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1. The Aim of this Document 

The aim of this document is to detail the technical and user documentation available to 
internal and external users of the Neuromorphic Computing Platform, and to provide a 
roadmap describing plans for future Platform development. 

Public release of a preliminary prototype of the Neuromorphic Computing Platform is the 
subject of a separate Deliverable (D9.7.4 – Neuromorphic Computing Platform v1), to be 
published simultaneously with this one. The Platform is accessible via the HBP Collaboratory 
web interface at: 

https://collab.humanbrainproject.eu/#/collab/51/nav/1073 

2. Technical and User Documentation 

2.1 Technical Documentation 

All technical documentation relating to the use of the Neuromorphic Computing Platform is 
available in the Deliverable D9.7.1, the platform specification document. 

A special version of this living document is accessible online at: 

https://flagship.kip.uni-heidelberg.de/jss/FileExchange?s=qqdXDg6HuX3&uID=65 

2.2 User Guidebook 

The Neuromorphic Computing Platform User Guidebook gives detailed guidance on how to 
use the Platform. The guidebook is accessible from inside the Collaboratory and also 
directly accessible publicly at: https://electronicvisions.github.io/hbp-sp9-guidebook/ 
The commit history is directly accessible publicly at: 
https://github.com/electronicvisions/hbp-sp9-guidebook/commits/master 

3. Help and User Feedback 
To obtain user assistance, to provide user feedback or to contribute to the on-going 
development of the platform, please use the contacts listed on 

https://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html 

4. Future Development of the Platform 

Future development plans for the Platform is covered briefly in the Month 30 Deliverable 
D9.7.4, Annex F, and extensively in the descriptions for the FPA and the SGA1 proposal. 

Annex A: References: the Guidebook as .pdf export of 22 
February 2017 

Publicly accessible .pdf export URL: https://flagship.kip.uni-
heidelberg.de/SU/p/NM_Guidebook_pdf 

 

 

https://collab.humanbrainproject.eu/#/collab/51/nav/1073
https://flagship.kip.uni-heidelberg.de/jss/FileExchange?s=qqdXDg6HuX3&uID=65
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://github.com/electronicvisions/hbp-sp9-guidebook/commits/master
https://electronicvisions.github.io/hbp-sp9-guidebook/getting_help.html
https://flagship.kip.uni-heidelberg.de/SU/p/NM_Guidebook_pdf
https://flagship.kip.uni-heidelberg.de/SU/p/NM_Guidebook_pdf


HBP Neuromorphic Computing
Platform Guidebook

Release 2017-02-22 17:03:17 (6aeeeae)

Andrew P. Davison Eric Müller
Sebastian Schmitt Bernhard Vogginger

David Lester Thomas Pfeil ...

February 22, 2017





CONTENTS

1 Getting started 3
1.1 Request a compute time allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Run a simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Copy data to longer-term storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Building models 7
2.1 The PyNN model description API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Using different backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 “Physical model” (BrainScaleS) system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 “Many core” (SpiNNaker) system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Running simulations 13
3.1 Format of a job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Using the web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Using the Python client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 The BrainScaleS “physical model” system 21
4.1 About the BrainScaleS hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Using the BrainScaleS system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Simulating the BrainScaleS hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 The Spikey “physical model” system 41
5.1 Experiment execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Spikey school . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Frequently asked questions (FAQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Built-in calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Testing the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Spikey Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 The SpiNNaker “many core” system 57
6.1 About the SpiNNaker hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Using the SpiNNaker system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 The SpiNNaker standalone system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Benchmarks 63
7.1 Developing benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Getting help 67
8.1 BrainScaleS-specific help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 SpiNNaker-specific help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9 Appendix: Installation of the BrainScaleS software stack 69
9.1 ssh-agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

i



9.2 Build Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.3 PyHMF, marocco and Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.4 Running PyNN scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.5 Inspect the Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10 Appendix: Miscellaneous 73
10.1 BrainScaleS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 77

ii



HBP Neuromorphic Computing Platform Guidebook, Release 2017-02-22 17:03:17 (6aeeeae)

Living document version:

6aeeeae Wed, 22 Feb 2017 17:03:17 GMT

The Neuromorphic Computing Platform allows neuroscientists and engineers to perform experiments with config-
urable neuromorphic computing systems. The platform provides two complementary, large-scale neuromorphic
systems built in custom hardware at locations in Heidelberg, Germany (the “BrainScaleS” system, also known as
the “physical model” or PM system) and Manchester, United Kingdom (the “SpiNNaker” system, also known as
the “many core” or MC system). Both systems enable energy-efficient, large-scale neuronal network simulations
with simplified spiking neuron models. The BrainScaleS system is based on physical (analogue) emulations of
neuron models and offers highly accelerated operation (104 x real time). The SpiNNaker system is based on a
digital many-core architecture and provides real-time operation.
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CHAPTER

ONE

GETTING STARTED

To use the HBP Neuromorphic Computing Platform you will need:

1. an HBP Identity account (available on request)

2. to sign the Platform User Agreement and return it to neuromorphic@humanbrainproject.eu

Once you’ve received confirmation that access has been approved, head to the Platform home page and click on
“Get started!”

This will create a new “collab” (a collaborative workspace) within the HBP Collaboratory, pre-loaded with the
tools you will need to access the Platform. You can now:

• Add team members to your Collab using the “Team” link in the navigation bar on the left. Only members
of the team will be able to launch simulations. If this is a public collab, anyone with an HBP account will
be able to view the results. If it is a private collab, only team members will be able to view results.

• Read the Guidebook.

• Request an allocation of compute time on the platform, using the “Resource Manager” link.

• Run simulations, using the “Job Manager” link.

1.1 Request a compute time allocation

Using the Resource Manager form, request test access to the platform by entering a project title and a brief abstract
explaining why you wish to use the platform. It is not necessary to fill in the “Project description” field.

After clicking on Submit proposal, your request should be approved within 48 hours. If you’ve received no
response within this time, e-mail neuromorphic@humanbrainproject.eu

3
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For more information on compute time allocations, see Requesting access to the platform.

1.2 Run a simulation

Once your test allocation has been approved, click on “Job Manager”, then on “New Job. Select “SpiNNaker” in
the Hardware Platform drop-down menu, then enter Python code in the “Code” text box, for example the following
short script, which simulates a population of integrate-and-firing neurons with different input firing rates:

"""A population of integrate-and-firing neurons with different input firing rates"""
"""

import numpy as np
import matplotlib.pyplot as plt
import pyNN.spiNNaker as sim

sim.setup(timestep=1.0, min_delay=1.0)

# create cells
cell_params = {

’cm’: 0.25, ’tau_m’: 10.0, ’tau_refrac’: 2.0,
’tau_syn_E’: 2.5, ’tau_syn_I’: 2.5,
’v_reset’: -70.0, ’v_rest’: -65.0, ’v_thresh’: -55.0 }

neurons = sim.Population(100, sim.IF_cond_exp, cell_params)
inputs = sim.Population(100, sim.SpikeSourcePoisson, {"rate": 0.0})
# set input firing rates as a linear function of cell index
input_firing_rates = np.linspace(0.0, 1000.0, num=inputs.size)
inputs.tset("rate", input_firing_rates)

# create one-to-one connections
wiring = sim.OneToOneConnector(weights=0.1, delays=2.0)
connections = sim.Projection(inputs, neurons, wiring)

# configure recording
neurons.record()

# run simulation
sim_duration = 10.0 # seconds
sim.run(sim_duration * 1000.0)

# retrieve recorded data
spike_counts = neurons.get_spike_counts()
print(spike_counts)
output_firing_rates = np.array([value for (key, value) in sorted(spike_counts.items())])/sim_duration

# plot graph
plt.plot(input_firing_rates, output_firing_rates)
plt.xlabel("Input firing rate (spikes/second)")
plt.ylabel("Output firing rate (spikes/second)")
plt.savefig("simple_example.png")

Leave the other text boxes empty, and click “Submit”. The job will be submitted to the queue, and will appear in
the list of jobs with a “submitted” label. Unless the platform is very busy, this job should run within a few minutes
on the large-scale SpiNNaker system in Manchester. Once the simulation is finished you will receive an e-mail,
and on refreshing the job list the status will change to “finished”.

Once the job is completed, click on the magnifying glass icon to see the job results.

4 Chapter 1. Getting started
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For more information on running simulations with the platform, see Submitting a simulation job.

1.3 Copy data to longer-term storage

The results of your simulation are now available on a file server attached to the SpiNNaker system. This storage
is only temporary, however; after three months, your files may be deleted to free up space.

For this reason, therefore, we recommend either downloading the files to your local machine or copying them to
longer-term storage within the Human Brain Project infrastructure.

For now we will copy the files to Collab Storage by clicking the button “Copy to Collab storage”.

If you now click on the link “Storage” in the left-hand menu, you will see the files produced by your simulation.

1.3. Copy data to longer-term storage 5
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CHAPTER

TWO

BUILDING MODELS

The Neuromorphic Computing Platform executes experiments performed on computational models of neuronal
networks. Both the experiment description and the model description must be written as Python scripts, using the
PyNN application programming interface (API).

2.1 The PyNN model description API

PyNN is a Python package which defines an API for defining neuronal network models with spiking neurons in a
simulator-independent way. There are implementations of this API for the NEST, NEURON and Brian simulators
and for both of the HBP Neuromorphic Computing systems (PM and MC/SpiNNaker). In this documentation, we
refer to each of these simulators and hardware platforms as a PyNN “backend”.

Full documentation of the API is available at:

PyNN 0.6 documentation

PyNN 0.7 documentation

PyNN 0.8 documentation

At the time of writing, both the PM and MC systems implement version 0.7 of the API, while the simulator of
the PM hardware (ESS) supports both versions 0.7 and 0.8, and the chip-based PM hardware (Spikey) supports
version 0.6.

2.2 A simple example

We present here a simple example network, a toy model of a “synfire chain”, in which the activity propagates
across the network.

As with any Python script, the first step is to import the external libraries that we will use. Here we import the
NEST backend of PyNN for the simulation, NumPy for random number generation, and matplotlib for plotting.

import pyNN.nest as sim
import numpy.random
import matplotlib.pyplot as plt

Next we define numerical parameters, such as the number and size of neuronal populations, neuron properties,
synaptic weights and delays, etc.

7
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n_populations = 11
population_size = 8
neuron_parameters = {

’cm’: 0.2,
’v_reset’: -70,
’v_rest’: -70,
’v_thresh’: -47,
’e_rev_I’: -70,
’e_rev_E’: 0.0,

}
weight_exc_exc = 0.005
weight_exc_inh = 0.005
weight_inh_exc = 0.5
delay = 3.0
rng_seed = 42
stimulus_onset = 25.0
stimulus_sigma = 0.5
runtime = 150.0

The setup() function initializes and configures the simulator (in this case NEST).

sim.setup(timestep=0.1)

The main building block in PyNN is a population of neurons of the same type (although the parameters of the
neurons within the population can be heterogeneous). Here we create 11 populations of excitatory integrate-and-
fire (IF) neurons and 11 populations of inhibitory IF neurons.

populations = {’exc’: [], ’inh’: []}
for syn_type in (’exc’, ’inh’):

populations[syn_type] = [sim.Population(population_size,
sim.IF_cond_exp,
neuron_parameters)

for i in range(n_populations)]

We now connect each excitatory population to the following pair of excitatory and inhibitory populations, and
each inhibitory population to the excitatory population within the same pair.

connector_exc_exc = sim.AllToAllConnector(weights=weight_exc_exc, delays=delay)
connector_exc_inh = sim.AllToAllConnector(weights=weight_exc_inh, delays=delay)
connector_inh_exc = sim.AllToAllConnector(weights=weight_inh_exc, delays=delay)

for i in range(n_populations):
j = (i + 1) % n_populations
prj_exc_exc = sim.Projection(populations[’exc’][i], populations[’exc’][j],

connector_exc_exc, target=’excitatory’)
prj_exc_inh = sim.Projection(populations[’exc’][i], populations[’inh’][j],

connector_exc_inh, target=’excitatory’)
prj_inh_exc = sim.Projection(populations[’inh’][i], populations[’exc’][i],

connector_exc_exc, target=’inhibitory’)

The first pair of populations are stimulated by a burst of spikes.

numpy.random.seed(rng_seed)
stim_spikes = numpy.random.normal(loc=stimulus_onset,

scale=stimulus_sigma,
size=population_size)

stim_spikes.sort()
stimulus = sim.Population(1, sim.SpikeSourceArray, {’spike_times’: stim_spikes})

prj_stim_exc = sim.Projection(stimulus, populations[’exc’][0],
connector_exc_exc, target=’excitatory’)

prj_stim_inh = sim.Projection(stimulus, populations[’inh’][0],
connector_exc_inh, target=’excitatory’)

8 Chapter 2. Building models
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We’ve now finished building the network, now we instrument it, by recording spikes from all populations.

for syn_type in (’exc’, ’inh’):
for population in populations[syn_type]:

population.record()

Now we run the simulation:

sim.run(runtime)

Finally we loop over the populations, retrieve the spike times, and plot a raster plot (spike time vs neuron index).

colours = {’exc’: ’r’, ’inh’: ’b’}

id_offset = 0
for syn_type in [’exc’, ’inh’]:

for population in populations[syn_type]:
spikes = population.getSpikes()
colour = colours[syn_type]
plt.plot(spikes[:,1], spikes[:,0] + id_offset,

ls=’’, marker=’o’, ms=1, c=colour, mec=colour)
id_offset += population.size

plt.xlim((0, runtime))
plt.ylim((-0.5, 2* n_populations * population_size + 0.5))
plt.xlabel(’time (t)’)
plt.ylabel(’neuron index’)
plt.savefig("synfire_chain.png")

Note that here we include the plotting in the same script just to illustrate the example output. Scripts submitted to
the Neuromorphic Computing Platform should not in general contain graph plotting or data analysis code. Instead
you should save spikes to file and use the other tools available in the Collaboratory for analysing and visualizing
the results.

2.2. A simple example 9
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2.3 Using different backends

To run the same simulation with a different simulator, just change the name of the PyNN backend to import, e.g.:

import pyNN.neuron as sim

to run the simulation with NEURON. For the PM system, the module to import is pyNN.hardware.hbp_pm
while for the MC system the module is pyNN.spiNNaker.

The recommended approach is to provide the name of the backend as a command-line argument, i.e., you run your
simulation using:

$ python run.py nest

PyNN contains some utility functions to make this easier. With PyNN 0.7, use:

from pyNN.utility import get_script_args
simulator_name = get_script_args(1)[0]
exec("import pyNN.%s as sim" % simulator_name)

With PyNN 0.8:

from pyNN.utility import get_simulator
sim, options = get_simulator()

2.4 “Physical model” (BrainScaleS) system

The BrainScaleS system has a number of additional configuration options that can be passed to setup(). These
are explained in About the BrainScaleS hardware. There are also a number of limitations, for example only a
subset of the PyNN standard neuron and synapse models are available.

The BrainScaleS system attempts to automatically place neurons on the wafers in an optimal way. However, it is
possible to influence this placement or control it manually. An example can be found in label-marocco-example.

2.5 “Many core” (SpiNNaker) system

The SpiNNaker system supports the standard arguments provided by the PyNN setup() function. The SpiN-
Naker system has a number of limitations in terms of the support for PyNN functionality, for example, only a
subset of the PyNN standard neuron and synapse models are currently available. These limitations are defined in
the online documentation here.

The SpiNNaker software stack attempts to automatically partition the populations defined in the PyNN script into
core sized chunks (the smallest atomic size of resource for a machine) of neurons which are then placed onto the
machine in an optimal way in regard to the machine’s available resources. However, it is possible to influence the
partitioning and placement behaviours manually.

For example, take the PyNN definition of a population from the “synfire chain” example discussed previously, and
shown below:

populations[syn_type] = sim.Population(population_size,
sim.IF_cond_exp,
neuron_parameters)

A partitioning limitation/constraint can be added to the population, which can limit how many neurons each core
size chunk will contain at a maximum. This is shown below:

populations[syn_type] = sim.Population(population_size,
sim.IF_cond_exp,
neuron_parameters)

populations[syn_type].add_constraint(sim.PartitionerMaximumSizeConstraint(200))

10 Chapter 2. Building models
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This and other examples of manual limitations can be found in the online documentation here.

2.5. “Many core” (SpiNNaker) system 11
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CHAPTER

THREE

RUNNING SIMULATIONS

The Neuromorphic Computing Platform of the Human Brain Project contains two very different neuromorphic
hardware systems - BrainScaleS (also known as “NM-PM-1”, “physical model”) and SpiNNaker (also known as
“NM-MC-1”, “many core”) - but has a single interface.

Jobs are written as Python scripts using the PyNN API, submitted to a queue server, then executed on one of the
neuromorphic systems. On job completion, the user may retrieve the results of the simulation/emulation.

There are several ways of interacting with the queue server. This document describes the web interface and the
Python client.

3.1 Format of a job

Whether using the web interface or the Python client, a job for the HBP Neuromorphic Computing Platform
consists of:

• an experiment description

• input data

• hardware platform configuration

3.1.1 Experiment description

The experiment description takes the form of a Python script using the PyNN API. You must provide one of:

• a single script, uploaded as part of the job submission or pasted into the web form

• the file path of a single script located on your local machine (Python client only)

• the URL of a public Git repository

• the URL of a zip or tar.gz archive

In the latter two cases, you may optionally specify the path to the main Python script you wish to run, together
with any command-line arguments. The command-line arguments may contain a placeholder, “{system}”,
which will be replaced with the name of the PyNN backend module to be used (e.g. “spinnaker”). Example:

main.py --option1=42 {system}

If the path is not specified, the script is assumed to be named run.py, i.e. the default is:

run.py {system}

13
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3.1.2 Input data

Input data are specified as a list of data items. Each data item is the URL of a data file that should be downloaded
and placed in the job working directory. If your input data files are contained within your Git repository or zip
archive, you do not need to specify them here.

3.1.3 Hardware platform configuration

Here you must choose the hardware system to be used (“BrainScaleS” for the Heidelberg system, “SpiNNaker”
for the Manchester system, “BrainScaleS-ESS” for the software simulator of the BrainScaleS system, or “Spikey”
for the Heidelberg single-chip system) and specify any specific configuration options for the hardware system you
have chosen.

3.2 Using the web interface

3.2.1 Setting up your Collab

The neuromorphic computing platform can be accessed from within the HBP Collaboratory using the “Neuromor-
phic Computing Platform Job Manager v2” app and the “Neuromorphic Computing Platform Resource Manager”
app.

To create a new Collab which already contains these two apps, go to the Neuromorphic Computing Platform collab
and click on Create a Collab or Get Started! To add the apps to an existing Collab, click ADD in the Navigation
panel, and then select each of the apps in the list.

3.2.2 Requesting access to the platform

In your Collab, click on Resource Manager, and fill in the form.

The project description should contain a scientific or technical motivation for using the platform, and should
specify which of the Neuromorphic Computing Systems (“BrainScaleS” and/or “SpiNNaker”) you wish to use.

Three forms of access are available:

Test access Only a brief abstract is required explaining why you wish to use the platform. It is not
necessary to fill in the “Project description” field. No previous experience with the platform is
required. A fixed quota of 5000 core-hours (for the SpiNNaker system) and/or 0.1 wafer-hours
(for the BrainScaleS system) will be allocated, together with temporary storage of 1 GB.
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Preparatory access Only a short technical motivation is required. Previous experience with the plat-
form (through a test access) is expected. A fixed quota of 500000 core-hours (for the SpiNNaker
system) and/or 10 wafer-hours (for the BrainScaleS system) will be allocated, subject to a brief
technical review, together with temporary storage of 10 GB.

Project access For projects requiring more than the test/preparatory quotas, a scientific motivation
of about one page should be provided, and a request for resources (in core-hours, wafer-hours
and/or GB of storage) should be specified, and justified with respect to the project’s scientific
goals. This proposal will receive both scientific and technical reviews.

Do not forget to specify which type of access you are requesting, and which of the Neuromorphic Computing
Systems (“BrainScaleS”, “Spikey” and/or “SpiNNaker”) you wish to use.

Access is granted on a per-collab basis, not per-person. All members of this collab will be able to make use of the
quota. All collab members will also be asked to sign and return a User Agreement form.

Once the resource request is granted, the Resource Manager will display the quota usage.

3.2.3 Submitting a simulation job

To submit a simulation job to the Platform, click on Job Manager.

You will see a list of jobs you have submitted to the platform. The first time you connect, of course, this list will
be empty.

To create a new simulation job click on the ‘+’ icon or the New Job button.

In this dialog, you must choose the project with which the job is associated, the hardware platform on which you
wish to run (“BrainScaleS”, “SpiNNaker”, “BrainScaleS-ESS” or “Spikey”), and provide the Python script which
should be run, either by copy-and-pasting the script into the “Code” box,

or by giving the URL of a version control repository or zip/tar archive together with a command-line invocation.
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In your Python script you should avoid hard-coding the name of the PyNN backend to run, as this will differ
depending on the platform. Instead, your script should read the name of the backend from the command-line.
With PyNN 0.8, this can be achieved using:

from pyNN.utility import get_simulator
sim, options = get_simulator()

sim.setup(...)
p = sim.Population(...)

For PyNN 0.7, see Using different backends.

The “Hardware config” box is optional, but may contain extra configuration options in JSON format (similar to
the syntax for dictionaries in Python).

Note: more information on the available configuration options for the different hardware systems will be provided
soon.

It is possible to provide input data files to the simulation. The files must be accessible online.

After clicking “Submit” the job will be submitted to the queue, and will appear in the list of jobs with a “submitted”
label.
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You will receive e-mail notifications when the job starts running and when it completes.

3.2.4 Retrieving the results of a job

Once the job is completed, click on the magnifying glass icon to see the job results and download the output data
files.

3.2. Using the web interface 17
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3.3 Using the Python client

The Python client allows scripted access to the Platform. The same client software is used both by end users for
submitting jobs to the queue, and by the hardware systems to take jobs off the queue and to post the results.

3.3.1 Installing the Python client

Install the nmpi_client package from PyPI into a virtual environment, using for example virtualenv or Anaconda.
The client works with Python 2.7 and Python 3.3 or newer.

$ pip install hbp_neuromorphic_platform

3.3.2 Configuring the client

Before using the Neuromorphic Computing Platform you must have an HBP account, have created at least one
Collab, and have obtained a compute quota as described above under Requesting access to the platform.

To interact with the Platform, you first create a Client object with your HBP username:

import nmpi

c = nmpi.Client("myusername")

This will prompt you for your password.

After you have connected once with your password, the platform provides a token which you can save to a file
and use in place of the password.

token = c.token

new_client = Client("myusername", token=token)

This token will eventually expire. When it does, reconnect with your password to obtain a new token.

3.3.3 Submitting a job

Simple example: a single file on your local machine, no input data or parameter files.

job_id = c.submit_job(source="/Users/alice/dev/pyNN_0.7/examples/IF_cond_exp.py",
platform=nmpi.BRAINSCALES,
collab_id=563)

The Collab ID is the first number in the URL of your Collab, e.g.
https://collab.humanbrainproject.eu/#/collab/563/nav/5043.

You can get a list of all your Collabs using:

collabs = c.my_collabs()

A more complex example: the experiment and model description are contained in a Git repository. The input to
the network is an image file taken from the internet.

job_id = c.submit_job(source="https://github.com/apdavison/nmpi_test",
platform=nmpi.SPINNAKER,
collab_id=141,
inputs=["http://aloi.science.uva.nl/www-images/90/90.jpg"],
command="run.py {system}")
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3.3.4 Monitoring job status

>>> c.job_status(job_id)
u’submitted’

3.3.5 Retrieving the results of a job

>>> job = c.get_job(job_id, with_log=True)
>>> from pprint import pprint
>>> pprint(job)
{u’code’: u’https://github.com/apdavison/nmpi_test’,
u’hardware_config’: u’’,
u’hardware_platform’: u’SpiNNaker’,
u’id’: 19,
u’input_data’: [{u’id’: 34,

u’resource_uri’: u’/api/v1/dataitem/34’,
u’url’: u’http://aloi.science.uva.nl/www-images/90/90.jpg’}],

u’log’: u’’,
u’output_data’: [{u’id’: 35,

u’resource_uri’: u’/api/v1/dataitem/35’,
u’url’: u’http://example.com/my_output_data.h5’}],

u’collab_id’: 141,
u’resource_uri’: u’/api/v1/queue/19’,
u’status’: u’finished’,
u’timestamp_completion’: u’2014-08-13T21:02:37.541732’,
u’timestamp_submission’: u’2014-08-13T19:40:43.964541’,
u’user’: u’myusername’}

To download the data files generated by your simulation:

filenames = download_data(self, job, local_dir=".")
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CHAPTER

FOUR

THE BRAINSCALES “PHYSICAL
MODEL” SYSTEM

4.1 About the BrainScaleS hardware

4.1.1 The neuromorphic wafer module

At the core of the BrainScaleS wafer-scale hardware system (see Figure 4.1) is an uncut wafer built from mixed-
signal ASICs 1, named High Input Count Analog Neural Network chips (HICANNs), which provide a highly
configurable substrate that physically emulates adaptively spiking neurons and dynamic synapses (Schemmel et
al. (2010), Schemmel et al. (2008)). The intrinsic time constants of these VLSI model circuits are multiple orders
of magnitude shorter than their biological counterparts. Consequently, the hardware model evolves with a speedup
factor of 103 up to 105 compared to biological real time, the precise value depending on the configuration of the
system. This speedup enables power-efficient computation as the energy consumption for synaptic transmissions
is several orders of magnitude lower than in classically simulated neuronal networks.

In addition to a high-bandwidth asynchronous on-wafer event communication infrastructure, 48 FPGA 2 commu-
nication modules provide off-wafer connectivity (to other wafers and to host computers).

A full wafer system comprises 384 interconnectable HICANNs, each of which implements more than 114,688
programmable dynamic synapses and up to 512 neurons, resulting in a total of approximately 44 million synapses
and up to 196,608 neurons per wafer module. The exact number of neurons depends on the configuration of the
substrate, which allows to combine multiple neuron building blocks to increase the input count per cell.

Via the communication FPGAs the system can be configured and operated from a host computer. Each commu-
nication FPGA is connected to a dedicated area on the wafer which contains 8 HICANNs. This FPGA-HICANN
link is used to configure the HICANNs as well as to transmit pulse events to and from the neural circuits on the
wafer. The pulse communication between the on-wafer neurons is performed by a bus-like network directly on
the wafer.

The system provides a high degree of configurability with respect to network architecture and neuron parameters:

• each neuron provides configurable AdEx neuron dynamics

• the synapses provide 4-bit weight resolution and STDP functionality

• the connection topology can be configured

For a detailed specification see the Platform specification.

4.1.2 The full BrainScaleS system

The BrainScaleS system, shown in Figure 4.2, consists of 20 neuromorphic wafer modules together with sup-
port infrastructure and a conventional compute cluster used for controlling the wafer modules and for simulated

1 Application Specific Integrated Circuit
2 Field Programmable Gate Array
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Figure 4.1: The BrainScaleS wafer-scale hardware system: Wafer comprising HICANN building blocks and on-
wafer communication infrastructure, mechanical infrastructure (top cover and insertion frame), analog readout
boards (AnaB), power supply and digital inter-wafer as well as wafer-host communication modules.

environments.

Figure 4.3 provides a simplified overview of the BrainScaleS system. The support infrastructure is responsible for
power supply, off-wafer communication and analog readout functionality. A dedicated Raspberry Pi monitors and
controls all power links as well as other operating parameters of the wafer system. Analog readout (e.g., recording
of membrane voltages) functionality is provided by a custom analog readout module (AnaRM). Several AnaRMs
are handled by another dedicated control computer. The control/compute cluster orchestrates the configuration of
the system and the execution of neuronal network experiments including all input and output data of the emulated
network.

4.1.3 Glossary

4.2 Using the BrainScaleS system

As explained in Building models, both the experiment description and the model description for the BrainScaleS
system must be written as Python scripts, using the PyNN application programming interface (API), version 0.7.

In the following, the build and work flow on UHEI BrainScaleS cluster frontend nodes is described. If BrainScaleS
is accessed through the Collaboratory or the Python client, the installation can be skipped.

4.2.1 Setup

The following section can be skipped when loading the nmpm_software module by

module load nmpm_software/current-spack
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Figure 4.2: The BrainScaleS (NM-PM-1) system: five 19-inch racks contain 20 neuromorphic wafer modules (cf.
4.1), the other two racks carry power supplies and a conventional control cluster.

Figure 4.3: The left area illustrates the partitioning of HICANNs into larger units (reticles) and the data flow up
to the control cluster.
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All available versions can be listed by module avail nmpm_software.

To compile your own installation create and change to a directory for your projects, preferably on wang, e.g.:
/wang/users/<somebody>/cluster_home/projects.

ssh-agent

To reduce the amount of typing, please consider using ssh-agent to cache your key password:

eval ‘ssh-agent‘
ssh-add ~/path/to/your/private_id_rsa

waf

This step is optional as there exists a waf module. However, if you need a customized waf version:

git clone git@gitviz.kip.uni-heidelberg.de:waf.git -b symwaf2ic visions-waf
make -f visions-waf/Makefile
ln -f visions-waf/waf .
alias waf=$PWD/waf

pyhmf, marocco and dependencies

Then create and change to a directory for marocco, e.g., /wang/users/somebody/cluster_home/projects/marocco:

source /wang/environment/software/$(lsb_release -c -s)/spack/share/spack/setup-env.sh
spack load --dependencies gcc@4.9.2
spack load --dependencies visionary-defaults
module load waf

waf setup --project pyhmf --project=marocco --without-ester
waf configure
waf install --test-execnone
# some extra targets are needed
waf install --target=pymarocco,pyhalbe,pysthal,redman_xml --test-execnone

including cake (optional):

source /wang/environment/software/$(lsb_release -c -s)/spack/share/spack/setup-env.sh
spack load --dependencies gcc@4.9.2
spack load --dependencies visionary-defaults
module load waf

waf setup --project pyhmf --project marocco --project cake --without-ester
waf configure
waf install --test-execnone
# some extra targets are needed
waf install --target=pymarocco,pyhalbe,pysthal,redman_xml,pycake --test-execnone

including support for ESS add --with-ess to setup call.

paths

To include the local paths in your environment, please use:

module load localdir

Another method would be to create an init file and put all the needed parts into a script:
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echo "INSTALLED_LIB_PATH=$(readlink -e lib)" > init.sh
cat >>init.sh<<EOF
source /wang/environment/software/$(lsb_release -c -s)/spack/share/spack/setup-env.sh
spack load --dependencies gcc@4.9.2
spack load --dependencies visionary-defaults
module load localdir
module load waf
EOF

In every (!) fresh shell you now have to source the init.sh:

source path/to/init.sh

Check if the installation and the setup of variables is fine:

python -c "import pyhmf" && echo ok

should print ok, if instead:

#import pyNN.nest as pynn # if you want to use the NEST simulator
import pyhmf as pynn # if you want to use the BrainScaleS Wafer-Scale System

The translation from the biological neuronal network description into a hardware configuration is performed by
the marocco mapping tool (for more detailed information, see Details of the software stack below).

The BrainScaleS system attempts to automatically place neurons on the wafers in an optimal way. However, it
is possible to influence this placement, control it manually, and examine the resultant data structures using the
Python helper module pymarocco. This enables users to go from a property in PyNN (e.g. the refractory period
of a single neuron within an assembly) to the corresponding parameter on hardware. A typical use case is iterative
low-level tuning of hardware parameters.

4.2.2 Using marocco

import pyhmf as pynn
from pymarocco import PyMarocco

marocco = PyMarocco()
pynn.setup(marocco=marocco)

Make sure that the call to setup() happens before creating populations, if not, the populations will not be visible
to marocco.

In the following example, one neuron is placed on the wafer, however, by setting marocco.backend =
PyMarocco.None, the software stops after the map & route process (i.e. before configuring the hardware
system).

import pyhmf as pynn
from pymarocco import PyMarocco

marocco = PyMarocco()
marocco.backend = PyMarocco.None

pynn.setup(marocco=marocco)

neuron = pynn.Population(1, pynn.IF_cond_exp, {})

pynn.run(10)
pynn.end()

Note: Available marocco backends are None, Hardware, ESS. None has been described above. Hardware
is the default and performs real experiment runs on the neuromorphic hardware system. ESS runs a simulation of
the hardware: the Executable System Specification.

4.2. Using the BrainScaleS system 25



HBP Neuromorphic Computing Platform Guidebook, Release 2017-02-22 17:03:17 (6aeeeae)

In the output you should see:

Populations:
0th element: 0x1f98650 Population(IF_cond_exp, 1)

If you don’t see this output, make sure that you called pynn.setup(marocco=marocco) before the call to
pynn.Population.

You will also see a lot of debugging output. To set the log level, add

import pylogging
for domain in [""]:

pylogging.set_loglevel(pylogging.get(domain), pylogging.LogLevel.ERROR)

after the import of pymarocco.

As we did not specify on which chip the neuron should be placed, marocco decides automatically to use
HICANNOnWafer(X(18), Y(7)), Wafer(0) which is in the center of the wafer.

To choose the HICANN a population is placed on, we give marocco a hint:

import Coordinate as C

marocco.manual_placement.on_hicann(neuron, C.HICANNOnWafer(C.X(5), C.Y(5)))

At the end, the script is the following:

#!/usr/bin/env python

import pyhmf as pynn
import Coordinate as C
from pymarocco import PyMarocco
from pymarocco.results import Marocco

import pylogging
for domain in ["Calibtic", "marocco"]:

pylogging.set_loglevel(pylogging.get(domain), pylogging.LogLevel.INFO)

marocco = PyMarocco()
marocco.persist = "results.bin"
pynn.setup(marocco = marocco)

pop = pynn.Population(1, pynn.IF_cond_exp)

marocco.manual_placement.on_hicann(pop, C.HICANNOnWafer(C.X(5), C.Y(5)), 4)

pynn.run(10)
pynn.end()

results = Marocco.from_file(marocco.persist)

for neuron in pop:
for item in results.placement.find(neuron):

for denmem in item.logical_neuron():
print denmem

We also added a print out of the chosen neuron circuits:

NeuronOnWafer(NeuronOnHICANN(X(0), top), HICANNOnWafer(X(5), Y(5)))
NeuronOnWafer(NeuronOnHICANN(X(1), top), HICANNOnWafer(X(5), Y(5)))
NeuronOnWafer(NeuronOnHICANN(X(0), bottom), HICANNOnWafer(X(5), Y(5)))
NeuronOnWafer(NeuronOnHICANN(X(1), bottom), HICANNOnWafer(X(5), Y(5)))
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Calibration

To change the calibration backend from database to XML set “calib_backend” to XML. Then the calibration is
looked up in xml files named w0-h84.xml, w0-h276.xml, etc. in the directory “calib_path”.

Running pyNN scripts

To run on the hardware one needs to use the slurm job queue system:

srun -p experiment --wmod 33 --hicann 367 python nmpm1_single_neuron.py

nmpm1_single_neuron.py:

#!/usr/bin/env python
# -*- coding: utf-8; -*-

import numpy as np

from pyhalbe import HICANN
import pyhalbe.Coordinate as C
from pysthal.command_line_util import init_logger

import pyhmf as pynn
from pymarocco import PyMarocco, Defects
from pymarocco.runtime import Runtime
from pymarocco.coordinates import LogicalNeuron
from pymarocco.results import Marocco

init_logger("WARN", [
("guidebook", "DEBUG"),
("marocco", "DEBUG"),
("Calibtic", "DEBUG"),
("sthal", "INFO")

])

import pylogging
logger = pylogging.get("guidebook")

neuron_parameters = {
’cm’: 0.2,
’v_reset’: -70.,
’v_rest’: -20.,
’v_thresh’: -10,
’e_rev_I’: -100.,
’e_rev_E’: 60.,
’tau_m’: 20.,
’tau_refrac’: 0.1,
’tau_syn_E’: 5.,
’tau_syn_I’: 5.,

}

marocco = PyMarocco()
marocco.neuron_placement.default_neuron_size(4)
marocco.neuron_placement.minimize_number_of_sending_repeaters(False)
marocco.merger_routing.strategy(marocco.merger_routing.one_to_one)

marocco.bkg_gen_isi = 125
marocco.pll_freq = 125e6

marocco.backend = PyMarocco.Hardware
marocco.calib_backend = PyMarocco.XML
marocco.defects.path = marocco.calib_path = "/wang/data/calibration/ITL_2016"
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marocco.defects.backend = Defects.XML
marocco.default_wafer = C.Wafer(33)
marocco.param_trafo.use_big_capacitors = True
marocco.input_placement.consider_firing_rate(True)
marocco.input_placement.bandwidth_utilization(0.8)

runtime = Runtime(marocco.default_wafer)
pynn.setup(marocco=marocco, marocco_runtime=runtime)

# ------ set up network --------------------------------------------------------------------------------------------------------------------

pop = pynn.Population(1, pynn.IF_cond_exp, neuron_parameters)

pop.record()
pop.record_v()

hicann = C.HICANNOnWafer(C.Enum(367))
marocco.manual_placement.on_hicann(pop, hicann)

connector = pynn.AllToAllConnector(weights=1)

exc_spike_times = [
250,
500,
520,
540,
1250,

]

inh_spike_times = [
750,
1000,
1020,
1040,
1250,

]

duration = 1500.0

stimulus_exc = pynn.Population(1, pynn.SpikeSourceArray, {
’spike_times’: exc_spike_times})

stimulus_inh = pynn.Population(1, pynn.SpikeSourceArray, {
’spike_times’: inh_spike_times})

projections = [
pynn.Projection(stimulus_exc, pop, connector, target=’excitatory’),
pynn.Projection(stimulus_inh, pop, connector, target=’inhibitory’),

]

# ------ run mapping --------------------------------------------------------------------------------------------------------------------------

marocco.skip_mapping = False
marocco.backend = PyMarocco.None

pynn.reset()
pynn.run(duration)

# ------ change low-level parameters before configuring hardware ----------------------------------

def set_sthal_params(wafer, gmax, gmax_div):
for hicann in wafer.getAllocatedHicannCoordinates():

fgs = wafer[hicann].floating_gates
for ii in xrange(fgs.getNoProgrammingPasses()):
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cfg = fgs.getFGConfig(C.Enum(ii))
cfg.fg_biasn = 0
cfg.fg_bias = 0
fgs.setFGConfig(C.Enum(ii), cfg)

for block in C.iter_all(C.FGBlockOnHICANN):
fgs.setShared(block, HICANN.shared_parameter.V_gmax0, gmax)
fgs.setShared(block, HICANN.shared_parameter.V_gmax1, gmax)
fgs.setShared(block, HICANN.shared_parameter.V_gmax2, gmax)
fgs.setShared(block, HICANN.shared_parameter.V_gmax3, gmax)

for block in C.iter_all(C.FGBlockOnHICANN):
fgs.setShared(block, HICANN.shared_parameter.V_dllres, 275)
fgs.setShared(block, HICANN.shared_parameter.V_ccas, 800)

for driver in C.iter_all(C.SynapseDriverOnHICANN):
for row in C.iter_all(C.RowOnSynapseDriver):

wafer[hicann].synapses[driver][row].set_gmax_div(
C.left, gmax_div)

wafer[hicann].synapses[driver][row].set_gmax_div(
C.right, gmax_div)

set_sthal_params(runtime.wafer(), gmax=1023, gmax_div=1)

# ------ configure hardware ------------------------------------------------------------------------------------------------------------

marocco.skip_mapping = True
marocco.backend = PyMarocco.Hardware
# Full configuration during first step
marocco.hicann_configurator = PyMarocco.HICANNv4Configurator

for digital_weight in [5, 10, 15]:
logger.info("running measurement with digital weight {}".format(digital_weight))
for proj in projections:

proj_item, = runtime.results().synapse_routing.synapses().find(proj)
synapse = proj_item.hardware_synapse()

proxy = runtime.wafer()[synapse.toHICANNOnWafer()].synapses[synapse]
proxy.weight = HICANN.SynapseWeight(digital_weight)

pynn.run(duration)
np.savetxt("membrane_w{}.txt".format(digital_weight), pop.get_v())
np.savetxt("spikes_w{}.txt".format(digital_weight), pop.getSpikes())
pynn.reset()

# only change digital parameters from now on
marocco.hicann_configurator = PyMarocco.NoResetNoFGConfigurator

Currently, the calibration is optimized towards the neuron parameters of the example. Also note that current
parameters, i.e. i_offset are not supported.

With the help of plot_spikes.py, the recorded spikes (spikes_w15.txt) and membrane trace
(membrane_w15.txt) for the digital weight setting 15 can be plotted.

4.2.3 Inspect the synapse loss

When mapping network models to the wafer-scale hardware, it may happen that not all model synapses can be
realized on the hardware due to limited hardware resources. Below is a simple network that is mapped to very
limited resources so that synapse loss is enforced. For this example we show how to extract overall mapping
statistics and projection-wise or synapse-wise synapse losses.
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def main():
"""
create small network with synapse loss. The synapse loss happens due to a
maximum syndriver chain length of 5 and only 4 denmems per neuron. After
mapping, the synapse loss per projection is evaluated and plotted for one
projection. The sum of lost synapses per projection is compared to the
overall synapse loss returnd by the mapping stats.
"""
marocco = PyMarocco()
marocco.neuron_placement.default_neuron_size(4)
marocco.synapse_routing.driver_chain_length(5)

pynn.setup(marocco=marocco)

neuron = pynn.Population(50, pynn.IF_cond_exp)
source = pynn.Population(50, pynn.SpikeSourcePoisson, {’rate’ : 2})

connector = pynn.FixedProbabilityConnector(
allow_self_connections=True,
p_connect=0.5,
weights=0.00425)

proj_stim = pynn.Projection(source, neuron, connector, target="excitatory")
proj_rec = pynn.Projection(neuron, neuron, connector, target="excitatory")

pynn.run(1)

print marocco.stats

total_syns = 0
lost_syns = 0
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for proj in [proj_stim, proj_rec]:
l,t = projectionwise_synapse_loss(proj, marocco)
total_syns += t
lost_syns += l

assert total_syns == marocco.stats.getSynapses()
assert lost_syns == marocco.stats.getSynapseLoss()

plot_projectionwise_synapse_loss(proj_stim, marocco)
pynn.end()

Where print marocco.stats prints out overall synapse loss statistics:

MappingStats {
synapse_loss: 581 (23.3709%)
synapses: 2486
synapses set: 1905
synapses lost: 581
synapses lost(l1): 0
populations: 2
projections: 2
neurons: 50}

Invidual mapping statistics like the number of synapses set can also be directly accessed in python, see class
MappingStats in the marocco documentation.

The function projectionwise_synapse_loss shows how to calculate the synapse loss per projection.

def projectionwise_synapse_loss(proj, marocco):
"""
computes the synapse loss of a projection
params:

proj - a pyhmf.Projection
marocco - the PyMarocco object after the mapping has run.

returns: (nr of lost synapses, total synapses in projection)
"""
orig_weights = proj.getWeights(format=’array’)
mapped_weights = marocco.stats.getWeights(proj)
syns = np.where(~np.isnan(orig_weights))
realized_syns = np.where(~np.isnan(mapped_weights))
orig = len(syns[0])
realized = len(realized_syns[0])
print "Projection-Wise Synapse Loss", proj, (orig - realized)*100./orig
return orig-realized, orig

Which yields the following output for the example above:

Projection-Wise Synapse Loss Projection ( PyAssembly (50) -> PyAssembly (50)) 23.5576923077
Projection-Wise Synapse Loss Projection ( PyAssembly (50) -> PyAssembly (50)) 23.182552504

Finally, the function plot_projectionwise_synapse_loss can be used to plot the lost and realized
synapses of one projection.

def plot_projectionwise_synapse_loss(proj, marocco):
"""
plots the realized and lost synapses of a projection
params:

proj - a pyhmf.Projection
marocco - the PyMarocco object after the mapping has run.

"""
orig_weights = proj.getWeights(format=’array’)
mapped_weights = marocco.stats.getWeights(proj)
realized_syns = np.where(np.isfinite(mapped_weights))
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lost_syns = np.logical_and(np.isfinite(orig_weights), np.isnan(mapped_weights))

conn_matrix = np.zeros(orig_weights.shape)
conn_matrix[realized_syns] = 1.
conn_matrix[lost_syns] = 0.5

import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
plt.figure()
plt.subplot(111)
plt.imshow(conn_matrix, cmap=’hot’, interpolation=’nearest’)
plt.xlabel("post neuron")
plt.ylabel("pre neuron")
plt.title("realized and lost synapses")
plt.savefig("synapse_loss.png")

Figure 4.4: Realized (black) and lost (red) synapses of the stimulus projection in the example network above.

4.2.4 Details of the software stack

The BrainScaleS Wafer-Scale Software Stack is shown in Figure 4.5.

User-provided neuronal network topologies are evaluated by our PyNN API implementation (PyHMF), which is
written in C++ with a Python wrapper. The data structures (spike trains, populations, projections, cell types, meta
information, etc.) are implemented in C++ (euter). This layer also provides a serialization and deserialization
interface for lower software layers. In a nutshell, euter serializes the PyNN/PyHMF-based experiment descrip-
tion into a binary data stream and hands over to the next software layer. In the following software layers, the
translation from this biological neuronal network description into a hardware configuration will be performed. A
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large fraction of the translation work, in particular the network graph translation, is performed by the marocco
mapping tool (described in the PhD thesis of S. Jeltsch. Code documentation is provided by doxygen and
available here.

Figure 4.5: Data-flow-centric view of the user software stack of the BrainScaleS Wafer-Scale System. [taken from
PhD thesis of E. Müller]

marocco uses calibration (calibtic) and blacklisting (redman) information to take into account circuit-
specific properties and defects. This information is needed during the map & route process to homogenize the
behavior of hardware neuron and synapse circuits and to exclude defective parts of the system.

4.3 Simulating the BrainScaleS hardware

The Executable System Specification (ESS) is a software model of the BrainScaleS hardware system. The ESS is
implemented in C++/SystemC and contains functional models of all relevant units of the wafer-scale hardware. It
is fully executable and resembles how neural experiments are run on the real wafer-scale system.

The ESS allows offline experimentation with the BrainScaleS system, and can be used for testing small models
locally before submitting them to the hardware system, and for introspecting the system behaviour. The ESS
supports PyNN versions 0.7 and 0.8.

Note, however, that the ESS runs much more slowly than the real hardware.

4.3.1 Installation

Using Docker

The simplest way to use the ESS is to use the (uhei/ess-system) Docker image. This has a recent version of the
ESS already installed, and is updated on a regular basis.

Prerequisites

You need to have Docker installed. On Ubuntu Trusty 14.04 LTS the Docker package is called docker.io. Note
that there is a package named docker in the Ubuntu repositories as well. It is something completely different.
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After installing you may add yourself to the docker group. Otherwise you have to prepend sudo to most Docker
commands.

You might also want to have a look at /etc/default/docker.io after installation, especially if you’re
sitting behind a proxy. These proxy settings are not for the containers, but for communication with the Docker
Repository (i.e. docker pull).

sudo apt-get install docker.io
# sudo adduser $USER docker
# sudo editor /etc/default/docker.io
# re-login

Download/upgrade of the uhei/ess-system image

The following step takes some time upon first execution, depending on your internet connection. Later updates
should generally perform faster as only changes are pulled.

sudo docker pull uhei/ess-system:14.04

Starting the ESS container

The execution of the downloaded image creates a new Docker container. Note that Docker containers are not
persistent, but one can link a host directory for persistent user data into the container. The following docker
run command does just that. The host directory specified by the VOLUME environment variable will be available
as /bss/$USER within the container. If you’re interested in the option flags of the docker run command,
run docker help run.

# docker help run
mkdir ess-data # where to put user/persistent data
VOLUME="${PWD}/ess-data"
sudo docker run --name ess-container --hostname ess-container \

-v "$VOLUME:/bss/$USER" -ti "uhei/ess-system:14.04" /bin/bash

Testing your ESS container installation

You should be in the container now, as root in the directory /bss (as in BrainScaleS). An ls should show
your folder for persistent data (under your user name or whatever you put instead of $USER in the docker run
command above), as well as the directories mappingtool_test, neurotools and tutorial.

To test your installation, you can run some unit tests. This is almost the same as with the installation below, just
the mapping tool test is installed at another location:

# root@ess-container:/bss#
python mappingtool_test/regression/run_ess_tests.py
python $SYMAP2IC_PATH/components/systemsim/test/regression/run_ess_tests.py
python $SYMAP2IC_PATH/components/systemsim/test/system/run_ess_tests.py

Installing from source

Note: these instructions have been tested on a native Ubuntu saucy 13.10 on a 64-bit machine

Prerequisites

To be able to configure and compile the symap2ic project, you need to install the following libraries:
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apt-get -y install git python-pip python-dev build-essential libgtest-dev \
libboost-all-dev libpng12-dev libssl-dev libmongo-client-dev mongodb \
liblog4cxx10-dev autotools-dev automake

The ESS expects the 64-bit libraries to lie either in /lib64 or /usr/lib64. However, in Ubuntu 13.10, the 64-bit
libraries lie in /usr/lib/x86_64-linux-gnu. So, you need to make the following symbolic links:

ln -s /usr/lib/x86_64-linux-gnu /usr/lib64
ln -s /usr/lib/libmongoclient.a /usr/lib/x86_64-linux-gnu/libmongoclient.a

To be able to run the tests and to use the ESS, you also need to install:

apt-get -y install libgsl0-dev libncurses5-dev libreadline-dev gfortran \
libfreetype6-dev libblas-dev liblapack-dev r-base python-rpy \

pip install numpy scipy matplotlib PIL NeuroTools mpi4py xmlrunner

You should then install PyNN:

pip install PyNN # PyNN 0.8

or

pip install PyNN==0.7.5 # PyNN 0.7

Installation of the ESS

You should first obtain an account from the heidelberg group. Then, on your computer, you generate a rsa key:

ssh-keygen -t rsa

Suppose that you have saved the key in the file ~/.ssh/id_rsa. In the heidelberg website, you go to ‘My account’
(upper-right). You click on ‘Public Key’ in the upper-right corner. You click on ‘New value’ and paste the content
of your computer’s id_rsa.pub. Wait until the activation is done.

Then, you can download and install the ESS on your computer:

cd
git clone git@brainscales-r.kip.uni-heidelberg.de:symap2ic.git
cd symap2ic
source bootstrap.sh.UHEI .

For PyNN 0.8:

./waf set_config systemsim-pynn8

./waf update

For PyNN 0.7:

For PyNN 0.8:

./waf set_config systemsim

If you have had problems in the execution of the 4 lines above, you have some read access right problems from the
repositories. Please e-mail neuromorphic@humanbrainproject.eu. Please now go on by configuring and installing
the system:

./waf configure --stage=brainscales --use-systemsim --without-hardware \
--prefix=$HOME/symap2ic

./waf install

You now set the environment variables:
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echo ’export SYMAP2IC_PATH=$HOME/symap2ic’ >> ~/.bashrc
echo ’export PYTHONPATH=$PYTHONPATH:$SYMAP2IC_PATH/lib’ >> ~/.bashrc
echo ’export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SYMAP2IC_PATH/lib’ >> ~/.bashrc
bash

For PyNN 0.7, you need to copy the PyNN hardware directory into the PyNN package:

cd $SYMAP2IC_PATH
cp -r components/pynnhw/misc/pyNN_hardware_patch/hardware \

/usr/local/lib/python2.7/dist-packages/pyNN/

You can now test that the hardware backend is accessible:

python -c ’import pyNN.hardware.brainscales as sim’

To test your installation with PyNN 0.7, you can run some unit tests:

python $SYMAP2IC_PATH/components/mappingtool/test/regression/run_ess_tests.py
python $SYMAP2IC_PATH/components/systemsim/test/regression/run_ess_tests.py
python $SYMAP2IC_PATH/components/systemsim/test/system/run_ess_tests.py

To test your installation with PyNN 0.8, you can run the PyNN unit and system tests:

cd ~/PyNN-8/test
cd unittests/backends
nosetests test_mock.py
nosetests test_hardware_brainscales.py

4.3.2 Using the ESS

Scripts to run on the ESS should in general be identical to those that run on the BrainScaleS hardware. The only
required difference is to choose PyMarocco.ESS as the PyMarocco backend.

Example

A full example where an Adaptive-Exponential Integrate & Fire neuron is stimulated by external spikes, is shown
in nmpm1_adex_neuron_ess.py:

#!/usr/bin/env python

"""
Example Script for simulation of an AdEx neuron on the ESS

Note: Neuron and synapse parameters are chosen to be within the parameter ranges of
the default calibration.
"""

import pyhmf as pynn
#import pyNN.nest as pynn
from pymarocco import PyMarocco
import pylogging

# configure logging
pylogging.reset()
pylogging.default_config(level=pylogging.LogLevel.INFO,

fname="logfile.txt",
dual=False)

# Mapping config
marocco = PyMarocco()
marocco.backend = PyMarocco.ESS # choose Executable System Specification instead of real hardware
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marocco.experiment_time_offset = 5.e-7 # can be low for ESS, as no repeater locking required
marocco.neuron_placement.default_neuron_size(4) # default number of hardware neuron circuits per pyNN neuron

# set-up the simulator
pynn.setup(marocco=marocco)

neuron_count = 1 # size of the Population we will create

# Set the neuron model class
neuron_model = pynn.EIF_cond_exp_isfa_ista # an Adaptive Exponential I&F Neuron

neuron_parameters = {
’a’ : 4.0, # adaptation variable a in nS
’b’ : 0.0805, # adaptation variable b in pA
’cm’ : 0.281, # membrane capacitance nF
’delta_T’ : 1.0, # delta_T fom Adex mod in mV, determines the sharpness of spike initiation
’e_rev_E’ : 0.0, # excitatory reversal potential in mV
’e_rev_I’ : -80.0, # inhibitory reversal potential in mV
’i_offset’ : 0.0, # offset current
’tau_m’ : 9.3667, # membrane time constant
’tau_refrac’ : 0.2, # absolute refractory period
’tau_syn_E’ : 20.0, # excitatory synaptic time constant
’tau_syn_I’ : 20.0, # inhibitory synaptic time constant
’tau_w’ : 144.0, # adaptation time constant
’v_reset’ : -70.6, # reset potential in mV
’v_rest’ : -70.6, # resting potential in mV
’v_spike’ : -40.0, # spike detection voltage in mV
’v_thresh’ : -50.4, # spike initiaton threshold voltage in mV
}

# We create a Population with 1 neuron of our neuron model
N1 = pynn.Population(size=neuron_count, cellclass=neuron_model, cellparams=neuron_parameters)

# A spike source array with spike times given in a list
spktimes = [10., 50., 65., 89., 233., 245.,255.,345.,444.4]
spike_source = pynn.Population(1, pynn.SpikeSourceArray, {’spike_times’:spktimes})

# Connect the Spike source to our neuron
pynn.Projection(spike_source, N1, pynn.OneToOneConnector(weights=0.0138445), target=’excitatory’)

# record the membrane voltage of all neurons of the population
N1.record_v()
# record the spikes of all neurons of the population
N1.record()

# run the simulation for 500 ms
duration = 500.
pynn.run(duration)

# After the simulation, we get Spikes
spike_times = N1.getSpikes()
for pair in spike_times:

print "Neuron ", int(pair[0]), " spiked at ", pair[1]

# Plot voltage
do_plot = False
if do_plot:

import pylab
v = N1.get_v()[:,1:3] # strip ID
pylab.plot(v[:,0], v[:,1])
pylab.xlabel("Time [ms]")
pylab.ylabel("Voltage [mV]")
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pylab.xlim(0,duration)
pylab.show()

# clean up pyNN
pynn.end()

Note that the same script runs also with pyNN.nest, just change the first line that imports the PyNN backend.

ESS Config

In addition, one can specify an ESS configuration as follows:

import pysthal

marocco = PyMarocco()
marocco.backend = PyMarocco.ESS

ess_config = pysthal.ESSConfig()
ess_config.enable_weight_distortion = True
ess_config.weight_distortion = 0.2
ess_config.pulse_statistics_file = "pulse_stats.py"

marocco.ess_config = ess_config

parameters of ESSConfig:

enable_weight_distortion Enables the distortion of synaptic weights in the virtual hardware system.

This option can be used to resemble the fixed pattern noise of synaptic weights on the real hardware.

Default: False

weight_distortion Specifies the distortion of synaptic weights in the virtual hardware system.

This parameter defines the fraction of the original value, that is used as the standard deviation for random-
izing the weight according to a normal distribution around the original value. All weights are clipped to
positive values.

Default: 0.0

pulse_statistics_file Name of file to which the ESS pulse statistics are written.

See Pulse Loss Statistics for details.

Default: ""

Pulse Loss Statistics

The ESS allows to count all spikes that were lost in any place of the virtual hardware system. Spikes are mostly
lost in the off-wafer communication network (also called ‘’Layer 2 network’‘) that connects the wafer to the host
PC. In the Layer 2 network pulse loss can happen on two routes:

1. Stimulation: not all spikes from the spike sources (SpikeSourcePoisson or SpikeSourceArray)
are delivered to its targets, because the bandwidth in the off-wafer network is limited. When a spike is lost,
it is lost for its targets.

2. Recording: For the same bandwidth constraints in the off-wafer network, some spikes of real neurons can be
lost on the route from the wafer to the FGPGAs, Hence, in the received spike data some events are missing.
However, the ‘non-recorded’ spikes did reach their target neurons on the wafer.

Spikes can also be lost on the wafer, but only in rare cases when many neuron located on the same HICANN fire
synchronously.

3. On-wafer Spike Loss: This is the case of pulses lost in the on-wafer pulse-communication system (also
called Layer 1 network). If this happens, spikes are completely deleted, and reach no other neuron.
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4. Spike Drop before Simulation: The playback module of the FPGA, which plays back the stimuli pulses at
given times, also has a limited bandwidth. This limitation is considered beforehand, such that spikes are
dropped even before the simulation, in order to avoid a further delaying of many more spikes during an
experiment.

The ESS counts the lost and sent pulses. After the simulation, you will see something in the log for a loglevel>=2:

INFO Default *************************************
INFO Default LostEventLogger::summary
INFO Default Layer 2 events dropped before sim : 837/3939 (21.249 %)
INFO Default Layer 2 events lost : 243/3199 (7.59612 %)
INFO Default Layer 2 events lost downwards : 243/3102 (7.83366 %)
INFO Default Layer 2 events lost upwards : 0/97 (0 %)
INFO Default Layer 1 events lost : 0/79 (0 %)
INFO Default *************************************

You can specify to get this data by specifying a file pulse_statistics_file in the ESS Config:

marocco.ess_config.pulse_statistics_file = "pulse_stats.py"
sim.setup(marocco=marocco)

Then the pulse statistics file contains a Python dictionary pulse_statistics which can be use for further
processing:

pulse_statistics = {
’l2_down_before_sim’: 3939,
’l2_down_dropped_before_sim’: 837,
’l2_down_sent’: 3102,
’l2_down_lost’: 243,
’l2_up_sent’: 97,
’l2_up_lost’: 0,
’l1_neuron_sent’: 79,
’l1_neuron_lost’: 0,
}
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Figure 4.6: The BrainScaleS (NM-PM-1) system in Heidelberg on 30 March 2016
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CHAPTER

FIVE

THE SPIKEY “PHYSICAL MODEL”
SYSTEM

5.1 Experiment execution

Use the following instructions to login, load the pre-built software package and run experiments on the UHEI
cluster. For using the Spikey system outside the UHEI cluster and for developers, please manually install the
required software (see Setup software).

5.1.1 Login to UHEI cluster

• From the network of the Kirchhoff-Institute for Physics:

ssh KIPUSER@hel

• Otherwise:

ssh s1ext_someuser@gitviz.kip.uni-heidelberg.de -p 11022

5.1.2 Load software modules

To load the pre-built software package and configure the environment variables use:

. /wang/environment/software/jessie/spack/current/share/spack/setup-env.sh
spack load --dependencies visionary-defaults
module load spikey

These three commands must be loaded for every environment, and in particular, after logging in.

5.1.3 Run experiment

Download the Spikey example experiment. For more example networks see Spikey school and Spikey demos. On
the UHEI cluster SLURM is used to manage the workload on our systems. To queue the execution of a Python
script use:

srun -p spikey --gres stationXXX python example.py

Replace XXX with the number of the chip you want to use (e.g. 500).

5.1.4 Tips and tricks

• To view the queue of experiments use:
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squeue

• To query a list of available Spikey systems on the UHEI cluster see the chip status page.

• The setup of SSH keys for pubkey-based access to github.com is described in Setting up SSH keys on UHEI
cluster for github.com.

5.1.5 Using the web interface of the Human Brain Project

To select a chip using the web interface of the Human Brain Project enter the following parameters into the
“Hardware Config” box:

{"STATION":"stationXXX"}

Replace XXX with the number of the chip you want to use (e.g. 500).

5.2 Spikey school

5.2.1 Introduction to the hardware system

For an introduction to the Spikey neuromorphic system, its neuron and synapse models, its topology and its
configuration space, see section 2 in [Pfeil2013]. Detailed information about the analog implementation of the
neuron, STP and STDP models are given in Figure 17 in [Indiveri2011], [Schemmel2007] and [Schemmel2006],
respectively. The digital parts of the chip architecture are thoroughly documented in [Gruebl2007Phd]. The
following paragraph will briefly summarize the features of the Spikey system.

Figure 5.1: A photograph of the Spikey neuromorphic chip (a) and system (b), respectively. In (b) the Spikey chip
is covered by a black seal. Adapted from [Pfeil2013].

The Spikey chip is fabricated in a 180nm CMOS process with die size 5mm× 5mm. While the communication
to the host computer is mostly established by digital circuits, the spiking neural network is mostly implemented
with analog circuits. Compared to biological real-time, networks on the Spikey chip are accelerated, because
time constants on the chip are approximately 104 times smaller than in biology. Each neuron and synapse has its
physical implementation on the chip. The total number of 384 neurons are split into two blocks of 192 neurons
with 256 synapses each. Each line of synapses in these blocks, i.e. 192 synapses, is driven by a line driver that can
be configured to receive input from external spike sources (e.g., generated on the host computer), from on-chip
neurons in the same block or from on-chip neurons in the adjacent block.

Neuron assignment to line drivers:
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Figure 5.2: Numbering of neurons (blue) and line drivers (red). Here, only connections within the same block
of neurons are shown. For connections between the blocks see the following table. The weight of each synapse
(green) can be configured with a 4-bit resolution, i.e., 16 different values.

Line
driver ID

Neuron ID left
block

Neuron ID right
block

Line
driver ID

Neuron ID left
block

Neuron ID
right block

0 0 193 256 192 1
1 1 192 257 193 0
2 2 195 258 194 3
3 3 194 259 195 2
... ... ... ... ... ...
190 190 383 446 382 191
191 191 382 447 383 190
192 ext only ext 448 ext only ext only only
... ... ... ... ... ...
255 ext only ext 511 ext only ext only only

The last (upper) 64 line drivers receive external inputs only and hence external spike sources line drivers are
allocated from top to bottom.

The hardware implementations of neurons and synapses are inspired by the leaky integrate-and-fire neu-
ron model using synapses with exponentially decaying or alpha-shaped conductances (PyNN neuron model
IF_facets_hardware1). While the leak conductance (PyNN neuron model parameter g_leak) and (ab-
solute) refractory period (tau_refrac) is individually configurable for each neuron, the resting (v_rest),
reset (v_reset), threshold (v_thresh), excitatory reversal (clamped to ground) and inhibitory reversal poten-
tials (e_rev_I) are shared among neurons (see [Pfeil2013] for details). Line drivers generate the time course of
postsynaptic conductances (PSCs) for a single row of synapses. Among other parameters the rise time, fall time
and amplitude of PSCs can be modulated for each line driver (for details see Lesson 1: Exploring the parameter
space and Figure 4.8 and 4.9 in [Petkov2012]). Each synapse stores a configurable 4-bit weight. A synapse can
be turned off, if its weight is set to zero.

During network emulations, spike times can be recorded from all neurons in parallel. In contrast, membrane
potential recordings are limited to a single, but arbitrary, neuron.

Network models for the Spikey hardware are described and controlled by PyNN (version 0.6; for an introduction
to PyNN see Building models). Due to the fact that PyNN is a Python package we recommend to have a look at a
Python tutorial. For efficient data analysis and visualization with Python see tutorials for Numpy, Matplotlib and
Scipy.

Short-term plasticity (STP)

Synaptic efficacy has been shown to change with presynaptic activity on the time scale of hundred milliseconds
[ScholarpediaShortTermPlasticity]. The hardware implementation of such short-term plasticity is close to the
model introduced by [Tsodyks1997]. However, on hardware STP can either be depressing or facilitating, but not
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mixtures of both as allowed by the original model. For details about the hardware implementation and emulation
results, see [Schemmel2007] and Lesson 5: Short-term plasticity, respectively.

Spike-timing dependent plasticity (STDP)

Long-term (seconds to years) modification of synaptic weights has been shown to depend on the precise timing of
spikes [ScholarpediaSTDP]. Weights are usually increased, if the postsynaptic neuron fires after the presynaptic
one, and decreased for the opposite case. Typically, synaptic weights change the more the smaller this temporal
correlation is. On hardware temporal correlations between pre- and postsynaptic neurons are measured and stored
locally in each synapse. Then a global mechanism sequentially evaluates these measurements and updates the
synaptic weight according to a programmable look-up table.

Figure 5.3: Spike-timing dependent plasticity measured in biological tissue (rat hippocampal neurons; adapted
from [Bi2001]).

Figure 5.4: Hardware implementation of STDP (adapted from [Pfeil2015Phd]).
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For a detailed description of the hardware implementation, measurements of single synapses and functional net-
works, see [Schemmel2006], [Pfeil2012STDP] and [Pfeil2013STDP], respectively. Note that on hardware the
reduced symmetric nearest neighbor spike pairing scheme is used (see Figure 7C in [Morrison2008]).

5.2.2 Introduction to the lessons

Note that all emulation results shown in the following lessons were recorded from the Spikey chip 666 and may
be different for other chips. In particular, network, neuron and synapse parameters may have to be adjusted for
proper network activity. In the following we use pynn as an acronym for pyNN.hardware.stage1.

5.2.3 Lesson 1: Exploring the parameter space

In this lesson, we explore the parameter space of neurons and synapses on the Spikey chip.

First, the parameters of neurons are investigated. As an example, we measure the firing rate of a neuron in
dependence on its leak conductance. The neuron is stimulated by spikes from a Poisson process.

Figure 5.5: A neuron is stimulated using an external spike source and the spike times of the neuron are recorded.
Synapses with weight zero are not drawn.

To average out fixed-pattern noise (see Lesson 2: Fixed-pattern and temporal noise:) in both the synapse and
neuron circuits, a population of neurons is stimulated by a population of spike sources.

By increasing the leak conductance of the neuron its membrane potential is pulled towards the resting potential
and hence the firing rate of the neuron decreases.

Tasks:

• Measure and plot the dependency of the firing rate on other neuron parameters (for parameters, see Intro-
duction to the hardware system). Interpret these dependencies qualitatively?

• Calibrate the firing rate of the neuron to a reasonable target rate by adjusting its leak conductance.

• Replace the input from a Poisson process (pynn.SpikeSourcePoisson) by a regular input with the
same rate (tipp: use pynn.SpikeSourceArray). What do you observe?

Second, synaptic parameters are investigated. A neuron is stimulated with a single spike and its membrane po-
tential is recorded. To average out noise on the membrane potential (mostly caused by the readout process) we
stimulate the neuron with a regular spike train and calculate the spike-triggered average of these so-called excita-
tory postsynaptic potentials (EPSPs).

Tasks:

• Vary the parameters drvifall and drviout of the synapse line drivers and investigate their
effect on the shape of EPSPs (tipp: use pynn.Projection.setDrvifallFactors and
pynn.Projection.setDrvioutFactors to scale these parameters, respectively).

• Compare the EPSPs between excitatory to inhibitory synapses.

• Compare the shape of the first EPSPs. They may differ due to the initial loading of capacities (e.g. wires).
Discard an appropriate number of EPSPs at the beginning of the emulation to avoid these distortions.
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Figure 5.6: The firing rate of the neuron in dependence on its leak conductance gleak (source code lesson 1-1).

Figure 5.7: Postsynaptic potentials measured in biological tissue (from motoneurons; adapted from
[Coombs1955]).

Figure 5.8: A neuron is stimulated using a single synapse and its membrane potential is recorded. The parameters
of synapses are adjusted row-wise in the line drivers (red).
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Figure 5.9: Single and averaged excitatory postsynaptic potentials (source code lesson 1-2).
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5.2.4 Lesson 2: Fixed-pattern and temporal noise:

In this lesson, we investigate fixed-pattern and temporal noise in the analog neuron and synapse circuits of the
Spikey hardware system.

In contrast to simulations with software, emulations on analog neuromorphic hardware are subject to noise. We
distinguish between fixed-pattern and temporal noise. Fixed-pattern noise are variations of neuron and synapse
parameters across the chip due to imperfections in the production process. Calibration can reduce this noise,
because it is approximately constant over time. In contrast, temporal noise, including electronic noise and temper-
ature fluctuations, causes different results in consecutive emulations of identical networks.

Tasks:

• Investigate the fixed-pattern noise across neurons: Record the firing rates of several neurons for the default
value of the leak conductance (see Figure 5.5 and 5.6; tipp: record all neurons at once). Interpret the
distribution of these firing rates by plotting a histogram and calculating the variance.

• Investigate the fixed-pattern noise across synapses: For a single neuron, vary the row of the stimulating
synapse and calculate the variance of the area under the EPSPs across synapses (see Figure 5.8 and 5.9).

• Estimate the ratio between fixed-pattern and temporal noise: Measure the reproducibility of emulations, i.e.,
the error of firing rates across identical consecutive trials. Use the network and parameters from the first
task and measure this error for each neuron. Compare the variance of the firing rates across trials (averaged
across neurons) to that one across neurons in a single trial. Extra: How does the reproducibility depend on
the duration of emulations and the number of consecutive trials?

5.2.5 Lesson 3: Feedforward networks

In this lesson, we learn how to setup networks on the Spikey system. In the last lessons neurons received their
input exclusively from external spike sources. Now, we introduce connections between hardware neurons. As an
example, a synfire chain with feedforward inhibition is implemented (for details, see [Pfeil2013]). Populations
of neurons represent the links in this chain and are unidirectionally interconnected. After stimulating the first
neuron population, network activity propagates along the chain, whereby neurons of the same population fire
synchronously.

Figure 5.10: Schematic of a synfire chain with feedforward inhibition. Excitatory and inhibitory neurons are
coloured red and blue, respectively.

In PyNN connections between hardware neurons can be treated like connections from external spike sources to
hardware neurons. Note that synaptic weights on hardware can be configured with integer values in the range
[0..15]. To stay within the range of synaptic weights supported by the hardware, it is useful to specify weights in
the domain of these integer values and translate them into biological parameter domain by multiplying them with
pynn.minExcWeight() or pynn.minInhWeight() for excitatory and inhibitory connections, respec-
tively. Synaptic weights that are not multiples of pynn.minExcWeight() and pynn.minInhWeight()
for excitatory and inhibitory synapses, respectively, are stochastically rounded to integer values.

Tasks:

• Adjust the synaptic weights to obtain a loop of network activity that lasts for at least 1000 seconds.
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Figure 5.11: Emulated network activity of the synfire chain including the membrane potential of the neuron with
ID=0 (source code lesson 3). The same color code as in the schematic is used.
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• Reduce the number of neurons in each population and maximize the period of network activity. Which
hardware feature limits the minimal number of neurons in each population?

• Open the loop and increase the number of neurons in each population to obtain a stable propagation of
network activity. Systematically vary the initial stimulus (number of spikes and standard deviation of
their timing) to investigate the filter properties of this network (for orientation, see [Kremkow2010] and
[Pfeil2013]).

5.2.6 Lesson 4: Recurrent networks

In this lesson, a recurrent network of neurons with sparse and random connections is investigated. To avoid self-
reinforcing network activity that may arise from excitatory connections, we choose connections between neurons
to be inhibitory with weight w. Each neuron is configured to have a fixed number K of presynaptic partners
that are randomly drawn from all hardware neurons (for details, see [Pfeil2015]). Neurons are stimulated by a
constant current that drives the neuron above threshold in the absence of external input. Technically this current
is implemented by setting the resting potential above the firing threshold of the neuron. The absence of external
stimulation cancels the transfer of spikes to the system and accelerates the experiment execution. In addition, once
configured this recurrent network runs hypothetically forever.

Figure 5.12: Schematic of the recurrent network. Neurons within a population of inhibitory neurons are randomly
and sparsely connected to each other.

Tasks:

• For each neuron, measure the firing rate and plot it against the coefficient of variation (CVs) of inter-spike
intervals. Interpret the correlation between firing rates and CVs.

• Measure the dependence of the firing rates and CVs on w and K. Calibrate the network towards a firing
rate of approximately 25 1

s . Extra: And maximize the average CV.

• Extra: Calculate the pair-wise correlation between randomly drawn spike trains of different neurons in the
network (consider using http://neuralensemble.org/elephant/ to calculate the correlation). Investigate the
dependence of the average correlation on w and K (tipp: use 100 pairs of neurons to calculate the average).
Use these results to minimize correlations in the activity of the network.

5.2.7 Lesson 5: Short-term plasticity

In this lesson, the hardware implementation of Short-term plasticity (STP) is investigated. The network description
is similar to that shown in Figure 5.8, but with STP enabled in the synapse line driver.

The weight of the synapse decreases with each presynaptic spike and recovers after the absence of presynaptic
input.

Tasks:

• Compare the membrane potential to a network with STP disabled.

• Configure STP to be facilitating.
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Figure 5.13: Network activity of a recurrent network with K = 15 (source code lesson 4).

Figure 5.14: Depressing STP measured in biological tissue (adapted from [Tsodyks1997]).
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Figure 5.15: Depressing STP on the Spikey neuromorphic system (source code lesson 5).
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5.2.8 Lesson 6: Long-term plasticity

In this lesson, we investigate Spike-timing dependent plasticity (STDP) on hardware. An external input is con-
nected to the postsynaptic neuron and STDP is enabled for this plastic synapse (P). To adjust the timing between
pre- and postsynaptic spikes, several external inputs with static synaptic weights (S) are used to elicit a spike in
the postsynaptic neuron. By measuring d, the timing between the pre- and postsynaptic spike ∆t can be adjusted
on the host computer (see spike timing in Figure 5.16 B).

Figure 5.16: Network configuration (A) and spike timing (B) to measure STDP on the Spikey chip (source code
lesson 6).

This network can be used to measure the dependency of synaptic changes ∆w on the timing ∆t (cf. Figure 5.3).
The inverse of the number N of spike pairs that are required to elicit a weight update represent the change of the
synaptic weight.

Tasks:

• Configure the hardware neurons and synapses such that each volley of presynaptic spikes evokes exactly a
single postsynaptic spike. Due to the intrinsic adaptation of hardware neurons consider discarding the first
few spike pairs for the plastic synapse.

• Plot 1
N over ∆t and compare your results to Figure 5.3.

• Extra: Investigate the results of the last task for varying rows and columns of synapses.

5.2.9 Lesson 7: Functional networks

• A Neuromorphic Network for Generic Multivariate Data Classification

5.2.10 Other network examples

• Simple synfire chain

5.2.11 References

5.3 Frequently asked questions (FAQ)

For contact information, frequently asked questions and further documentation, please visit our website.

5.3.1 Characterization of analog circuits

For measurements of analog circuits see [Bruederle2009PhD]. Note that version 3 of the Spikey chip was used in
this thesis.
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5.3.2 NEST model of hardware STDP synapses

In the scope of [Pfeil2012STDP] we implemented an STDP synapse in NEST considering the following features
of STDP synapses on the Spikey chip:

• Local measurement and accumulation of correlations between pre- and postsynaptic spikes.

• Global mechanism that sequentially evaluates these accumulated correlations and updates the synaptic
weight.

• Discretization of synaptic weights with a 4-bit resolution (16 values).

• Reduced symmetric nearest-neighbor spike pairing scheme (see [Morrison2008]).

Please not that parameter variations (fixed-pattern noise) are not considered, but can be implemented by distribut-
ing the thresholds for the evaluation of the charge on the capacitors.

Figure 5.17: Regular pairs of pre- before postsynaptic spikes are presented (with a frequency of 10 hertz). The
charge on the capacitor for causal correlations (green) accumulates and after crossing the threshold (dashed line)
the discretized synaptic weight (blue) is increased (source code of NEST model of hardware STDP synapse).

5.3.3 List of publications

5.4 Built-in calibrations

The calibration of the Spikey neuromorphic system consists of five components:

• Calibration of fast analog-to-digital converter (for recording analog signals)

• Calibration of parameter cells (vout values)
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• Calibration of output pins (for reading out analog signals)

• Calibration of membrane time constant

• Calibration of refractory period (currently not used)

• Calibration of synapse drivers (axon-wise adjustment of synaptic strength, see also [Pfeil2013])

To calibrate the chip get source code

git clone https://github.com/electronicvisions/spikey-calib.git

and run the calibration

python calibAll.py stationXXX

where XXX has to be replaced by the chip number to be calibrated.

To visualize calibration results run

python analyzeAll.py stationXXX

5.5 Testing the system

Warning: this section is work in progress

First, setup the environment variables. Then, to run all tests use:

cd spikey_demo/test
sh run_spikey_tests.sh

In total this will take several minutes.

For low-level tests that take only several seconds, use:

cd spikey_demo/bin/tests
./test-main --gtest_filter=-*Inf

5.6 Spikey Appendix

5.6.1 Setting up SSH keys on UHEI cluster for github.com

To create a key pair please follow the guide provided by github.com. The configuration file for the ssh connection
is located in ~/.ssh/config. For example:

$ cat .ssh/config
Host github.com

IdentityFile /wang/users/USERNAME/.ssh/my_github.com.id_rsa

The Host github.com describes the ssh connection target, and the following line configures the private key
location which will be used for this target host.

To connect via ssh, use the tsocks tool which routes the TCP connection via a local SOCKS proxy, e.g.:

$ tsocks git clone git@github.com:USERNAME/PROJECT.git
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5.6.2 Setup software

Preparing the operating system

We consider the newest stable Debian operating system as reference system.

The following additional software packages are required for building the software of the Spikey system:

sudo apt-get install libboost-all-dev libusb-1.0-0-dev liblog4cxx10-dev libqt4-dev libgtest-dev libgsl0-dev python-nose

And for experiment execution:

sudo apt-get install python-numpy python-scipy python-matplotlib

Installing hardware drivers

The software for the Spikey neuromorphic system is managed by a git repository that can be downloaded as
follows:

git clone https://github.com/electronicvisions/spikey_demo.git

To install the software follow the instructions in the README.md file. Note that a fork of the official PyNN project
is used that builds on PyNN version 0.6.

Allow access to USB device

To access the Spikey system via USB, add your user to the plugdev UNIX group, to which Spikey devices are
assigned to. Note that you will need root privileges for adding users to a UNIX group.

1. Add your user to plugdev group: sudo usermod -aG plugdev USERNAME (replace USER-
NAME)

2. Assign Spikey systems to plugdev group (creates a udev config file): sudo sh vmodule/nosudo

3. Restart udev daemon: service udev restart and (re-)plug-in the Spikey USB device.

Run experiments

Set environment variables (has to be done only once for each environment):

. bin/env.sh

Run PyNN description of a network:

cd networks
python example.py

Miscellaneous

If multiple chips are connected to a single host computer, use environment variables to select the chip:

MY_STAGE1_STATION=stationXXX

Replace XXX with the chip you want to use (e.g. 500).

5.6.3 Setup hardware

Link to internal web page.
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CHAPTER

SIX

THE SPINNAKER “MANY CORE”
SYSTEM

6.1 About the SpiNNaker hardware

The MC-1 machine is designed to utilise the power of digital hardware and support various models/application
though the use of programmable software that can run on ARM cores. A description of the hardware can be
located online here.

The MC-1 relies upon software support to allow the PyNN interface to execute on the MC-1 machine; This
ranges from low level software (known as spinnaker_tools, including SARK, the Spin1API and ybug) to high
level software that takes a graph representation of an application (in this case a PyNN description of a Neural
network) and maps, optimises and executes this application on the MC-1 hardware and supports the retrieval of
application data generated during the applications execution.

Details of the latest version of the high level software can be found here, and the source code can be seen here.

6.1.1 Available hardware setups

There are currently five known hardware setups:

Jorg Conradt’s one-node board. This is a single SpiNNaker chip that is produced at TU Munchen and is in-
tended for light-weight near-robotic applications.

A single 4-chip board. These are commonly used at SpiNNaker workshops. There are a number of these boards
in boxes.

A single 48-chip board. This is the standard building block of SpiNNaker machines, but each board can be used
in isolation. As with the 4-chip boards, a number of 48-node boards are available in boxes.

A stand-alone toroid. A number of individual 48-node boards can be wired together as a single machine. Addi-
tionally, the edges can be wired so that the machine forms a toroidal mesh of chips.

The 600 board machine. This is the machine that is currently running behind the HBP portal. This machine can
be broken into smaller multi-board machines through the use of the spalloc software; this allows a number
of smaller jobs to run simultaneously on the machine, as well as allowing a single large job to use the whole
half-million cores available.

When using the HBP portal, allocation of the machine is done by estimating the size of board required by the
given PyNN script. The network is broken down and mapped on to a virtual machine (see below) as described in
Mapping and Routing, and then a machine of an appropriate size is allocated. The remaining mapping and routing
algorithms are then run as normal.

The software also supports the ability to run in virtual mode, where the tools execute the PyNN script as if it was
linked to a direct SpiNNaker machine, but without actually generating any simulated data. This supports end users
in testing their scripts for basic compilation errors before loading them into the HBP portal. Instructions on how
to use this functionality can be found here.
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6.2 Using the SpiNNaker system

As explained in Building models, both the experiment description and the model description for the SpiNNaker
system must be written as Python scripts, using the PyNN application programming interface (API), version 0.7.
The implementation of the PyNN API for the SpiNNaker system is called sPyNNaker, and is also available as
the module pyNN.spiNNaker:

import pyNN.spiNNaker as sim

6.2.1 Supported PyNN functionality

sPyNNaker currently supports a subset of the standard PyNN 0.7 API together with a number of extensions.
The supported interface functions are listed below. A possibly more up-to-date list can be found in the online
documentation.

In the next planned release, it is planned that the remaining missing features of PyNN 0.7 will be implemented,
along with some initial support for PyNN 0.8.

Neuron model limitations

sPyNNaker currently supports the following model types:

IFCurrExp Current based leaky integrate and fire, with 1 excitatory and 1 inhibitory exponentially decaying
synaptic input per neuron

IFCondExp Conductance based leaky integrate and fire, with 1 excitatory and 1 inhibitory exponentially decay-
ing synaptic input per neuron

IFCurrDualExp Current based, Leaky integrate and fire, with 2 excitatory and 1 inhibitory exponentially
decaying synaptic input per neuron

IZKCurrExp Current based Izhikevich with 1 excitatory and 1 inhibitory exponentially decaying synaptic input
per neuron

IZKCondExp Conductance based Izhikevich with 1 excitatory and 1 inhibitory exponentially decaying synaptic
input per neuron

Note that there are also further restrictions on what plasticity types are supported when used with the above
models.

All of our neural models have a limitation of 255 neurons per core. Depending on which SpiNNaker board you
are using, this will limit the number of neurons that can be supported in any simulation.

External input

sPyNNaker currently supports SpikeSourceArray (note that the spikes to be input can be changed between
calls to run) and SpikeSourcePoisson.

Currently, only the i_offset parameter of the neural models can be used to inject current directly; there is no
support for noisy or step-based current input.

A third, non-standard PyNN interface, way of injecting current into a PyNN simulation executing on
the hardware is through live injection from an external device. These functions are supported by our
sPyNNakerExternalDevicesPlugin. A description on how to use this functionality can be found here.

Connectors

sPyNNaker currently supports the following standard connector types:

• OneToOneConnector
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• AllToAllConnector

• FixedNumberPreConnector,

• FixedProbabilityConnector

• DistanceDependentProbabilityConnector

• FromFileConnector

• FromListConnector

Note that using the latter two connectors will result in slower operation of the tools.

sPyNNaker also provides the non-standard MultapseConnector, which creates a fixed number of randomly
selected connections.

Plasticity

sPyNNaker currently only supports plasticity described by an STDPMechanism which is set as the slow prop-
erty of SynapseDynamics.

sPyNNaker supports the following STDP timing dependence rules:

• PfisterSpikeTripletRule

• SpikePairRule

and the following STDP weight dependence rules:

• AdditiveWeightDependence

• MultiplicativeWeightDependence

Simulation execution

sPyNNaker supports the ability to call run() multiple times with different combinations of runtime values, and
to call reset() multiple times with run() interleaved.

sPyNNaker supports the addition of Populations and Projections between a reset() and a run(), but
not between multiple calls to run().

PyNN missing functionality

sPyNNaker does not support:

• PopulationView

• Assembly.

sPyNNaker does not support changing of weights / delays / neuron parameters between the initial call to run()
and a reset() call.

Parameter ranges

All parameters and their ranges are under software control.

Weights are held as 16-bit integers, with their range determined at compile-time to suit the application; this limits
the overall range of weights that can be represented, with the smallest representable weight being dependent on
the largest weights specified.

There is a limit on the length of delays of between 1 and 144 time steps (i.e. 1 - 144 ms when using 1 ms time
steps, or 0.1 - 14.4 ms when using 0.1 ms time steps). Delays of more than 16 time steps require an additional
“delay population” to be added; this is done automatically by the software when such delays are detected.
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Membrane voltages and other neuron parameters are generally held as 32-bit fixed point numbers in the s16.15
format. Membrane voltages are held in mV.

Synapse and neuron loss

Projection links between two sub-populations that were initially defined as connected are removed by the software
if the number of connections between the two sub-populations is determined to be zero when the projection is
realised in the software’s mapping process.

The SpiNNaker communication fabric can drop packets, so there is the chance during execution that spikes might
not reach their destination (or might only reach some of their destinations). The software attempts to recover from
such losses through a reinjection mechanism, but this will only work if the overall spike rate is not so high as to
overload the communications fabric in the first place.

6.2.2 Mapping and Routing

The mapping process examines the neural network definition and attempts to break it down in to parts, each of
which can be executed on a SpiNNaker core. A routing algorithm is then run to work out the communication
paths between the cores on the SpiNNaker network. In the current software, mapping and routing takes place on
the host machine as part of the placement and configuration manager (PACMAN).

It is possible for end users to add their own mapping and routing algorithms into the tool chain. Instructions on
how to do so can be found here.

6.3 The SpiNNaker standalone system

SpiNNaker boards and multi-board systems can be used directly connected to your laptop or PC. This requires the
installation of the software stack on your host machine to control the board.

6.3.1 Installation and use of the SpiNNaker software

Instructions on how to install the most recent SpiNNaker high level software stack can be found here.

There is a tutorial on creating basic PyNN networks and running them on SpiNNaker here, and another tutorial on
using STDP plasticity on SpiNNaker here.

6.3.2 Extending the SpiNNaker Software

The software that executes on the SpiNNaker machine is written in C code, so it is not too difficult to extend this to
run new neural, synapse and plasticity models, amongst other things. Instructions on how to extend the software
can be found here.

6.3.3 Generating Live Input and Output

SpiNNaker extends PyNN by allowing live input and output from the simulation during execution. This can be
used for communication with external devices or other simulations, such as robotic devices or robotic simulations,
or for visualisation during the simulation. Instructions on the use of this feature can be found here.
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Figure 6.1: The SpiNNaker 500.000 core system (NM-MC1) in Manchester on 25 March 2016
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CHAPTER

SEVEN

BENCHMARKS

Benchmarking of neuromorphic hardware puts numbers on performance to allow measuring progress and com-
paring different designs. This is useful both for the developers of the Neuromorphic Computing Platform and for
potential users.

Specifically, benchmarks define a set of reference tasks aiming at a direct comparison of different neuromorphic
(and non-neuromorphic) hardware systems. Each benchmark has a set of quality measures. It is left to the user to
decide which specific measures are relevant for the particular application in mind.

7.1 Developing benchmarks

7.1.1 Defining models and tasks

As stated above, all benchmark code should be under version control. Each repository may contain one or more
models, and for each model one or more tasks should be defined. The top-level of the repository should contain a
JSON-format configuration file named “benchmarks.json”, with the following general structure:

[
{
"model": {

"name": "ModelA",
"description": "Description of model A"

},
"tasks": [

{
"name": "taskA1",
"command": "task_1_for_model_A.py {system}"

},
{

"name": "taskA2",
"command": "task_2_for_model_A.py arg1 {system}"}

}
]

},
{
"model": {

"name": "ModelB",
"description": "Description of model B"

},
"tasks": [

{
"name": "taskB1",
"command": "task_1_for_model_B.py {system}"

},
{

"name": "taskB2",
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"command": "task_2_for_model_B.py arg1 {system}"
},
{

"name": "taskB3alpha",
"command": "task_3_for_model_B.py --option1={system} arg1 arg2 arg3"

},
{

"name": "taskB3beta",
"command": "task_3_for_model_B.py --option1={system} arg4 arg5 arg6"

},
]

}
]

i.e., each task should be expressed as a command-line invocation of a Python script. The Python script should
in general use the PyNN API, in which case the placeholder “{system}” must be provided, and will be
replaced by the name of the PyNN backend used when running the benchmark, e.g. “nest”, “spiNNaker”,
or “hardware.hbp_pm”. If the benchmark is known to run only on a subset of the available backends, this
can be indicated by listing the suitable backends within the placeholder, e.g. “{system=spiNNaker,nest}”.
For low-level benchmarks for a single neuromorphic system, the Python script should use the low-level
APIs of that platform, and in this case the “{system}” placeholder should be absent.

A specific example, for the repository https://github.com/CNRS-UNIC/hardware-benchmarks, is:

[
{
"model": {

"name": "IF_cond_exp",
"description": "A population of IF neurons, each of which is injected with a different current"

},
"tasks": [
{

"name": "I_f_curve",
"command": "run_I_f_curve.py {system}"

}
]

},
{
"model": {
"name": "SpikeSourcePoisson",
"description": "A population of random spike sources, each with different firing rates"

},
"tasks": [
{

"name": "run20s",
"command": "run_spike_train_statistics.py {system}"

}
]

}
]

7.1.2 Returning numerical measures

Each task should run a simulation of a neuronal network model, record data from the neurons, perform analysis
of the data, and calculate numerical measures of the system performance. The numerical measures should be
reported in a JSON-format file, consisting of a top-level record with required fields “timestamp” and “results”.
The field “configuration”, containing a copy of the parameterization of the model and simulator/hardware system”,
is optional. The field “results” contains a list of records with the following fields:

type What is being measured. For example “quality”, “performance”, “energy consumption”.

name A unique name for the measurement. It is suggested that this name takes the form of a URI containing
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the URL of the version control repository followed by an identifier for the task and an identifier for the
measurement.

value A floating point number.

units (optional) if the measurement is a physical quantity, the units of the quantity using SI nomenclature.

measure the type of the measurement, for example “norm”, “p-value”, “time”.

(A controlled vocabulary will be developed for the fields “type” and “measure”).

Here is an example:

{
"timestamp": "2015-06-05T11:13:59.535885",
"results": [

{
"type": "quality",
"name": "norm_diff_frequency",
"value": 0.0073371188622418891,
"measure": "norm"

},
{

"type": "performance",
"name": "setup_time",
"value": 0.026206016540527344,
"units": "s",
"measure": "time"

},
{

"type": "performance",
"name": "run_time",
"value": 1.419724941253662,
"units": "s",
"measure": "time"

},
{

"type": "performance",
"name": "closing_time",
"value": 0.03272294998168945,
"units": "s",
"measure": "time"

}
],

}

The task may also optionally produce figures and other output data files.

7.1.3 Registering benchmarks

To add a new benchmark model or task within an existing repository, just modify the “benchmarks.json” configu-
ration file. To add a new repository, e-mail andrew.davison@unic.cnrs-gif.fr. In future, a web form for registering
new repositories will be introduced.

7.1.4 Running benchmarks

A continuous integration system will be put in place, which will run the entire suite of benchmarks on each
neuromorphic system every time the system configuration (software or hardware) is changed, and which will
run the benchmarks from a given repository on both neuromorphic systems (where appropriate) each time a new
commit is made to the repository. To indicate that a given commit should not trigger a run (for example because
only documentation has been changed), include the text “[skip ci]” or “[ci skip]” within the commit message.
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After running each task, the continous integration system will harvest the JSON-formatted measurement report,
and update a database of benchmark measurements. This benchmark database will be visualized in an “App”
within the HBP Neuromorphic Platform Collaboratory.
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EIGHT

GETTING HELP

Questions about PyNN can be asked in the NeuralEnsemble forum. PyNN bug reports may be filed in the Github
issue tracker. For problems with submitting jobs to the Neuromorphic Computing Platform, or requests for new
features, please use the Human Brain Project Community Forum.

8.1 BrainScaleS-specific help

If you run into problems during the installation of the ESS or have any issues / questions that are not covered by
the FAQ, please consider the mailing list for BrainScaleS wafer-scale hardware and ESS users.

8.2 SpiNNaker-specific help

If you run into problems during the installation of the software stack or have any issues / questions, please consider
the SpiNNaker Users Google group.
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CHAPTER

NINE

APPENDIX: INSTALLATION OF THE
BRAINSCALES SOFTWARE STACK

In the following the build and work flow on University of Heidelberg cluster frontend nodes is described. This
is only needed if you want to use the system locally within Heidelberg. If the BrainScaleS System is accessed
through the HBP Collaboratory or the Python client, this software environment is pre-installed.

The following section can be skipped when loading the nmpm_software module by

module load nmpm_software/current

All available versions can be listed by module avail nmpm_software.

To compile your own installation create and change to a directory for your projects, preferably on wang, e.g.:
/wang/users/<somebody>/cluster_home/projects.

9.1 ssh-agent

To reduce the amount of typing, please consider using ssh-agent to cache your key password:

eval ‘ssh-agent‘
ssh-add ~/path/to/your/private_id_rsa

9.2 Build Tool

We use a custom version (git@gitviz.kip.uni-heidelberg.de:waf.git) of the waf configuration
and build tool. A nightly version is provided by loading:

module load waf

9.3 PyHMF, marocco and Dependencies

The first step is to create a new workspace for the software checkouts and the subsequent build

mkdir ~/my_nmpm_software && cd ~/my_nmpm_software

Now waf can be used to setup the project. It will clone all the dependencies.

waf setup --project pyhmf --project=marocco --without-ester

The next step is configuration. As the default software environment on the UHEI cluster does not provide all the
software dependencies, you have to load some modules which will provide those dependencies:
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module load localdir
module load pynn/0.7.5
module load mongo
module load yaml-cpp/0.5.3

As those commands are needed every time you want to use the software it is convenient to put all the needed parts
into a script:

echo "INSTALLED_LIB_PATH=$(readlink -e lib)" > init.sh
cat >>init.sh<<EOF
cd ${INSTALLED_LIB_PATH}
module load localdir
module load pynn/0.7.5
module load mongo
module load yaml-cpp/0.5.3
cd -
EOF

After completing the installation steps below, this script can be sourced (source init.sh) to access the Brain-
ScaleS Wafer-Scale Software Stack.

Now the configuration step:

waf configure

The install step will build and install all targets into subdirectories of your current working directory. Currently,
you need to explicitly specify some extra targets in a second call.

waf install --test-execnone
# some extra targets are needed
waf install --target=pymarocco,pyhalbe,pysthal,redman_xml --test-execnone

If you want to include the calibration toolkit (cake) (optional):

waf setup --project pyhmf --project marocco --project cake --without-ester
# module load ...
waf configure
waf install --test-execnone
# some extra targets are needed
waf install --target=pymarocco,pyhalbe,pysthal,redman_xml,pycake --test-execnone

To include support for executable system simulation (ESS) add --with-ess to the setup call.

Please remember, to that you have to setup the software environment if you start new shells (e.g. by using the
init.sh script):

source ~/my_nmpm_software/init.sh

Check if the installation and the setup of variables is fine:

python -c "import pyhmf" && echo ok

should print ok, if instead:

Traceback (most recent call last):
File "<string>", line 1, in <module>

ImportError: No module named pyhmf

occurs, either the installation failed or the environment variables responsible for finding the module are wrong. In
that case, double check if you followed the instructions 1:1.

9.4 Running PyNN scripts

To run locally on the hardware one needs to use the SLURM job queue system:
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srun -p nmpm -L ‘license_by_hicann 33 367‘ --pty python nmpm1_single_neuron.py

nmpm1_single_neuron.py:

9.5 Inspect the Configuration

sthal/tools/dump_cfg.py

9.5. Inspect the Configuration 71



HBP Neuromorphic Computing Platform Guidebook, Release 2017-02-22 17:03:17 (6aeeeae)

72 Chapter 9. Appendix: Installation of the BrainScaleS software stack



CHAPTER

TEN

APPENDIX: MISCELLANEOUS

10.1 BrainScaleS

10.1.1 Job queue Demo - HBP Summit 2014

On a UHEI BrainScaleS cluster frontend node:

cd somewhere-on-your-wang:

socksify git clone https://github.com/electronicvisions/hbp_platform_demo

cd hbp_platform_demo

module load pynn
module load mongo
module load PlatformDemo/20140924_sschmitt

srun -p wafer python run.py nmpm1

*wait*

display result.png

The repository can be also when creating job via the web interface, cf. Using the web interface.

10.1.2 roqt (Visualization)

You need to be in the roqt directory, because the ui file is loaded by a relative path:

cd marocco/tools/roqt
PYTHONPATH=$PWD/lib:$PYTHONPATH bin/roqt /some/path/to/roqt.bin
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Figure 10.1: Demo running on a HICANNv2 Wafer module.
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Figure 10.2: Demo running on the ESS.

Figure 10.3: Routing visualization of the roqt visualization tool.
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