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Figure 1: Modelling of brain signals generated by neural networks 

Unitary field potentials illustrated here for the hippocampus. 
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1. Overview 
The theoretical and computational models developed in SP4 occupy a central position in the HBP. On 
the one hand, they are derived from experimental data produced in the HBP. On the other hand, models 
are implemented in the HBP Platforms, where they serve as "first users". These models also constitute 
the building blocks of work that will be continued in SGA3, such as bridging scales, network models, 
models of plasticity, models of cognitive processes and whole-brain models. 

This Deliverable describes the models developed for "bridging scales", so it spans from the cellular level 
(models of single neurons, and their dendrites), up to the level of neuron populations, using mean-field 
techniques inspired from physics. Mean-field models are ideal to link scales because they find their 
source in the single-cell models and try to formulate equations to describe the dynamics of populations 
of neurons, which can then be used at larger scales, up to the whole brain. Such combination of scales 
must be accompanied by appropriate modelling of the different brain signals involved, from single cell 
signals up to population signals such as the local field potential (LFP), voltage-sensitive dye (VSD) 
imaging, calcium imaging, neuronal magnetic fields and up to the electro-encephalogram (EEG). 

The highlights of the work in SGA2 are that multiple models were successively developed, published and 
are now available on the Platforms. Some of these models are running on neuromorphic hardware. It 
must be noted that these models were published in a total of 40 publications in SGA2 from 7 laboratories, 
which is an exceptionally high level of publication for this Work Package. Most of these models are open 
access and available not only in the HBP but also to the entire community. 
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2. Introduction 
In WP4.1, the goal is to bridge scales from neurons up to the whole-brain. The lowest scale is actually 
sub-cellular, it concerns the dendrites of neurons, and in particular how they integrate synaptic inputs.  
This is a long-standing problem which must be mastered to generate efficient single-cell models. The 
approach followed here is to apply a systematic complexity reduction procedure from detailed 
morphological models to obtain simplified models. A similar approach is also needed for collapsing the 
complexity of non-linear dendrites. Integrating biophysical mechanisms, such as the genesis of fast 
dendritic spikes in neurons, can potentially lead to fundamentally different types of computational 
capabilities. Here again, models of different complexity are needed to capture such computations. The 
simplified models conceived are done in a way compatible with the second-generation neuromorphic 
hardware, which places HBP in a unique position to integrate the results of biophysical simulations into 
neuromorphic computers. 

Another important theme of WP4.1 is to link cellular models to population models using mean-field 
techniques. Mean-field models are well used in the literature, but none of such models are "realistic" in 
the sense that they apply in general to very simple systems. By following a procedure to derive mean-
field models for complex neurons, this allows us to go one step further and envision integrating realistic 
models into whole-brain simulations, a work that will be done in SGA3. We consider properties such as 
neuronal stochasticity, spikes, spike-frequency adaptation, the different gain of excitatory and 
inhibitory neurons, conductance-based interactions, etc. Such properties are essential to shape large-
scale interactions in the brain, and the availability of such realistic mean-field models will be an 
important step as they will constitute the basis of several models in SGA3. The derivation of mean-field 
models in SGA2, and their implementation in SGA3 to model large-scale up to whole-brain activity, is a 
combination of expertise unique to HBP. 

Finally, another aspect investigated in WP4.1 is the genesis of brain signals. This theme of modelling is 
very important to the HBP, because to properly constrain models from experimental data, it is necessary 
to have good models of brain signals. This is true for single-cell models which are traditionally based on 
methods such as intracellular or extracellular recordings. It is also true for population models which are 
based on measurements such as LFP, VSD, calcium or EEG, and to properly constrain such models, it is 
necessary to have a good understanding of what population signals tell us about the underlying neural 
networks. This type of modelling is therefore inherently multiscale, as it combines different levels from 
cells to large populations.  

Note that most of the models will be available in the Knowledge Graph and are in the process of being 
transferred. 
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3. Key Results KR4.1 Develop models single cell and 
population levels  

3.1 Outputs 

3.1.1 Overview of Outputs 

3.1.1.1 List of Outputs  

• Output 1: Develop models single-cell and population levels 

• Output 2: Detailed spiking models from 3D anatomical reconstructions of L2/3 cortical human 
neuronal morphologies 

• Output 3: Models with active dendrites 

• Output 4: Biologically-realistic mean-field models 

• Output 5: Development of theory and simulation techniques for population density methods 

• Output 6: Mean-field models of formal networks 

• Output 7: Mean-field models, from dendrites to visual processing 

3.1.1.2 How Outputs relate to each other and the Key Result 

The different models developed span multiple scales, ranging from single-cell models, network models, 
mean-field models and large-scale models. They are all integrated in EBRAINS and will be among the 
building blocks of the models developed in SGA3. These models will also be combined with models of 
brain signals at multiple scales (see KR4.3).  

3.1.2 Output 1: Develop models single-cell and population levels 

During the SGA2 period, Idan SEGEV’s team from the Hebrew University of Jerusalem, has successfully 
achieved two key challenges.  

1) To develop first-ever analytical method for reducing complex nonlinear neuron models 
(Neuron_Reduce) (see Figure 2) while preserving the Neuron’s I/O properties. This holds for any 
neuron type and enables for a 100-folds speedup in simulating large realistic neuronal networks 
(Amsalem et al., Nature Commun. 2020) [1]. 

2) To develop detailed compartmental and cable models for human neurons (both layer 2/3 cortical 
pyramidal cells as well as CA1 hippocampal neurons); (Eyal et al., Front. Cell Neurosci, 2018; 
Benavides-Piccione et al., Cereb. Cortex 2019[2]). In yet another study we have demonstrated a 
surprising effect regarding how the neuron asymmetrical geometry underlies a universal (innate) 
local architecture in neuronal networks (Gal et al., 2019, BioXiv) 
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Figure 2: Illustration of the method to simplify the morphology of detailed pyramidal neuron 

models. 

3.1.3 Output 2: Detailed spiking models from 3D anatomical 
reconstructions of L2/3 cortical human neuronal 
morphologies 

In SGA2, we (UA) built detailed spiking models from 3D anatomical reconstructions of L2/3 cortical 
human neuronal morphologies (from SP2, H. MANSVELDER). We then explored the functional 
consequences of dendritic trees’ size by these models, as we quantified the bandwidth of information 
processing in these cells. We found that larger dendrites correlate 1) with more rapid action potentials 
at the onset and 2) with a broader transmission bandwidth, well above 100 cycles/s. This work appeared 
in eLife (Goriounova et al., 2018, P1630, [1]). 

We further investigated the model reduction of rodent L5 cortical pyramidal cells and interneurons, 
simplified into single-compartmental exponential integrate-and-fire units. We then successfully 
validated in silico our own in vitro experimental findings, concerning the transfer of correlated input 
synaptic activity into output spike trains. This work appeared in the Journal of Neuroscience (Linaro et 
al., 2019, P2054, [2]). 

We finally investigated the spike-initiation mechanisms in rodent cortical model neurons (as released 
from the Blue Brain Project), in terms of the impact of the Axon Initial Segment location plasticity. We 
found that across all 13 different excitatory electrical phenotypes, the information processing 
properties display a significant heterogeneity, with L4 cortical neurons outperforming all the other 
(Figure 3). This work is currently under review (Verbist et al., 2020, submitted for publication). 
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Figure 3: Cut-off frequency of excitatory neocortical models from rodents 

Information processing bandwidth of distinct excitatory cortical neuron models (from the Blue Brain Project) is examined 
systematically against the location of the Axon Initial Segment (AIS). 

This work also contributes to Key Result KR4.5 Validation of spiking network model against experimental 
data. 

3.1.4 Output 3: Models with active dendrites 

Link to model’s information : 
https://kg.ebrains.eu/search/instances/Model/74671c8d4f6e590452f6ceaebb780e03  

During SGA2, we (CNRS) have investigated several models with dendrites. First, we have investigated 
dendritic integration mechanisms in the presence of fast dendritic spikes (Gorski et al. 2018; Figure 4) 
[1]. This model showed that the presence of dendritic spikes can provide an inverse response to 
correlations to neurons, which is a type of computation that is not possible using point neurons. The 
model also generates intense spiking activity, as observed experimentally. We are presently 
investigating networks of such neurons. Second, we have used morphologically reconstructed models of 
cortical and hippocampal pyramidal cells to understand how they generate extracellular fields 
(Telenczuk et al., 2018, 2020) [2][3]. This work is also part of Task T4.1.4 on modelling brain signals. 

The models use the AdEx mechanism and their implementation in the 2nd-generation BrainScaleS 
hardware is in progress. 

https://kg.ebrains.eu/search/instances/Model/74671c8d4f6e590452f6ceaebb780e03
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Figure 4: AdEx model of dendritic spiking activity Output 2 

The dendrites are subject to an intense spiking activity (top), while the soma displays lower levels of firing (bottom).  
From Gorski et al. 2018. 

3.1.5 Output 4: Biologically-realistic mean-field models 

During SGA2, we (CNRS) have worked on a framework for building mean-field models using a semi-
analytic procedure which allows one to design mean-field models even for complex neurons. This 
formalism was applied to gradually more complex models such as the leaky integrate and fire (IF) model 
(work in SGA1), the AdEx model (di Volo et al., 2019, Figure 5) [4] and more recently the Hodgkin-
Huxley model (Carlu et al., 2020) [2]. This formalism will be used in SGA3 to design mean-field models 
to even more complex neuronal types, with dendrites. The mean-field approach was also extended to 
model Up-Down state dynamics, using either a mean-field model with adaptation (di Volo et al., 2019) 
[4] or a state-dependent formalism (Capone et al., 2020) [1]. The mean-field model approach was 
combined with voltage-sensitive dye recordings in awake monkey, to account for propagating waves of 
activity in V1, and how such propagating waves participate to visual information processing (Chemla et 
al., 2019) [3]. This study was very important for modelling because it allowed us to calibrate mean-field 
models and create "networks of mean-fields", applied here to V1 recordings. The same approach will be 
continued in SGA3, towards larger scales, as reviewed in a recent paper (Goldman et al., 2019) [5]. 

This model is now implemented in The Virtual Brain (TVB). This implementation (joint work with Viktor 
JIRSA in Marseille) is in progress and is described in the SGA2 Deliverable D4.6.1 (D26.1 D39). 
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Figure 5: State-dependent network response, that can be captured by a mean-field model. 

The simulations in A, B illustrate the response of the same network (AdEx neurons) in two different states, to the same 
input. (From di Volo et al., 2019). C. Comparison between mean-field models showing that an adapting mean-field 
optimally captures this state dependence. 

3.1.6 Output 5: Development of theory and simulation 
techniques for population density methods 

During SGA2, we (University of Leeds) completed a method for modelling two-dimensional population 
density methods [1]. We have demonstrated that this algorithm can simulate networks of hundreds of 
populations, using a GPGPU [1]. The algorithm has been made publicly available as simulator MIIND1 and 
installation and usage has been facilitated by providing Docker containers and virtual machines. We 
gave a tutorial on its usage during CNS2019 in Barcelona2. MIIND has been installed on JURON and is 
directly available for anyone with an account on this machine, including but not restricted to all HBP 
members. After extensive validation, against Monte Carlo simulation and comparisons with DIPDE, the 
only other population density simulator, we are satisfied that our algorithms are very robust. Unlike 
DIPDE we are not restricted to leaky-integrate-and-fire neurons but can handle any 1D or 2D neuron 
model. We are now in a position that we can construct large-scale networks. We have recently 
reimplemented the Potjans-Diesmann model and have applied MIIND to a model of afferent feedback in 
spinal cord circuits [2]. We have managed to implement and evaluate the Hindmarsh-Rose model as well 
as a reduced version of Hodgkin-Huxley, which is remarkable because they are 3D models (Figure 6). 3D 
visualisations provide novel insight into how these complex dynamical systems evolve when subjected 
to noise. In summary, we can make models more complex by extending the network architecture, or by 
including more realistic models for individual populations. A model catalogue has been submitted as a 
preprint to arXiv [3] 

                                            
1 http://miind/sf.net 
2 Osborne H, de Kamps M, Deutz L, Simulating Multiple Interacting Neural Populations using Population Density 
Techniques (using MIIND), whole day tutorial at CNS2019, Barcelona. (https://www.cnsorg.org/cns-2019-
tutorials#T4) 

http://miind/sf.net
https://www.cnsorg.org/cns-2019-tutorials#T4
https://www.cnsorg.org/cns-2019-tutorials#T4
https://www.cnsorg.org/cns-2019-tutorials#T4
https://www.cnsorg.org/cns-2019-tutorials#T4
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Figure 6: Implementation of models in MIIND. 

 A-C: Validation MIIND vs DIPDE. D: Potjans-Diesmann model dynamics, an 8 population recurrent network. E: Hindmarsh-
Rose model subject to shot noise, F: reduced Hodgkin-Huxley. 

3.1.7 Output 6: Mean-field models of formal networks 

Schuecker et al. 20183 show that optimal information-processing capabilities do not coincidence with 
the transition to chaos in networks that receive time-varying inputs. Dynamic mean-field theory shows 
how fluctuating inputs suppress chaos and lead to a dynamical regime that is optimal to memorize past 
inputs. In SGA2, using beyond mean-field methods, Dahmen et al. 2019 [1] show that motor cortex of 
the awake macaque monkey operates in a second type of critical regime, that is hidden from 
macroscopic brain signals but essential for high performance in such concepts as reservoir computing. 

 
Figure 7: Phase Diagram of a recurrent, driven network. Optimal sequential memory arises in 

regime beyond linear stability 

                                            
3 Jannis Schuecker, Sven Goedeke, Moritz Helias (2018), Optimal Sequence Memory in Driven Random Networks, 
Phys. Rev. X 8, 041029 (P1577) 
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3.1.8 Output 7: Mean-field models, from dendrites to visual 
processing 

Link to model’s information : 
https://kg.ebrains.eu/search/instances/Model/66f3f5ce6aa337c9dec89cf7843fe5d9  

During SGA2, we (INRIA) have worked on building several new and challenging mean field models of 
interacting neurons. In a first work [1], we developed a framework to describe a network of spiking 
neurons with a dendritic compartment (Ball and Stick neurons) which takes into account dendritic spikes 
(see Figure 8). A second research axe was directed to mean field of generalised Integrate and Fire 
neurons for which a fast simulation procedure was described [2] and the long term behaviour of the 
network was characterised [3]. A third research axe was directed to Mean-field dynamics of networks 
with random synaptic weights. 

We proved that the size of the synaptic weights can be of the order 1/ N instead of 1/N in the 
deterministic setting [4,5]. Moreover, for correlated synaptic weights, the limit equation does not 
satisfy the propagation of chaos property. In other words, even in the mean-field limit, the activity of 
two typical neurons is still correlated. In a last research axe, we also developed a model of visual cortex 
with colour perception (A. Song, O. Faugeras, and R. Veltz., 2019) which reproduces in a unified way 
two opposing perceptual phenomena, known as simultaneous contrast and chromatic assimilation. We 
fitted our model to experimental data. We also developed a model of memory lifetime based on a 
stochastic synaptic rule and a statistical test. We were able to generalise a previous result concerning 
the memory lifetime which scales as 1/f^2 where is f is the (small) coding level of the signal.  

 
Figure 8 : Network of spiking neurons with dendrites 

Top: Comparison of the Firing rate for the finite size network and the mean field limit. Middle: plot of the density of the 
membrane potentials g(t,v) for the mean field. BoPom: empirical density for the finite size network (From [2]).  

3.2 Validation and Impact 

3.2.1 Actual and Potential Use of Output(s) 

The actual and potential Use of the Outputs are already described within the Outputs. 

https://kg.ebrains.eu/search/instances/Model/66f3f5ce6aa337c9dec89cf7843fe5d9
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3.2.2.5 Output 5: Development of theory and simulation techniques for 
population density methods 

[1] de Kamps M, Lepperød M, Lai YM (2019) Computational geometry for modeling neural 
populations: From visualization to simulation. PLoS Comput Biol 15(3): e1006729. 
https://doi.org/10.1371/journal.pcbi.1006729 (P1899) 

[2]: Muscles Recruited During an Isometric Knee Extension is Defined by Proprioceptive Feedback York 
G, Osborne H, Sriya P, Astil Sl, de Kamps M, Chakrabarty S, bioRxiv 802736; (P2189) 
doi: https://doi.org/10.1101/802736  

[3] Osborne H, Lai Y M, de Kamps M (2020), Models Currently Implemented in 
MIIND,(P2463)  https://arxiv.org/submit/3070798 

3.2.2.6 Output 6: Mean-field models of formal networks 

[1] David Dahmen, Sonja Grün, Markus Diesmann, and Moritz Helias (2019), Second type of 
criticality in the brain uncovers rich multiple-neuron dynamics, PNAS 2019 116 (26) 13051-13060 
(P1995)  

3.2.2.7 Output 7: Mean-field models, from dendrites to visual processing 

[1] N. Fournier, E. Tanré, and R. Veltz "On a toy network of neurons interacting through their 
dendrites” Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques, 2019 (P2455) 

[2] B. Aymard, F. Campillo, and R. Veltz. “Mean-Field Limit of Interacting 2D Nonlinear Stochastic 
Spiking Neurons.” ArXiv:1906.10232 [Cs, Math], June 24, 2019. http://arxiv.org/abs/1906.10232. 
(P2461) 

[3] Q. Cormier, E. Tanré, and R. Veltz. “Long Time Behavior of a Mean-Field Model of Interacting 
Neurons.” Stochastic Processes and Their Applications, July 22, 2019. 
https://doi.org/10.1016/j.spa.2019.07.010. (P1567) 

[4] O. Faugeras, J. Maclaurin, and E. Tanré. "The meanfield limit of a network of Hopfield neurons with 
correlated synaptic weights." arXiv preprint arXiv:1901.10248 (2019). (P2048) 

[5] O. Faugeras, E. Soret, E. Tanré. “Asymptotic behavior of a network of neurons with random linear 
interactions”. 2019. ⟨hal-01986927⟩ (P2131) 

[6] P. Helson, “A Mathematical Analysis of Memory Lifetime in a simple Network Model of Memory” 
2019, Arxiv 1910.04993, accepted for publication in Neural Computation (P2456) 

 

https://doi.org/10.1371/journal.pcbi.1006729
https://doi.org/10.1101/802736
https://arxiv.org/submit/3070798
http://arxiv.org/abs/1906.10232
https://doi.org/10.1016/j.spa.2019.07.010
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4. Key Result KR4.3 Develop models of brain activity 
and function  

4.1 Outputs 

4.1.1 Overview of Outputs 

4.1.1.1 List of Outputs contributing to this KR 

• Output 1: Models of brain signals 

• Output 2: Multi-modal calculation of vbrain signal 

4.1.1.2 How Outputs relate to each other and the Key Result 

The contribution of SP4 to KR4.3 is essentially to provide models of different brain signals. These models 
can be both microscopic (such as single-cell signals), mesoscopic (LFP, VSD, calcium imaging) or 
macroscopic (EEG, MEG, EcoG). They will be integrated in EBRAINS and will be available to calculate 
brain signals from neural simulations at multiple scales (see KR4.1). 

4.1.2 Output 1: Models of brain signals 

During SGA2, the CNRS partner has participated in the modelling of several brain signals, some of these 
will continue in SGA3. A first approach was to model voltage-sensitive dye (VSD) signals. These signals 
were modelled from mean-field models, and they were successfully used to account for propagating 
waves in V1 of awake monkey, as well as the suppressive effect mediated by these propagating waves 
(Chemla et al., 2019) [1]. A second modelling effort was about the local field potential (LFP). Here a 
model was developed to study the role of the initial segment in the shape of the extracellular spike 
signal (Telenczuk et al., 2018,) [4]. The unitary LFP was also modelled in the hippocampus, using 
detailed biophysical models (Figure 9; Telenczuk et al., 2020a [5]). The latter yields a method to 
calculate LFPs from spiking neurons using kernel templates fit to the experimental data (Telenczuk et 
al. 2020b [6]). Third, the effect of extracellular electric stimulation was modeled using models of axon 
fibres (Dali et al., 2020) [2]. Finally, CNRS also modeled calcium signals based on two-photon and wide-
field measurements in mice (collaboration with Francesco PAVONE, SP1). This work is in progress and a 
paper is in preparation. 

CNRS also participated to a review article in collaboration with several HBP partners, and the group of 
Gaute Einevoll (Einevoll et al., Neuron 2019) [3]. 
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Figure 9: Modelling of unitary field potentials (uLFPs) in hippocampus. 

Detailed morphological models of hippocampal pyramidal cells were used, to model the stimulation of inhibitory (A) and 
excitatory (B) synapses. The resulting uLFPs are shown in C, D. It can be seen that inhibitory uLFP are more powerful 
than excitatory uLFPs, as in experiments. (From Telenczuk et al., 2020). 

4.1.3 Output 2: Multi-modal calculation of brain signals 

An essential part of computational neuroscience is comparing simulated and recorded neural activity 
[1-2], and our main work in SGA 2 has been centrred around the development and subsequent testing 
and use of a toolbox for calculating different brain signals from simulated neural activity, namely the 
software LFPy 2.0 [3-4] (https://lfpy.readthedocs.io/). This tool can now be used to calculate signals 
such as the local field potential (LFP), electrocorticogram (ECoG), electroencephalogram (EEG) and 
magnetoencephalogram (MEG) from arbitrary neural activity (Figure 10). We have applied LFPy 2.0 to 
(i) get a better understanding of extracellular potentials [5-7], to (ii) develop and test new methods [8 
(also, one manuscript is under review4), and for (iii) gaining new insights into recorded LFP and EEG 
signals [9-10]. The work done in SGA2 lays the foundation for integrating LFPy 2.0 into the EBRAINS 
infrastructure in SGA3. 

                                            
4  Martínez-Cañada P., Ness, T. V., Einevoll, G.T., Fellin, T, Panzeri, S (2020). Computing the 
electroencephalogram (EEG) from networks of point neurons. [Under review by PLoS Comp Biol]  

https://lfpy.readthedocs.io/


 
 

  
 

D4.1.1 (D21.1 D67) SGA2 M24 ACCEPTED 201005.docx PU = Public 15-Oct-2020 Page 17 / 19 
 

 
Figure 10: Illustration of multi-modal calculation of brain signals. 

Different waves of synaptic input (A) are projected to an unconnected population of 10,000 pyramidal cells (B). From this 
neural activity, we calculated the resulting LFP (C), and for either a radial or tangential population (D) corresponding to 
a neural population in a gyrus or a sulcus, the EEG (E) and MEG (F) at the head surface (for a snapshot in time marked by 
the vertical dashed line in panel A and C). 

4.2 Validation and Impact 

4.2.1 Actual and Potential Use of Output(s) 

The actual and potential Use of the Outputs are already described within the Outputs. 

4.2.2 Publications 

4.2.2.1 Output 1: Models of brains signals 

[1] Chemla, S., Reynaud, A., diVolo, M., Zerlaut, Y., Perrinet, K., Destexhe, A. and Chavane, F.  
Suppressive traveling waves shape representations of illusory motion in primary visual cortex of 
awake primate. J. Neurosci. 39: 4282-4298, 2019. (P1510) 

[2] Dali, M., Goldman, J.S., Pantz, O., Destexhe, A.  and Mandonnet, E.  Modeling subcortical white 
matter stimulation.  Manuscript under review, 2019 (P2539). biorXiv preprint: 
https://www.biorxiv.org/content/10.1101/2019.12.12.872390v1  

[3] Einevoll, G.T., Destexhe, A., Diesmann, M., Gruen, S., Jirsa, V., de Kamps, M., Migliore, M., Ness, 
T.V., Plesser, H.E. and Schuermann, F. The scientific case for brain simulations. Neuron 102: 735-744, 
2019. (P1913) 

[4] Telenczuk, M., Brette, R., Destexhe, A. and Telenczuk, B. Contribution of the axon initial segment 
to action potentials recorded extracellularly.  eNeuro 5: 0068-18, 2018. (P1347) 

[5] Telenczuk, M., Telenczuk, B. and Destexhe, A.  Modeling unitary fields and the single neuron 
contribution to local field potentials in the hippocampus.  Manuscript under review, 2020a. (P2502) 
biorXiv preprint: https://www.biorxiv.org/content/10.1101/602953v2  

[6] Telenczuk, B., Telenczuk, M. and Destexhe, A.  A kernel-based method to calculate local field 
potentials from networks of spiking neurons, Manuscript under review, 2020b. (P2483) biorXiv preprint 
:  https://www.biorxiv.org/content/10.1101/2020.03.29.014654v1.full.pdf  

https://www.biorxiv.org/content/10.1101/2019.12.12.872390v1
https://www.biorxiv.org/content/10.1101/602953v2
https://www.biorxiv.org/content/10.1101/2020.03.29.014654v1.full.pdf
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4.2.2.2 Output 2: Multi-modal calculation of brain signals 

[1] Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M., … Schürmann, F. 
(2019). The Scientific Case for Brain Simulations. Neuron, 102(4), 735–744. (P1913) 

[2] Mäki-marttunen, T., Kaufmann, T., … Andreassen, O. A. (2019). Biophysical Psychiatry—How 
Computational Neuroscience Can Help to Understand the Complex Mechanisms of Mental Disorders. 
Frontiers in Psychiatry, 10(534), 1–14. (P2005) 

[3] Hagen, E., Næss, S., Ness, T. V., & Einevoll, G. T. (2018). Multimodal modeling of neural network 
activity: computing LFP, ECoG, EEG and MEG signals with LFPy 2.0. Front Neuroinform, 12(92). (P1847) 

[4] Hagen, E., Næss, S., Ness, T. V., & Einevoll, G. T. (2019). LFPy – multimodal modeling of extracellular 
neuronal recordings in Python. In Encyclopedia of Computational Neuroscience (p. 620286). Springer, 
New York, NY. (P2004) 

[5] Skaar, J.-E. W., Stasik, A. J., Hagen, E., Ness, T. V., Einevoll, G. T. (2020). Estimation of neural 
network model parameters from local field potentials (LFPs). [Accepted for publication in PLoS Comp 
Biol.; Preprint: https://www.biorxiv.org/content/10.1101/564765v1] (P2439) 

[6] Ness, T. V., Remme, M. W. H., & Einevoll, G. T. (2018). h-Type Membrane Current Shapes the Local 
Field Potential from Populations of Pyramidal Neurons. Journal of Neuroscience, 38(26), 6011–6024. 
(P1342) 

[7] Buccino, A. P., Kuchta, M., Jæger, K. H., Ness, T. V., Berthet, P., Mardal, K.-A., … Tveito, A. (2019). 
How does the presence of neural probes affect extracellular potentials? Journal of Neural Engineering, 
16(2). (P1848) 

[8] Buccino, A. P., Kordovan, M., Ness, T. V., Merkt, B., ..., Einevoll, G. T. (2018). Combining biophysical 
modeling and deep learning for multi-electrode array neuron localization and classification. Journal of 
Neurophysiology, 120, 1212–1232. (P1394) 

[9] Luo, J., Macias, S., Ness, T. V., Einevoll, G. T., Zhang, K., & Moss, C. F. (2018). Neural timing of 
stimulus events with microsecond precision. PLoS Biology, 16(10), 1–22. (P1908) 

[10] Mäki-Marttunen, T., Krull, F., Bettella, F., Hagen, E., Næss, S., Ness, T. V., … Einevoll, G. T. (2019). 
Alterations in Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. 
Cerebral Cortex, 29(2), 875–891. (P1565) 

[11] Heiberg, T., Kriener, B., Tetzlaff, T., Einevoll, G. T., & Plesser, H.-E. (2018). Firing-rate models 
for neurons with a broad repertoire of spiking behaviors. Journal of Computational Neuroscience, 45(2), 
103–132. (P1402) 

 

https://www.biorxiv.org/content/10.1101/564765v1
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5. Conclusion and Outlook  
In conclusion, we believe the work of WP4.1 has been successfully completed and according to the 
planned work for the SGA2 phase. Multiple models were developed, at the level of single cells and 
dendrites, the level of population of neurons, and for different brain signals spanning different scales 
from single neurons to brain scale. These models are now available in the Platforms. Some of these 
models are running on the 1st and 2nd generation of neuromorphic hardware. Nearly all models have 
been published and are available not only inside HBP, but also to the entire community.   

It must be emphasised that WP4.1 reached an unusually high level of publications in SGA2, for dendritic 
models (10 publications from 3 laboratories), mean-field models (19 publications for 4 laboratories), 
and for the modeling of brain signals (17 papers in SGA2, from 2 laboratories). Most of these models are 
open access, and those who are not open-access will become open as soon as the corresponding paper 
is published. 

Concerning the uniqueness of the work done here, we believe the combination of scales, from sub-
cellular (dendrites) to large brain-size scales is unique to the HBP. It is also unique to the HBP that so 
many brain signals are modelled in a single project, from extracellular potential of single neurons, up 
to large scale signals such as imaging or EEG. Finally, all such models are (or will soon be) made available 
to the community, either in the form of open-code, or via tools such as LFPy.   

The models developed in WP4.1 will all be continued in SGA3. The expertise in modelling dendrites will 
be used in the detailed models of human neurons in SGA3 WP1, for cerebral cortex, hippocampus, 
cerebellum and basal ganglia. The models for brain signals will be used there as well. The mean-field 
models are now implemented in The Virtual Brain (TVB), and will soon simulate brain dynamics at the 
level of the whole human brain, as well as the mouse brain (mouse TVB), respectively in WP1 and WP2 
of SGA3. It must be noted that this modelling will be a true “bridging scales” since it will combine 
models estimated from cellular-level activity (in SGA1 and SGA2) and will be implemented to simulate 
the whole human brain (in SGA3). 
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