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1. Introduction 

Neuromorphic computing (NMC) transfers aspects of structure and function observed 
in biological neural circuits to custom designed hardware, mostly to silicon-based 
CMOS substrates. The potential benefits of NMC comprise energy efficiency, 
resilience against resource loss and, most importantly, the ability to self-organise 
and learn from external data. 

The on-going success story of artificial neural networks (ANNs) as the main 
conceptual basis for state-of-the-art artificial intelligence (AI) has also generated a 
renewed interest in special hardware approaches that deviate substantially from the 
established von Neumann architecture. However, there is still a very significant 
performance gap between current algorithms and hardware for AI and the biological 
brain. The need for very large labelled data sets, the separation of training and 
inference, the long training times and the lack of energy efficiency are only a few 
examples for this gap. There is a general consensus in the AI community that a more 
biologically grounded approach is urgently needed to move the field and the 
emerging applications forward. 

Here, the HBP offers a worldwide unique opportunity to transfer biological principles 
to novel hardware architectures. From the planning phase on, the path from 
biological knowledge to NMC has been a key element of research in the HBP. NMC in 
the HBP is based on 2 complementary and internationally recognised approaches that 
have been conceived around 2005 and initially supported by the FET integrated 
projects FACETS and BrainScaleS, as well as by the Engineering and Physical Sciences 
Research Council (EPSRC) in the UK.  

SpiNNaker is a custom designed neuromorphic many-core chip based on the well-
known ARM architecture. Special emphasis has been placed on the development of 
a packet-based spike communication network optimised for spike transmission that 
enables construction and real-time operation of very large-scale networks. The 1st 
generation SpiNNaker machine (2.3) currently offers 0.5 Million cores and is located 
in Manchester (UK). 

BrainScaleS is a physical model system of neural circuits with local analog images of 
neurons and synapses and binary spike communication in continuous time. The 
analog parameters have been selected to operate the machine in an accelerated 
mode 10,000-fold faster than real-time. The 1st generation BrainScaleS machine (2.1) 
currently offers 20 wafer modules with a maximum total of 4 Million neurons and 1 
Billion synapses; it is located in Heidelberg (Germany). 
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Organisation of work in SP9 

BrainScaleS-1 
1st generation machine operation 

SpiNNaker-1 
1st generation machine operation 

BrainScaleS-2 
2nd generation prototype development 

SpiNNaker-2 
2nd generation prototype development 

Software development 
Configure and operate the neuromorphic platform 

Computational principles 
Theory development for computation in neuromorphic systems 

Table 1: Work in SP9 is organised around the 6 key results 
reported in this document. 

Both first generation machines are now fully integrated in the HBP infrastructure. 
They are remotely accessible through the Collaboratory or through direct batch job 
submission at the machine locations. During the reporting period, the number of 
users and number of jobs submitted has shown a steady increase (see Figure 19 and 
Figure 20), demonstrating a good uptake of this novel computing approach. As those 
1st generation machines are not commercial purchases like HPC systems, substantial 
efforts went into maintaining and further commissioning the 1st generation. Still, 
today these machines represent the only remotely accessible large-scale 
neuromorphic computing systems in the world and are as such a unique capability 
offered only by the HBP. 

The second major activity of the SP9 group is the design and evaluation of the 2nd 
generation prototype chips: SpiNNaker-2 and BrainScaleS-2. Those represent major 
upgrades with respect to the 1st generation systems. The novel features are enabled 
by the availability of very advanced CMOS process nodes as well as by the co-design 
process in the HBP. SpiNNaker-2 will have a tenfold increase of computational 
capability with a constant power budget. BrainScaleS-2 will offer on-chip hybrid 
plasticity and structured analog neurons with active dendrites. These developments 
have the potential to secure Europe’s excellent position in the field of neuromorphic 
computing. A joint presentation with Intel’s new Loihi chip at the international 
conference on neuro-inspired -computational-elements (NICE) in March 2018 has 
clearly confirmed this. The next step of realising large-scale systems based on the 
2nd generation chips during the early SGA3 period will be very important to achieve 
this goal. 

SP9 also delivers software support for the NMC systems ranging from low-level, 
hardware specific software to the high-level integration into the HBP Platform 
infrastructure which will eventually enable the NMC to be part of the HBP joint 
Platform. The SP9 software represents a unique ecosystem for neuromorphic 
computing. The user-accessible software is open source and managed in public 
GitHub repositories. 

Finally, but of crucial importance is the very close collaboration with theory which 
has successfully enabled the co-design process of 2nd generation neuromorphic 
hardware driven by theoretical principles of brain information processing. The most 
important principle is learning in neural systems but also other ideas have 
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contributed to the design on the 2nd generation NMC systems. Theory enters SP9 
through an internal Work Package as well as through SP4 and CDP5. 

In this context, we quote the corresponding argument given in the CDP5 deliverable: 
“Besides brain science, another branch of science is interested in uncovering the 
principles of learning: artificial intelligence (AI). However, the field of AI has a 
different scope, as it is not confined by biological boundaries. Nevertheless, as 
Nature writes in its editorial from Feb. 8, 2018, on the Hardware Upgrade “Artificial 
intelligence is driving the next wave of innovations in the semiconductor industry”. 
The editorial concludes with “We welcome papers that will enable computing 
architectures beyond von Neumann, such as components for neuromorphic chips and 
in memory processing. Scientists across many fields are waiting for the result ….” By 
working on unravelling the learning ability of the mammalian brain, CDP5 implicitly 
addresses the advancement of AI and its desire to build fast, energy-efficient, 
massively parallel hardware. A key partner is therefore SP9, which is devoted to 
hardware implementations of learning circuitry, with the multi-core SpiNNaker 
system in Manchester and the physical-model BrainScaleS Platform in Heidelberg. 
The core of CDP5 connects the computational theories on learning and plasticity, 
developed in SP4 (WP4.3) and in part in SP9 itself (WP9.4), to the neuromorphic 
hardware developed in SP9.” 

All key results presented in this report are aligned with the work organisation at 
shown in Table 1.  
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2. Key Results 

In this chapter we present the key results obtained by SP9 during the reporting 
period, as well as their impacts, mostly through publications. Publication lists are 
just providing important examples; complete lists are available in the periodic 
reports. For each Key Result we also provide a short description of the challenges 
encountered during the work and an outlook to future work. As general statement 
relating to all Key Results one can say that the work on the SGA1 funding period 
proceeded very well and that all challenges have been met with excellent success.  

2.1 BrainScaleS-1 (1st generation machine) 

2.1.1 Results 

During the reporting period, the BrainScaleS-1 machine (Figure 1 and Figure 2) was 
operated at the Heidelberg location in a 24/7 mode. Job submission can be 
performed through a local batch queue (SLURM) and through the HBP Collaboratory, 
also labelled NMPI (Neuromorphic Platform interface).  

 
Figure 1: Wafer module of 

BrainScaleS-2 machine 

 
Figure 2: BrainScaleS machine. 20 wafer 

modules controlled by local compute 
cluster  

As the machine is still in a commissioning phase, subsets of the complete system 
have been available to users at any given time. Part of the on-going commissioning 
work during the reporting period went into investigating a remaining connectivity 
problem between the silicon wafer and the printed circuit board. Together with the 
Fraunhofer IZM group the problem was traced back to local damages occurring during 
the wafer post-processing in some of the wafers. A new batch of wafers has been 
submitted for post-processing within the reporting period and their installation is 
expected to take place in April 2018. 

Figure 3 shows the evolution of the Platform use. Batch submission (i.e. the non-
NMPI user jobs) dominates by far the statistics, because of its ease of use, speed and 
the advanced capabilities to run scripted parameter scans. Continuous integration 
through the Jenkins tool ensures quality control and an operational system with 
regular updates in hardware and software. 
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Figure 3: Cumulative job submission numbers to the BrainScaleS machine 

from March 2015 to February 2018 
Calibration and understanding of the system took substantial efforts by SP9 
scientists. This part of the work was mostly dedicated to a detailed calibration of 
analog cell parameters and setting-up of the on-wafer routing. Figure 4 shows the 
example of a routed chain of spiking neurons on a hardware wafer crossing 
boundaries between many chips and reticles. 

 
Figure 4: Example of on-wafer routing on the BrainScaleS system 

Several state-of-the-art experiments have been carried out with the BrainScaleS 
machine. Here, we report on 3 fundamentally different approaches, which 
demonstrate the universality of the system, and interesting features of spike-based, 
accelerated physical model implementations of neuromorphic computing. 

A physical model spiking deep networks solving the MNIST machine learning 
benchmark 

Here, it was demonstrated how iterative training of a hardware-emulated network 
can compensate for anomalies induced by the analog substrate. We first convert a 
deep neural network trained in software to a spiking network on the BrainScaleS 
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wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10,000 
compared to the biological time domain. This mapping is followed by the in-the-loop 
training, where in each training step, the network activity is first recorded in 
hardware and then used to compute the parameter updates in the software via 
backpropagation. An essential finding is that the parameter updates do not have to 
be precise, but only need to approximately follow the correct gradient, which 
simplifies the computation of updates. Using this approach, after only several tens 
of iterations, the spiking network shows an accuracy close to the ideal software-
emulated prototype. These techniques show that deep spiking networks emulated 
on analog neuromorphic devices can attain a good computational performance 
despite the inherent variations of the analog substrate (text taken from abstract of 
Ref 1 Schmitt et al.).  

 
Figure 5: Spike pattern in network layers (horizontal) vs. pattern input 

(vertical). Green dots in the label layer (right) show correct results. 
Figure 5 shows the recorded spike activity after presentation of a sequence of hand-
written numbers to the trained network of the BrainScaleS system. 

Neural sampling with spiking neurons. 

During the SGA1 funding period, SP9 members have pioneered a formal theory of 
neural sampling with spiking LIF neurons (Ref 2). Neural sampling is based on 
stochastic neurons that require noise input from either internal or external sources. 
Sampling neurons can either generate patterns from learned data, or recognise 
patterns from incomplete or noisy inputs. During the reporting period, neural 
sampling has been implemented for the first time on the BrainScaleS machine, using 
the activity of an adjacent, on-wafer functional network as a noise source (Figure 
6). 

 
Figure 6: Interconnected (left) and noise network (right) on the BrainScaleS 

machine 
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This “sea-of-noise-concept” was originally developed in the BrainScaleS project (Ref 
3), it represents a promising concept to produce in vivo-like conditions for 
information processing with neuromorphic hardware without bandwidth penalties. 

Constraint satisfaction problems 

Another example of a recent category of applications running on the BrainScaleS 
system are constraint satisfaction problems (CSF), i.e. problems in which a whole set 
of constraints must be satisfied for a given state. A well-known benchmark for a CSF 
is the Sudoku problem which was applied as a first use case with a 4x4 cell 
configuration. For a maximum number of 12 free cells, the percentage of correctly 
solved Sudoku set-ups could be increased from below 20% to 50% for 100 randomly 
drawn Sudoku set-ups. At 8 free cells, the solving accuracy with training is at 100% 
while it declines below 70% without training (from Ref 4). 

2.1.2 Impact 

BrainScaleS-1 is the worldwide first and only large-scale, remotely accessible 
physical model neuromorphic computing system. The following references point to 
some key publications. 

Ref 1: Sebastian Schmitt, Johann Klähn, Guillaume Bellec, Andreas Gru ̈bl, Maurice 
Güttler, Andreas Hartel, Stephan Hartmann, Dan Husmann,Kai Husmann, Sebastian 
Jeltsch, Vitali Karasenko, Mitja Kleider, Christoph Koke, Alexander Kononov, 
Christian Mauch, Eric Mu ̈ller, Paul Mu ̈ller, Johannes Partzsch, Mihai A. Petrovici, 
Stefan Schiefer, Stefan Scholze, Vasilis Thanasoulis, Bernhard Vogginger, Robert 
Legenstein, Wolfgang Maass, Christian Mayr, René Schüffny, Johannes Schemmel, 
Karlheinz Meier (2017, May). Neuromorphic hardware in the loop: Training a deep 
spiking network on the brainscales wafer-scale system. In Neural Networks (IJCNN), 
2017 International Joint Conference on (pp. 2227-2234). IEEE. 
https://doi.org/10.1109/IJCNN.2017.7966125 

Ref 2: Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J., & Meier, K. (2016). 
Stochastic inference with spiking neurons in the high-conductance state. Physical 
Review E, 94(4), 042312. https://doi.org/10.1103/PhysRevE.94.042312 

Ref 3: Jordan, J., Petrovici, M. A., Breitwieser, O., Schemmel, J., Meier, K., 
Diesmann, M., & Tetzlaff, T. (2017). Stochastic neural computation without 
noise. arXiv preprint arXiv:1710.04931. 

Ref 4: Alexander Kugele, Solving the Constraint Satisfaction Problem Sudoku on 
Neuromorphic Hardware, MSc thesis in Physics, Heidelberg University, 2018. 

2.1.3 Challenges 

The main challenge of this Key Result was to maintain and further develop a very 
large-scale hardware system in a stable and reliable mode of operation. This includes 
a continuous monitoring of hardware and software, a support of established and new 
users, and a continuous upgrade and replacement of hardware components like 
improved and newly reprocessed wafers and analog readout boards. The SP9 large- 
scale systems are sometimes compared to commercial supercomputing systems 
which represent investments of several 100 Million Euros and are simply purchases 
from major industry players.  Investments into SP9 large-scale systems are about 2 
orders of magnitude less in funding and in-house constructions. Today, they 

https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1103/PhysRevE.94.042312
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represent worldwide unique facilities with very remarkable results as described in 
the Key Results in this report. The challenge was met by highly competent and 
motivated scientists and engineers in SP9, which represent a powerful workforce 
that today represents one of the most important assets of the HBP. 

2.1.4 Future Work 

The BrainScaleS large-scale system will now be continuousy operated until the next 
generation machine is available with the size as contracted in the FPA. Efforts will 
now be focused on user support and  software development. Hardware replacements 
and minor upgrades will still be carried out wherever neccessry and useful for the 
user requirements. A comprehensive list of large-scale experiments is currently being 
prepared. It is expected that in the year 2020 (end of SGA2) the existing machine 
will be moved into the new European Institute for Neuromorphci Computing (EINC) 
currently under construction at the University of Heidelberg. 

2.1.5 Component Dependencies 

Component 
ID  

Component Name HBP 
Internal 

Comment 

1 
BrainScaleS-1 
Neuromorphic Computing 
System 

No This Key Result 
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2.2 BrainScaleS-2 (2nd generation prototype development) 

2.2.1 Results 

The 2nd generation BrainScaleS-2 neuromorphic chip was developed within the 
HBP, in close collaboration with theoretical neuroscientists; it is an example of 

successful co-design. 

 
Figure 7: Test-system (left) and chip photograph (right) of a 

BrainScaleS-2 prototype test chip 

A major outcome of the reporting period is the development of the first full scale 
2nd generation BrainScaleS-2 ASIC (application specific integrated circuit) that is 
submitted for production. This first full-size chip is based on results obtained with 
previous prototype test chips (see Figure 7 for an example) which each tested 
different aspects of the final BrainScaleS 2nd generation neuromorphic hardware 
system. Most notably, during the reporting period, the first prototype that 
implemented non-linear dendrites and multi-compartmental modelling capabilities, 
was successfully tested (Figure 8). 

  
Figure 8: Measurements of multi-compartment operation. Top trace: large 

inter-compartmental conductance (i.c.c.), Bottom: small i.c.c. 
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The main purpose of the first full-size 2nd generation chip (internal name HICANN-X) 
will not primarily be for testing, but rather to serve already as the first new 
experimental platform of the BrainScaleS-2 system available to external users. 

The basic neural network layout of the HICANN-X chip is similar to the BrainScaleS 
1st generation ASIC, to ease the migration of software and models. It is manufactured 
in a 65nm low-power and low-leakage CMOS technology. 512 neuron compartment 
circuits are located in a horizontal orientation in the centre of the analog network 
core while two synapse arrays with 256x256 synapses form the top and bottom halves 
of the structure. A routing logic allows flexible programming of network topologies 
which can be extended across several chips by using the built-in eight 2 Gbit/s full-
duplex links. The links are compatible to the FPGA boards of the existing BrainScaleS 
system, which saves considerable resources. The integrated fast analog-to-digital 
converter allows the readout of membrane voltages. 

 
Figure 9: Floorplan and block diagram of HICANN-X. 

Colours indicate technologies: Yellow - mixed signal, blue or red – standard cell, orange - analog 

 
Figure 10: Block diagram of analog network core of HICANN-X.  

Digital event routing and random generators are physically located in the centre of the core. 



 

Co-funded by  
the European Union 

 
 

 

 
D9.5.2 (D53.2 D47) SGA1 M24 ACCEPTED 180914.docx PU = Public 14-Sep-2018 Page 16 of 57 

 

HICANN-X includes a full implementation of hybrid plasticity. Two build-in SIMD 
plasticity processing units, each adjacent to one of the synapse arrays, allow the 
execution of software-defined plasticity algorithms in the models’ real-time, which 
is in BrainScaleS 2 1000 times faster than its biological counterpart. Besides the spike 
time information, it is possible to include membrane voltages, average firing rates 
and neuro-modulators in the plasticity calculations. The multi-compartment 
extensions are also fully supported by the plasticity processing units. Structural 
plasticity concepts, like synaptic sampling, are part of the planned usage of the 
hybrid plasticity technology as well.  

The neuron model contains adaptation and exponential terms according to the 
Adaptive-Integrate-and-Fire model, similar to BrainScaleS 1. In addition, a digital 
refractory circuit enhances precision and provides a very large dynamic range, 
suitable for the emulation of effects like NMDA plateau potentials. 

2.2.2 Impact 

The 2nd generation BrainScaleS chip represents the first neuromorphic chip 
worldwide with an embedded processor for local plasticity and learning, as well as 
the first analog CMOS implementation of structured neurons with active dendrites. 
The first prototype chips are already remotely accessible and well used (Figure 11). 
The large increase of usage is related to the learning-to-learn experiments which 
make heavy use of fast parameter scans. 

Ref 5: Schemmel, J., Kriener, L., Müller, P., & Meier, K. (2017, May). An accelerated 
analog neuromorphic hardware system emulating NMDA-and calcium-based non-
linear dendrites. In Neural Networks (IJCNN), 2017 International Joint Conference 
on (pp. 2217-2226). IEEE, https://doi.org/10.1109/IJCNN.2017.7966124  

Ref 6: Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., & Meier, K. 
(2017). Demonstrating hybrid learning in a flexible neuromorphic hardware 
system. IEEE transactions on biomedical circuits and systems, 11(1), 128-142, 
http://doi.org/10.1109/TBCAS.2016.2579164  

https://doi.org/10.1109/IJCNN.2017.7966124
http://doi.org/10.1109/TBCAS.2016.2579164
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Figure 11: Cumulative job count on the DLS prototype setups 

2.2.3 Challenges 

There have been 2 main challenges for the second generation BrainScaleS system. 

Scientifically the system implements very recent state-of-the-art results obtained by 
the neuroscience groups in the HBP. This includes novel principles of dendritic 
integration, the multicompartment structure of complex neurons and several 
principles for plasticity, learning and development. The very successful transfer of 
these results into neuromorphic hardware was mostly enabled by a very good 
interdisciplinary communication. Key enablers for this communication have been 
CDP5, the EITN in Paris, the Fürberg workshops organized by SP9 and first and 
foremost a highly motivated group of Post-Docs, PhD and Ma students, who 
enthusiastically worked very hard towards the goal of producing a truly unique and 
novel neuromorphic chip. 

In terms of project planning the very short 2 year SGA funding periods without any 
flexibility of budget transfers pose a major problem and risk for chip design and 
production, which has to match the rigorous schedules of commercial manufacturing 
plants. SP9 managed to handle this problem by in-kind contributions and shifting 
funds between staff and consumables, but the situation is clearly not satisfactory 
and substantially worse than in other large scientific projects like elementary 
particle physics with similar challenges but a more flexible and adaptive funding 
scheme. 

2.2.4 Future Work 

The future work of the second generation chips is specified and described in detail 
in the SGA2 proposal. All features are defined and tested. A full size prototype has 
been submitted for production. The chip wil be evaluated during SGA2 and the design 
step for full size wafer production will be carried out, so that construction of the 



 

Co-funded by  
the European Union 

 
 

 

 
D9.5.2 (D53.2 D47) SGA1 M24 ACCEPTED 180914.docx PU = Public 14-Sep-2018 Page 18 of 57 

 

next generation full size sytems can proceed in SGA3 as planned from the beginning 
of the HBP and described and contracted in the FPA. 

2.2.5 Component Dependencies 

Component 
ID  

Component Name HBP 
Internal 

Comment 

457 
BrainScaleS 2 
Neuromorphic Computing 
System 

No 
This Key Result 

1 
BrainScaleS-1 
Neuromorphic Computing 
System 

No BrainScaleS-1 version – the starting point for the 
development of BrainScaleS-2 
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2.3 SpiNNaker-1 (1st generation machine) 

2.3.1 Results 

SpiNNaker-1 is a large-scale many-core Neuromorphic Platform incorporating 
500,000 ARM processor cores (Figure 12). It is built using the SpiNNaker-1 chip, each 
of which incorporates 18 ARM968 processor cores and a novel multicast packet 
routing engine optimised for conveying very large numbers of very small data 
packets, where typically each spike in a spiking neural network simulation is 
conveyed on one packet. The SpiNNaker chips are packaged with memory chips, 
assembled onto circuit boards, and mounted in 19” rack cabinets where each cabinet 
contains 100,000 processors on 120 circuit boards. Neuron and synapse models are 
implemented in software on SpiNNaker, offering considerable flexibility in the choice 
of equations and learning rules. The machine typically executes spiking networks of 
any size up to its maximum capacity (around 100 million neurons) in biological real 
time. 

The 500,000-core HBP Platform is shown in the photo below (Figure 12). Five racks 
hold the SpiNNaker boards, and the sixth rack holds the server. 

 
Figure 12: The 0.5M core SpiNNaker-1 machine located in Manchester 

The SpiNNaker-1 machine was designed and developed using UK (EPSRC) funding. 
HBP supports ongoing software development and support, hardware maintenance, 
and the building of further small machines for dissemination and wider use. Over 90 
SpiNNaker-1 boards are now in the hands of research groups all around the world 
(Figure 13). 
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Figure 13: Global distribution of small-scale SpiNNaker machines 

The 500,000-core SpiNNaker-1 machine at Manchester is available through the HBP 
Collaboratory since the start of HBP SGA1 and has attracted a range of users over 
the subsequent period. Jobs submitted through the HBP Collaboratory can be written 
as PyNN 0.7, 0.8 or 0.9 spiking neural networks. They are compiled and run on the 
machine using a software tool flow running on a server at Manchester: 

 
Figure 14: SpiNNaker software framework 

As at January 11, 2018 there were 64 remote HBP portal SpiNNaker-1 users and 1,306 
jobs had been run through the HBP Collaboratory. The software tools are hosted on 
GitHub, and users are supported through a SpiNNaker Users Mailing list (which 
attracted 44 posts in December 2017). Open issues are logged on GitHub and 
addressed according to priorities that are reviewed regularly. 

sPyNNaker PyNN 
Script 

SpiNNFrontEndCommon 

Pre-compiled 
Instruction Code 

Parameters 
converted to Data 

Result Data 
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Other status highlights include: 

• SpiNNaker-1 uses fixed-point arithmetic. This delivers comparable numerical 
accuracy to that achieved with double-precision floating-point arithmetic used in 
simulations, as shown in a comparison of the results of the machine running PyNN 
with those from a conventional HPC running NEST on a cortical micro column 
model developed at Jülich. 

• The current SpiNNaker-1 machine has the capability of running stochastic spiking 
neural networks to solve constraint satisfaction problems [Ref 7]. 

• An alternative way to map problems onto SpiNNaker-1 has been developed [Ref 
8].  

• Hardware optimisations have been investigated [Ref 9]. 

• A spiking vision benchmarking suite is available [Ref 10].  

• Biological models [Ref 11] and learning algorithms [Ref 12] have been developed 
on SpiNNaker-1. 

• A review of large-scale neuromorphic platforms is available [Ref 13]. 

2.3.2 Impact 

SpiNNaker-1 is the worldwide first and only large-scale, remotely accessible many-
core neuromorphic computing system. The following references point to some key 
publications. 

Ref 7: G.A. Fonseca Guerra, S.B. Furber, “Using Stochastic Spiking Neural Networks 
on SpiNNaker to Solve Constraint Satisfaction Problems”, Frontiers in Neuroscience 
– Neuromorphic Engineering, Dec 2017. https://doi.org/10.3389/fnins.2017.00714 

Ref 8: Knight, James C. and Furber, Steve B., “Synapse-Centric Mapping of Cortical 
Models to the SpiNNaker Neuromorphic Architecture”, Frontiers in Neuroscience 10, 
p.420, 14 September 2016. https://doi.org/10.3389/fnins.2016.00420 

Ref 9: A. Yousefzadeh, M. Jabłon �ski, T. Iakymchuk, A. Linares-Barranco, A. Rosado, 
L.A. Plana, S. Temple, T. Serrano-Gotarredona, S.B. Furber and B Linares-Barranco, 
“On Multiple AER Handshaking Channels Over High-Speed Bit-Serial Bidirectional 
LVDS Links With Flow-Control and Clock-Correction on Commercial FPGAs for 
Scalable Neuromorphic Systems”, in IEEE Trans Biomedical Circuits and Systems 
11(5), pp. 1133-1147, Oct. 2017.DOI: 10.1109/TBCAS.2017.2717341, 
https://doi.org/10.1109/TBCAS.2017.2717341 

Ref 10: Qian Liu, Garibaldi Pineda-García, Evangelos Stromatias, Teresa Serrano-
Gotarredona, Steve B. Furber, “Benchmarking Spike-Based Visual Recognition: A 
Dataset and Evaluation”, Frontiers in Neuroscience, Vol.10, 2016, 
https://doi.org/10.3389/fnins.2016.00496  

Ref 11: B. Sen-Bhattacharya, T. Serrano-Gotarredona, L. Balassa, A. Bhattacharya, 
A. Stokes, A. Rowley, I. Sugiato, S. Furber, “A spiking neural network model of the 
Lateral Geniculate Nucleus on the SpiNNaker machine”, Frontiers in Neuroscience, 
Aug 2017. https://doi.org/10.3389/fnins.2017.00454  

Ref 12: James C. Knight, Philip J. Tully, Bernhard A. Kaplan, Anders Lansner and 
Steve B. Furber, “Large-Scale Simulations of Plastic Neural Networks on 

https://doi.org/10.3389/fnins.2017.00714
https://doi.org/10.3389/fnins.2016.00420
https://doi.org/10.1109/TBCAS.2017.2717341
https://doi.org/10.3389/fnins.2016.00496
https://doi.org/10.3389/fnins.2017.00454
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Neuromorphic Hardware”, Frontiers in Neuroanatomy 10(37), 7 April 2016. 
https://doi.org/10.3389/fnana.2016.00037  

Ref 13: Steve Furber, “Large-scale Neuromorphic Computing Systems”, Journal of 
Neural Engineering 13(5), 2016, pp. 1-14. https://doi.org/10.1088/1741-
2560/13/5/051001  

2.3.3 Challenges 

The challenges for the large-scale SpiNNaker systems are similar to those for the 
BrainScaleS systems as both are lab-made large-scale hardware facilities built from 
a very limited budget. As SpiNNaker is based on ARM based many-core chip directly 
mounted on printed-circuits-boards, there is less commissioning work required 
compared to the BrainScaleS wafer-based system. Challenges were mostly on the 
software side, in particular the challenge of mapping very large-scale networks 
which exploit a substantial fraction of the machines computational capability. As the 
results presented in this report show, this challenge has been met. Again, the main 
reason is the ability of SP9 groups to attract highly motivated staff that recognises 
neuromorphic computing as a rewarding and forward looking technology for the 
future of brain-science and a more biologically driven machine learning.  

2.3.4 Future Work 

Also here, the future work for the large-scale SpiNNaker system is very similar 
compared to BrainScaleS. The main focus is usability, software support and the 
running of large-scale computational tasks suitable for a comparison with 
conventional computers. The machine will also be upgraded from 0.5 Million to 1 
Million ARM cores. 

2.3.5 Component Dependencies 

Component 
ID  

Component Name HBP 
Internal 

Comment 

2 SpiNNaker Neuromorphic 
Computing System No This Key Result 

 

  

https://doi.org/10.3389/fnana.2016.00037
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1088/1741-2560/13/5/051001
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2.4 SpiNNaker-2 (2nd generation prototype development) 

2.4.1 Results 

As small-scale prototype of the 2nd generation SpiNNaker many-core system, a test 
chip (Santos) (Figure 15) has been implemented in 28nm SLP CMOS technology. It 
contains 4 processing elements (PE) based on ARM M4F processors. The PEs are 
connected via a network-on-chip. A DRAM interface is available of off-chip memory, 
e.g. used for synaptic weight storage. A demonstrator PCB hosting 4 chip modules 
has been developed and is used for evaluation. 

 
Figure 15: Santos prototype PCB and chip photo. 

The chip contains novel hardware features to enhance the efficiency of 
neuromorphic real-time simulations on the next generation SpiNNaker system. These 
new features include: 

• Neuromorphic Power Management: Fast switching of supply voltage level (from 
0.70V to 1.0V) and processor clock frequency (from 100MHz to 500MHz) within 
<100ns for fast adaption of the compute performance to the temporal workload 
of the experiment. The performance level can be adjusted individually per core 
and simulation time step (e.g. 1ms), leading to up to 50% reduction of energy per 
synaptic event (down to 0.83nJ) and up to 85% reduction of total power 
consumption.  

• Exponential Function Acceleration: Hardware unit offload, the exp() function 
calculation from the processor, beneficial for neuromorphic compute problems 
such as STDP or BCPNN. Achieving 250Mexp/s throughput at 0.44nJ/exp for 
nominal supply (1.0V), or 0.21nJ/exp at 0.7V supply and 77Mexp/s, 
demonstrating a throughput multiplication of almost 50 and 98% energy reduction 
at 2% area overhead. 

• True Random Number Generation: Circuits to extract true random numbers from 
the clock generator jitter with minimum energy (1.55 pJ/Bit) and chip area 
overhead for the entropy sources, post processing units and additional PRNG 
accelerators. Random numbers pass NIST and DIEHARD benchmarks. 

The new hardware features are evaluated by benchmarks: Examples include: 

• Synfire Chain Network and Bursting Network Simulations: Using neuromorphic 
power management, showing the benefit of fast performance level scaling, only 
around 1% of the simulations time steps need to be executed on the highest 
performance level, 90% are executed at the lowest level for maximum energy 
efficiency (Figure 16). 
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• Reward-Based-Model (with TU Graz): Implementation of a reward-based synaptic 
sampling network using the exp() function and the random number generators. 
Showing up to 50% reduction of the computation time per stochastic synapse 
update (Figure 17). 

 
Figure 16: Synfire chain simulation with dynamic power management, 

processors are clocked to higher performance level (PL) if high computational 
load is required. 

 

 
Figure 17: Reward-based synaptic sampling network mapped 

to the SpiNNaker-2 prototype. 

Additional Benchmarks under evaluation include the simulation of BCPNN networks 
(using the exp() unit), Dynamic Vision Sensor (DVS) data processing (using power 
management) and applications for Spike detection and sorting (real-time biological 
data processing). 

2.4.2 Impact 

Ref 14 Sebastian Höppner, Yexin Yan, Bernhard Vogginger, Andreas Dixius, Johannes 
Partzsch, Felix Neumärker, Stephan Hartmann, Stefan Schiefer, Stefan Scholze, 
Georg Ellguth, Love Cederstroem, Matthias Eberlein, Christian Mayr, Steve Temple, 
Luis Plana, Jim Garside, Simon Davison, David R Lester, Steve Furber: Dynamic 
voltage and frequency scaling for neuromorphic many-core systems, 2017 IEEE 
International Symposium on Circuits and Systems (ISCAS), 
https://doi.org/10.1109/ISCAS.2017.8050656   

Ref 15 Johannes Partzsch, Sebastian Höppner, Matthias Eberlein, Rene Schüffny, 
Christian Mayr, David R Lester, Steve Furber: A fixed-point exponential function 
accelerator for a neuromorphic many-core system, 2017 IEEE International 

https://doi.org/10.1109/ISCAS.2017.8050656


 

Co-funded by  
the European Union 

 
 

 

 
D9.5.2 (D53.2 D47) SGA1 M24 ACCEPTED 180914.docx PU = Public 14-Sep-2018 Page 25 of 57 

 

Symposium on Circuits and Systems (ISCAS), 
https://doi.org/10.1109/ISCAS.2017.8050528 

Ref 16 Felix Neumarker, Sebastian Höppner, Andreas Dixius, Christian Mayr: True 
random number generation from bang-bang ADPLL jitter, 2016 IEEE Nordic Circuits 
and Systems Conference (NORCAS), 
https://doi.org/10.1109/NORCHIP.2016.7792875 

2.4.3 Challenges 

The next generation SpiNNaker system implements digital neuromorphic computing 
in an almost state-of-the-art 28nm process node. It has several novel features with 
as main goal to improve the efficiency of the system in terms of computational 
capability for a given amount of energy. 

Also here, the challenges are twofold. Having access to and making efficient use of 
such state-of-the-art technology requires an excellent understanding of the toolsets 
for simulation, design and layout. The Manchester and Dresden groups are of 
exceptional quality and do have the required knowledge to design a test system and 
bring it into operation during the very short SGA1 funding period. This is the main 
outcome of this Key Result. 

However, like in the case of BrainScaleS also here, the very short SGA periods are a 
substantial problem for efficient work. Workarounds have been found by shifting 
tasks and budget allocations with in the SGA but the situation is far from ideal. 

2.4.4 Future Work 

The future work of the second generation SpiNNaker chips is specified and described 
in detail in the SGA2 proposal. All features are defined and tested. A full size 
prototype has been submitted for production. The chip will be evaluated during SGA2 
and the design step for full size system production will be carried out, so that 
construction of the next generation full size systems can proceed in SGA3 as planned 
from the beginning of the HBP and described and contracted in the FPA. 

2.4.5 Component Dependencies 

Component 
ID  

Component Name HBP 
Internal 

Comment 

467 SpiNNaker small-scale 
NM-MC System No SpiNNaker-2 evaluation 

2 SpiNNaker Neuromorphic 
Computing System No SpiNNaker-1 – the basis for the SpiNNaker-2 

development 

2.5 Neuromorphic Computing Platform (Software development) 

2.5.1 Results 

The Neuromorphic Computing Platform offers access to two large-scale, multi-user 
facilities, the BrainScaleS 20-wafer system in Heidelberg and the SpiNNaker 500,000 
core machine in Manchester. Recently, also 2nd generation prototype systems have 

https://doi.org/10.1109/ISCAS.2017.8050528
https://doi.org/10.1109/NORCHIP.2016.7792875
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been added. Our goal is to make the use of these machines as easy as possible, for 
neuroscientists, machine-learning researchers, and students. This implies providing 
i) remote access, through both a graphical interface (for less technical users, and for 
result visualisation) and a scriptable interface (for power-users), and ii) an easy-to-
learn, flexible and powerful programming interface (PyNN).  

A further requirement, given that neuromorphic simulations in general form only 
part of a scientific workflow, is that data produced on the Neuromorphic Platform 
can be transferred to traditional computing facilities, like the user’s local computer, 
Jupyter notebooks in the Collaboratory, or the HBP HPAC Platform. An example of a 
job output from a BrainScaleS experiment, accessed in the HBP Collaboratory, is 
shown in Figure 18. On a more fine-grained level, we also wish to support run-time 
communication of data between neuromorphic systems and external software, for 
example simulated virtual environments.  

 
Figure 18: Job output example from a BrainScaleS experiment, accessed in the 

HBP Collaboratory 
Remote access 

The components that implement remote access to the Platform, listed in the table 
below, were first released at the end of the Ramp-Up Phase of HBP, in March 2016. 
Since then, the components have been continuously improved, each new feature 
being released as soon as it passes quality control.  

In the first year of SGA1 (April 2016-March 2017), improvements and new features 
were developed and released in several areas. In the Collaboratory Job Manager app, 
the option was added to edit and resubmit an existing job, making iterative 
development of models much less time consuming. “Deep-links” to individual jobs 
were added, making it possible to share results just by passing around a URL. The 
Python client was extended to allow copying of simulation results to long-term 
storage or to the HPAC Platform, and querying of quota usage for the different 
systems. The robustness of the back end web service against user and hardware 
errors was improved. Quality control of the back end web service and the Python 
client was improved by writing unit tests for all components, and deploying 
continuous integration using Travis CI. The source code for all components was 
released under open-source licences through Github. 

In the second year of SGA1 (April 2017-March 2018), we introduced support in both 
the Job Manager app and the Python client for tagging jobs, commenting on jobs, 
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and search/filtering of jobs. These features make it easier to find results of interest 
in a long-lived project, and to collaborate effectively with others. Based on user 
feedback, we added options to provide simulation code from files or folders in 
Collaboratory storage, and to use a Jupyter notebook as simulation input; the latter 
features make it simpler to develop a model using a software simulator such as NEST 
or NEURON, and then to switch to a neuromorphic simulation when the model is 
ready. To enhance reproducibility, limited provenance information was added to the 
job results, including, for example, the precise versions of libraries used on the 
hardware systems. In addition to bug fixes and performance improvements, quality 
control was further improved by developing unit tests for the front end Javascript 
code underlying the Collaboratory apps. 

Programming interface 

The programming language for using both the SpiNNaker and BrainScaleS systems is 
Python, using the PyNN API. Importantly, PyNN can also be used to program the NEST 
and NEURON simulators used in the HBP Brain Simulation and Neurorobotics 
Platforms, which makes it relatively straightforward to cross-check results, and to 
transfer models between platforms. PyNN, and the related interface modules for 
SpiNNaker (sPyNNaker) and BrainScales (pyhmf) were originally developed prior to 
the Human Brain Project. At the end of the HBP Ramp-Up Phase, version 0.8.0 of 
PyNN, with support for NEST v2.8 and NEURON v7.3, had recently been released. 
pyhmf and sPyNNaker implemented most features of version 0.7 of the PyNN API, but 
did not yet support PyNN 0.8. 

In the first year of SGA1, three minor versions of PyNN (0.8.1 – 0.8.3) were released, 
supporting NEST versions 2.10 and 2.12, NeuroML v2, and new spike source models. 
In the BrainScaleS implementation of the PyNN API and underlying software, 
coverage of the API was improved, logging and monitoring of hardware statistics was 
introduced, and new data structures representing the Map & Route results were 
added, giving faster reconfiguration of the system for in-the-loop experiments. Other 
performance improvements included optimised data handling and parallel chip 
configuration for time-consuming operations. For the BrainScaleS 2 prototype 
system, software support for the second prototype chip was completed, and initial 
support for the third prototype implemented. The SpiNNaker implementation of the 
PyNN API (« sPyNNaker ») saw multiple performance improvements, including 
support for higher-firing rates through fewer dropped packets, support for running 
multiple simulations at the same time, improved debug support, faster mapping of 
model networks to the hardware, and support for parameter changes without re-
mapping. 

In the second year of SGA1, PyNN 0.9.0 was released, with support for the new, 
simplified Neo object model (Neo v0.5+; cf the report for SP5, where the impact of 
Neo for experimental datasets is described). Two minor releases (0.9.1, 0.9.2) 
introduced new stochastic synapse models, recording of injected currents, and 
support for NEST v2.14 and NEURON v7.5. For the BrainScaleS system we optimised 
re-configuration speed for in-the-loop experiments (e.g. reconfiguration of all 
synapse weights in O(1s)), improved detection for faulty hardware components in 
user experiments, and implemented a browser-based visualisation tool for mapping 
results. For the BrainScaleS Prototype System, support for the ADC was made 
available on the prototype system PCBs, and 5 setups are now available for remote 
users. sPyNNaker added support for versions 0.8 and 0.9 of the PyNN API while 
maintaining support for version 0.7. Quality control was improved by deploying 
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continuous integration. New features included improved support for external 
devices, focussing on the TUM PushBot, improved partitioning speed through 
estimation of synaptic matrix size, support for estimating power usage of scripts, 
support for alpha synapses, lazy list support to improve host memory usage, the 
ability to record only parts of a population and/or at a reduced sampling rate, and 
faster extraction of recorded data. 

Benchmarking 

For the development of platform-agnostic benchmark programmes, an additional 
abstraction layer with an accompanying software framework has been developed and 
extended during this project phase. The framework SNAB Suite (Spiking Neural 
Architecture Benchmark Suite) provides a uniform interface for collections of 
individual benchmarks and supports automated evaluation runs for platform 
comparisons and performance regression detection, as well as parameter sweeps. 
The included set of benchmarks consists of building blocks for neuromorphic 
applications [Ref 17] and explorations of platform parameters in terms of the 
application domain. 

Interaction of neuromorphic systems with external software 

MUSIC is an API and library for on-line communication of spike events and other data 
during simulation. By providing a standard interface, it helps to connect software 
and hardware in a modular way. MUSIC itself was developed prior to HBP, while 
further improvements and supporting software have been developed during SGA1. 

During the first year of SGA1, we added a tool chain for real-time communication 
with ROS (the “Robot Operating System”, used in the HBP Neurorobotics Platform.  

During the second year, we developed a new MUSIC prototype supporting dynamic 
port creation and deletion, for use by the Neurorobotics Platform, a new MUSIC API, 
supporting spike communication at accelerated time scales with the BrainScaleS 
system, and a MUSIC-SpiNNaker interface. 
 

Component 
ID 

Component Name HBP 
Internal 

Comment 

349  
(Table 10) PyNN Partially Python library 

376 Software for BrainScaleS Systems Yes Python and 

C++ software 

375 SpiNNaker software stack Yes Python, C++, 

Java software 

343 Neuromorphic Job Manager app Yes Collaboratory app 

344 Neuromorphic Job Queue service Yes Web service 
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Component 
ID 

Component Name HBP 
Internal 

Comment 

345 Python client for the Neuromorphic Computing 
Platform 

Yes Python library 

368 Neuromorphic jobs database Yes Database 

369 Neuromorphic Quotas service Yes Web service 

370 Neuromorphic Resource Manager app Yes Collaboratory app 

371 Neuromorphic Dashboard app Yes Collaboratory app 

2462  
(Table 7) 

SNABSuite benchmarks and framework Partially Python and 

C++ software 

Table 2: List of software components 
Usage of the Platform 

Since the end of the Ramp-Up Phase, the number of people using the Neuromorphic 
Platform through the Collaboratory and/or Python client has increased from 13 to 
66, while the total number of jobs submitted through these interfaces has increased 
from 780 to 2433, see Figure 19 and Figure 20 below. Note that these figures do not 
include developers and/or power users with direct or ssh access to the systems. 

 

 
Figure 19: Number of users who submitted at least one job to the SP9 Platform 
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Figure 20: Cumulative number of jobs submitted to the SP9 Platform 

 

2.5.2 Impact 

During the reporting period, software development has made major advances 
towards a unique ecosystem for neuromorphic computing in SP9. All SpiNNaker, 
BrainScaleS-1, BrainScaleS-2 and Spikey interfaces, PyNN as well as all remote access 
components, are open source and publicly available on GitHub repositories: 
https://github.com/SpiNNakerManchester, https://github.com/electronicvisions, 
https://github.com/HumanBrainProject/hbp-neuromorphic-client, 
https://github.com/NeuralEnsemble/).  

Intel announced to support PyNN for the new Loihi chip. 

Ref 17 A. Stöckel, C. Jenzen, M. Thies, U. Rückert, “Binary Associative Memories as 
a Benchmark for Spiking Neuromorphic Hardware”, Frontiers in Computational 
Neuroscience 11:71, August 2017. https://doi.org/10.3389/fncom.2017.00071  

2.5.3 Challenges 

Providing neuromorphic computing with an attractive software ecosystem that can 
be used by non-hardware experts is a key challenge for the field. HBP has been a 
pioneer in this approach. Tools like PyNN and the Collaboratory are well established 
and even used by new contributors like Intel, which announced the use of PyNN. The 
challenge for PyNN is the integration of new HBP specific hardware capabilities like 
various learning algorithms, structured neurons and the integration with 
supercomputers towards hybrid systems. SP9 has a strong software group that at the 
same time works in direct cooperation with the hardware designers. It is this direct 
cooperation that allows to meet the challenge of building a powerful integrated 
framework for neuromorphic computing. 

2.5.4 Future Work 

Future work on the software side of neuromorphic computing will have a strong focus 
on the second-generation systems, both from the BrainScaleS and the SpiNNaker 
approach. Both systems offer very unique capabilities in particular related to 
learning. HBP is in a leading position to secure a strong European standing in this 
field and the software will be crucial to bring the new hardware capabilities to the 
users. 

  

https://github.com/SpiNNakerManchester
https://github.com/electronicvisions
https://github.com/HumanBrainProject/hbp-neuromorphic-client
https://github.com/NeuralEnsemble/
https://doi.org/10.3389/fncom.2017.00071
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2.5.5 Component Dependencies 

Component 
ID  

Component Name HBP 
Internal 

Comment 

1 
BrainScaleS-1 
Neuromorphic Computing 
System 

No BrainScaleS-1 version – the starting point for the 
development of BrainScaleS-2 

2 SpiNNaker Neuromorphic 
Computing System 

No SpiNNaker-1 – the basis for the SpiNNaker-2 
development 

457 
BrainScaleS 2 
Neuromorphic Computing 
System 

No 
BrainScaleS-2 evaulation 

467 SpiNNaker small-scale 
NM-MC System 

No SpiNNaker-2 evaluation 

 
Components listed in 
Table 2: List of software 
components above 
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2.6 Computational principles (Theory development for 
neuromorphic systems) 

During the reporting period partners in SP9 have tackled important questions to 
foster the potential of neuromorphic hardware for powerful computation. 

2.6.1 Results 

A model for function-oriented rewiring of networks of neurons in the brain 

Recent experimental data in neuroscience point to a structural difference between 
the commonly considered connectivity of artificial neural networks (ANNs) and 
digital computers on one hand, and networks of neurons in the brain (BNNs) on the 
other hand: BNNs continuously undergo rewiring, especially during learning. Previous 
models for learning in BNNs did not include this important effect. In [Ref 18], partner 
TUGRAZ proposed a model for reward-based network plasticity that integrates 
rewiring with reward-based STDP in a principled manner. This model can reproduce 
quite a number of experimental data for BNNs. However, it also turns out to provide 
new algorithmic ideas for integrating rewiring into network plasticity to reduce the 
memory footprints of ANNs. While memory is a critical bottleneck to reduce the size 
and energy consumption of neuromorphic hardware, TUGRAZ has shown in [Ref 19] 
that the memory requirement of machine learning benchmarks is reduced by a factor 
of 20 to 100 when using rewiring. Through a collaboration with TU Dresden, 
preliminary results have confirmed that rewiring makes it possible to implement 
realistic BNNs and performing ANNs on the next generation of neuromorphic 
hardware. 

 
Figure 21: Self-configuration and rewiring of recurrent networks. 

Figure 21 shows (a) Synaptic sampling model (schema): The main idea is that trajectories of network 
parameters θ (bottom) represent a distribution p*(θ) over network configurations (top). This distribution is 
shaped to plasticity rules: good configurations will have a high probability. (b) Recurrent network scaffold 
and task scheme. Two pools D and U were randomly selected to control lever movement. Inset: lever 
movement to receive a reward. (c) Synaptic parameter changes in the model and in experimental data 
show random components. Contributions of history-dependent activity, synapse-autonomous and neuron-
wide processes to synaptic dynamics (d) In artificial neural networks synaptic sampling is used to reduce 
the memory footprint by continuously rewiring the network. 
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Methods to reproduce computations essential for higher level cognitive 
processing in the human brain. 

Numerous experimental data from neuroscience highlight the importance of an 
intermediate level of network organisation and neural coding in BNNs, that lies 
between the level of single neurons and that of the whole network: neural coding of 
concepts and other tokens of higher-level brain computations through assemblies of 
neurons. However, it turned out to be quite nontrivial to reproduce the emergence 
of neural assemblies in networks of spiking neurons. TUGRAZ has characterised 
conditions under which assemblies emerge as codes for frequently occurring network 
inputs, both theoretically [Ref 20, Ref 21] and in simulations of biologically quite 
realistic recurrent networks of spiking neurons with STDP [Ref 22, Ref 23]. In 
addition, it was investigated both theoretically [Ref 21] and in computer simulations 
[Ref 22] under which conditions associations between two such external stimuli can 
be encoded in the network, as reported by [Ison et al., 20151] for the human brain. 
Furthermore, such assemblies can function as basic tokens for higher-level cognitive 
abilities [Ref 24]. These results provide a solid basis for emulating a significant class 
of cognitive computations in large-scale networks of spiking neurons, in particular in 
neuromorphic hardware systems. 

Learning-to-Learn (L2L) applicable for research in computational neuroscience 
and neuromorphic engineering. 

L2L has recently become a powerful tool in machine learning, in particular for 
enabling transfer learning, i.e. for enabling fast learning of a new task after previous 
learning of related tasks. However, L2L so far has not been applied to biologically 
more realistic neural network models, in particular not to networks of spiking 
neurons. However, the potential advantage of using L2L in computational 
neuroscience is quite large, it also includes aspects of automatic parameter tuning 
of models for BNNs in computers and neuromorphic hardware. Therefore, a scalable 
software framework for applying L2L methods to networks of spiking neurons using 
gradient free optimisation algorithms was created at TUGRAZ both for digital 
simulations, including large-scale simulations on a supercomputer, and 
neuromorphic hardware. This software framework, written in Python, is designed 
with a general purpose API to facilitate adoption, it uses distributed scheduling to 
use all available computational resources, and it contains implementations of various 
optimisation algorithms. Proofs of concept for the viability of this new research 
strategy in modelling and in understanding learning in BNNs have already been 
produced. It was shown that L2L can create and optimise new algorithms for 
supervised learning in recurrent networks of spiking neurons, similarly as 
demonstrated by Hochreiter et al (2001) for artificial neural networks. This opens 
new doors for exploring and understanding a large variety of possible learning 
methods for spiking neural networks. In addition, a proof of concept was given in a 
collaboration of TUGRAZ and UHEI for transfer learning in networks of spiking 
neurons, so that a new task can be learnt much faster when the network had 
previously learned somewhat related tasks. In particular, with this method we could 
enable transfer learning of the neuromorphic HICANN-DLS chip that has been 
developed in Heidelberg, and which will provide the basis for the next generation 
BrainScaleS Neuromorphic Platform. Hence, we expect that L2L will significantly 

                                         
1 MJ Ison, RQ Quiroga and I Fried. Rapid encoding of new memories by individual neurons in the 
human brain.  Neuron, 87(1), 220-230 
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improve the capability for efficient autonomous learning of this neuromorphic 
system. 

A theoretical framework for stochastic inference in networks of integrate-and-
fire neurons ported to accelerated analog neuromorphic substrates 

The ability to perform probabilistic (Bayesian) inference is a hallmark of mammalian 
cognition and a coveted feature for embedded AI. Recent developments in machine 
learning have tried to capture this kind of computation with so-called “deep” 
architectures, but the analogy to biology remains superficial. UHEI, UBERN and 
TUGRAZ have developed a framework for cognitive computation with spiking neurons 
that narrows the gap between biological and artificial deep networks, while 
employing well-documented aspects of cortical dynamics such as spike-based 
communication, operation in a high-conductance state, short-term plasticity and 
background-driven stochasticity (Component 2474; Ref 2). A particularly intriguing 
finding was that spike-triggered short-term plasticity enables a form of local 
tempering, allowing the network to more easily jump between low-energy modes, 
thereby significantly speeding up inference [Ref 25]. 

As many other models in computational neuroscience, these networks rely on the 
existence of background noise to provide the necessary stochasticity. However, more 
than just assuming the availability of such uncorrelated noise – a feature that is 
difficult to reconcile with cortical architecture and dynamics – we have shown how 
our functional networks can be embedded in larger networks of recurrently 
connected neurons in order to achieve the required input statistics (Component 
2475; Ref 3). These “sea-of-noise networks” also provide the basis for large-scale 
hardware implementation. 

In addition to building a bridge to biology, the above-mentioned features are part of 
the BrainScaleS Neuromorphic Platform design specifications. Component variability 
was tackled by a combination of hierarchical networks’ intrinsic robustness with 
respect to some of these sources of distortion [Ref 26] and in-the-loop training [Ref 
1]. This allowed the implementation and accelerated emulation of hierarchical 
spiking networks able to perform probabilistic inference in high-dimensional data 
spaces (Component 2476, 2477; Ref 27).  
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Figure 22: Stochastic inference in networks of integrate-and-fire neurons 
(A) Simulated activation function of an integrate-and-fire neuron in the high-conductance state (blue) 
and theoretical prediction (red). The fast membrane enables a more symmetric shape, which enables 
the often-used approximation by a logistic function (green). (B) Spiking network sampling (blue) from a 
target distribution (red). (C) The stochastic output of cortical networks is driven by stochastic spiking 
input, generated by the cortex itself. An average connectivity dominated by inhibition allows even 
small, deterministic networks (red) to supply functional networks with uncorrelated noise, unlike a 
limited pool of independent Poisson sources (blue). This observation enables the emulation of 
stochastic networks in neuromorphic hardware, even when harsh limits on external bandwidth are 
present (panel F). (D) Visible layer activity of a hierarchical spiking network. While classical neural nets 
tend to become stuck in local energy minima, spiking networks endowed with short-term plasticity are 
able to overcome energy barriers, enabling them to simultaneously be good generative and 
discriminative models of real-world data. (E) In a large enough ensemble of stochastic networks, 
external noise can even become superfluous. The two networks shown here, performing pattern 
completion on the ambiguous red input, only receive background input from (and provide it to) other 
functional spiking networks in the ensemble. (F) Hierarchical sampling network trained on handwritten 
digits performing classification and pattern completion on the BrainScaleS Neuromorphic Platform. 
 

  

(B) (A) (C) 
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2.6.2 Impact 

The impact of the theory work in SP9 is exemplified by the following list of 
references: 

Ref 1: Sebastian Schmitt, Johann Klähn, Guillaume Bellec, Andreas Gru ̈bl, Maurice 
Güttler, Andreas Hartel, Stephan Hartmann, Dan Husmann,Kai Husmann, 
Sebastian Jeltsch, Vitali Karasenko, Mitja Kleider, Christoph Koke, Alexander 
Kononov, Christian Mauch, Eric Müller, Paul Mu ̈ller, Johannes Partzsch, Mihai 
A. Petrovici, Stefan Schiefer, Stefan Scholze, Vasilis Thanasoulis, Bernhard 
Vogginger, Robert Legenstein, Wolfgang Maass, Christian Mayr, René Schüffny, 
Johannes Schemmel, Karlheinz Meier (2017, May). Neuromorphic hardware in 
the loop: Training a deep spiking network on the brainscales wafer-scale 
system. In Neural Networks (IJCNN), 2017 International Joint Conference 
on (pp. 2227-2234). IEEE. https://doi.org/10.1109/IJCNN.2017.7966125 

Ref 2: Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J., & Meier, K. (2016). 
Stochastic inference with spiking neurons in the high-conductance 
state. Physical Review E, 94(4), 042312. 

Ref 3: Jordan, J., Petrovici, M. A., Breitwieser, O., Schemmel, J., Meier, K., 
Diesmann, M., & Tetzlaff, T. (2017). Stochastic neural computation without 
noise. arXiv preprint arXiv:1710.04931. 

Ref 18[Kappel et al. 2018] D Kappel, R Legenstein, S Habenschuss, Ml Hsieh and W 
Maass; A dynamic connectome supports the emergence of stable 
computational function of neural circuits through reward-based learning. 
arXiv:1704.04238 [q-bio.NC] 

Ref 19[Bellec et al. 2018] G Bellec, D Kappel, W Maass and R Legenstein. Deep 
Rewiring: Training very sparse deep network.Proceedings of the International 
Conference on Learning Representations (ICLR) 

Ref 20 [Legenstein et al., 2017] R Legenstein, Z Jonke, S Habenschuss and W. Maass. 
A probabilistic model for learning in cortical microcircuit motifs with data-
based divisive inhibition. arXiv:1707.05182 

Ref 21 [Legenstein et al., 2018] R Legenstein, W Maass, CH Papadimitriou and SS 
Vempala. Long term memory and the densest K-subgraph problem. In Proc. of 
Innovations in Theoretical Computer Science (ITCS) 

Ref 22 [Pokorny et al., 2017] . Pokorny, MJ Ison, A Rao, R Legenstein, C Papadimitriou 
and W Maass.Associations between memory traces emerge in a generic neural 
circuit model through STDP. bioRxiv:188938 https://doi.org/10.1101/188938  

Ref 23 [Jonke et al., 2017] Z Jonke, R Legenstein, S Habenschuss and W Maass. 
Feedback inhibition shapes emergent computational properties of cortical 
microcircuit motifs. Journal of Neuroscience, 37(35):8511-8523, 
https://doi.org/10.1523/JNEUROSCI.2078-16.2017  

Ref 24 [Legenstein et al., 2016] R Legenstein, CH Papadimitriou, S Vempala and W 
Maass. Assembly pointers for variable binding in networks of spiking neurons. 
arXiv preprint arXiv:1611.03698 

Ref 25 [Leng et al., 2017] L Leng, R Martel, O Breitwieser, I Bytschok, W Senn, J 
Schemmel, K Meier, MA Petrovici. Spiking neurons with short-term synaptic 
plasticity form superior generative networks. arXiv:1709.08166 

https://doi.org/10.1101/188938
https://doi.org/10.1523/JNEUROSCI.2078-16.2017


 

Co-funded by  
the European Union 

 
 

 

 
D9.5.2 (D53.2 D47) SGA1 M24 ACCEPTED 180914.docx PU = Public 14-Sep-2018 Page 37 of 57 

 

Ref 26 [Petrovici et al., 2017a] MA Petrovici, A Schroeder, O Breitwieser, A Grübl, J 
Schemmel, K Meier. Robustness from structure: Inference with hierarchical 
spiking networks on analog neuromorphic hardware. Proceedings of the 2017 
IEEE International Joint Conference on Neural Networks 

Ref 27 [Petrovici et al., 2017b] MA Petrovici, S Schmitt, J Klähn, D Stöckel, A 
Schroeder, G Bellec, J Bill, O Breitwieser, I Bytschok, A Grübl, M Güttler, A 
Hartel, S Hartmann, D Husmann, K Husmann, S Jeltsch, V Karasenko, M 
Kleider, C Koke, A Kononov, C Mauch, E Müller, P Müller, J Partzsch, T Pfeil, 
S Schiefer, S Scholze, A Subramoney, V Thanasoulis, B Vogginger, R 
Legenstein, W Maass, R Schüffny, C Mayr, J Schemmel, K Meier. Pattern 
representation and recognition with accelerated analog neuromorphic 
systems. Proceedings of the 2017 IEEE International Symposium on Circuits and 
Systems (ISCAS) https://doi.org/10.1109/ISCAS.2017.8050530  

2.6.3 Challenges 

In almost all neuromorphic computing projects worldwide the main problem is a lack 
of integration between hardware engineering, software development and grounding 
in neuroscience, in particular mathematical and theoretical neuroscience. In HBP, 
and SP9 in particular this has been solved in a way that is recognised as a model case 
for many upcoming activities worldwide, like in China and the US. 

Several instruments have been implemented in the HBP to meet the integration 
challenge. Within SP9 an internal workpackage 4 develops principles of neuromorphic 
computing and has implemented the highly successful Fürberg workshop series. Co-
design project CDP5 has been strongly supported by SP9 during the second half of 
SGA1 and is now a very strong element to implement learning as a key principle in 
the SP9 systems. The EITN in Paris is an internationally recognised contact point to 
enable collaboration especially also outside the HBP. 

2.6.4 Future Work 

The connection between theory and neuromorphic computing has identified several 
novel principles that will be further pursued- Among those are: Neural spike-based 
sampling, learning-to-learn and several novel methods of biological deep learning 
pursued in CDP5. Reviewers have identified this connection to be one of the most 
promising aspects of the entire HBP.   

https://doi.org/10.1109/ISCAS.2017.8050530
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3. The Industry Angle 

Computer technology has progressed spectacularly since the world’s first electronic 
stored program computer successfully ran its first program in Manchester on June 
21st 1948. Today’s machines are a hundred billion times more energy efficient 
(measured in terms of the energy they consume to execute an instruction), much 
smaller and much cheaper than those early machines, and this has enabled computer 
technology to penetrate every area of human activity. As an example of the degree 
of penetration, shipments of ARM processors have passed 75 billion, representing 10 
computers for every human on the planet. 

However, computer technology is now at a crossroads. 

The major means whereby computer technology has made these advances has been 
the ever-shrinking transistor used on integrated circuits. This process, typically 
understood as being driven by Moore’s Law, has been driven by formidable 
investments in manufacturing technology to exploit the fact that historically, as 
transistors are made smaller, they become faster, cheaper, and more energy 
efficient - a win-win scenario. However, although this process has driven exponential 
progress (with a doubling time constant of around two years) for half a century, it 
cannot continue forever, and today’s transistors are approaching physical limits 
determined primarily by the size of a silicon atom. As these limits are approached 
the win-win effects have begun to weaken, and the industry is looking at a future 
which will be very different from the last half-century. 

The first signs of the limits to exponential progress arrived a decade ago. During the 
1990s the microprocessor business was characterised by ever increasing clock rates, 
but soon after the turn of the century all of the major players threw in the towel on 
this approach. The reason was power. Although smaller transistors are more energy-
efficient, they can also be packed closer together, and the increased density 
dominates the efficiency improvements, so chips get hotter until heat limits their 
operating speed. So, although Moore’s Law continued to deliver more transistors on 
a chip, the operating clock had to be constrained to avoid overheating, and the 
performance of an individual microprocessor ceased improving. Instead, the extra 
transistors were used to put several microprocessors onto the same chip, and the era 
of multicore computing had arrived. Multicore computing is an efficient way to 
deliver more processing power, but it requires a different programming paradigm, 
and effective parallel programming had been the holy grail of computer science for 
half a century! Still, there was now no other way forward. 

Today multi- and many-core computing is everywhere, from the mobile phone and 
tablet through to the high-performance computer. There are still issues with 
developing software to make effective use of these resources, but on the whole we 
have learnt to live with the problem, and the technology works well. 

However, the gains from Moore’s Law have almost dried up, and new directions must 
be found if we are to come close to maintaining historic rates of progress in computer 
performance. As with the transition to multicore computing, energy-efficiency 
considerations dominate. We can now put so many computational resources onto a 
chip that we face the prospect of “dark silicon” - microchips where we cannot afford 
to turn on more than a fraction of the chip’s resources at any time, otherwise the 
chip will overheat and fail. New, more efficient models of computation are needed 
urgently! 
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A major feature of the standard model of computation is the need for precision. 
Ideally, computations should be exact, deterministic, reliable and repeatable. This 
requirement is clearly vital when the computer is used for banking, for example, but 
increasingly computers are used in less critical applications, and in many cases in 
applications where exact, repeatable results are not necessary nor, in some cases, 
possible. Examples of such applications include computer vision, which is of 
increasing importance in car driver assistance technology and in driverless cars and 
robotics, and speech recognition systems such as those widely used on mobile 
phones. Today, these applications use advanced machine learning techniques such 
as deep neural networks and convolutional neural networks, where very low 
precision parameters can be used without affecting performance. Indeed, using very 
accurate arithmetic such as the standard double-precision floating-point hardware 
on most microprocessors leads to at least an order of magnitude increase in energy 
consumption compared with using small integers, for no benefit in terms of 
recognition performance. 

Neuromorphic Computing is one example of a more efficient model of computation. 
Neuromorphic Computing takes its inspiration from our (partial) knowledge of how 
the brain works, a similar approach, though closer to the biology, to that which led 
to the deep learning and convolution neural networks mentioned above. In 
Neuromorphic Computing the brain-like algorithms are not simply modelled on a 
conventional computer, they are ingrained into the design of the computational 
hardware itself, to a greater or lesser degree, in order to deliver more of the 
efficiency that is exemplified by the biological system itself. 

Visibility and impact of neuromorphic computing have increased substantially during 
the last year. The reasons for this development are twofold. 

• The first reason is connected to the huge success of deep learning (DL). The more 
this approach is accessible to everybody through open and easy to use software, 
the more the limitations become evident to the users. DL requires very large 
labelled data sets for a training process that works fundamentally different from 
the biological brain. The quest for learning principles derived from biology 
becomes more and more urgent as biological systems are capable of continuous 
learning and learning with small (even single shot) data sets. Transferring 
biological learning to artificial systems would be a game changer to AI with very 
substantial impacts of economy and society. 

• The second reason is the very strong involvement of major industry players in 
alternative approaches to computing like quantum and neuromorphic computing. 
The fact that Intel has invested substantial resources to develop and support a 
spiking neural network chip very much along the lines of the HBP systems has also 
generated an enormous visibility for the research and development carried out in 
the HBP. 

How will these 2 reasons affect our future work and the impact it will have on the 
industrial landscape in Europe?  

The move towards biologically inspired learning mechanisms requires close, even 
day-by-day collaboration with theoretical neuroscience. The HBP is the only project 
worldwide that offers this collaboration between neuroscience and neuromorphic 
engineering. If this is properly exploited, the HBP could well develop into a very 
major player in the field of AI by co-designing novel hardware according to 
computational principles found in the brain. 
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The large investment by companies like Intel may appear like a strong competition 
that a European project with very limited funding cannot match. By comparing the 
3 approaches (SpiNNaker, BrainScaleS and Loihi by Intel) it is however clear, that 
there is a very good complementarity, which offers the opportunity to explore 
different application spaces with the 3 approaches. It will also be essential that the 
3 approaches collaborate in the development of support aspects like software. For 
the HBP systems it will be essential to go beyond the pure research aspect very soon 
and to receive substantial support for the development of systems that demonstrate 
a learning performance beyond the one reachable with conventional computing. 

In an approach to address the industrial angle we present here 3 outlooks at different 
time scales 

A short term outlook 

A number of demonstrations of the benefits of neuromorphic technology are 
beginning to emerge, and more can be expected in the short to medium term. 
Various start-up companies are emerging, in the USA and elsewhere, to exploit the 
prospective advantages of neuromorphic and similar technologies in these new 
machine learning application domains. 

An outlook toward the end of the HBP 

In the medium term we may expect neuromorphic technologies to deliver a range of 
applications more efficiently than conventional computers, for example to deliver 
speech and image recognition capabilities in smartphones. (Currently such 
capabilities are available only using powerful cloud resources to implement the 
recognition algorithms.) These will require small-scale neuromorphic accelerators 
integrated with the application processor, using a fraction of the resources of a single 
chip. 

An outlook into the far future 

In the long term there is the prospect of using neuromorphic technology to integrate 
energy-efficient intelligent cognitive functions into a wide range of consumer and 
business products, from driverless cars to domestic robots. While human-level 
“strong” artificial intelligence remains a mystery, and indeed may depend on the 
emergence of an understanding of information processing in the biological brain 
(through initiatives such as the Human Brain Project) before it becomes a practical 
reality, there are many useful applications that can benefit from more modest 
cognitive capabilities. The technology is relatively young, and there is much 
uncertainty as to where it will find its place in the wider world, but it clearly meets 
a need in the rapidly changing world of computing. 
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4. Conclusion and Outlook 

The end of the SGA1 funding period represents a major milestone in the entire 10-
year HBP endeavour. Essentially, half of the project time has elapsed and about 40% 
of the planned EC resources have been invested in research and technology 
development. What have taxpayers received for their substantial investment until 
today? 

SP9 has reached 2 major milestones that were expected at this stage of the project: 

1) SP9 operates the only large-scale, remotely accessible neuromorphic computing 
system worldwide. 

2) SP9 delivered proven designs and prototypes for the next generation 
neuromorphic systems, developed in close collaboration with theoretical 
neuroscientists in the HBP. 

Noteworthy, the field of neural computation has undergone rapid developments 
since the early days of the HBP planning in 2009 (pilot phase) and 2013 (start of the 
main Project). Brain-inspired computing concepts became a major driver of what is 
called today Artificial Intelligence (AI). Traditional deep learning approaches are 
limited by their need for very large sets of labelled data and extremely power hungry 
hardware for the slow learning processes. 

There is general consensus, that brain inspired concepts of learning represent the 
only way out of this dilemma. Biological brains learn on very small datasets, even on 
single events. They learn continuously and do not separate between learning and 
inference. And, of course, their energy efficiency is still far better than the one of 
conventional computer. 

Here, the HBP is in a unique position. It is the only project worldwide that has 
established a research driven link between neuroscience and computing. 

The new 2nd generation designs have generated substantial visibility in the 
international community, including major industry players. During the recent NICE 
conference at Intel Labs in the US, BrainScaleS-2 and SpiNNaker-2 played in the same 
league as Intel’s new Loihi chip. 

To exploit the leading edge Europe has gained in the field of brain inspired 
computing, it is essential to make the important step from 2nd generation prototype 
chips to large-scale neuromorphic systems that exhibit superior performance, 
compared to their competitors based on traditional computing architectures. SGA2, 
and even more SGA3, will show us whether Europe and European research funding 
are able to live up to these expectations.  

.  
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6. Component Details 

The following is a list of the newly released internal Components for this deliverable. 

6.1 BrainScaleS-1 Neuromorphic Computing System 

Field Name Field Content Additional Information 

ID  1  

Component Type Hardware 20 wafer-module system + local cluster 
in Heidelberg 

Contact MEIER, Karlheinz, 
SCHEMMEL, Johannes 

 

Latest Release  Latest wafer version is V4.1 3 of the 20 modules are on wafer 
version 4.1 as of March 2018 

TRL 5   

Location  D-69118 Heidelberg, Im 
Neuenheimer Feld 227b 

 

Maintenance Continuous operation and 
maintenance by UHEI team 
in WP9.2 

 

Curation Status NA  

Validation - QC Yes Continuous integration tests for 
software. Nightly Jenkins test jobs for 
hardware and software, benchmarking 

Validation – Users Yes 

 

Usage via the collab is reported in the 
dashboard: 
https://collab.humanbrainproject.eu/#
/collab/609/nav/7820  

Usage dominated by direct local use 

Validation – Publications Yes Need to add ref to paper here 

Privacy Constraints No privacy constraints  

Sharing publically authenticated Accessible with HBP community account 
after signing the Platform User 
Agreement form 

Licence -  

Component Access URL Getting started info: 
https://www.humanbrainpr
oject.eu/en/silicon-
brains/neuromorphic-
computing-platform/  

 

https://collab.humanbrainproject.eu/#/collab/609/nav/7820
https://collab.humanbrainproject.eu/#/collab/609/nav/7820
https://www.hbpneuromorphic.eu/UserAgreement_HBPNeuromorphicComputingPlatform.pdf
https://www.hbpneuromorphic.eu/UserAgreement_HBPNeuromorphicComputingPlatform.pdf
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/


 

Co-funded by  
the European Union 

 
 

 

 
D9.5.2 (D53.2 D47) SGA1 M24 ACCEPTED 180914.docx PU = Public 14-Sep-2018 Page 46 of 57 

 

Field Name Field Content Additional Information 

Collaboratory: 
Neuromorphic Computing 
Platform 
https://collab.humanbrainp
roject.eu/#/collab/51/nav/
244  

Technical 
documentation URL 

D9.7.1_Neuromorphic_Platfo
rm_Specification_-
_public_version.pdf (a 
“living document”) 

 

Usage documentation 
URL 

HBP Neuromorphic 
Computing Platform 
Guidebook, also available as 
downloadable .pdf version. 
Both documents linked from 
the public getting-started 
page 
https://www.humanbrainpr
oject.eu/en/silicon-
brains/neuromorphic-
computing-platform/ 

 

Component 
Dissemination Material 
URL 

“Silicon brains” part of the 
HBP public website.  

Videos (of talks, trainings): 
https://www.humanbrainpr
oject.eu/en/silicon-
brains/media/videos/  

Events: 
https://www.humanbrainpr
oject.eu/en/silicon-
brains/events/  

 

Table 3: Component 1: BrainScaleS-1 Neuromorphic Computing System 

6.2 SP9 BrainScaleS 2 Neuromorphic Computing System 

Field Name Field Content Additional Information 

ID  457  

Component Type Hardware BrainScaleS-2 prototype 

Contact SCHEMMEL, Johannes and 
GRÜBL, Andreas  

Latest Release  HICANN-X HICANN-X to be taped out early April 
2018 

TRL 3  

Location  Heidelberg  

Maintenance Active development WP9.2  

https://collab.humanbrainproject.eu/#/collab/51/nav/244
https://collab.humanbrainproject.eu/#/collab/51/nav/244
https://collab.humanbrainproject.eu/#/collab/51/nav/244
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/HBPNeuromorphicComputingPlatformGuidebook.pdf?fID=1504&s=qqdXDg6HuX3&uID=65
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/
https://www.humanbrainproject.eu/en/silicon-brains/media/videos/
https://www.humanbrainproject.eu/en/silicon-brains/media/videos/
https://www.humanbrainproject.eu/en/silicon-brains/media/videos/
https://www.humanbrainproject.eu/en/silicon-brains/events/
https://www.humanbrainproject.eu/en/silicon-brains/events/
https://www.humanbrainproject.eu/en/silicon-brains/events/
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Field Name Field Content Additional Information 

Curation Status   

Validation - QC yes 
Test chips for checking and evaluating 
several aspects of the system are in 
use and test. 

Validation – Users yes 
Internal first-test usage of small scale 
feature test chips ; TUGraz and UBERN 
users of the DLS systems 

Validation – Publications no  

Privacy Constraints no privacy constraints  

Sharing -  

Licence -  

Component Access URL 

Remotely accessible, but not 
yet integrated in the NMPI 
frontend to access the 
machines. 

 

Technical 
documentation URL NA  

Usage documentation 
URL NA  

Component 
Dissemination Material 
URL 

NA  

Table 4: Component 457: BrainScaleS 2 Neuromorphic Computing System 

6.3 SP9 SpiNNaker Neuromorphic Computing System 

Field Name Field Content Additional Information 

ID  2  

Component Type hardware  

Contact FURBER, Steve  

Latest Release  SpiNNaker 1 500.000 core system accessible 

TRL TRL 5 - Prototype Integration  

Location  Manchester  

Maintenance 
Continuous operation and 
maintenance by UMAN team 
in WP9.3 
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Field Name Field Content Additional Information 

Curation Status NA  

Validation - QC Yes Benchmarking, code testing 

Validation – Users Yes 
Usage info via the dashboard: 
https://collab.humanbrainproject.eu/ 
#/collab/609/nav/7820  

Validation – Publications Yes  

Privacy Constraints no  

Sharing 
publically authenticated Accessible with HBP community 

account after signing the Platform User 
Agreement form 

Licence   

Component Access URL 

Getting started info: 
https://www.humanbrainpr
oject.eu/ 
en/silicon-brains/ 
neuromorphic-computing-
platform/  

Collaboratory: Neuromorphic 
Computing Platform 
https://collab.humanbrainpr
oject.eu/#/ 
collab/51/nav/244  

 

Technical 
documentation URL 

D9.7.1_Neuromorphic_Platfo
rm_Specification_-
_public_version.pdf (a 
“living document”) 

 

Usage documentation 
URL 

HBP Neuromorphic 
Computing Platform 
Guidebook, also available as 
downloadable .pdf version. 
Both documents linked from 
the public getting-started 
page 
https://www.humanbrainpr
oject.eu/en/silicon-
brains/neuromorphic-
computing-platform/ 

 

Component 
Dissemination Material 
URL 

“Silicon brains” part of the 
HBP public website.  

Videos (of talks, trainings): 
https://www.humanbrainpr
oject.eu/en/silicon-
brains/media/videos/  

Events: 
https://www.humanbrainpr

 

https://collab.humanbrainproject.eu/#/collab/609/nav/7820
https://collab.humanbrainproject.eu/#/collab/609/nav/7820
https://www.hbpneuromorphic.eu/UserAgreement_HBPNeuromorphicComputingPlatform.pdf
https://www.hbpneuromorphic.eu/UserAgreement_HBPNeuromorphicComputingPlatform.pdf
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://collab.humanbrainproject.eu/#/collab/51/nav/244
https://collab.humanbrainproject.eu/#/collab/51/nav/244
https://collab.humanbrainproject.eu/#/collab/51/nav/244
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/D9.7.1_Neuromorphic_Platform_Specification_-_public_version.pdf?fID=1887&s=qqdXDg6HuX3&uID=65
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/HBPNeuromorphicComputingPlatformGuidebook.pdf?fID=1504&s=qqdXDg6HuX3&uID=65
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/
https://www.humanbrainproject.eu/en/silicon-brains/media/videos/
https://www.humanbrainproject.eu/en/silicon-brains/media/videos/
https://www.humanbrainproject.eu/en/silicon-brains/media/videos/
https://www.humanbrainproject.eu/en/silicon-brains/events/
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Field Name Field Content Additional Information 

oject.eu/en/silicon-
brains/events/  

Table 5: Component 2: SP9 SpiNNaker Neuromorphic Computing System 
(hardware) 

6.4 SpiNNaker 2 small-scale NM-MC System 

Field Name Field Content Additional Information 

ID  467  

Component Type hardware  

Contact HÖPPNER, Sebastian  

Latest Release    

TRL 3  

Location  Manchester  

Maintenance 
Software development in 
GIT repository, Hardware 
desing sources in SVN 

 

Curation Status NA  

Validation - QC  

Validation of the hardware by multiple 
users from TUD and UMAN 

Execution of low level tests (ARM 
software execution) and high level 
benchmarks (e.g. synfire chain, bursing 
network, dynamic vision sensor 
interface, BCPNN, reward based 
stochastic synaptic sampling) 

Validation – Users  Usage by partners UMAN, TUGRAZ and 
TUD 

Validation – Publications   

Privacy Constraints None  

Sharing consortium - share with any 
consortium members  

Licence   

Component Access URL (not yet remote accessible)  

Technical 
documentation URL 

https://hpsn.et.tu-
dresden.de/svn/p_cfaed/s_s
antos28/ 
v0.0.1/doc/Santos28_Docum
entation/ 

Internal only URL 

https://www.humanbrainproject.eu/en/silicon-brains/events/
https://www.humanbrainproject.eu/en/silicon-brains/events/


 

Co-funded by  
the European Union 

 
 

 

 
D9.5.2 (D53.2 D47) SGA1 M24 ACCEPTED 180914.docx PU = Public 14-Sep-2018 Page 50 of 57 

 

Santos28_Testchip_Documen
tation.doc 

Usage documentation 
URL NA  

Component 
Dissemination Material 
URL 

NA  

Table 6: Component 467: SpiNNaker small-scale NM-MC System (hardware) 

6.5 SNABSuite 

 Main Meta Data Comment/title 

Component  2462 SNABSuite 

Component Type Software Python and C++ library 

Contact THIES, Michael  

Latest Release  February 2018  

TRL 5  

Location  hosted by other non-HBP 3rd 
party: Github  

Maintenance Active development and 
maintenance in WP9.1  

Curation Status NA  

Validation - QC Pass Continuous Integration 

Validation – Already 
existing users Yes  

Validation – Use in 
publications Yes  

Access privacy No Privacy Constraint  

Access sharing anonymous  

Access licence GNU GENERAL PUBLIC 
LICENSE, Version 3  

URL to access 
component 

https://github.com/hbp-
unibi/SNABSuite  

URL to component 
documentation 

https://hbp-
unibi.github.io/SNABSuite/in
dex.html 

 

https://github.com/hbp-unibi/SNABSuite
https://github.com/hbp-unibi/SNABSuite
https://hbp-unibi.github.io/SNABSuite/index.html
https://hbp-unibi.github.io/SNABSuite/index.html
https://hbp-unibi.github.io/SNABSuite/index.html
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 Main Meta Data Comment/title 

URL to component 
usage documentation 

https://github.com/hbp-
unibi/SNABSuite/blob/maste
r/README.md 

 

URL to dissemination 
material highlighting 
component 

https://doi.org/10.3389/fnc
om.2017.00071  

Table 7: Component 2462: SNABSuite 

6.6 Neuromorphic Job Manager App 

 Main Meta Data Comment/title 

Component  343  

Component Type Software  

Contact DAVISON, Andrew  

Latest Release  2017-12-01  

TRL 7  

Location  Data hosted by collaborator 
storage  

Maintenance Active development and 
maintenance in WP9.1  

Curation Status NA  

Validation - QC Pass Agile Quality Assurance 

Validation – Already 
existing users Yes 

See Dashboard - 
https://nmpi.hbpneuromorphic.eu/das
hboard/ 

Validation – Use in 
publications No  

Access privacy No Privacy Constraint  

Access sharing 

public authenticated - share 
with authenticated non-
consortium members e.g. 
public collab 

 

Access licence Apache v2 license  

URL to access 
component 

https://collab.humanbrainpr
oject.eu/#/collab/19/nav/2
108?state=software,Neuromo
rphic-Computing-Platform-
Job-Manager 

 

https://github.com/hbp-unibi/SNABSuite/blob/master/README.md
https://github.com/hbp-unibi/SNABSuite/blob/master/README.md
https://github.com/hbp-unibi/SNABSuite/blob/master/README.md
https://doi.org/10.3389/fncom.2017.00071
https://doi.org/10.3389/fncom.2017.00071
https://nmpi.hbpneuromorphic.eu/dashboard/
https://nmpi.hbpneuromorphic.eu/dashboard/
https://collab.humanbrainproject.eu/#/collab/19/nav/2108?state=software,Neuromorphic-Computing-Platform-Job-Manager
https://collab.humanbrainproject.eu/#/collab/19/nav/2108?state=software,Neuromorphic-Computing-Platform-Job-Manager
https://collab.humanbrainproject.eu/#/collab/19/nav/2108?state=software,Neuromorphic-Computing-Platform-Job-Manager
https://collab.humanbrainproject.eu/#/collab/19/nav/2108?state=software,Neuromorphic-Computing-Platform-Job-Manager
https://collab.humanbrainproject.eu/#/collab/19/nav/2108?state=software,Neuromorphic-Computing-Platform-Job-Manager
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 Main Meta Data Comment/title 

URL to component 
documentation 

https://collab.humanbrainpr
oject.eu/#/collab/51/nav/1
069 

 

URL to component 
usage documentation 

https://collab.humanbrainpr
oject.eu/#/collab/51/nav/1
069 

 

URL to dissemination 
material highlighting 
component 

NA  

Table 8: Component 343: Neuromorphic Job Manager App 

6.7 Neuromorphic Job Queue Service 

 Main Meta Data Comment/title 

Component  344  

Component Type Service  

Contact DAVISON, Andrew  

Latest Release  2017-12-01  

TRL 7  

Location  data hosted by other non-
HBP 3rd party 

Code: Github Hosting: Digital Ocean 
AMS2 data centre, Amsterdam 

Maintenance Active development and 
maintenance in WP9.1  

Curation Status NA  

Validation - QC Pass Agile Quality Assurance 

Validation – Already 
existing users Yes 

See Dashboard - 
https://nmpi.hbpneuromorphic.eu/das
hboard/ 

Validation – Use in 
publications NA  

Access privacy No Privacy Constraint  

Access sharing 

public authenticated - share 
with authenticated non-
consortium members e.g. 
public collab 

 

Access licence Apache v2 license  

https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://nmpi.hbpneuromorphic.eu/dashboard/
https://nmpi.hbpneuromorphic.eu/dashboard/


 

Co-funded by  
the European Union 

 
 

 

 
D9.5.2 (D53.2 D47) SGA1 M24 ACCEPTED 180914.docx PU = Public 14-Sep-2018 Page 53 of 57 

 

 Main Meta Data Comment/title 

URL to access 
component 

The job queue service is the 
backend for the experiments 
submitted via the Collab 

 

URL to component 
documentation 

https://collab.humanbrainpr
oject.eu/#/collab/51/nav/1
069 

 

URL to component 
usage documentation 

https://collab.humanbrainpr
oject.eu/#/collab/51/nav/1
069 

 

URL to dissemination 
material highlighting 
component 

NA  

Table 9: Component 344: Neuromorphic Job Queue Service 

6.8 PyNN 

 Main Meta Data Comment/title 

Component  349  

Component Type Software  

Contact DAVISON, Andrew  

Latest Release  February 2018  

TRL 5  

Location  data hosted by other non-
HBP 3rd party  

Github 

Maintenance Active development and 
maintenance in WP9.1  

Curation Status NA  

Validation - QC Pass Continuous Integration 

Validation – Already 
existing users Yes  

Validation – Use in 
publications Yes  

Access privacy No Privacy Constraint  

Access sharing anonymous  

Access licence GNU GENERAL PUBLIC 
LICENSE, Version 3  

https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069


 

Co-funded by  
the European Union 
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 Main Meta Data Comment/title 

URL to access 
component 

https://github.com/hbp-
unibi/SNABSuite  

URL to component 
documentation 

https://hbp-
unibi.github.io/SNABSuite/in
dex.html 

 

URL to component 
usage documentation 

https://github.com/hbp-
unibi/SNABSuite/blob/maste
r/README.md 

 

URL to dissemination 
material highlighting 
component 

https://doi.org/10.3389/fnc
om.2017.00071  

Table 10: Component 349: PyNN 

6.9 SP9 Neuromorphic Python client 

 Main Meta Data Comment/title 

Component  349  

Component Type Software  

Contact DAVISON, Andrew  

Latest Release    

TRL 7  

Location  data hosted by other non-
HBP 3rd party Github 

Maintenance Active development and 
maintenance in WP9.1  

Curation Status NA  

Validation - QC Pass Agile Quality Assurance 

Validation – Already 
existing users Yes https://github.com/HumanBrainProjec

t/hbp-neuromorphic-client/stargazers 

Validation – Use in 
publications No  

Access privacy No Privacy Constraint  

Access sharing anonymous  

Access licence Apache v2 license  

https://github.com/hbp-unibi/SNABSuite
https://github.com/hbp-unibi/SNABSuite
https://hbp-unibi.github.io/SNABSuite/index.html
https://hbp-unibi.github.io/SNABSuite/index.html
https://hbp-unibi.github.io/SNABSuite/index.html
https://github.com/hbp-unibi/SNABSuite/blob/master/README.md
https://github.com/hbp-unibi/SNABSuite/blob/master/README.md
https://github.com/hbp-unibi/SNABSuite/blob/master/README.md
https://doi.org/10.3389/fncom.2017.00071
https://doi.org/10.3389/fncom.2017.00071
https://github.com/HumanBrainProject/hbp-neuromorphic-client/stargazers
https://github.com/HumanBrainProject/hbp-neuromorphic-client/stargazers


 

Co-funded by  
the European Union 
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 Main Meta Data Comment/title 

URL to access 
component 

https://github.com/HumanB
rainProject/hbp-
neuromorphic-client 

 

URL to component 
documentation 

https://collab.humanbrainpr
oject.eu/#/collab/51/nav/1
069 

 

URL to component 
usage documentation 

https://collab.humanbrainpr
oject.eu/#/collab/51/nav/1
069 

 

URL to dissemination 
material highlighting 
component 

  

Table 11: Component 349: SP9 Neuromorphic Python client 

6.10 Software model of sampling with LIF neurons 

Field Name Field Content Additional Information 

ID  2474  

Component Type Model  

Contact PETROVICI, Mihai  

Latest Release  -  

TRL 6  

Location  data hosted by other non-
HBP 3rd party 

[Petrovici et al., 2016], 

[Leng et al., 2017] 

Maintenance Active development WP9.4, 
CDP5  

Validation - QC -  

Validation – Users -  

Validation – Publications -  

Table 12: Component 2474 Software model of sampling with LIF neurons 
  

https://github.com/HumanBrainProject/hbp-neuromorphic-client
https://github.com/HumanBrainProject/hbp-neuromorphic-client
https://github.com/HumanBrainProject/hbp-neuromorphic-client
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069
https://collab.humanbrainproject.eu/#/collab/51/nav/1069


 

Co-funded by  
the European Union 
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6.11 Software model of noise generation by a balanced random 
spiking network 

Field Name Field Content Additional Information 

ID  2475  

Component Type Model  

Contact PETROVICI, Mihai  

Latest Release  -  

TRL 5  

Location  data hosted by other non-
HBP 3rd party 

arXiv preprint arXiv:1710.04931 
[Jordan et al. 2017] 

Maintenance Active development WP9.4  

Validation – Users -  

Validation – Publications -  

Table 13: Component 2475 Software model of noise generation by a balanced 
random spiking network 

6.12 Hardware emulation of LIF sampling with subnetwork modules 

Field Name Field Content Additional Information 

ID  2476  

Component Type Model  

Contact PETROVICI, Mihai  

Latest Release  -  

TRL 5  

Location  data hosted by other non-
HBP 3rd party 

[Petrovici et al., 2017b] 

https://doi.org/10.1109/ISCAS.2017.80
50530 

Maintenance Active development WP9.4  

Validation - QC -  

Validation – Users -  

Validation – Publications -  

Table 14: Component 2476 Hardware emulation of LIF sampling with 
subnetwork modules 

https://doi.org/10.1109/ISCAS.2017.8050530
https://doi.org/10.1109/ISCAS.2017.8050530


 

Co-funded by  
the European Union 
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6.13 Hardware emulation of hierarchical sampling networks 

Field Name Field Content Additional Information 

ID  2477  

Component Type Model  

Contact PETROVICI, Mihai  

Latest Release  -  

TRL 3  

Location  data hosted by other non-
HBP 3rd party 

[Petrovici et al., 2017a], 

[Schmitt et al., 2017] 

Maintenance Active development WP9.4, 
CDP5  

Validation - QC -  

Validation – Users -  

Validation – Publications -  

Table 15: Component 2477 Hardware emulation of hierarchical sampling 
networks 

 


	1. Introduction
	2. Key Results
	2.1 BrainScaleS-1 (1st generation machine)
	2.1.1 Results
	2.1.2 Impact
	2.1.3 Challenges
	2.1.4 Future Work
	2.1.5 Component Dependencies

	2.2 BrainScaleS-2 (2nd generation prototype development)
	2.2.1 Results
	2.2.2 Impact
	2.2.3 Challenges
	2.2.4 Future Work
	2.2.5 Component Dependencies

	2.3 SpiNNaker-1 (1st generation machine)
	2.3.1 Results
	2.3.2 Impact
	2.3.3 Challenges
	2.3.4 Future Work
	2.3.5 Component Dependencies

	2.4 SpiNNaker-2 (2nd generation prototype development)
	2.4.1 Results
	2.4.2 Impact
	2.4.3 Challenges
	2.4.4 Future Work
	2.4.5 Component Dependencies

	2.5 Neuromorphic Computing Platform (Software development)
	2.5.1 Results
	2.5.2 Impact
	2.5.3 Challenges
	2.5.4 Future Work
	2.5.5 Component Dependencies

	2.6 Computational principles (Theory development for neuromorphic systems)
	2.6.1 Results
	2.6.2 Impact
	2.6.3 Challenges
	2.6.4 Future Work


	3. The Industry Angle
	A short term outlook
	An outlook toward the end of the HBP
	An outlook into the far future

	4. Conclusion and Outlook
	5. Literature
	6. Component Details
	6.1 BrainScaleS-1 Neuromorphic Computing System
	6.2 SP9 BrainScaleS 2 Neuromorphic Computing System
	6.3 SP9 SpiNNaker Neuromorphic Computing System
	6.4 SpiNNaker 2 small-scale NM-MC System
	6.5 SNABSuite
	6.6 Neuromorphic Job Manager App
	6.7 Neuromorphic Job Queue Service
	6.8 PyNN
	6.9 SP9 Neuromorphic Python client
	6.10 Software model of sampling with LIF neurons
	6.11 Software model of noise generation by a balanced random spiking network
	6.12 Hardware emulation of LIF sampling with subnetwork modules
	6.13 Hardware emulation of hierarchical sampling networks


