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Figure 1: The Neurorobotics Platform as enabling technology for neuroscience, AI and robotics 
The Neurorobotics Platform supports in silico exploration of multiple scientific questions in neuroscience, robotics 
and embodied AI. It enables users to investigate the synergies between musculoskeletal systems and motor control, 
leverage HPC infrastructure for parallelised / distributed learning, and explore sim-to-real transfer learning to robotic 
platforms such as the HBP robot rodent NeRmo. 
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Abstract: 

This Deliverable is the annual compound of HBP deliveries and results (outputs and 
outcomes) from Subproject SP10 – Neurorobotics Platform (NRP). 

The main technical and scientific deliveries from April 2019 to March 2020 for SP10 
were: 

• In silico experiments with realistic spinal circuits and the musculoskeletal 
rodent model as co-design drivers (KR10.1). 

• The latest release of the robot rodent with extended sensing capabilities 
and a new mechanical design for improved performance (KR10.2). 
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• The Integrated Behavioural Architecture: and integrative software 
framework to compose cognitive architectures from heterogeneous 
functional components on the NRP(KR10.3). 

• A series of new functional features and improvements to the NRP delivered 
in Releases 2.3 and 3.0 (KR10.4). 

• The continued development of compliant robotics and demonstration of 
what the NRP can offer in terms of knowledge transfer to such physical 
robots (KR10.5) 

Keywords: Neurorobotics, virtual robotics, in silico experiments, neural control of movement 

Target Users/Readers: 
Computational neuroscience community, Robotics community, consortium 
members, funders, Neuroscience community, neuroscientists working on neural 
control of movement, platform users, researchers, scientific community 

 

NOTE: 

Components: a full list of Components will be included in the SGA2 Periodic Report. 

Dissemination: dissemination actions to promote specific Key Results and the Outputs that contribute 
to them will be documented in the SGA2 Periodic Report. 
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1. Overview 
Neurorobotics is an emerging research field where key concepts and technologies from both brain 
science and robotics are fused in order to: 1) provide new experimental paradigms in brain 
simulation; and 2) produce new technological solutions in artificial intelligence and robotics. The 
first objective relies on the concept of embodiment (i.e. placing the brain inside a body and 
simulating them both) for implementing closed-loop experiments, where brain activity is driven by 
streams of sensory stimuli and interactions with the environment. The second objective relies on 
identifying features of the brain as an information-processing system that would provide digital 
systems (including robots) with functional capabilities that are currently beyond the state of the art 
(situational awareness, decision-making capability, etc.). 

HBP Subproject 10 (SP10) aims to establish neurorobotics and closed-loop embodied simulations as 
a new paradigm in neuroscience research. To that end, SP10 is building and operating the 
Neurorobotics Platform (NRP), a research infrastructure that provides a set of tools and workflows 
for designing and simulating complex models of cognitive architectures, robots and physically 
realistic environments. Through the NRP, researchers from within and outside the HBP can define, 
run and share experiments and embodied simulations.  

The NRP is thus a unique tool that serves as a common ground on which neuroscientists and 
roboticists can collaborate. The former can evaluate models, ranging from simple sensorimotor 
models to large-scale behavioural architectures, in the context of behavioural tasks. The latter can 
control complex robot bodies with many degrees of freedom with brain-inspired controllers, and 
leverage lessons from neuroscience to endow robots with abilities that are currently beyond the 
state of the art (e.g. adaptability to unforeseen changes in task parameters, etc.). Through co-
design activities linking research in neuroscience and software development, SP10 also strives to 
provide the research community with tools that support continuous integration of new data and 
models in a standardised and collaborative manner. 

The present document provides a high-level summary of the Key Results (as defined in the Grant 
Agreement) from SP10. 

2. Introduction 
The present document provides a high-level summary of the scientific and technical activities carried 
out by the SP10 Partners in the second year of SGA2. It is structured around the Key Results defined 
in the Grant Agreement, and frames the developments in terms of their contribution to the 
overarching objectives of both the HBP and SP10. 

The first Key Result is the continued development and expanded use of the virtual rodent model for 
in silico behavioural experiments (KR10.1). This detailed body model is available on the NRP. It is 
based upon a realistic musculoskeletal model and enables simulation of behavioural tasks involving 
rodents. It was leveraged inside SP10 in two different types of experiments and demonstrators. The 
first demonstrator focused on motor control in rodents, in the context of a pulling task. This 
experiment was originally conceived to study motor learning before and after a topical stroke in the 
motor cortex. The second type of experiments focused on modelling locomotion in rodents (as a 
prelude to modelling in humans) in the context of spinal cord injury treatment. Several high-profile 
papers were published during SGA2 (e.g. Formento et al. (2018), Nature Neuroscience, 21, 1728–
1741 – P1623; Wagner et al. (2018), Nature, Vol. 563, No. 7729 – P1622) and multiple follow-up 
projects are now running that directly result from this approach, thereby illustrating its success and 
relevance. 

The second Key Result is the physical rodent robot, a lightweight technology platform which uses 
mechanically compliant structural elements and is designed to approximate rodent locomotion 
patterns. It is intended to be cheap enough to be shared between HBP Partners as a means to transfer 
neuronal models into a common physical embodiment controlled with neuromorphic hardware. 
Several versions of this rodent robot were released in SGA2. The latest version not only provides 
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additional degrees of freedom and additional sensing capabilities, it was also vastly redesigned so 
as to be more robust and easier to produce. 

The third Key Result regroups the results of several activities carried out to enable users to run 
complex multi-component cognitive architectures on the NRP. The central component in this 
endeavour is the Integrated Behavioural Architecture (IBA), a modular software framework enabling 
compositionality of heterogeneous models of brain functions into a single cognitive architecture 
running on the NRP. The IBA provides a way for individual scientists to easily plug-in their own code 
into NRP simulations, in order to perform experiments on complex cognitive tasks. To make their 
task even easier, several functional modules were developed and made available (e.g. visual module, 
motor primitive module, cerebellum module and motor exploration module); demonstrators were 
then created to showcase how these can be combined within the IBA. 

The fourth Key Result is the improved NRP itself. In the second year of SGA2, the software 
development activities inside SP10 focused essentially on improving the connection of the NRP to 
other tools and infrastructures in the HBP. The various new features introduced are described, as 
well as the rationale for their implementation. 

Finally, the fifth and last Key Result is modular control for physical robots under real-time 
constraints. While simulation can indeed guide robotic development, especially when combined with 
learning processes (inspired by either biology or AI), the intrinsic limitations of the physics engines 
available in the NRP create an unavoidable reality gap that needs to be characterised. We thus 
address manipulation of objects with complex inertial properties (e.g. a half-full water bottle) with 
a compliant / soft robot as a test case for motor learning and adaptation, comparing simulations on 
the NRP to “real-world” experimental results. 

3. Key Result KR10.1: Virtual rodent model for in 
silico behaviour experiments 

3.1 Outputs 

3.1.1 Overview of Outputs 

3.1.1.1 List of Outputs contributing to this KR 

• Output 1: Virtual mouse and motor control (C2596, C2603, C2612, C2603, C2609, C2610) 

• Output 2: Virtual stroke rehabilitation experiment (C2614) 

• Output 3: Deconstruction of spinal circuits engaged by epidural electrical stimulation that 
restore locomotion after paralysis (C2607) 

3.1.1.2 How Outputs relate to each other and the Key Result 

Output 1 provides all the necessary building blocks for the creation of different virtual behavioural 
experiments relative to motor tasks including biological neural networks. Such components were 
used to perform a simulated stroke rehabilitation experiment (Output 2). Output 3, relying on rat 
experiments, provides a better understanding of locomotion mechanisms. 

3.1.2 Output 1: Virtual mouse and motor control 

This output demonstrates the virtual mouse model and the motor control applied in the locomotion 
and the pulling tasks. It involves five different sub-components. 
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1) Skeletal model. The mouse skeletal model was obtained from a CT-scan, and is fully rigged with 
the necessary degrees of freedom between any two links. The joint centres are anatomically 
relevant. In the current version, all rotations are limited to simple revolute joints. If necessary, the 
user may define more complex joint rotations using the OpenSim Application Programming Interface 
(API), provided in the NRP. The physical properties of the links are computed based on simple 
bounding objects which enclose any given link with a minimum area. The masses and inertias of each 
link (Figure 2) are then computed with the assumption that each of the bounding boxes has a uniform 
distribution of water density. The total computed mass of the full model with this assumption (~25g) 
is in accordance with the average mass of actual mice. The user is still free to update the mass of 
any link with more accurate data from actual measurements. 

 
Figure 2: Fully articulated skeletal model of the mice in its neutral pose. 

The orange boxes represent computed inertia of the individual segments. 

2) Muscle models. Two different types of muscle models are supported as part of the locomotion 
template: users can choose between the Hill-type model and a simpler spring-damper muscle model. 
Integration of the OpenSim with the NRP allows for the direct use of standard Hill-muscle 
implementations. The muscle attachment points had to be recomputed for the NRP model from the 
literature data. Figure 3 shows the transferred muscle attachments of the hind limb visualised in 
Blender. 

 
Figure 3: Reduced model for locomotion with hind-limb Hill-type muscles 
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3) Neural networks for locomotion. A neural network library has been developed. The library has 
a high-level Python interface and the neuronal models themselves are developed in Cython for 
efficiency. Figure 4 shows an example of a network setup in the locomotion template. The user has 
several options to extend the network complexity or even completely rewrite the network from 
scratch. 

 
Figure 4: Central Pattern Generator network used to generate locomotion patterns 

4) Neural networks for pulling task. A spinal cord model capable of actuating the simulated muscles 
was developed and implemented as a spiking neural network in NEST. The spinal cord comprises a 
circuit for a single muscle, inhibitory connections between antagonistic pair of muscles and 
interneurons to modulate descending stimuli (see Figure 2 in Deliverable D10.5.1 SGA2 M12). 

A brain model capable of generating realistic pulling motions was developed by implementing a 
spiking functional model of relevant cortical areas. The two main motor areas modelled are the 
rostral forelimb area (RFA) and the caudal forelimb area (CFA), which act as premotor and motor 
cortices, respectively. The RFA is directly modelled as a population reproducing neurophysiological 
recordings from in-vivo experiments, which is connected to the CFA network (Figure 5). More details 
on this experiment are available in Deliverable D10.1.1 SGA2 M24. 

 

Figure 5: Spiking cortical model, including premotor (RFA) and motor areas (CFA). 
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Table 1: Output 1 links 

Component Link to URL 

C2596 

Data/model Repository https://gitlab.com/sssa-humanoid-robotics/NeuralModels 

Technical Documentation https://gitlab.com/sssa-humanoid-robotics/NeuralModels 

User Documentation https://gitlab.com/sssa-humanoid-robotics/NeuralModels 

C2612 

Data/model Repository https://bitbucket.org/lore_ucci/cortex-model/ 

Technical Documentation https://bitbucket.org/lore_ucci/cortex-model/ 

User Documentation https://bitbucket.org/lore_ucci/cortex-model/ 

3.1.3 Output 2: Virtual stroke rehabilitation experiment 

To simulate the experimental trial described above, we combined the following simulated 
components: the M-Platform, the mouse musculoskeletal forelimb, the spinal cord model for the 
forelimb muscles and the cortical brain model. All of them were included in the NRP to create a 
simulated post-stroke rehabilitation experiment. 

Alongside the musculoskeletal embodiment described above, we modelled the M-Platform. The slide 
mechanism was modelled as a prismatic joint, actuated by a PID controller. A control mechanism 
using a state machine for automatic reset of the sled position was developed, thanks to 
functionalities already present in the NRP. In the in-vivo experiment, a certain threshold of force is 
needed to move the slide due to friction. In the simulation, we set a muscle activation threshold 
that, when the subject makes a reaching/pulling action, forces the slide control mechanism to 
deactivate the PID controller, effectively freeing the slide and allowing the mouse forelimb to carry 
out the action. 

In a first set of tests, only a simplified cortical model was employed. This model consisted of a set 
of static spike generators reproducing the events detected with the MU detection in the RFA. This 
was done to test whether it was possible to achieve pre- and post-stroke results by simulating a 
cortical area that is not directly affected by the stroke. Results, shown in Figure 6, demonstrated 
that it was possible to simulate the activity of healthy mice, but not of post-stroke mice. More 
details on this experiment are provided in Deliverable D10.1.1 SGA2 M24. 

  

Figure 6: Comparison between experiments and simulation for healthy and stroke animals 
Results for the simplified cortical model show that, by simulating only the RFA, it is possible to reproduce data from 
healthy mice (left), but not of stroke mice (right). 

  

https://gitlab.com/sssa-humanoid-robotics/NeuralModels
https://gitlab.com/sssa-humanoid-robotics/NeuralModels
https://gitlab.com/sssa-humanoid-robotics/NeuralModels
https://bitbucket.org/lore_ucci/cortex-model/
https://bitbucket.org/lore_ucci/cortex-model/
https://bitbucket.org/lore_ucci/cortex-model/
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Table 2: Output 2 links 

Component Link to URL 

C2614 

Data/model Repository https://gitlab.com/lore.ucci/closed-loop-mouse-stroke-simulation 

Technical Documentation https://gitlab.com/lore.ucci/closed-loop-mouse-stroke-simulation 

User Documentation https://gitlab.com/lore.ucci/closed-loop-mouse-stroke-simulation 

3.1.4 Output 3: Deconstruction of spinal circuits engaged by EES 

Epidural electrical stimulation (EES) of the lumbosacral spinal cord can restore locomotion in 
patients with paralysis. However, the underlying mechanisms remain enigmatic. We carried out 
hybrid computational simulations, combining 3D Finite Element Models (FEM) with compartmental 
cable models of the lumbosacral spinal cord and neural circuitry model of locomotor circuitry with 
biomechanical models of the rodent hind limbs. We demonstrated that EES primarily activates 
proprioceptive and cutaneous low-threshold mechanoreceptor (Aβ-LTMR) afferents at amplitudes 
within the therapeutic range. Moreover, we uncovered that the selective recruitment of 
proprioceptive feedback circuits enables motor pattern formation. However, the non-physiological 
recruitment of Aβ-LTMR feedback circuits disrupts light touch information encoded in Aβ-LTMR 
afferents and transmitted downstream through glutamatergic interneurons expressing the 
RORαnuclear orphan receptor. Our simulations (Figure 7) thus uncovered a previously unidentified 
neural circuitry of Aβ-LTMR feedback circuits, which we exposed anatomically using intersectional 
virus-based tracing experiments in rodents. This new understanding of the mechanisms underlying 
EES guided the design of a targeted noradrenergic pharmacotherapy that immediately enabled 
robust locomotion in paralysed rats.  

 
Figure 7: In-silico electrophysiology of cell populations during EES-enabled locomotion in rodents 
(A) Sketch of the identified neural circuitry. (B) Firing rates of proprioceptive and cutaneous low-threshold 
mechanoreceptors. (C) Firing rates of interneuron cell populations. (D) Firing rates of motoneuron pools. (E) 
Estimated EMG activity. 

https://gitlab.com/lore.ucci/closed-loop-mouse-stroke-simulation
https://gitlab.com/lore.ucci/closed-loop-mouse-stroke-simulation
https://gitlab.com/lore.ucci/closed-loop-mouse-stroke-simulation
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3.2 Validation and Impact 

3.2.1 Actual and Potential Use of Output(s) 

These biologically realistic models (Output 1 and 2) will advance our knowledge of sensorimotor 
integration by testing neuroscientific theories through embodiment in closed-loop simulations. 
Experimenters will also benefit from the detailed model of the mouse and simulations, by being able 
to test different experimental conditions before performing a real experiment, thus saving time in 
the experimentation process. Output 3 may provide new inputs for restoring locomotion in humans. 

3.2.2 Publications 

• [P2374] Vannucci, L., Pasquini, M., Spalletti, C., Caleo, M., Micera, S., Laschi, C. & Falotico, E. 
(2019). Towards in-silico robotic post-stroke rehabilitation for mice. In press: will be published 
in the Proceedings of the 2019 IEEE International Conference on Cyborg and Bionic Systems 
(CBS2019) whose publication has been delayed because of delays at the publisher. 

o This paper presents the in silico replication of the effects of stroke and the post-stroke 
rehabilitation experiment in rodents. It is an initial validation of the experiment simulation 
described in Output 2. 

• [P2485] Salimi-Nezhad, N., Ilbeigi, E., Amiri, M., Falotico, E., & Laschi, C. (2019). A Digital 
Hardware System for Spiking Network of Tactile Afferents. Frontiers in neuroscience, 13, 1330.  

o This paper presents models of tactile afferents and their implementation in hardware that 
offers a low-cost neuromorphic structure for tactile information processing. 

4. Key Result KR10.2: Rodent robot 

4.1 Outputs 

4.1.1 Overview of Outputs 

4.1.1.1 List of Outputs contributing to this KR 

The following describes the final version of the Neurorobotic mouse (NeRmo) robot, as well as the 
research work that it has supported over the past year.  

The following outputs were achieved in relation to this Key Result: 

• Release of the latest (and last) Version 4.1 of NeRmo 

• Study of kinematic retargeting in the context of partnering project SoRon 

• Connection of NeRmo to neuromorphic hardware (HBP SP9, SpiNNaker 1 & 2) 

4.1.1.2 How Outputs relate to each other and the Key Result 

The first output encapsulates all the engineering work that went into improving NeRmo as a research 
platform, including the production of a digital twin (i.e. a simulated model, reproducing the 
characteristics of the real one, with as much fidelity as possible) on the NRP. Outputs 2 and 3 are 
built upon and made possible by Output 1. 
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4.1.2 Output 1: NeRmo v4.1 and its digital twin 

NeRmo is a biomimetic physical robot that is modular and low-cost, and it was created with a view 
to mimic the locomotion of a rodent at a scale similar to its biological model. It is untethered, easy 
to use and simple to produce; it thus can be used as a universal research platform. It is based on 
tendon-driven actuation, which enables the implementation of a compliant leg and body design and 
thus enables adaptive and dynamic walking motions. It can be particularly useful for investigating 
new, efficient types of locomotion for compliant legged systems. Combined with its digital twin 
inside the NRP, it is a useful tool to reduce the reality gap between simulation and the real world. 

The final version (Release 4.1) features multiple improvements over previous iterations, especially 
ease of assembly and robustness, to get a wider user group. Deliverable D10.3.1 SGA2 M24 provides 
an extensive technical description of this release. In summary, the legs were redesigned from the 
first version, to allow for a simpler manufacturing process and to be more robust to daily use. They 
now also include position sensors and ground pressure sensors. The head now holds two HD cameras, 
a button on the nose and a touch sensor on the top of the head. The two cameras are connected to 
the USB port of the Raspberry Pi via a USB hub also located within the Head. The complete robot 
with most sensors labelled is depicted in Figure 8. Its digital twin is depicted in Figure 9. 

 
Figure 8: Side view of NeRmo robot with the major parts labelled. 

 
Figure 9: Digital twin of NeRmo inside the NRP 
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Table 3: Output 1 Links 

Component Link to URL 

C2572 

Model Repository https://github.com/Luchta/nermo_robot  

Technical Documentation https://collab.humanbrainproject.eu/#/collab/45325/nav/311404  

User Documentation https://collab.humanbrainproject.eu/#/collab/45325/nav/311404  

C2574 

Software Repository https://github.com/Luchta/nermo_code  

Technical Documentation https://collab.humanbrainproject.eu/#/collab/45325/nav/311404  

User Documentation https://collab.humanbrainproject.eu/#/collab/45325/nav/311404  

4.1.3 Output 2: Study of kinematic retargeting 

Motion capture of the robot gait was carried out for comparison to animal motions. This was done 
within the framework of the HBP Partnering Project SoRon, run by the RIKEN institute (Japan) and 
the National Institute of Applied Science and Technology (Japan). This project aims to study the so-
called “retargeting” of kinematics between dissimilar but related systems (e.g. a rat and a robot 
rodent). The motion capture system used was a Raptor-12 (Motion Analysis Corp., USA). The 
experimental setup (Figure 10) was an inclination-adjustable aluminium ramp (width: 0.1 m; length: 
1 m) going to a horizontal square platform (0.1 x 0.1 m) with an operant conditioning panel. 

 

Figure 10: Experimental setup at AIST (left) and resulting marker data after labelling (right) 

Multiple motions were created and captured to evaluate the robot: 

• A full range sinusoidal actuation of the robot to evaluate joint control 

• Multiple trotting gaits 

• Multiple bounding gaits  

• Task motions: actuating the levers on the conditioning panel 

• A simple retargeted motion, calculated from available animal motion capture data 

This served multiple purposes. First, those motions are being analysed (publication in preparation) 
to investigate the robot’s control and motion capabilities. The same data is also used to validate the 
digital twin on the NRP, by calculating the error between the robot’s joint angles as well as the error 
in whole body translation. Finally, the simple retargeted motion was used to evaluate the robustness 
of the retargeting method developed in RIKEN, by analysing the translation of a reference marker 
and by using so-called crystalized motion patterns. Preliminary results (Figure 11) show good 
agreement positional agreement between the trajectory of the animal and that of the robot driven 
by the retargeted movement. 

https://github.com/Luchta/nermo_robot
https://collab.humanbrainproject.eu/#/collab/45325/nav/311404
https://collab.humanbrainproject.eu/#/collab/45325/nav/311404
https://github.com/Luchta/nermo_code
https://collab.humanbrainproject.eu/#/collab/45325/nav/311404
https://collab.humanbrainproject.eu/#/collab/45325/nav/311404
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Figure 11: Trajectory of a hip reference marker on an animal (left) and on the robot (right) 

The motor commands sent to the robot to generate the trajectory on the right-hand side were position commands 
based on the retargeted kinematics recorded on the animal during its run (trajectory on the left-hand side). 

4.1.4 Output 3: Connection of NeRmo to neuromorphic 
hardware (SpiNNaker 1 & 2) 

The default NeRmo robot platform is controlled autonomously by an on-board Raspberry Pi Zero W 
module. We proposed integrating stand-alone neuromorphic computing chips (developed in HBP SP9) 
into NeRmo as proof-of-principle of on-board real-time neuromorphic control. Integration of current 
SpiNNaker hardware on-board the robot was discussed with research teams in Manchester and 
Dresden. Based on these discussions, fully autonomous control of NeRmo with on-board 
neuromorphic hardware was deemed unachievable with the current version of SpiNNaker; instead, 
SpiNNaker 2 would be required. As such, the best course of action was to design prototypes of stand-
alone boards to interface SpiNNaker chips (both generation 1 and generation 2) with NeRmo 
hardware. 

We therefore developed these boards (Figure 12), as well as the firmware for configuring and loading 
such systems. In our design, a customisable microcontroller interacts with the SpiNNaker chips during 
boot-up and operation. It continuously converts sensory perception into SpiNNaker packets 
(SpiNNaker input) and it converts SpiNNaker packets (motor control output) to motor signals for 
NeRmo. All components can be reduced in size to allow instantiation of such a stand-alone SpiNNaker 
computing system on board NeRmo. 

 

Figure 12: Stand-alone SpiNNaker computing board prototypes 
The two stand-alone SpiNNaker computing board prototypes for SpiNNaker 1 (left) and SpiNNaker 2 (right, test-chip). 
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Independent of on-board neuromorphic control, an initial version of neuronal control of NeRmo on a 
desktop SpiNNaker computing board for simple motor trajectories (walking forward, turning) was 
demonstrated. Here, sensory perception and motor commands were exchanged between the desktop 
neuromorphic computer board and NeRmo through WLAN and Ethernet. Once SpiNNaker 2 (and its 
software stack) is developed, these existing spiking models will be converted to run on board NeRmo 
as a stand-alone demonstrator. 

Table 4: Output 3 links 

Component Link to URL 

C2574 

Data/model Repository https://gitlab.com/neurocomputing/hbp/sga2/c2574/model  

Technical Documentation https://collab.humanbrainproject.eu/#/collab/45325/nav/311404  

User Documentation https://collab.humanbrainproject.eu/#/collab/45325/nav/311404  

4.2 Validation and Impact 

4.2.1 Actual and Potential Use of Output(s) 

Released at the end of a two-year development process, the latest version of NeRmo was an exercise 
in finding the right balance between functionalities, ease of assembly and price. It is the most 
capable robot to be developed within the HBP since the start of the Project and also the most robust 
(for examples of locomotion, see 1 and 2). The variety of embedded sensors coupled to the embedded 
compute power make it an attractive research platform. 

The work carried out with our Japanese colleagues on kinematic retargeting is an interesting 
demonstration of the use of a physical robot to validate theoretical calculations. Despite the 
discontinuation of HBP funding for work on this robot in the next phase of the project (SGA3), it is 
clear that NeRmo still has much to offer to the neurorobotics community. Future work could focus 
on the use of the robot in motion-control studies and, most importantly, in exploring the reality gap 
between simulation and reality, by training the digital twin on the NRP and transferring the resulting 
controllers to the physical robot. 

4.2.2 Publications 

• [P2328] Lucas, P., Oota, S., Conradt, J., and Knoll, A. (2019) Development of the neurorobotic 
mouse. In press: will be published in the Proceedings of the 2019 IEEE International Conference 
on Cyborg and Bionic Systems (CBS2019), the publication of which was delayed because of delays 
at the publisher. 

  

                                            
1 https://collab.humanbrainproject.eu/#/collab/45325/nav/530902?state=uuid%3D3b61196c-3161-49ec-
997b-09c66bfc8767 
2 https://collab.humanbrainproject.eu/#/collab/45325/nav/311406?state=uuid%3D87255824-bed0-4a45-
b422-fe161f3ec1ee 

https://gitlab.com/neurocomputing/hbp/sga2/c2574/model
https://collab.humanbrainproject.eu/#/collab/45325/nav/311404
https://collab.humanbrainproject.eu/#/collab/45325/nav/311404
https://collab.humanbrainproject.eu/%23/collab/45325/nav/530902?state=uuid%3D3b61196c-3161-49ec-997b-09c66bfc8767
https://collab.humanbrainproject.eu/%23/collab/45325/nav/530902?state=uuid%3D3b61196c-3161-49ec-997b-09c66bfc8767
https://collab.humanbrainproject.eu/%23/collab/45325/nav/311406?state=uuid%3D87255824-bed0-4a45-b422-fe161f3ec1ee
https://collab.humanbrainproject.eu/%23/collab/45325/nav/311406?state=uuid%3D87255824-bed0-4a45-b422-fe161f3ec1ee
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5. Key Result KR10.3: Integrated Behavioural 
Architecture 

5.1 Outputs 

5.1.1 Overview of Outputs 

5.1.1.1 List of Outputs contributing to this KR 

The Integrated Behavioural Architecture (IBA) is a software framework, through which models of 
individual brain functions can be composed into a modular cognitive architecture, that can then be 
used in simulations on the Neurorobotics Platform (NRP). An essential objective of the IBA is to 
enable users to reuse components written by others and to integrate their own code into a multi-
component cognitive architecture in the NRP at a reasonable cost, in terms of time and effort 
invested. 

The Outputs linked to this Key Result are described below: 

• Output 1: IBA as a software framework (C2527) 

• Output 2: Library of components for the IBA and related research activities (C2526, C2582, 
C2942, C3052, C2525, C2580) 

• Output 3: Demonstrators based on the IBA 

5.1.1.2 How Outputs relate to each other and the Key Result 

The IBA is the software framework that enables users to compose modular cognitive architectures 
on the NRP. It is the core component of KR10.3. The components produced conform to the IBA 
specifications and run through it on the NRP; they were combined to produce demonstrators. 

5.1.2 Output 1: the IBA as a software framework 

A detailed description of the IBA as a software framework is provided in D10.2.1 SGA2 M24. The 
following summarises the essential aspects. 

With the IBA, all functional modules of a given cognitive architecture are integrated as ROS nodes. 
These run in parallel on different processes, communicating via ROS services. The use of ROS 
provides a convenient communication layer for integrating an arbitrary number of components, as 
well as a practical manner for achieving concurrency between all the modules (they all run in their 
own process). While we used Python as a coding language in the current implementation of the IBA, 
the use of ROS also opens the possibility to use very heterogeneous languages to code each of these 
modules, as long as they have either a Python or a ROS Application Programming Interface (API). 
Examples of supported languages or frameworks include: C++, MATLAB, C#, NEST and TensorFlow. 

The IBA modules execute concurrently in separate processes at different “tick rates” (i.e. steps of 
heterogeneous duration in simulation time) that are user-specified. The IBA controls the timing of 
the communications between these processes (i.e. depending on the tick rate of each component). 
To achieve this in a manner that is technically manageable, while remaining sufficiently versatile 
and user-friendly, we impose a requirement that the time step of the Closed Loop Engine (CLE) of 
the NRP (i.e. the component that guarantees synchronisation between Gazebo and the brain 
simulation) be a power of two of the tick rate of individual modules (Figure 13-A). 

From a user perspective, the synchronisation mechanism is entirely transparent. Users only need 
specify the tick rate of every functional module in relation the CLE time step, and the IBA then takes 
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over. All user-provided code goes into external module files (one file per module, see Figure 13-B) 
with a simple structure: at no point do users need to worry about synchronising the execution and 
communication between different modules; instead they can fully concentrate on the computational 
aspect of their work. 

 
Figure 13: Execution order for one CLE step (A) and block diagram (B) of a simulation with IBA. 
In the example depicted in A, three modules run at different tick rates. Each blue box in this figure represents the 
execution of the simulation time step of the corresponding module, which is running concurrently to all others. 

Table 5: Output 1 links 

Component Link to URL 

C2527 

Data Repository https://github.com/HBPNeurorobotics/IBA  

Technical Documentation https://collab.humanbrainproject.eu/#/collab/78544/nav/531713 

User Documentation https://collab.humanbrainproject.eu/#/collab/78544/nav/531713 

5.1.3 Output 2: Library of components for the IBA and related 
research activities 

In the past year, functional models of various brain areas and models of brain function were 
developed to provide off-the-shelf component modules for IBA users. These components are: 

• A motor primitive module (C2582). 

• A visual module implementing predictive coding (C2526). 

• A functional cerebellum model (C2942).  

• A functional hippocampal module for navigation (C3052). 

• A module for visuo-tactile exploration (C2525). 

• A module for unsupervised exploration of mechanical resonances of the body (C2580) inspired by 
modulation of neuronal activity in the spinal circuitry by Raphe nuclei. 

These modules only represent the visible part of the output, as all the modelling work and research 
activities that supported the creation of these modules is better represented through a number of 
scientific papers that are already published (e.g. P1909, P1503, P2243, P2343, P1526, P2057, P1934 
and P2133), under review (P2129) or still in preparation (e.g. one paper on a functional hippocampal 
model for navigation, etc.). 

  

 
 

https://github.com/HBPNeurorobotics/IBA
https://collab.humanbrainproject.eu/#/collab/78544/nav/531713
https://collab.humanbrainproject.eu/#/collab/78544/nav/531713
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Table 6: Output 2 links 

Component Link to URL 

C2582 

Model Repository 

https://github.com/HBPNeurorobotics/GazeboRosPackages/tree/d
emonstrator6/src/target_reaching_common 
https://github.com/HBPNeurorobotics/GazeboRosPackages/tree/d
emonstrator6/src/target_reaching_nengo 

Technical Documentation https://collab.humanbrainproject.eu/#/collab/79892/nav/540882   

User Documentation https://collab.humanbrainproject.eu/#/collab/79892/nav/540882   

C3052 

Model Repository https://github.com/matteopriorelli/navigation  

Technical Documentation https://collab.humanbrainproject.eu/#/collab/78682/nav/532632  

User Documentation https://collab.humanbrainproject.eu/#/collab/78682/nav/532632  

C2526 

Model Repository https://bitbucket.org/albornet/active-visual-system-t10.2.1-
comp-id-c2526  

Technical Documentation https://collab.humanbrainproject.eu/#/collab/78638/nav/532343  

User Documentation https://collab.humanbrainproject.eu/#/collab/78638/nav/532343  

C2942 

Model Repository https://github.com/mc-capolei/HBP_SGA2_C2942  

Technical Documentation 
https://github.com/mc-
capolei/HBP_SGA2_C2942/blob/master/C2942%20Technical%20Doc
umentation.pdf  

User Documentation 
https://github.com/mc-
capolei/HBP_SGA2_C2942/blob/master/C2942%20User%20manual.
pdf  

C2525 

Model Repository https://github.com/aalto-intelligent-robotics/ViTa-SLAM 

Technical Documentation https://github.com/aalto-intelligent-robotics/ViTa-SLAM 

User Documentation https://github.com/aalto-intelligent-robotics/ViTa-SLAM 

C2580 

Model Repository https://github.com/HBPNeurorobotics/UnsupervisedSensorimotorL
earning  

Technical Documentation https://github.com/HBPNeurorobotics/UnsupervisedSensorimotorL
earning 

User Documentation https://github.com/HBPNeurorobotics/UnsupervisedSensorimotorL
earning 

5.1.4 Output 3: Demonstrators 

This Output consists of several demonstrators that showcase the capabilities of the IBA. The first of 
these illustrates how different modules that have been trained and refined separately can be 
integrated through the IBA into a control architecture that combines their functionalities for a 
navigation task (see C2943). 

In the first demonstrator, we integrated two navigation-oriented components developed over the 
past two years. The first such component is an information fusion model, based on rat hippocampus 
inspired pose cell network (ViTa-SLAM, C2525), which fuses long-range dense camera feed with the 
short-range sparse haptic feedback to estimate the 3D pose of the agent in the environment. The 
second is a computational model of the cortico-striatal circuit, that combines Bayesian 
nonparametric and model-based reinforcement learning (MB-RL) (C3052; see the CDP7 Deliverable 
D4.4.2 SGA2 M24 for a complete description). The performance of this combination is currently 
evaluated for scene exploration under sub-optimal visual conditions. 

The second demonstrator illustrates how the IBA can be used to investigate the combination of 
predictive coding and cerebellar function in initiation of movement (Figure 14). Here, the challenge 
is to adequately time the beginning of movement in a reaching task (robotic arm grasping a moving 
object from a conveyor belt – see C2943). A visual module (deep network pre-trained with 

https://github.com/HBPNeurorobotics/GazeboRosPackages/tree/demonstrator6/src/target_reaching_common
https://github.com/HBPNeurorobotics/GazeboRosPackages/tree/demonstrator6/src/target_reaching_common
https://github.com/HBPNeurorobotics/GazeboRosPackages/tree/demonstrator6/src/target_reaching_nengo
https://github.com/HBPNeurorobotics/GazeboRosPackages/tree/demonstrator6/src/target_reaching_nengo
https://collab.humanbrainproject.eu/#/collab/79892/nav/540882
https://collab.humanbrainproject.eu/#/collab/79892/nav/540882
https://github.com/matteopriorelli/navigation
https://collab.humanbrainproject.eu/#/collab/78682/nav/532632
https://collab.humanbrainproject.eu/#/collab/78682/nav/532632
https://bitbucket.org/albornet/active-visual-system-t10.2.1-comp-id-c2526
https://bitbucket.org/albornet/active-visual-system-t10.2.1-comp-id-c2526
https://collab.humanbrainproject.eu/#/collab/78638/nav/532343
https://collab.humanbrainproject.eu/#/collab/78638/nav/532343
https://github.com/mc-capolei/HBP_SGA2_C2942
https://github.com/mc-capolei/HBP_SGA2_C2942/blob/master/C2942%20Technical%20Documentation.pdf
https://github.com/mc-capolei/HBP_SGA2_C2942/blob/master/C2942%20Technical%20Documentation.pdf
https://github.com/mc-capolei/HBP_SGA2_C2942/blob/master/C2942%20Technical%20Documentation.pdf
https://github.com/mc-capolei/HBP_SGA2_C2942/blob/master/C2942%20User%20manual.pdf
https://github.com/mc-capolei/HBP_SGA2_C2942/blob/master/C2942%20User%20manual.pdf
https://github.com/mc-capolei/HBP_SGA2_C2942/blob/master/C2942%20User%20manual.pdf
https://github.com/aalto-intelligent-robotics/ViTa-SLAM
https://github.com/aalto-intelligent-robotics/ViTa-SLAM
https://github.com/aalto-intelligent-robotics/ViTa-SLAM
https://github.com/HBPNeurorobotics/UnsupervisedSensorimotorLearning
https://github.com/HBPNeurorobotics/UnsupervisedSensorimotorLearning
https://github.com/HBPNeurorobotics/UnsupervisedSensorimotorLearning
https://github.com/HBPNeurorobotics/UnsupervisedSensorimotorLearning
https://github.com/HBPNeurorobotics/UnsupervisedSensorimotorLearning
https://github.com/HBPNeurorobotics/UnsupervisedSensorimotorLearning
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TensorFlow on the NRP) implements predictive coding and acts as an autoencoder that provides the 
cerebellar module (Python code) with latent representations of the world. The latter then learns 
and anticipates the position of the object to trigger the execution of motion primitives (C++ and 
Python modules). 

The study is original, insofar as it investigates whether predictive coding can improve grasping 
success when the arm itself gets in front of the camera during the movement (akin to mental 
imagery). 

 

Figure 14: Demonstrator: modular control architecture and experimental setup in the NRP 

Table 7: Output 3 links 

Component Link to URL 

C2943 

Data Repository https://emdesk.humanbrainproject.eu/shared/5cad9e4534da9-
543b31217f459d8e65f55961e9a64905    

Technical Documentation N.A. 

User Documentation N.A. 

5.2 Validation and Impact 

5.2.1 Actual and Potential Use of Output(s) 

The IBA aims to make it possible to study how different functional models can be integrated into a 
single cognitive architecture, and how they interact with each other to support the emergence of 
behavioural patterns in closed-loop embodied simulations. Its modular nature enables users to 
compare models of a given area or function, by swapping them inside their cognitive architecture 
and running comparative simulations on the NRP. The IBA should therefore be of interest to a large 
neuroscientific community that is interested in the functional/cognitive aspects of brain models. 

From a software/algorithmic perspective, the synchronisation mechanism implemented in the IBA 
to control the timing of data exchange and communications between modules is robust. As a 
redesigned software architecture for the NRP is currently under consideration, this mechanism can 
be easily adapted and reused. This will be essential as, in the next phase of the project, the HBP 
intends to focus on the study of multi-scale, multi-simulator cognitive architectures. With the IBA, 
the NRP has already some mechanisms in place to accommodate such simulations. Combined with 
our work on parallelised/distributed learning (see Section 8.1), the IBA provides an adequate 
framework to implement multi-level/hierarchical learning strategies (e.g. “learning to learn”) and 
thereby surpass end-to-end learning methods (e.g. deep reinforcement learning) that currently 
represent the state of the art in Artificial Intelligence. 

https://emdesk.humanbrainproject.eu/shared/5cad9e4534da9-543b31217f459d8e65f55961e9a649055
https://emdesk.humanbrainproject.eu/shared/5cad9e4534da9-543b31217f459d8e65f55961e9a649055
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5.2.2 Publications 

• [P2243] S. Tolu, M.C. Capolei, L. Vannucci, C. Laschi, E. Falotico, M. Vanegas Hernández (2020) 
A Cerebellum-Inspired Learning Approach for Adaptive and Anticipatory Control. International 
Journal of Neural Systems, Vol. 30, No. 01, 1950028. 

o Significance: this publication sheds light on an important function of the Cerebellum 
(anticipatory control), by investigating how it relates to the more “usual” roles ascribed to 
this brain area, such as modelling forward kinematics. 

• [P1919] A. Bornet, J. Kaiser, A. Kroner, E. Falotico, A. Ambrosano, K. Cantero, M.H. Herzog, G. 
Francis (2019) Running Large-Scale Simulations on the Neurorobotics Platform to Understand 
Vision – The Case of Visual Crowding. Front. Neurorobot. 13:33. doi: 10.3389/fnbot.2019.00033. 

o Significance: this publication illustrates the usefulness of neurorobotic experiments and the 
NRP for hard neuroscience problems. 

• [P1526] J. Kaiser, M. Hoff, A. Konle, J.C. Vasquez Tieck, D. Kappel, D. Reichard, A. Subramoney, 
R. Legenstein, A. Roennau, W. Maass, R. Dillmann (2019) Embodied synaptic plasticity with online 
reinforcement learning. Front. Neurorobot. 13:81. doi: 10.3389/fnbot.2019.00081. 

o Significance: this publication illustrates the convergence of neuromorphic computing and 
Reinforcement Learning through neurorobotics. 

6. Key Result KR10.4: Improved NRP 

6.1 Outputs 

6.1.1 Overview of Outputs 

6.1.1.1 List of Outputs contributing to this KR 

In this reporting period, there were two major releases of the NRP: Releases 2.3 and 3.0. The Outputs 
listed below belong to both of these releases. Furthermore, a more detailed description of the 
evolution of the NRP between Release 2.0 and 3.0 can be found in D10.4.1 SGA2 M24 “Report on the 
Neurorobotics Platform Release 3.0”. The numbering of corresponding Outputs in the present 
Deliverable and D10.4.1 is indicated below for convenience. 

Each Output is illustrated with a demo video available from our YouTube channel, linked in the table 
below, and also in every output section. 

Output # Title Released with Output #  
in D10.4.1 

1 Fluid simulation 3.0 5 

2 Plotting tools in the Web Cockpit 3.0 6 

3 Experiment designer 3.0 8 

4 Interfacing with the Knowledge Graph and 
importing SONATA brain files 2.3 & 3.0 12 & 13 

5 Large-scale NEST simulations on the NRP 3.0 11 

6.1.1.2 How Outputs relate to each other and the Key Result 

These Outputs all make major contributions towards improving the capabilities (Outputs 1, 4 and 5) 
and usability (Outputs 2 and 3) of the NRP as an integral part of the EBRAINS platform. 

https://www.youtube.com/watch?v=Rgy0qR7B_n4
https://www.youtube.com/watch?v=3p-B9odA-I4
https://www.youtube.com/watch?v=0a_S37RuemA
https://www.youtube.com/watch?v=jB4SsV35iTk
https://www.youtube.com/watch?v=jB4SsV35iTk
https://www.youtube.com/watch?v=3cYGOC7teZ4
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In particular, they fulfil the high-level expected results for SGA2, namely: 

• Convergence with SP6 (Brain Simulation Platform) and SP5 (Neuroinformatics Platform): Output 
4. 

• User-Centric Web Cockpit interfaces: was already covered in the outputs from M12, but Outputs 
2 and 3 contribute to this high-level expected result. 

• Support for simulation of fluid materials: Output 1. 

6.1.2 Output 1: Fluid simulation 

The simulation of complex musculoskeletal models under different scenarios is a necessary step 
towards understanding closed-loop motor-control behaviours and locomotion patterns. For this 
purpose, a physics-based fluid particle simulator was integrated into the NRP, enabling the 
simulation of articulated rigid bodies with fluids. This functionality is provided as an extension of 
the physics engines of Gazebo, enabling the computation of fluid forces applied on rigid bodies. This 
can generate sensory feedback, thus enabling the closing of the loop between the robot and the 
environment. Furthermore, a visualisation of the fluid simulation has been incorporated into the 
NRP, enabling users to observe the behaviour of solid objects under the effect of fluid forces (Figure 
15). This will enable original research through simulation of, e.g. robots moving over complex terrain 
(e.g. sand), aquatic drones and animals such as C. Elegans, etc. 

 
Figure 15: Two timesteps of the coupled Fluid-Rigid simulation 

The box moves under the effect of the fluid forces. 

Demo available at: https://www.youtube.com/watch?v=Rgy0qR7B_n4 

Table 8: Output 1 links 

Component Link to URL 

C2588 

Repository https://bitbucket.org/hbpneurorobotics/exdfrontend/ 

Technical Documentation https://neurorobotics.net/apidoc/ExDFrontend/ 

User Documentation https://neurorobotics.net/Documentation/nrp/user_manual/use
r_interface/index.html 

C2584 

Software Repository https://bitbucket.org/hbpneurorobotics/gazebo/ 

Technical Documentation http://osrf-
distributions.s3.amazonaws.com/gazebo/api/9.0.0/index.html  

User Documentation https://neurorobotics.net/Documentation/nrp/user_manual/use
r_interface/index.html 

https://www.youtube.com/watch?v=Rgy0qR7B_n4
https://bitbucket.org/hbpneurorobotics/exdfrontend/
https://neurorobotics.net/apidoc/ExDFrontend/
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
https://bitbucket.org/hbpneurorobotics/gazebo/
http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/index.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/index.html
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
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6.1.3 Output 2: Plotting tools in the Web Cockpit 

After a long-awaited user request, a set of responsive plotting tools has been added to the “Web 
Cockpit” (i.e. the “frontend” of the NRP). For maximum flexibility, values coming from any Gazebo 
topic can be displayed, allowing the user to create custom plots from various contexts (like transfer 
functions or backend tools). Several different plot types are now available in several dimensions: 
points, lines, pie, bars, filled areas, bubbles, error bars and 3D points (Figure 16). 

 
Figure 16: The Plotting Tool pane and two different plotter types 

Demo available at: https://www.youtube.com/watch?v=3p-B9odA-I4  

Table 9: Output 2 links 

Component Link to URL 

C2583 

Repository N/A 

HLST-NRP user portal https://neurorobotics.net/submitbug.html 

User Forum https://forum.humanbrainproject.eu/c/neurorobotics 

C2588 

Repository https://bitbucket.org/hbpneurorobotics/exdfrontend/ 

Technical Documentation https://neurorobotics.net/apidoc/ExDFrontend/ 

User Documentation https://neurorobotics.net/Documentation/nrp/user_manual/us
er_interface/index.html 

6.1.4 Output 3: Experiment designer 

The Neurorobotics Platform attracts users from interdisciplinary teams with various backgrounds. It 
is essential for the entire team to be able to implement experiments and understand existing 
implementations. The NRP uses SMACH state machines to provide a structured method for scripting 
experiments. Until now, the interface for this state machine was a text editor for Python code. This 
was a sub-optimal solution for anyone but seasoned computer scientists. 

With the new experiment designer, we offer a graphical user interface to implement the behaviour 
of experiments and add events to the simulation work flow. Users can simply draw states and 
transitions to create a visual state machine diagram (Figure 17). Several tools are available to allow 
the user to modify the state machine diagrams. Actions can be defined that are then executed at 

https://www.youtube.com/watch?v=3p-B9odA-I4
https://neurorobotics.net/submitbug.html
https://forum.humanbrainproject.eu/c/neurorobotics
https://bitbucket.org/hbpneurorobotics/exdfrontend/
https://neurorobotics.net/apidoc/ExDFrontend/
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
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runtime to control the experiment environment. The possible outcomes of these actions are used as 
conditions for transitions to other states. 

This new graphical editor provides an accessible interface for users without programming skills, can 
improve the speed of implementations, reduce errors and increase the overall understanding of the 
experiments. 

 
Figure 17: The graphical experiment designer makes it easier to add events 

Demo available at: https://www.youtube.com/watch?v=0a_S37RuemA  

Table 10: Output 3 links 

Component Link to URL 

C2588 

Repository https://bitbucket.org/hbpneurorobotics/exdfrontend/ 

Technical Documentation https://neurorobotics.net/apidoc/ExDFrontend/ 

User Documentation https://neurorobotics.net/Documentation/nrp/user_manual/user_
interface/index.html 

C2589 

Repository https://bitbucket.org/hbpneurorobotics/frontendstatemachineedi
tor 

Technical Documentation https://neurorobotics.net/apidoc/ExDFrontend/ 

User Documentation https://neurorobotics.net/Documentation/nrp/user_manual/user_
interface/edit/7-gz3d-edit-environment.html 

6.1.5 Output 4: Interfacing with the Knowledge Graph and 
importing SONATA brain files 

An interface between the NRP and the EBRAINS Knowledge Graph (KG) was implemented, thus paving 
the way for the practical connection of the Brain Simulation Platform (BSP) to the NRP. Users are 
now able to easily download brain models available on the KG from the NRP frontend. The online 
brains are available inside the object library in the same way as the SP10 template brains. 

After having ran an experiment with a brain from the KG, users will be able to upload the data 
collected inside their experiment onto the KG. The data are attached to a simulation’s node of the 
graph, which reports the author, the date and other meta-data. Thanks to the connection between 
brain models, simulations and data nodes, the users can navigate the KG to find and download 
experimental data related to the brain models stored therein. 

https://www.youtube.com/watch?v=0a_S37RuemA
https://bitbucket.org/hbpneurorobotics/exdfrontend/
https://neurorobotics.net/apidoc/ExDFrontend/
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
https://bitbucket.org/hbpneurorobotics/frontendstatemachineeditor
https://bitbucket.org/hbpneurorobotics/frontendstatemachineeditor
https://neurorobotics.net/apidoc/ExDFrontend/
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/edit/7-gz3d-edit-environment.html
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/edit/7-gz3d-edit-environment.html


 
 

  
 

D10.5.2 (D67.2 D48) SGA2 M24 ACCEPTED 200731.docx PU = Public 5-Oct-2020 Page 25 / 35 
 

In addition, users are now able to import brains described in SONATA into the NRP, using PyNN as 
the neuronal simulator's interface. After having imported the brain into the simulation, the user can 
proceed as usual (e.g. defining populations of neurons, adding new variables, etc.). 

Demos available at: https://www.youtube.com/watch?v=jB4SsV35iTk and 
https://www.youtube.com/watch?v=OYJU1Zv4eKw  

Table 11: Output 4 links 

Component Link to URL 

C2585 

Repository https://bitbucket.org/hbpneurorobotics/cle/ 

Technical Documentation https://neurorobotics.net/apidoc/CLE 

User Documentation N.A. (the CLE works in a manner that is transparent to the user). 

C2588 

Repository https://bitbucket.org/hbpneurorobotics/exdfrontend/ 

Technical Documentation https://neurorobotics.net/apidoc/ExDFrontend/ 

User Documentation https://neurorobotics.net/Documentation/nrp/user_manual/use
r_interface/index.html 

C2594 Repository https://bitbucket.org/hbpneurorobotics/nrpdocker 

C2594 
Technical Documentation https://hbpneurorobotics.atlassian.net/wiki/spaces/HSP10/page

s/14942234/Docker+deployment 

User Documentation https://neurorobotics.net/local_install.html 

C2592 

Repository https://bitbucket.org/hbpneurorobotics/exdbackend/src/develo
pment/hbp_nrp_cleserver/hbp_nrp_cleserver/bibi_config/ 

Technical Documentation https://neurorobotics.net/apidoc/ExDBackend/ 

User Documentation https://neurorobotics.net/Documentation/nrp/specifications/ex
periment_files.html?highlight=interfacing#bibi-file 

6.1.6 Output 5: Large-scale NEST simulations on the NRP 

In order to bring clear value to its users, the NRP must be able to run very large-scale brain 
simulations. This can only be achieved by leveraging the power of the HBP HPC infrastructure. We 
thus set out to achieve distributed NEST simulations on the Piz Daint cluster at CSCS. Even though 
NEST and PyNN have native support for distributed simulations (through MPI communication), the 
particularities of the NRP architecture demanded additional work in order to enable this support 
within NRP closed loop simulations. Indeed, the brain simulation in the NRP runs in the same process 
as the closed loop engine (CLE) component that synchronises NEST and Gazebo simulations. It thus 
became necessary to distribute part of the CLE along with the brain simulation (Figure 18). On each 
MPI rank the CLE extracts information from the simulated neurons at that rank. At each simulation 
step this information is gathered and processed at rank 0, which handles the overall synchronisation 
of the simulations. 

Demo available at: https://www.youtube.com/watch?v=3cYGOC7teZ4  

https://www.youtube.com/watch?v=jB4SsV35iTk
https://www.youtube.com/watch?v=OYJU1Zv4eKw
https://bitbucket.org/hbpneurorobotics/cle/
https://neurorobotics.net/apidoc/CLE
https://bitbucket.org/hbpneurorobotics/exdfrontend/
https://neurorobotics.net/apidoc/ExDFrontend/
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
https://neurorobotics.net/Documentation/nrp/user_manual/user_interface/index.html
https://bitbucket.org/hbpneurorobotics/nrpdocker
https://hbpneurorobotics.atlassian.net/wiki/spaces/HSP10/pages/14942234/Docker+deployment
https://hbpneurorobotics.atlassian.net/wiki/spaces/HSP10/pages/14942234/Docker+deployment
https://neurorobotics.net/local_install.html
https://bitbucket.org/hbpneurorobotics/exdbackend/src/development/hbp_nrp_cleserver/hbp_nrp_cleserver/bibi_config/
https://bitbucket.org/hbpneurorobotics/exdbackend/src/development/hbp_nrp_cleserver/hbp_nrp_cleserver/bibi_config/
https://neurorobotics.net/apidoc/ExDBackend/
https://neurorobotics.net/Documentation/nrp/specifications/experiment_files.html?highlight=interfacing#bibi-file
https://neurorobotics.net/Documentation/nrp/specifications/experiment_files.html?highlight=interfacing#bibi-file
https://www.youtube.com/watch?v=3cYGOC7teZ4


 
 

  
 

D10.5.2 (D67.2 D48) SGA2 M24 ACCEPTED 200731.docx PU = Public 5-Oct-2020 Page 26 / 35 
 

 

Figure 18: Co-distribution scheme of NEST and the CLE on the Piz Daint cluster 

6.2 Validation and Impact 

6.2.1 Actual and Potential Use of Output(s) 

The Outputs described above add essential value to the Neurorobotics Platform and the HBP in 
general. For a complete list of Outputs, please refer to D10.4.1 SGA2 M24 “Report on the 
Neurorobotics Platform Release 3.0”. These Outputs have considerably increased the usability to the 
NRP, with a new interface, the possibility to use multiple robots, the complete workflow to create 
experiments from scratch in the Web Cockpit, new plotting tools, the graphical experiment designer 
and the web robot designer. These developments all lower the entry barrier for new NRP users. 

Most importantly, the NRP took several decisive steps towards EBRAINS; firstly by integrating an 
interface to the KG and supporting brain file formats like SONATA, then by deploying the NRP on the 
HBP HPC infrastructure and running large-scale NEST simulations. This opens up many unique 
possibilities for neuroscientific experiments in the next phase of the project (SGA3). 

6.2.2 Publications 

All publications referring to the NRP can be understood to be based on the work described above. 

7. Key Result KR10.5: Modular neural control for 
physical robots under real-time constraints 

7.1 Outputs 

7.1.1 Overview of Outputs 

Research into neuronal motor control for robots explores real-time capable distributed neuronal 
methods to operate intricate robotic actuators, such as typically found in compliant systems or soft 
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robotics. This Key Result regroups various contributions towards establishing the expertise and tools 
required to accurately actuate such novel robots. 

7.1.1.1 List of Outputs contributing to this KR 

The Outputs are as follows: 

• Output 1: real-time execution of a meso-scale cerebellar model accelerated on GPU and multi-
CPU to control a collaborative industrial robot. 

• Output 2: neuronal models on neuromorphic hardware to control a modular stiff robot. 

• Output 3: neuronal models on neuromorphic hardware to control a compliant robot. 

7.1.1.2 How Outputs relate to each other and the Key Result 

The transversal elements common to these Outputs are the implementation of cerebellar-inspired 
models based on spiking neural networks and the use of the NRP as a common tool for their validation 
as controllers for torque-driven robots. The cerebellar controller in Output 3 is a simplified network 
derived from the one developed in Output 1. The cerebellar controller in Output 2 shares 
architectural features with the previous two, but differs in terms of where learning is applied. 

7.1.2 Output 1: STDP in large cerebellar spiking simulations 

A real-time cerebellar spiking neural network incorporating a continuous learning process was 
validated with NEST and integrated into a closed-loop system to control a virtual Baxter collaborative 
robot (“cobot”) in NRP. The controller was then adapted to and tested with the physical Baxter 
cobot (Figure 19). To cope with real-time constraints, the model was run on GPU and multi-CPU 
setups. 

The Baxter cobot is an inherently compliant collaborative robot with 6 degrees of freedom, meant 
to operate autonomously and reactively in complex unstructured environments. Passive intrinsic 
compliance demands torque control, which deals with the robot’s inner dynamics, i.e. the evolution 
through time of the state of the physical system. Temporal coding in spiking neurons is thus highly 
relevant in this context, as it can capture the temporal evolution of analogue sensorimotor signals. 
To implement an effective real-time dialogue between the network spike domain and sensorimotor 
analogue domain, a set of analogue-to-spike/spike-to-analogue modules compatible with the Robot 
Operating System (ROS) were used. 

The cerebellar network was divided into six identical microcircuits (also referred to as micro-
complexes), each focusing on controlling a different robot joint. Each micro-complex consisted of 
five neural layers (Figure 19-c): 1) mossy fibres (MFs); 2) granule cells (GCs); 3) climbing fibres (CFs); 
4) Purkinje cells (PCs); and 5) deep cerebellar nuclei (DCN). Overall, the model consisted of ~62k 
leaky integrate and fire (LIF) neurons, with ~36.4 million synapses, 36 million of which were endowed 
with spike-timing-dependent plasticity (STDP) to mimic biological neural processing. 

Circular, figure-eight, and point-target-reaching trajectories constitute standard tasks for cerebellar 
benchmarking, and were used as such (Figure 19-d). Benchmarking was completed with a set of 
human-robot interactions, to test compliance. The torque control approach proved to outperform 
the accuracy of the default, factory-installed position control in such a set of tasks (see P2362). 
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Figure 19: Large cerebellar model implemented on the NRP and on the actual robot 
a) Virtual Baxter robot in NRP. b) Physical Baxter robot. c) Bio-inspired Controller: cerebellar closed-loop control with 
zoom in neural structure. d) Results for two tasks: figure-eight-trajectory and point-target-reaching. 

Table 12: Output 1 links 

Component Link to URL 

C2561 

Model Repository https://gitlab.com/neurocomputing/hbp/sga2/c2561/model  

Technical Documentation 
https://gitlab.com/neurocomputing/hbp/sga2/c2561/technical  
https://collab.humanbrainproject.eu/ - 
/collab/80250/nav/543314 

User Documentation https://gitlab.com/neurocomputing/hbp/sga2/c2561/user   

7.1.3 Output 2: Cerebellar-like neuronal control on 
neuromorphic hardware 

In a simpler approach than that used in Output 1, a modular spiking cerebellar-like circuit was 
implemented on neuromorphic hardware (SpiNNaker). The model maintains the characteristic 
division into distinct cerebellar micro-complexes, each responsible for learning the internal model 
of a given robot module or robot joint. Depending on the internal mode (user defined: inverse or 
forward), the microcircuits received different sensorimotor information streams to give motor or 
sensory outcomes. The architectures were tested on both virtual and physical Fable robots (Figure 
20), to perform tasks with changing kinematic and dynamic conditions: figure-eight trajectory with 
constant or varying amplitude and with/without external load at the end-effector. 

The composite architecture combines the advantages of forward and inverse models and the learning 
of the latter is improved by the prediction error of the first. Tests showed that the architectures 
have different adaptation scales, depending on the disturbances and contexts. Different 
configurations using the modular Fable robot were tested for the validation and generalisation of 
the control and learning mechanisms, both in manipulation and locomotion tasks within the NRP. 

https://gitlab.com/neurocomputing/hbp/sga2/c2561/model
https://gitlab.com/neurocomputing/hbp/sga2/c2561/technical
https://collab.humanbrainproject.eu/#/collab/80250/nav/543314
https://collab.humanbrainproject.eu/#/collab/80250/nav/543314
https://gitlab.com/neurocomputing/hbp/sga2/c2561/user
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Figure 20: Simplified cerebellar model running on SpiNNaker 
a) Virtual Fable robot in NRP. b) Physical Fable robot. c) Bio-inspired Controllers: cerebellum without/with Smith 
Predictive Mechanism and with/without readout plasticity units (RPUs). d) Results for three tasks involving figure-
eight trajectory: with constant amplitude, with varying amplitude and with external load at the end-effector. 

Table 13: Output 2 links 

Component Link to URL 

C2566 

Model Repository https://gitlab.com/neurocomputing/hbp/sga2/c2566/model 

Technical Documentation https://gitlab.com/neurocomputing/hbp/sga2/c2566/technical 

User Documentation https://gitlab.com/neurocomputing/hbp/sga2/c2566/user  

7.1.4 Output 3: Neuronal real-time controllers for manipu-
lation task 

A musculoskeletal robotic arm, with two joints and four tendon-driven artificial muscles, was used 
both in simulation in the NRP and as a physical real-time system to develop and compare three brain-
inspired controllers (Sections 7.1.4.1-3, see Figure 21). The task intended to benchmark the 
controllers consisted of picking up an a priori unknown object, learning about its implicit properties 
(e.g. mass and inertial tensor) through active manipulation, and based on such throwing the object 
towards a target. Completion of the throwing motion with the three controllers is still a work in 
progress. 

7.1.4.1 Spiking Cerebellum 

A simplified cerebellum controller (one micro-complex for each actuator) was implemented, derived 
from the model used in Output 1. The controller received muscle states as inputs, and provided 
force control as output. Training happened through dynamic plasticity updates during object 
manipulation (STDP learning). The controller was run on the SpiNNaker chip. A position control task 
with this model is represented in panel d) of Figure 21, which shows the position error of a single 
joint in the simulated robot as it moves towards a desired angle. Each joint is actuated by two 
muscles; the oscillations show how both muscles attempt to compensate for the error induced by 
the opposing muscle. 

https://gitlab.com/neurocomputing/hbp/sga2/c2566/model
https://gitlab.com/neurocomputing/hbp/sga2/c2566/technical
https://gitlab.com/neurocomputing/hbp/sga2/c2566/user
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7.1.4.2 Recurrent network 

A model-free approach that uses a recurrent neural network to learn the robot forward dynamics 
was developed. The mapping between sequences of muscle commands and end-effector positions 
was learned with a LSTM network, the dataset of which was created using a motor babbling 
procedure. After training the forward model, an optimisation algorithm used the LSTM-trained 
artificial neural network to compose the muscle commands necessary to perform non-trivial tasks 
like reaching and throwing of an object. 

7.1.4.3 Feed-Forward network 

A one-layer, fully connected feedforward neural network was implemented to learn the sensory-
motor mapping between muscle states (length and applied force) and muscle commands with a 
variation of differential Hebbian learning. After a self-exploration phase, the network drives a 
periodic motion in resonance with the whole system (arm and attached object). This motion is 
leveraged to release the object in an exact state (position and velocity) and generate the desired 
throwing trajectory. 

 

Figure 21: Multiple controllers explored in the object manipulation task 
a) Virtual myo-robotic arm in NRP. b) Physical myo-robotic arm. c) Bio-inspired Controllers: spiking cerebellum, 
recurrent NN, feedforward NN. d) Position control task with a spiking Cerebellum network (1 simulation timestep 
corresponds to 10 ms). 
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Table 14: Output 3 links 

Component Link to URL 

C2561 

Data Repository https://gitlab.com/neurocomputing/hbp/sga2/c2561/model  

Technical Documentation https://gitlab.com/neurocomputing/hbp/sga2/c2561/technical   

User Documentation https://gitlab.com/neurocomputing/hbp/sga2/c2561/user   

C2571 

Model Repository https://bitbucket.org/alex_vds_ugent/flexsensor/  

Technical Documentation https://bitbucket.org/alex_vds_ugent/flexsensor/src/master/doc/   

User Documentation https://bitbucket.org/alex_vds_ugent/flexsensor/src/master/doc/  

C2566 

Data Repository https://gitlab.com/neurocomputing/hbp/sga2/c2566/model  

Technical Documentation https://gitlab.com/neurocomputing/hbp/sga2/c2566/technical   

User Documentation https://gitlab.com/neurocomputing/hbp/sga2/c2566/user  

7.2 Validation and Impact 

7.2.1 Actual and Potential Use of Output(s) 

The models from Outputs 1, 2 and 3 are in use on their respective robots, both in simulation (NRP) 
and on the existing physical instance of the robot. Various additional robotic systems (particularly 
those with compliant actuation, e.g. the HBP robot mouse, KR10.2) can benefit from the significant 
real-time adaptability that cerebellar controllers offer. Indeed, such controllers promise improved 
operation of future low-cost robots, for which mechanical specifications may not be achieved with 
great precision. Adaptive cerebellum-inspired controllers could adjust to changes in system 
properties during runtime. They could also adapt to wear-induced mechanical changes throughout 
the operational life of a robot. The long-term vision of using such control models for compliant 
robots is to achieve safe human-robot interactions (e.g. in factory co-working settings or on neuro-
prosthetic devices). 

7.2.2 Publications 

• [P2362] I. Abadía, F. Naveros, J.A. Garrido, E. Ros, and N.R. Luque (2019) On Robot Compliance: 
A Cerebellar Control Approach. IEEE Transactions on Cybernetics, Vol. 99, pp.1–14. DOI: 
10.1109/TCYB.2019.2945498. 

o This publication is significant insofar as the proposed brain-inspired approach for compliant 
control outperforms the accuracy of the default factory-installed position control in a set of 
tasks. 

8. Outputs not directly linked to Key Results 

8.1 Output 1: Parallelisation of NRP simulations for 
data-intensive learning paradigms 

Virtualisation of experiments on the NRP opens up many interesting possibilities. For example, the 
NRP not only makes experiments possible that could not be conducted in the real world (e.g. 
recording spikes from an arbitrary number of neurons during execution of a task); it also enables 
execution of multiple experiments in parallel, in a manner that is only constrained by compute power 
and space for data storage. This latter ability is particularly adapted to speed up learning in 
embodied settings, with paradigms that are data-intensive or converge slowly (e.g. Reinforcement 

https://gitlab.com/neurocomputing/hbp/sga2/c2561/model
https://gitlab.com/neurocomputing/hbp/sga2/c2561/technical
https://gitlab.com/neurocomputing/hbp/sga2/c2561/user
https://bitbucket.org/alex_vds_ugent/flexsensor/
https://bitbucket.org/alex_vds_ugent/flexsensor/src/master/doc/
https://bitbucket.org/alex_vds_ugent/flexsensor/src/master/doc/
https://gitlab.com/neurocomputing/hbp/sga2/c2566/model
https://gitlab.com/neurocomputing/hbp/sga2/c2566/technical
https://gitlab.com/neurocomputing/hbp/sga2/c2566/user
https://doi.org/10.1109/TCYB.2019.2945498
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Learning). While it was well understood that the architecture of the NRP could inherently support 
this distributed parallel execution of experiments, an actual implementation had so far been missing. 

We thus developed a new deployment scheme that builds on the existing NRP infrastructure. Its main 
components are outlined in Figure 22. Single NRP instances are deployed using Docker containers, 
which makes every NRP instance an independent unit that can carry out a simulation. The number 
of parallel experiments (Experiment 1, …, Experiment n) is therefore only limited by the number of 
containers that can be launched at the same time. To enable users to interact with the experiment 
a high level of abstraction, we introduced an experiment API (nrp.experiment). This is specific to 
the type of experiment (e.g. grasping objects and navigating in an environment) and needs to be 
implemented every time a new class of experiments is added. 

 
Figure 22: High-level view of parallel distributed data collection and learning with the NRP 

This approach allows users to access different experiment instances of the same class with the same 
code. Changing low-level details such as controllers or replacing a robot by another one with a similar 
kinematic structure will therefore not affect the user’s code for controlling the experiment. This is 
very similar to common tools from machine learning such as OpenAI Gym and considerably increases 
productivity, since the same code can be reused across different experiments that can run in 
parallel. Data from all simulations are stored and shared in a new storage component that is based 
on MongoDB, a document database (nrp.storage). The third component of the new setup is the 
nrp.train, which contains all code required for the coordination. It will host different types of models 
(from both neuroscience and machine learning) and will support different modes of distributing the 
workload across simulations. 

To validate the architecture outlined above, we implemented a benchmark virtual experiment based 
on a real-world experiment carried out with physical robots at Google3. The goal of that work was 
to learn grasping solely based on RGB camera input, by collecting data from up to 18 robots that 
were operating and parallel and grasped objects over a period of two months. While the experiment 
was extremely costly in terms of resources (high number of robots and long duration of the 
experiment), the underlying approach can scale extremely well to a much higher number of robots. 

We replicated the experimental setup used at Google as a digital twin on the NRP (see Figure 23). 
The new experimental setup has been successfully executed in parallel on up to 75 NRP simulations 
running on the HBP infrastructure at CSCS with our new architecture for parallel distributed 
execution. Here, the number of simulations was only limited by compute resources. This enabled 
the collection of vast amounts of data (hundreds of Gigabytes), meaning the real-world experiment 
could be reproduced in about a week. With that data, offline end-to-end training of action policies 

                                            
3 Levine, Sergey, et al. "Learning hand-eye coordination for robotic grasping with deep learning and large-
scale data collection." The International Journal of Robotics Research 37.4-5 (2018): 421-436. 
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was performed as a prerequisite of sim-to-real transfer and exploration of the reality gap 
(publication in preparation). 

 

Figure 23: Virtual experiment in the NRP and actual setup by Google (latest version) 

This work is a strong proof of concept for distributed / parallelised learning with the NRP on the HBP 
infrastructure. It paves the way for further developments and implementation of 
learning/optimisation frameworks (e.g. Pagmo, DMTK, etc.) that will uniquely enable large-scale 
learning experiments with the NRP. In combination with the IBA and redesigned interfaces (see next 
section), this capability can be instrumental in implementing hierarchical learning in cognitive 
architectures and, as such, is expected to be an essential component for the work currently planned 
for the next phase of the project. 

8.2 Output 2: Roadmap for the evolution of the NRP  
The work carried out in SGA2 to achieve several Outputs reported herein (in particular, IBA and 
large-scale NEST simulations on Piz Daint) made it impossible to ignore some limitations of the 
general software architecture of the NRP. This prompted an intensive collaboration between 
specialists of NEST (JUELICH), HPC (CSCS) and Neurorobotics (TUM, SSSA, UGR) over the second year 
of SGA2, resulting in many fruitful discussions as well as a common understanding of how the NRP 
could benefit from its upcoming integration into EBRAINS. 

The gist of the conclusions reached over the past few months is that the architecture of the NRP 
must evolve: in particular, a clean delineation must be achieved between its different components, 
starting with the interface between NEST and the CLE. The initial work carried out in the past year 
with NEST explores the standardisation of the coupling between NRP with simulators, a first step 
towards generalisation of interfaces. In the long term, it is proposed that a client-server architecture 
with a yet-to-be-created API be implemented for NEST (see Figure 24), and ultimately other 
simulators (especially TVB). This new interface architecture decouples the execution model between 
the CLE and the brain simulators, allowing more flexibility in the type and execution modes of the 
latter. 
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Figure 24: Proposed novel architecture and interfaces between NRP components 

Transitioning to such an architecture will allow for easier maintenance of the NRP code base, 
irrespective of the development cycle of components such as NEST, PyNN, etc. It will also create 
the opportunity to establish similar APIs for different simulators, thereby providing a clear path 
towards multi-scale, multi-simulator experiments on the NRP; this clearly aligns well with the 
scientific goals of the HBP over the next few years, and it positions the NRP as the central nexus for 
several planned research efforts. 

Finally, if this clean delineation of components and the availability of well-defined, well-
documented interfaces with the NRP and other brain simulators of EBRAINS is successfully 
implemented (which remains a significant technical challenge), then users will be encouraged to 
develop, maintain and connect their own new services to those already in existence. Freed from the 
need to delve into the code of every component of EBRAINS, they will face a much lower threshold 
of entry as EBRAINS contributors, which we see as a clear prerequisite for a strong expansion of the 
EBRAINS user community. 

9. Conclusion and Outlook 
The Key Results presented above address many different areas of research and exhibit varying 
degrees of maturity. KR10.4 (the NRP itself) holds a central position around which other KRs were 
articulated. Besides the continuous work to provide the NRP with improvements and new 
functionalities, a significant number of activities were dedicated to connecting the NRP to other 
HBP Platforms. In particular, deployment of complex NRP simulations on the HBP HPC infrastructure 
(large-scale NEST simulations, parallel execution of many back ends for learning in the “Google 
experiment”) was an essential step to provide the NRP with the tools required to retain an advantage 
over its competition (e.g. OpenAI Gym, Nvidia Isaac, Facebook Habitat, AWS RoboMaker, etc.) and 
differentiate itself in the growing field of simulators for embodied AI. To this day, the NRP is the 
only free, open-source framework that is specifically adapted for spiking network simulation and, as 
such, can support the in-silico prototyping of neuromorphic applications. This latter point was 
further reinforced by the development of a “plug-and-play” interface with SpiNNaker boards, as well 
as the integration of Intel Loihi chips as back ends to the NRP (note: the work on Loihi chips was not 
funded by the HBP). 

The part of our work with the clearest translational potential in medicine is KR10.1. The latter 
regroups our various contributions towards simulating the neural mechanisms supporting legged 
locomotion and stroke rehabilitation, focusing on models of the motor cortex and its interaction 
with spinal cord signals. Significant results were obtained that demonstrate the relevance of 
simulation as a valid research tool to eventually restore locomotion in humans with epidural spinal 
cord stimulation. More generally, this work is essential to validate any in silico approach to 
embodiment that deals with motor control. In particular, the work focused on the simulation of 
stroke in mice holds much promise for understanding the mechanisms of neuro-rehabilitation. In 
addition, a detailed mouse model is now available in the NRP for neuroscientific experiments, which 
should attract more users to the NRP. 
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KR10.2 follows the completion of the final release of the rodent robot (Version 4.1). No additional 
design work on hardware (mechanical design, electronics, etc.) will be performed in the next phase 
of the Project, as it was decided that activities linked to mechanical design of robotic platforms 
were beyond the purview of the HBP. NeRmo is nevertheless now in use at several Partner institutions 
in the HBP, as well as in Japan. In that sense, it already fulfils its initial promise of becoming a useful 
research platform. The recent addition of its digital twin on the NRP makes it especially suitable for 
studying sim-to-real transfer learning. While we have already started working on this topic, further 
efforts will be required to provide a clear demonstration of the fact that the NRP can support virtual 
prototyping and transfer learning from simulated to actual robots. As such, it will certainly become 
a major showcase for potential industrial partners in the field of robotics. The compute power 
embedded in NeRmo is already sufficient for that purpose, but future users (especially within HBP) 
may require support for embedded neuromorphic chips. Such a development is thus currently under 
consideration for the next phase of the Project. With that addition, NeRmo will become the perfect 
extension of NRP simulations into the real world, for prototyping many neuromorphic applications, 
such as legged locomotion, navigation, visual processing, decision-making, etc. 

A necessity for implementing modular brain simulations on the NRP, KR10.3 provides an interesting 
path to integrate further neuroscience and neurorobotics research. The software framework 
developed proved functional and sufficiently user-friendly to implement two demonstrators 
implementing non-trivial behaviour through integration of multiple neuro-computational modules. 
These demonstrators leverage heterogeneous components (in terms of both function and 
implementation) and let users ask questions regarding the computational synergies and behavioural 
impact of models that, studied in isolation, would not reveal much in that regard, even embodied. 
In spite of its limitations, especially as they relate to the communication layer (see D10.2.1 SGA2 
M24 for further discussions on this topic), the IBA is therefore a most relevant framework to study 
how the brain orchestrates together areas of narrow functional expertise. This topic currently 
attracts much attention in both neuroscience and AI (see for example Deco, G. et al. (2019) 
Revisiting the Global Workspace: Orchestration of the functional hierarchical organisation of the 
human brain. https://doi.org/10.1101/859579). The IBA and its future iterations will therefore be 
of major interest for the next phase of the project, where modular cognitive architectures will take 
centre stage. 

KR10.5 is an essential step towards validating in silico experiments as practical tools for robotics, 
and brain-derived controllers as viable alternatives to their “classical” counterparts derived from 
control theory and/or machine learning. For the latter aspect in particular, the concept of using 
cerebellar-like modules to adapt to variations in robot characteristics (e.g. variations inherent to 
the production process, or evolution with wear and tear) is highly relevant for practical applications, 
insofar as it could increase the operational life span of costly systems, reduce downtime due to 
maintenance, etc. While these are also potential benefits of controllers derived from adaptive 
control theory, our increasing understanding of the inner workings of, and synergies between, 
different brain areas involved in motor control holds much promise to go beyond the current state 
of the art. Theoretical works validated through simulations are a good starting point; it is, however, 
essential to keep confronting neuroscience-based theories with the practical challenges of real-
world robotic embodiment. 

Taken together, these various results highlight the contributions that Neurorobotics can make to 
neuroscience and robotics, and how these, in turn, can support each other and provide a path for 
currently separated research lines to converge. This will be essential to achieve the type of impact 
sought by the HBP, i.e. progress in neuroscience research and development of new computing 
paradigms. 

Furthermore, it is clear that the uptake of neurorobotics in the neuroscience community has 
accelerated over the past year, with multiple groups inside (E. d’ANGELO; M. MIGLIORE) and outside 
of the HBP (B. PORR) now working with the NRP independently of SP10. With the NRP development 
roadmap firmly set on fully leveraging the emergence of EBRAINS in general and its HPC 
infrastructure in particular, it is expected that this movement will gain momentum. We can already 
report, for example, that a Japanese consortium will start working with some current SP10 partners 
in the coming months, supported in that endeavour by several HBP vouchers. Such collaborations are 
essential to nurture, as they will underpin the practical implementation of use cases that truly 
leverage EBRAINS as a multi-service provider with the NRP as a focal point. 

https://doi.org/10.1101/859579
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