, p 1159-1174 (1998) 

3.1.4 Output 4 

As part of Task T4.2.3 (Multi-area multi-layer spiking cortical models), JUELICH is developing a multi-
area model of a cortical network at neuronal resolution (component id: C730) of all vision- and 
motor-related cortical areas in macaque. The model extends the visual multi-area-model [5, 6], 
where each cortical area is represented by a full-density model of a cortical microcircuit (component 
id: C944) [4]. Motor areas differ crucially from visual cortex: they have a less prominent layer 4, a 
far lower neuron density and different internal connectivity. Therefore, it is pivotal to develop a 
microcircuit of the macaque primary motor cortex. The motor microcircuit will incorporate the 
available experimental data for layer resolved density, internal connectivity and subcortical 
connectivity, among others. To that end JUELICH has started the analysis of the long-range cortico-
cortical connectivity. The strength of a connection between two cortical areas can be characterised 
by the Fraction of Labeled Neurons (FLN) in axonal tract-tracing studies. The hierarchy of the 
connections can be described by the location of the presynaptic neurons in the source area of the 
projection via the fraction of Supragranular Labeled Neurons (SLN). As an intermediate result, 
JUELICH has successfully complemented experimental data with statistical predictions based on 
intrinsic relationships between the cortical structure (such as white matter distance, log ratio of 
neuron density and layer thickness) and the connectivity for all known existing connections from the 
CoCoMac database [1]. As a next step, topological predictive methods will be used to estimate 
connections where they are unknown. This modelling work provides an understanding not only of 
neurocomputational properties of local microcircuits but also of their complex interactions in a 
large-scale network. As such it is crucial for increasing the biological realism of the functional 
visuomotor architecture of “saccades for object recognition”. 

References 

[1] Bakker R, Wachtler T, and Diesmann M. CoCoMac 2.0 and the future of tract-tracing databases. 
Front Neuroinformatics 6:30, 2012. 
[2] Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C et al. A weighted and directed 
interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24:17-36, 2014. 
[3] Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R et al. Anatomy of hierarchy: 
Feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225-259, 2014. 
[4] Potjans TC and Diesmann M. The cell-type specific cortical microcircuit: Relating structure and 
activity in a full-scale spiking network model. Cereb Cortex 24:785-806, 2014. 
[5] Schmidt M, Bakker R, Hilgetag CC, Diesmann M, and van Albada SJ. Multi-scale account of the 
network structure of macaque visual cortex. Brain Struct Func, 223:1409-1435, 2018. 
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[6] Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, and van Albada SJ. A multi-scale layer-
resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLOS 
Comput Biol, 14:e1006359, 2018. 

3.2 Validation and Impact 

NEST 2.16.0 has been validated by implementing existing models within its framework and evaluating 
the consistency between original model simulations and those performed using NEST 2.16.0. 
Agreement was excellent. 

3.2.1 Potential Use of Outputs 

Extension of the NEST framework to include rate-based neuron models (Output 1) allows for the 
implementation of functionally performant large-scale models using this publicly available, widely 
used, and actively developed simulation tool. This allows researchers to develop biologically 
plausible spiking neuron models and functionally realistic rate neuron and mean field models within 
the same framework and hence facilitates gradual transitions between as well as integration of these 
(respectively bottom-up and top-down) modelling approaches. 

3.2.2 Publications 

The main publications for this KR are: 

1) (P1760) Senden, M., Schuecker, J., Hahne, J., Diesmann, M. & Goebel, R. [Re] A neural model 
of the saccade generator in the reticular formation. ReScience 4, (2018). Output 1 

2) (P1036) Schmidt M, Bakker R, Hilgetag CC, Diesmann M, and van Albada SJ. Multi-scale account 
of the network structure of macaque visual cortex. Brain Struct Func, 223:1409-1435, 2018. 
Output 4 

3) (P1457) Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, and van Albada SJ. A multi-scale 
layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. 
PLOS Comput Biol, 14:e1006359, 2018. Output 4 

3.2.3 Measures to Increase Impact of Outputs: Dissemination 

An executable formal model description of the multi-area model of all vision-related areas of 
macaque cortex (Schmidt et al., 2018a,b) was made available on GitHub (https://inm-
6.github.io/multi-area-model/), enabling others to build on the code. A tutorial video was published 
on YouTube, available in the HBP Education channel 
(https://www.youtube.com/watch?v=NGAqe78vmHY) and via the NEST simulator website 
(http://www.nest-simulator.org/), and has already received >1000 views. Output 4  

https://inm-6.github.io/multi-area-model/
https://inm-6.github.io/multi-area-model/
https://www.youtube.com/watch?v=NGAqe78vmHY
http://www.nest-simulator.org/
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4. Key Result KRc4.2: Lesioning parietal and 
frontal areas of eye movement model to explain 
unilateral spatial neglect stroke and TMS 
treatment effects 

4.1 Outputs 

4.1.1 Overview of Outputs 

1) Dynamical model of hemispheric asymmetry in attentional control (component title: Lesioned 
visuo-motor model with asymmetric attention modules for left and right hemisphere, leader: 
Rainer Goebel, id: C2633, type: model) 

4.1.2 Output 1 

As part of Task T2.2.2 (Lesioned visuo-motor model with asymmetric attention modules for left and 
right hemisphere; component id C2633) researchers at UM are developing a quantitative dynamic 
model of hemispheric asymmetry in attentional control. The current, early, version of the model 
comprises the interconnected dorsal and ventral fronto-parietal networks consisting of left and right 
frontal eye fields and posterior parietal cortices. Hemispheric asymmetry in the frontal cortex is 
implemented in accordance with Heilman’s Hemispatial theory [1,2] while in the parietal cortex it 
is implemented in accordance with Kinsbourne’s opponent processor model [3]. 

References: 

[1] Heilman, K.M., Abell, T.V.D., 1980. Right hemisphere dominance for attention. Neurology 30 (3), 
327. 

[2] Heilman, K.M., Valenstein, E., 1979. Mechanisms underlying hemispatial neglect. Ann. Neurol. 5 
(2), 166–170. 

[3] Kinsbourne, M., 1977. Hemi-neglect and hemisphere rivalry. Adv. Neurol. 18, 41–49.  

4.1.3 Output 2 

JUELICH has begun to integrate spatial attention into the visual multi-area-model. This work uses 
electrophysiological data recorded from areas V6/V6A in macaque monkeys acquired within SP2 
(T2.5.7) to build correlates of visual spatial attention and attentional shifts into a spiking model 
covering these areas as well as V1, V2, V4, PO (human homologues of V6/V6A), IT (divided into six 
areas), LIP, and FEF. In the current stage this model comprises a single hemisphere. However, as a 
demonstrator in SGA3 it will be extended to include a second hemisphere to model attentional 
asymmetries. 
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4.2 Validation and Impact 

4.2.1 Potential Use of Output 

The dynamic model as well as a bi-hemispheric visual-multi-area model may be used to study 
potential therapies for hemispatial neglect based on efforts of re-balancing activity in the two 
hemispheres such as non-invasive brain stimulation.  

5. Key Result KRc4.3: Application of Visuo-Motor 
Integration Model to User Input Data 

5.1 Outputs 

5.1.1 Overview of Outputs 

1) Image blow-up algorithm (component title Brain-constrained deep learning modules for visuo-
motor integration tasks, leader: Rainer GOEBEL, id: C2634, type: model) 

2) Deep convolutional autoencoder for saliency computation (component title Brain-constrained 
deep learning modules for visuo-motor integration tasks, leader: Rainer GOEBEL, id: C2634, type: 
model) 

3) Mental imagery (component title: Feedback interactions in monkey and human, leader: Wim 
VANDUFFEL, id: C2468, type: dataset) 

5.1.2 Output 1 

Researchers at UM have developed an algorithm which resamples images in accordance with ganglion 
cell distributions in the human retina. This work falls within T2.2.4: Brain-constrained deep learning 
modules for visuo-motor integration tasks (component id C2634). Resampling leads to image blow-
up such that central regions in the image are enlarged while distant regions are compressed. By 
incorporating this distortion into convolutional neuronal networks, these networks become more 
biologically realistic in two related aspects. First, visual acuity and spatial frequency preference of 
the networks exhibit eccentricity dependence. Second, networks exhibit cortical magnification as 
most of their units are devoted to central vision. These aspects are currently being validated by 
training a convolutional neural network on an orientation discrimination task of resampled 
(distorted) grating stimuli. 

Human-like acuity drop-off with increasing distance from fixation requires convolutional networks 
to explore a visual scene by taking snapshots from different fixations and integrate this information 
in order to recognise objects. Researchers at UM are currently developing an end-to-end deep 
reinforcement learning procedure to produce optimal eye movement patterns in light of the 
aforementioned distortions. As a first step, the recurrent attention model (RAM) has been 
implemented. This convolutional neural network is able to classify objects based on glimpses (cut-
outs of the visual scene, no further distortion) by consecutively selecting locations for upcoming 
glimpses in a goal-directed fashion. Currently this network is being trained to identify objects by 
making fixation decisions in light of resampled (distorted) images rather than glimpses. In parallel, 
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researchers at UM are developing alternative neural network architectures with distinct ventral 
(what) and dorsal (where) pathways. 

Exploiting the “policy gradient” deep reinforcement learning method in combination with 
convolutional and recurrent neural networks, the model will take a distorted snapshot of an image 
as input and exploit the information present to learn and generate sequences of saccade-like shifts 
in overt attention. In addition, by the end of SGA2 (month 24) the model will be able to integrate a 
sequence of snapshots into an overall coherent “mental” representation that can be classified. In 
general, the model will autonomously learn where to look, and to identify what it is seeing. 

References: 

[1] Mnih, V., Heess, N., Graves, A., & Kavukcuoglu, K. (2014). Recurrent Models of Visual 
Attention. 2204–2212. 

5.1.3 Output 2 

For Task T2.2.4 (Brain-constrained deep learning modules for visuo-motor integration tasks; 
component id C2634) researchers at UM further refined the deep convolutional autoencoder for 
saliency computation, first developed during SGA1. Specifically, an Atrous Spatial Pyramid Pooling 
(ASPP) module was added which utilises several convolutional layers with different dilation factors 
in parallel to capture multi-scale image information and global context. By dilating convolutional 
kernels, their receptive field sizes can be expanded in a computationally efficient manner without 
introducing additional parameters to the learning task. Here, three of these layers were laid out in 
parallel and combined with the activation maps from both a pointwise convolutional operation and 
global average pooling. The ASPP module was then applied to the extracted high-level features of a 
pre-trained image classification architecture, which allowed the network to encode semantic 
representations at multiple spatial scales and thus predict salient image regions more holistically. A 
qualitative evaluation demonstrated the re-weighting of feature importance in complex scenes via 
the multi-scale model component. This has resulted in improved approximations of empirical fixation 
maps. 

5.1.4 Output 3 

For Task T2.5.5 (Feedback interactions in monkey and human; component id C2468), researchers at 
UM have conducted a submillimetre fMRI study in humans at 7T investigating the spatial specificity 
of feedback arriving in early visual cortex during visual mental imagery of letter shapes. By 
successfully reconstructing imagined letter shapes, these researchers provided new evidence in 
favour of detailed topographic organisation of feedback. Specifically, it was shown that feedback 
and feedforward processing show the same retinotopic organisation. Furthermore, the study 
revealed that utilisation of a denoising autoencoder greatly enhances reconstruction quality and can 
serve as a pretraining procedure when designing classifiers able to identify imagined letters from 
brain activity. 

These results illustrate the possibility to project cortical activity into the visual field even in the 
absence of physical stimuli and hence to visualize high level processes such as mental imagery or, 
of high relevance to CDP4, attention. Indeed, the tools for reconstruction developed for and 
validated by this study will be essential to read out spatial activity distributions related to salience 
from posterior parietal cortex and to compare these against predictions made by the convolutional 
autoencoder (Output 2). 
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5.2 Validation and Impact 

The ASPP module extension of the deep convolutional autoencoder (Output 2) has been evaluated 
by comparing the performance of the architecture with and without this module on the test set of 
the MIT saliency benchmark. This evaluation revealed that ASPP module lead to significant 
performance improvements.  

5.2.1 Actual Use of Output(s) 

The extended saliency detection model (Output 2) has been used by researchers at UPFL who 
integrated it into a cortical model for visual segmentation (Task T10.2.1: Active perception and 
scene understanding; component id C2704).  

The reconstruction tools developed for and validated by Output 3 are used to test predictions of 
saliency distributions in response to natural images within posterior parietal cortex measured with 
7 Tesla (submillimetre) fMRI. This work is currently ongoing. 

5.2.2 Potential Use of Output(s) 

The image sampling (blow-up) algorithm resamples images to reflect ganglion cell placement in the 
human retina. As such it might be relevant to increase the biological realism of models of the human 
retina. Efforts to design a highly biologically plausible retina model are currently ongoing within SP4, 
notably Task T4.4.2 (Network model of the retina responding to complex stimuli; component id 
C2296).  

An end-to-end deep reinforcement learning procedure to produce optimal eye movement patterns 
in light nonlinear image sampling offers new opportunities for robotic applications. These systems 
may be outfitted with cameras whose sensor placement mimics the human retina. This would allow 
for very large coverage of the visual field while at the same time allowing for sharp vision near 
fixation. However, similar to humans such systems would need to produce eye movements and the 
architecture developed within CDP4 can be utilised for this purpose. 

Apart from their immediate scientific relevance, the results of Output 3 further open new avenues 
for brain computer interfaces (BCIs). Specifically, a denoising autoencoder can be used to pretrain 
a classifier purely based on perceptual data before fine-tuning it on imagery data. This may be 
utilized for the development of content-based BCI letter-speller systems which may be particularly 
suitable for communication in cases where voluntary muscle movement is impaired (e.g. locked-in 
syndrome). 

5.2.3 Publications  

The main publications for this KR are: 

(P1761) Kroner, A., Senden, M., Driessens, K., & Goebel, R. (2019). Contextual Encoder-Decoder 
Network for Visual Saliency Prediction. https://arxiv.org/abs/1902.06634 - this work has been 
submitted to the Neural Networks - Output 2 

(P1640) Senden, M., Emmerling, T. C., van Hoof, R., Frost, M. A. & Goebel, R. Reconstructing 
imagined letters from early visual cortex reveals tight topographic correspondence between visual 
mental imagery and perception. Brain Struct. Funct. 1–17 (2019). Output 3 

https://arxiv.org/abs/1902.06634


   
 

 
D2.2.1 (D9.1 D58) SGA2 M12 ACCEPTED 200730.docx PU = Public 24-Sep-2020 Page 14 / 15 

 

5.2.4 Measures to Increase Impact of Output(s): 
disseminations 

The saliency detection model (Output 2) has been made available on github: 
https://github.com/HBPNeurorobotics/embodied_attention 

The results of Output 3 have been extensively shared on twitter and are the subject of invited talks 
at several labs such as the computational neuroscience group at the Universitat Pompeu Fabra in 
Barcelona, Spain. 

6. Conclusion and Outlook  
Over the past 12 months all parties involved in CDP4 have made significant progress with respect to 
Key Result KRc4.1. This has not only led to a number of publications, including new insights with 
respect to mental imagery which may have important implications for the development of letter-
speller BCIs, but also to further extensions of the NEST simulator which have been made available 
to the scientific community with the release of version 2.16.0. With respect to the development of 
a large-scale visuomotor architecture most progress was made by integrating existing functional 
components on the one hand and performing simulations of multi-scale spiking neural network 
models on the other. The ability to simulate large, interconnected, networks of biologically plausible 
neurons together with the continued development of functionally performant visuomotor systems 
will prove crucial over the upcoming months to implement a neural architecture of visuomotor 
integration. While Key Result KRc4.1 is thus on a good track in general, little progress has been made 
towards performing behavioural visuomotor experiments using a neurorobotics implementation of 
the architecture. However, both target selection and saccade generation models, as well as the 
saliency architecture (KRc4.3), have been embedded in the Neurorobotics Platform and the 
collaboration between UM and FZI (SP10) has been strengthened in order to deliver first 
experimental results within the next six months. Specifically, in order to integrate all functional 
modules related to the “saccades for object recognition” closed-loop architecture, CDP4 stimulated 
SP10 to develop the Integrated Behavioral Architecture (IBA) framework for the NRP. The IBA is a 
software framework, the main function of which is to enable compositionality of various brain 
functions and circuits. Through this framework, neuro-computational components can be integrated 
into the NRP as part of a modular, expandable cognitive architecture, in order to evaluate their 
functional performance through embodied simulation.  

KRc4.2 is an important component of the FLAG-ERA BRAINSYNCH-HIT partnering project which 
started in 2018 and is thus relevant for the HBP. Furthermore, KRc4.2 fits within the over-arching 
story of CDP4 as the modelling work carried out within KRc4.2, development of a model of 
hemispheric asymmetry in attentional control (Output 1) and integration of spatial attention into 
the visual multi-area-model (Output 2) are directly related to work in KRc4.3 (models of saliency 
computation & target selection) and KRc4.1 (multi-area model), respectively. While work on this 
key result has begun it is still in an early stage. This is because an expected dataset of neglect 
patients has not yet been received since approval of BRAINSYNCH-HIT had taken longer than 
expected. In line with suggestions made by the EC, we will put KRc4.2 on hold and focus our efforts 
on KRc4.1 and KRc4.3 until the end of SGA2. We submitted our plan to continue the work on KRc4.2 
into SGA3 as part of WP3 (demonstrator) in order to fulfil our role in the BRAINSYNCH-HIT partnering 
project to the SIB.KRc4.3 has made good progress. Both the image blow-up algorithm and the 
autoencoder have reached a mature state. Furthermore, the autoencoder is actively used by other 
researchers in the HBP, mostly by SP10. In the upcoming 12 months the autoencoder will be used to 
generate predictions of saliency distributions in response to natural images within posterior parietal 
cortex measured with 7 Tesla (submillimetre) fMRI. The image distortion algorithm has not yet been 

https://github.com/HBPNeurorobotics/embodied_attention
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used by other groups but constitutes an important first step towards developing an end-to-end deep 
reinforcement learning procedure to produce optimal eye movement patterns in light of the 
aforementioned distortions. Such a system will become an important source of predictions of 
behavioural data in eye movement experiments. 
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