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Figure 1: Towards a biologically realistic large-scale model of visuo-motor areas in the 

macaque. 

(A) Primary motor cortex parameters for macaque and mice from the literature [4-8], sample mean values displayed, 
error bars show standard deviation for the available cases. (B) Workflow for the estimation of the unknown parameters 
in the model based on electrophysiological recordings. (C) Areas considered in the model (in the M132 parcellation) 
and characteristics of each motor area. (D) Fractions of labelled neurons (FLN) and supragranular labelled neurons 
(SLN) [5, 10] for the areas under consideration, and their predictive relation with white matter distance between 
cortical areas and log-ratios of neuron density, respectively. (E) Community structure of the known connectivity for 
the areas considered, determined using the map equation method [11]. See KRc4.1, Output 4. 
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1. Overview 
Humans are continuously required to interact with a complex, dynamically changing environment. 
Our brain does thus not operate in a vacuum, but forms a closed loop with the surroundings in which 
it is embedded. This has important implications for the study of action and perception and their 
interrelatedness within an ever-changing environment, as one can only be fully understood in context 
of the others. For example, human vision is only sharp near the centre of fixation and quickly drops 
with increasing distance from fixation. In order to recognise objects around us and relate their 
spatial configuration, it thus necessary to perform eye-movements and integrate information over 
several fixations. A by-product of these eye movements is that static objects move across the retina 
and the perceptual system needs to correct for object displacement and disentangle it from object 
motion. Eye movements thus need to be understood in terms of object recognition and vice versa. 
Co-Design Project 4 (CDP4) is aimed at understanding the mutual interactions between action and 
perception by combining neuroimaging (using tools such as fMRI), neurocomputational modelling, 
machine learning and robotics. Our focus lies specifically on visual as well as visually-guided actions, 
such as eye movements, for object recognition & scene understanding (SGA1 & SGA2) and hand-eye 
coordination for object manipulation (SGA2: reaching & grasping; SGA3: in-hand manipulations).  

With respect to object recognition & scene understanding, we have identified functional components 
necessary for this task and developed computational models for each of them. Over the past 12 
months, we have trained a deep learning architecture to perform scene labelling in light of the 
aforementioned image blow-up.  

With respect to object manipulation, we have set up a recurrent convolutional neural network 
(RCNN) architecture able to control an anthropomorphic robotic hand as well as a reinforcement 
learning procedure for training the RCNN to perform in-hand object manipulation. 

  



 
 

  
 

D2.5.1 (D12.1 D61) SGA2 M24 ACCEPTED 201005.docx PU = Public 7-Oct-2020 Page 5 / 14 
 

2. Introduction 
The brain enables autonomous agents to interact meaningfully with a dynamic environment. That 
is, the brain forms a closed loop with the surroundings in which it is embedded through its sensory-
motor apparatus. How the integration of sensory and motor function is achieved and how perception 
and action mutually affect each other constitute important questions in neuroscience. For instance, 
the sharp drop-off in visual acuity with eccentricity forces the visual system to perform saccadic eye 
movements and to integrate information across “snapshots” of the visual scene. These eye 
movements, in turn, affect perception as they lead to blur, retinal displacements and the 
requirement to distinguish eye- from object movements. Similarly, tasks such as reaching and 
grasping require tracking of object and hand location in space as well as continuous translation 
between coordinate frames (e.g. retinotopic vs body-centred). 

Co-Design Project 4 (CDP4) fuses computational modelling, deep learning, experimentation and 
robotics to understand how the brain coordinates such visually-guided actions. To do so, it follows a 
top-down approach. That is, it starts by identifying and implementing functional components 
relevant to the task. Implementation may involve developing computational models based on 
existing neuroscientific data (these modelling efforts occur largely within KRc4.1). It may, however, 
also involve utilisation of goal-driven deep (reinforcement) learning to let a neural network uncover 
potential solutions for performing ecologically valid visuomotor tasks (these efforts - largely based 
on behavioural data and labelled image databases - occur largely within KRc4.3). Subsequently, 
functional components are integrated into a single large-scale, closed-loop, visuomotor architecture 
for deployment with robotic systems (KRc4.1). These architectures are continuously refined to 
increase their biological realism. This occurs in a modular fashion as individual functional 
components may, for instance, be translated from a rate neuron to a spiking neuron implementation, 
independent from other components. The architecture may furthermore serve as a virtual patient, 
to model disorders resulting from damage to the system. The “saccades for object recognition” 
architecture is especially suited to investigate attention deficits (hemispatial neglect) resulting from 
stroke (KRc4.2) since it places strong emphasis on attention (saliency) and attention-based decision 
making (target selection). Co-Design Project 4 was originally organised around three Key Results 
(KRs): KRc4.1, KRc4.2 & KRc4.3. However, due to unforeseen delays regarding the approval of 
partnering project BRAINSYNCH-HIT, we, in line with suggestions made by the EC, decided to 
postpone KRc4.2 until SGA3. 

KRc4.1: Visuo-motor integration neuronal network model  

By collaborative efforts with SP4 and SP7, efficient network simulations in NEST allow to build novel 
large-scale neural network models that actually perform challenging visuo-motor integration tasks 
while being based on state-of-the-art knowledge about the architecture of the brain as well as on 
novel insights from beyond the state-of-the-art sub-millimetre human functional brain imaging. By 
collaborative efforts with SP10, the visuo- motor integration model runs on the Neurorobotics 
Platform. The neurorobotics implementation allows to generate realistic behavioural data. 

KRc4.2: Lesioning parietal and frontal areas of eye movement model to explain unilateral spatial 
neglect stroke and TMS treatment effects 

The implemented visuo-motor system will integrate simplified modules of about 20 cortical and sub-
cortical areas involved in visual stimulus processing, saliency calculation, target selection and motor 
planning. The established computational-anatomical relationship and asymmetric attention shifting 
architecture allows to simulate lesions of the model (link to CDP1) that are related to saliency, 
attention and motor planning producing neurological symptoms observed in unilateral spatial neglect 
patients. Furthermore, we will have access to neglect patients that are currently treated with TMS 
stimulation allowing to model reduced inhibition from the contra-lesional hemisphere. The effects 
of TMS will be integrated in the neural network model.  
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KRc4.3: Application of Visuo-Motor Integration Model to User Input Data 

The visuo-motor model integrates state-of-the art architectural and functional knowledge of how 
the brain controls eye movement (version 1 [SGA1]) and grasping (version 2 [SGA2]) supporting the 
interpretation of the user’s neuroimaging, electrophysiological and behavioural data. Since the 
visuo-motor integration model is implemented in NEST and linked to a (virtual) robotic system, 
researchers can run the model with their own visual stimuli as input and compare the predicted 
behaviour with their own empirical data.  
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3. Key Result KRc4.1 Visuo-motor integration 
neuronal network model 

3.1 Outputs 

3.1.1 Overview of Outputs 

3.1.1.1 List of Outputs contributing to this KR 

1) Spiking neuron model of saccade generator circuit in the brain stem (component title: Visuo-
motor integration model performing eye movement and reaching tasks, leader: Rainer GOEBEL, 
id: C2632, type: model) 

2) Integrated “saccades for scene understanding” (SSU) closed-loop architecture (component title: 
Visuo-motor integration model performing eye movement and reaching tasks, leader: Rainer 
GOEBEL, id: C2632, type: model, link: https://github.com/ccnmaastricht/CDP4_NRP) 

3) Multi-area multi-layer spiking cortical models (component title: Multi-area model of cortical 
network at neuronal resolution, leader: Sacha VAN ALBADA, id: C730, type: model, link: 
https://github.com/INM-6/multi-area-model) 

4) Recurrent model of V1 orientation tuning in closed loop psychophysics experiment (component 
title: Visuo-motor integration model performing eye movement and reaching tasks, leader: 
Rainer GOEBEL, id: C2632, type: model, link: https://github.com/ccnmaastricht/LTI) 

5) Visual target selection model (component title: Visuo-motor integration model performing eye 
movement and reaching tasks, leader: Rainer GOEBEL, id: C2632, type: model, link: 
https://github.com/ccnmaastricht/target_selection) 

3.1.1.2 How Outputs relate to each other and the Key Result 

Output 1 and 5 are sub-modules of Output 2: the SSU closed-loop architecture. The latter is a 
realisation of KRc4.1 as it represents one concrete large-scale neural network architecture that 
performs a challenging visuo-motor integration task. Output 3 is a key step towards increasing the 
biological realism of large-scale visuomotor architectures. That is, while Output 2 targets visuo-
motor processing from a functional perspective, Output 3 targets it from a biological perspective. 

Output 4 constitutes a test case highly useful for developing the Saccades for Scene Understanding 
closed-loop embodied architecture (Output 2). 

  

https://github.com/ccnmaastricht/CDP4_NRP
https://github.com/INM-6/multi-area-model
https://github.com/ccnmaastricht/LTI
https://github.com/ccnmaastricht/target_selection


 
 

  
 

D2.5.1 (D12.1 D61) SGA2 M24 ACCEPTED 201005.docx PU = Public 7-Oct-2020 Page 8 / 14 
 

3.1.2 Output 1 - Spiking neuron model of saccade generator 
circuit in the brain stem 

During the first year of SGA2, JUELICH started implementing the saccade generation component of 
the visuo-motor architecture using spiking neurons. This work is now completed. 

The model created was inspired by [1] in its overall structure and shares the segmentation into 
multiple functionally relevant subnetworks with their own dynamical behaviour as well as their 
interconnections in a biologically plausible fashion. Moreover, the devised method ensures that the 
model incorporates the single-neuron electrophysiology of the neurons involved in saccade 
generation (see e.g. [2]) in a phenomenological way and respects Dale’s law. 

This output has an upstream dependency on component C1857 embedded in Task T4.4.5: Models of 
sensorimotor integration. 

References 

[1] Gancarz G, Grossberg S, A neural model of the saccade generator in the reticular formation, 
Neural Networks 11.7, p 1159-1174 (1998) 
[2] Scudder, Charles A., Chris R. Kaneko, and Albert F. Fuchs. "The brainstem burst generator for 
saccadic eye movements." Experimental Brain Research 142.4 439-462(2002) 

3.1.3 Output 2 - Integrated SSU closed-loop architecture 

For Task T2.2.1 (Visuo-motor integration model performing eye movement and reaching tasks; 
component id C2632), researchers at UM, JUELICH, UPF and TUM are currently finalising the 
integration of all functional modules (ganglion cell image resampling, object recognition, saliency 
computation, target selection & saccade generation) into an embodied large-scale cognitive 
architecture able to perform saccades for scene understanding. Once the components communicate 
successfully with each other as well as the robotic system in which they are embedded, both utilising 
the ‘Integrated Behavioural Architecture’ developed by SP10, the architecture will be used to allow 
a robotic agent in the NRP to provide a description of its environment. We are currently preparing a 
position paper detailing the top-down, embodied, modelling approach put forth by CDP4 which will 
include the setup & scene analysis experiments of the SSU architecture as an example.  

Manuscript on the SSU is in preparation. 

3.1.4 Output 3 - Multi-area multi-layer spiking cortical 
models 

As part of Task T4.2.3 (Multi-area multi-layer spiking cortical models), JUELICH is developing a multi-
area model of a cortical network at neuronal resolution (component id: C730) of all vision- and 
motor-related cortical areas in macaque to study the dynamics of visuo-motor interactions. The 
model extends the visual multi-area-model [1, 2], where each cortical area is represented by a full-
density model of a cortical microcircuit (component id: C944) [3]. Motor areas differ crucially from 
visual cortex: they have a less prominent layer 4, a far lower neuron density and different internal 
connectivity. Therefore, it is pivotal to develop a microcircuit of the macaque primary motor cortex. 
JUELICH has collected anatomical parameters from macaque and mice [4-8] and has identified gaps 
in knowledge; especially interlaminar connectivity has been imperfectly characterised. Thus, 
JUELICH is estimating the missing motor cortex parameters from electrophysiological recordings in 
the macaque (INT Marseille, FORTH Heraklion) using evolutionary optimisation. For the construction 
of the large-scale visuo-motor model, JUELICH has refined the existing predictive relations between 
structure and connectivity [5, 9, 10] using a maximum likelihood estimation of a bivariate beta-
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binomial distribution. The improved estimates will be used to predict the missing connectivity 
parameters and deliver a model that will serve to investigate mechanisms underlying visuo-motor 
interactions, for instance in SGA3 WP3.2 ‘Biological visuo-motor architectures on HBP platforms’ and 
in the FLAG-ERA Project ‘PrimCorNet’ (Characterization and layer-specific modeling of fronto-
parietal dynamics in primate cortical networks).  

References 

[1] Schmidt M, Bakker R, Hilgetag CC, Diesmann M, and van Albada SJ. Multi-scale account of the 
network structure of macaque visual cortex. Brain Struct Func, 223:1409-1435, 2018 (P1036). 

[2] Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, and van Albada SJ. A multi-scale layer-
resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLOS 
Comput Biol, 14:e1006359, 2018 (P1457). 

[3] Potjans TC and Diesmann M. The cell-type specific cortical microcircuit: Relating structure and 
activity in a full-scale spiking network model. Cereb Cortex 24:785-806, 2014. 

[4] Cozzi B, et al. The laminar organization of the motor cortex in monodactylous mammals: a 
comparative assessment based on horse, chimpanzee, and macaque. Brain Struct Func 222:2743-
2757, 2017. 

[5] Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C et al. A weighted and directed 
interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24:17-36, 2014. 

[6] Mitra NL. Quantitative Analysis of Cell Types in mammalian neocortex. PhD Thesis, University 
College London, 1955 

[7] Sloper JJ, R. Hiorns W and Powell TPS. A qualitative and quantitative electron microscopic study 
of the neurons in the primate motor and somatic sensory cortices. Phil Trans Roy Soc London, 1978 

[8] Dura-Bernal S, Neymotin SA, Suter BA, Shepherd GMG, Lytton WW. Long-range inputs and H-
current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. 
ArXiv, 2019 

[9] Bakker R, Wachtler T, and Diesmann M. CoCoMac 2.0 and the future of tract-tracing databases. 
Front Neuroinformatics 6:30, 2012. 

[10] Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R et al. Anatomy of hierarchy: 
Feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225-259, 2014. 

[11] Rosvall, M., Axelsson, D. & Bergstrom, C. The map equation. Eur Phys J Spec Top 178, 13–23, 
2009.  

3.1.5 Output 4 - Recurrent model of V1 orientation tuning in 
closed loop psychophysics experiment 

For Task T2.2.1 (Visuo-motor integration model performing eye movement and reaching tasks; 
component id C2632), researchers at UM developed a model of early visual cortex in closed-loop 
with an orientation discrimination psychophysics experiment. Specifically, the model is able to judge 
the orientation of a stimulus with respect to an unseen reference and to learn from feedback 
received from the experiment. At the same time, the experiment adjusts difficulty (orientation of 
stimuli with respect to reference) based on the model’s performance according to a staircase 
procedure.  
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3.1.6 Output 5 - Visual target selection model 

Researchers at UM extended a winner-takes-all (WTA) mean-field decision making model to exhibit 
winnerless competition; i.e to include switching behaviour. We implemented switching by including 
a negative feedback loop between motor neurons (decision makers) and visual neurons (conveying 
saliency input). The model is able to generate a sequence of saccade targets for static saliency 
distributions and can thus account for free viewing behaviour. 

3.2 Validation and Impact 

3.2.1 Actual and Potential Use of Output(s) 

The SSU architecture (Output 2) constitutes one example of large-scale neural network architectures 
able to perform challenging visuo-motor integration tasks. Its modular nature allows researchers 
both within (e.g. SSSA in SP10) and outside HBP to extend it by further functional components such 
as a cerebellar controller as well as to replace existing components with their own models. This 
allows researchers to evaluate their models in the context of other models together constituting a 
behaviourally performant encompassing system. The SSU further serves as a starting point for SGA3 
WP3.1. Furthermore, Output 3 is highly relevant for SGA3 WP3.2 as well as for the FLAG-ERA Project 
‘PrimCorNet’. Outputs 1 and 5 are essential components of the Saccades for Scene Understanding 
closed-loop embodied architecture developed by CDP4 and currently being embedded as a module 
in that architecture by joint efforts between SP2, SP4 and SP10. Output 4 constitutes a test case for 
developing closed loops between models and their environments (an experiment). Experience gained 
during development of this simplified (non-embodied) test case is proving highly useful for 
developing the Saccades for Scene Understanding closed-loop embodied architecture. Furthermore, 
researchers at Maastricht University not involved in the HBP are using the model to predict human 
performance in perceptual learning experiments. 

3.2.2 Publications 

Lange, G., Senden, M., Radermacher, A., & De Weerd, P. (2020). Interfering with a memory 
without erasing its trace. Neural Networks, 121, 339–355. 
https://doi.org/10.1016/j.neunet.2019.09.027 (P2053)  

This publication concerns output 4 and confirms that this Output has been validated by scientific 
peer review.  

  

https://doi.org/10.1016/j.neunet.2019.09.027
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4. Key Result KRc4.3: Application of Visuo-Motor 
Integration Model to User Input Data 

4.1 Outputs 

4.1.1 Overview of Outputs 

4.1.1.1 List of Outputs contributing to this KR 

1) Object recognition deep learning architecture (component title: Brain-constrained deep learning 
modules for visuo-motor integration tasks, leader: Rainer GOEBEL, id: C2634, type: model, link: 
https://github.com/ccnmaastricht/Object_recognition) 

2) Improving convolutional neural networks with biologically connectivity profiles (component title: 
Brain-constrained deep learning modules for visuo-motor integration tasks, leader: Rainer 
GOEBEL, id: C2634, type: model, link: https://github.com/ccnmaastricht/inhibition-net) 

3) Predicting cortical saliency maps from deep encoder-decoder architecture (component title: 
Brain-constrained deep learning modules for visuo-motor integration tasks, leader: Rainer 
GOEBEL, id: C2634, type: model, link: https://github.com/alexanderkroner/saliency) 

4) Neural network able to learn to translate desirable finger positions to necessary manipulations 
of the joints of an anthropomorphic hand (component title: Brain-constrained deep learning 
modules for visuo-motor integration tasks, leader: Rainer GOEBEL, id: C2634, type: model, link: 
https://github.com/ccnmaastricht/dexterous-robot-hand) 

4.1.1.2 How Outputs relate to each other and the Key Result 

Output 1 relates mainly to Output 2 of KRc4.1 as it constitutes one functional component of the SSU 
closed-loop architecture. It further relates to KRc4.3 as it is a deep learning architecture trained 
based on human behavioural (scene labelling) data. Output 2 bridges the gap between CDP4 and 
WP3 in SGA3 as it constitutes a first step towards building bio-inspired deep learning architectures 
which is an important aspect of WP3. Finally, Output 3 is a follow-up of Output 2 of KRc4.3 detailed 
in SGA2 Deliverable D2.2.1 (deep encoder-decoder architecture for saliency computation). The bio-
inspired deep learning architectures (Output 2) have been further developed for the control of finger 
joints of an anthropomorphic robotic hand (Output 4). 

4.1.2 Output 1 - Object recognition deep learning 
architecture 

Researchers at UM have previously developed an algorithm which resamples images in accordance 
with ganglion cell distributions in the human retina. Resampling leads to image blow-up such that 
central regions in the image are enlarged while distant regions are compressed. This resampling is 
incorporated as an initial step in convolutional neural networks to provide them with a human-like 
visual acuity drop-off with increasing distance from fixation. This forces these networks to explore 
a visual scene by taking snapshots from different fixations and integrate this information in order to 
recognise objects. Combining object identity with eye position information as well as working 
memory of previous objects and their locations using long-short-term memory (LSTM) units allows a 
recurrent convolutional neural network to not only identify objects but also place them in spatial 

https://github.com/ccnmaastricht/Object_recognition
https://github.com/ccnmaastricht/inhibition-net
https://github.com/alexanderkroner/saliency
https://github.com/ccnmaastricht/dexterous-robot-hand
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relation to each other. This architecture was pre-trained on the Flickr 8k (Hodosh et al. 2013) data 
set and is currently being integrated in the SSU architecture where it will be fine-tuned to label 
scenes in the NRP. 

Results of Output 1 form part of the SSU (Output 2 KRc4.1) and will be included in the manuscript 
currently in preparation on that architecture.  

References 

Hodosh, Micah, Peter Young, and Julia Hockenmaier. "Framing image description as a ranking task: 
Data, models and evaluation metrics." Journal of Artificial Intelligence Research 47 (2013): 853-899. 

4.1.3 Output 2 - Improving convolutional neural networks 
with biologically connectivity profiles 

Lateral connections play an important role for sensory processing in visual cortex by supporting 
discriminable neuronal responses even to highly similar features. Researchers at UM have leveraged 
a biologically inspired Mexican hat lateral connectivity profile along the filter domain to improve 
the classification performance of convolutional neural networks (including state of the art networks 
such as the capsule-net). Introducing this connectivity profile has the effect of ordering filters in a 
sequence resembling the topographic organisation of feature selectivity in early visual cortex.  

A manuscript detailing the results of Output 2 has been submitted to the International Conference 
on Machine Learning (ICML) 2020. 

4.1.4 Output 3 - Predicting cortical saliency maps from deep 
encoder-decoder architecture 

Researchers at UM have used the saliency encoder-decoder architecture to generate predictions of 
cortical saliency distributions in response to natural images are currently conducting a 7 Tesla fMRI 
study to evaluate these predictions. Specifically, the study aims to contrast saliency maps based on 
low-level features (such as employed by the Itti & Koch saliency model) and on semantic information 
(encoder-decoder architecture) on their ability to predict saliency maps observed in posterior 
parietal cortex and frontal eye fields.  

During functional scans participants passively viewed three types of visual stimuli. The first type 
consisted of grids of simple shapes with the shape in one location differing from the rest with respect 
to one or two low-level features such as colour, size or shape. The second type consisted of natural 
scenes with a single salient region (based on eye tracking). The last type consisted of natural scenes 
for which saliency models based on low-level features and models based on semantic information 
predict distinct saliency distributions. Pilot scans have been completed and acquisition of the full 
data had been scheduled for M24. However, due to the COVID-19 pandemic all experimentation 
involving human participants has been suspended until further notice. 

4.1.5 Output 4 - Neural network able to learn to translate 
desirable finger positions to necessary manipulations 
of the joints of an anthropomorphic hand 

Researchers at UM have developed a biologically inspired recurrent neural network (RNN) for the 
control of finger joints of an anthropomorphic robotic hand. The RNN must learn to translate 
desirable finger positions to necessary manipulations of the joints of its hand in order to achieve 
OpenAI’s gym implementation of the reaching task (Plappert et al. 2018). 
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4.2 Validation and Impact 

4.2.1 Actual and Potential Use of Output(s) 

Results of Output 1 form part of the SSU (Output 2 KRc4.1). Output 2 is highly relevant for the 
machine learning community and all relevant code will be made available. However, because a 
manuscript detailing this work is currently under double-blind review and code availability would 
render authors identifiable, code will only be made available after publication of the manuscript. 

Once data acquisition and pre-processing is complete, the data of Output 3 will be made publicly 
available through the Knowledge Graph. Output 4 constitutes a crucial first step towards achieving 
in-hand object manipulation using the same learning algorithm but a more sophisticated neural 
network architecture and is thus an important preparation for SGA3. 

4.2.2 Publications 

Manuscripts submitted or in preparation (see above). 
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5. Conclusion and Outlook 
During the second year of SGA2, all parties involved in CDP4 have made significant progress in Key 
Result KRc4.1 through the development of a large-scale, embodied, visuomotor architecture able to 
perform saccades for scene understanding. All functional components are now operational and being 
integrated in the NRP using the IBA framework. However, fine tuning the scene labelling 
convolutional neural network for use in the NRP after pre-training on natural images is still a 
challenge to which we are devoting the majority of our efforts as SGA2 Month 24 approaches. This 
challenge is exacerbated by the COVID-19 pandemic limiting physical meetings. Nevertheless, we 
are confident that a first version of the embodied architecture will be achieved by the end of SGA2. 
The visuomotor architecture has the potential to become an important reference architecture into 
which other researchers can embed their models of related functions as well as a source of 
predictions of behavioural data in eye movement experiments. 

KRc4.3 also has made good progress. Using biological principles, we were able to improve 
classification performance of convolutional neural networks. Furthermore, the encoder-decoder 
saliency architecture continues to be used actively, not only for robotic control but also as a model 
of the brain as it is used to generate predictions of saliency distributions in response to natural 
images within posterior parietal cortex and the frontal eye fields measured with 7 Tesla fMRI. 
Unfortunately, the fMRI experiment had to be suspended due to the COVID-19 pandemic. Lastly, the 
scene labelling recurrent convolutional neural network is an important component of the SSU and 
utilises the image distortion algorithm developed throughout the first 12 months of SGA2.  

In addition to the aforementioned achievements, the last months of SGA2 have been used to prepare 
work in SGA3. For instance, as visuomotor work will be continued in WP3, we have begun to develop 
a biologically inspired recurrent convolutional neural network (RCNN), which will be trained through 
reinforcement learning to perform in-hand object manipulation using an anthropomorphic robotic 
hand. The RCNN, as well as the training procedure, are currently being set up on the PizDaint 
supercomputer at CSCS and work over the next months will be dedicated to troubleshoot and 
optimise training to ensure a smooth transition to SGA3. Furthermore, the SSU architecture will also 
be utilised by WP3 in SGA3. Specifically, it will be extended to include a cerebellum module.  
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