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Abstract: 

This Deliverable describes the work and the achievements of SP 11 (applications) 
during Year 1. SP11 has progressed according to the original description of work. 
An additional effort beyond the DoW has been the integration of five new groups 
from the Competitive Call into the Future Computing Work Package. SP11 has a 
close connection to other SPs; the HBP Platforms in particular. This connection 
is visible in all activities throughout the first Year 1. Preparation of Platform 
applications will continue in all three scientific Work Packages in Year 2. 

Keywords: 
Applications, Future Neuroscience, Future Medicine, Future Computing, 
integration, cognitive neuroscience, clinical data, data mining, neuromorphic 
computing, NM-PC-1, NM-MC-1 

  
 

SP11 D11.4.2 RESUBMITTED FINAL Dissemination: PU 30-Jul-2015 Page 1 / 30 
 



 

Co-funded by the 

 
 

Table of Contents 
Executive Summary ................................................................................................. 4 
1. Introduction ..................................................................................................... 5 

1.1 The Human Brain Project (HBP) ......................................................................... 5 
1.2 HBP Subproject 11: Applications ........................................................................ 5 
1.3 Purpose of this Document ................................................................................ 6 
1.4 Structure of this Document .............................................................................. 6 
1.5 Overview of Subproject 11 Achievements ............................................................. 6 
1.6 Overview of Subproject 11 Problems ................................................................... 7 
1.7 The Next Six Months for Subproject 11 ................................................................ 7 

2. Future Neuroscience (WP11.1) ............................................................................. 8 
2.1 Future Neuroscience: Overall Goals .................................................................... 8 
2.2 Future Neuroscience: Main Achievements (Revised Information) ................................. 9 
2.3 Future Neuroscience: Main Problems ................................................................... 9 
2.4 Future Neuroscience: The Next Six Months .......................................................... 10 

3. Future Medicine (WP11.2) .................................................................................. 11 
3.1 Future Medicine: Overall Goals ......................................................................... 11 
3.2 Future Medicine: Main Achievements ................................................................. 11 
3.3 Future Medicine: Main Problems ....................................................................... 13 
3.4 Future Medicine: The Next Six Months ................................................................ 13 

4. Future Computing (WP11.3) ............................................................................... 14 
4.1 Future Computing: Overall Goals ...................................................................... 14 
4.2 Future Computing: Main Achievements (Additional and Revised Information) ................ 17 
4.3 Future Computing: Main Problems (Additional and Revised Information) ...................... 20 
4.4 Future Computing: The Next Six Months (Additional and Revised Information) ............... 22 

5. Scientific Coordination and Support (WP11.4) ......................................................... 25 
5.1 Scientific Coordination: Internal Meetings ........................................................... 25 
5.2 Scientific Coordination and Support: HBP Meetings ................................................ 26 
5.3 Scientific Coordination and Support: Monitoring & Quality Control ............................. 27 

Annex A: Milestones ................................................................................................ 28 
Annex B: Scientific Key Performance Indicators (SKPIs) ................................................... 29 
Annex C: References ............................................................................................... 30 
 

  

 

SP11 D11.4.2 RESUBMITTED FINAL Dissemination: PU 30-Jul-2015 Page 2 / 30 
 



 

Co-funded by the 

 
 
The HBP Review in January 2015 required the resubmission of D11.4.2 “Applications: 
Progress Report”, with additional progress descriptions for specific Tasks, and details of 
the resources used by these Tasks. SP11 recognises the importance of the points raised by 
the Review, and addresses them below.  
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Executive Summary 

Subproject 11 (Applications) has the important role of preparing use cases for the HBP 
Platforms in the three Project research areas: Future Neuroscience, Future Medicine and 
Future Computing. It has to follow the process of Platform building, design the 
Applications accordingly and start implementing them towards the end of the Ramp-Up 
Phase. At the end of the Ramp-Up Phase, the Platforms will analyse the SP11 Use Cases 
and propose possible changes arising from the SP11 results. 

SP11’s main achievement is that all three of its scientific Work Packages have advanced 
well in defining their Applications. In particular, the Future Computing research area has 
successfully integrated the five new groups that were selected via the Competitive Call. As 
these groups had only seven months to accomplish the work scheduled for the first Project 
Year and had not been involved in the Proposal Writing Phase, this is a remarkable 
achievement. 

Two out of seven Milestones were not reached in time for Month 12 and have been delayed 
by a few weeks. The reasons are clearly described by the groups responsible and will not 
have any detrimental effect on overall progress. In one case, the reason for the delay was 
the late receipt of funding (MS315). In another, the delay was due to the unexpectedly 
large number of network architectures that had to be evaluated (M209). 

During the next six months, work will continue towards implementation. After Month 18, 
the process of commissioning the Platforms will begin and the Applications Work Packages 
will be involved in this as they implement their Use Cases. 
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1. Introduction 

1.1 The Human Brain Project (HBP) 

The Human Brain Project (HBP) is a major international scientific research project, 
involving over 100 academic and corporate entities in more than 20 countries. Funded by 
the European Commission (EC), the ten-year, EUR 1 billion Project was launched in 2013 
with the goal "to build a completely new ICT infrastructure for neuroscience, and for 
brain-related research in medicine and computing, catalysing a global collaborative effort 
to understand the human brain and its diseases and ultimately to emulate its 
computational capabilities." 

The fields of neuroscience, medicine and information technology each have important 
roles to play in addressing this challenge, but the knowledge and data that each is 
generating have been very fragmented. The HBP is driving integration of these different 
contributions. 

During the Ramp-Up Phase, the HBP will collect strategic data, develop theoretical 
frameworks, and perform technical work necessary for the development of six Information 
and Communication Technology (ICT) Platforms during the Operational Phase. The ICT 
Platforms, offering services to neuroscientists, clinical researchers and technology 
developers, comprise Neuroinformatics (a data repository, including brain atlases and 
analysing tools); Brain Simulation (building ICT models and multi-scale simulations of 
brains and brain components); Medical Informatics (bringing together information on brain 
diseases); Neuromorphic Computing (ICT that mimics the functioning of the brain); and 
Neurorobotics (allowing testing of brain models and simulations in virtual environments). A 
High Performance Computing Platform will support these Platforms. 

1.2 HBP Subproject 11: Applications 

The overall goal of Subproject 11 is to prepare, evaluate and test the early applications of 
the six HBP Platforms. The Subproject is structured into three Work Packages, covering 
applications of the HBP Platforms in Future Neuroscience, Future Medicine and Future 
Computing. 

The six HBP Platforms aim to provide unique capabilities for carrying out research that 
would not be otherwise possible in the fields of neuroscience, medicine and computing. 
The Platforms are scheduled to become operational at the end of the Project’s Ramp-Up 
Phase (Month 30), so the main Applications work can only take place afterwards, during 
the Operational Phase, which will be governed by the HBP Framework Partnership 
Agreement (FPA). This will run from Month 31 to Month 120. When the HBP was conceived, 
it was clear that a set of early applications ideas should be developed in parallel with the 
building of the Platforms and that these early applications ideas should make use of 
preliminary versions of the Platforms’ software and hardware. 
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1.3 Purpose of this Document 

This report will describe progress in designing the experiments and creating the set-ups 
required for the HBP’s planned Platform applications in neuroscience, medicine and 
computing.  

1.4 Structure of this Document 

The remainder of this chapter provides an SP-level overview, highlighting the SP’s main 
accomplishments and problems encountered in the period M1-M12. Subsequent chapters 
look at accomplishments and in issues within individual components of the SP. 

The Annexes present in tabular form what the Subproject planned to achieve in this period 
and what it actually achieved, including the Subproject’s Scientific Key Performance 
Indicators (SKPIs). 

• Future Neuroscience (WP11.1) 

• Future Medicine (WP11.2) 

• Future Computing (WP11.3) 

• Scientific Coordination (WP11.4) 

1.5 Overview of Subproject 11 Achievements 

The Subproject delivered its comprehensive research plan (its first Deliverable) rather 
later than the planned deadline of Month 6. This delay was caused by the late, but 
necessary, integration of the Competitive Call groups that joined SP11 only in Month 7. Of 
the seven Milestones scheduled for achievement in the period Month 1 to Month 12, only 2 
were not achieved within that timeframe (see next chapter).  

Collaboration with other Subprojects is a key achievement for SP9, as it has to design and 
implement application cases for most of the HBP Platforms (each of which is built by a 
separate Subproject). SP11 performs particularly well in this activity. In Future 
Neuroscience, tight integration with SP10’s Neurorobotics Platform and the cognitive 
neuroscience research in SP3 led to the design of an application experiment testing the 
Weber-Fechner Law and a set of integrated brain-body control benchmarks. In Future 
Medicine, achievement of the “Standardised description format for biological signatures of 
brain diseases” Milestone is a very big step towards the use of the Medical Informatics 
Platform (SP8). Again, cross-Platform cooperation has been the key to progress. In Future 
Computing, the integration in the latter part of Year 1 of the five new Applications Tasks 
which worth with the Neuromorphic Computing Platform (SP9) was a very important 
achievement. The new Tasks participate in all SP9 meetings and helped create the SP9 
Specification Deliverable (D9.7.1). As such, they are now well informed about the 
performance and tools offered by the Neuromorphic Computing Platform. 

Monitoring and quality control worked very well within the three research areas, but it has 
been a challenge to coordinate this across Work Packages 11.1, 11.2 and 11.3. Their work 
areas are still rather unrelated but it is expected that this will improve as the Platforms 
get closer to commissioning. 
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1.6 Overview of Subproject 11 Problems 

Subproject 11 has not yet been able to reach Milestones 208 and 315. In the case of 
Milestone 208, this was due to late receipt of funding, which in turn delayed recruitment 
of staff. We now expect to reach this Milestone in May 2015. For Milestone 315, the 
number of network architectures that had to be evaluated was larger than originally 
planned. It is expected that a final decision on the network architecture to be 
implemented on the neuromorphic hardware will be made during the first few weeks of 
Project Year 2. 

Neither of these delays risks jeopardising Subproject 11’s goals or overall plan for the 
Ramp-Up Phase. 

1.7 The Next Six Months for Subproject 11 

During the first half of Project Year 2, the teams working on the Applications Use Cases 
will all complete their planning and prepare to implement them on the appropriate HBP 
Platforms: the Neurorobotics Platform for Future Neuroscience, the Medical Informatics 
Platform for Future Medicine and the Neuromorphic Computing Platform for Future 
Computing. These “host Platforms” will play key roles in the implementation of SP11 
Applications in the first six months of Project Year 2. 
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2. Future Neuroscience (WP11.1) 

2.1 Future Neuroscience: Overall Goals 

The objective of this Work Package (WP) is to provide an initial demonstration of the value 
of the Neurorobotics Platform (NRP) for experimental cognitive neuroscience and to 
provide operational feedback on the design of the Platform. In the Ramp-Up Phase, 
WP11.1 will use the initial capabilities provided by the NRP to perform proof-of-concept 
simulation-based research into the multi-level brain mechanisms responsible for visual 
perception. In addition, this work may contribute to that of SP3’s Task 3.1.2 
(Understanding the circuits linking perceptions to actions, led by Martin Giese at Tübingen 
University in Germany). More broadly, this WP aims to demonstrate that the cognitive 
neuroscience community can use HBP technologies to enhance their scientific progress. 

2.1.1 Psychophysics of Perception: the Weber-Fechner Law (T11.1.1) 

This Task utilises the models, frameworks, and ideas of the HBP to connect theories of 
brain computing to psychophysical data that measure human performance. In close 
cooperation with T11.1.2, it is also exploring a methodology for benchmarking 
computational neuroscience models, by explicitly comparing specific psychophysical data 
against the visual pathway. In a sense, the goal is to provide input to the HBP model 
systems and measure outputs from those model systems for comparison with known 
properties of biological counterparts. The work is guided by two overarching ideas: 

1) The neurophysiological properties of the cortical column identified by the HBP provide 
some guidance about which kinds of computations can be performed in cortical circuits 
for visual perception. 

2) Given the uncertainties about the properties of the cortical circuits (e.g. the model is 
derived from data gathered from the mouse barrel cortex), it is appropriate to 
investigate behavioural data closely. 

2.1.2 Integrated Brain-Body Control Benchmarks (T11.1.2) 

This Task will study brain capabilities such as perception, attention, coordinated 
movements, core knowledge, spatial cognition, motivation, emotions and consciousness, It 
will also look at how these capabilities can be replicated in behavioural experiments using 
a robot. Quantitative data on behaviour and cognitive performance will serve as 
benchmarks for the validation of brain simulations and simplified brain models. Specific 
behaviours will be studied in closed loop systems linking brain simulations to simplified 
robot and / or virtual environments. T11.1.2 will provide benchmarks for the long-term 
goal of replicating classical cognitive neuroscience experiments using neurorobots and will 
perform comparisons between artificial and living animals. The results of these 
experiments will help validate brain/cognition models, and explore the structure and 
function of cognitive abilities for use in robots and other devices. More specifically, this 
Task will: 

• Collaborate with the Cognitive Neuroscience Subproject in designing and performing 
cognitive neuroscience experiments. 

• Initially use realistic, physics-based simulations and virtual robots to perform the 
experiments. After the Ramp-Up Phase, it will transition to physical robots. 

• Support the building of experimental setups of increasing complexity, starting with 
simple experiments that explore and validate cognitive models of perception. 
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2.2 Future Neuroscience: Main Achievements (Revised Information) 

The objective of Work Package 11.1 is to provide an initial demonstration of the value of 
the Neurorobotics Platform for experimental cognitive neuroscience, and to provide 
feedback on the design of the Platform. In the Ramp-Up Phase, WP11.1 has so far used the 
initial capabilities provided by the Neurorobotics Platform to perform proof-of-concept 
simulations. Only in the second phase of the HBP will the scope of these investigations be 
broadened, to match experimental investigations by the Subproject into brain function and 
cognitive architectures. Progress in W11.1 has been monitored by WP11.4. 

The TUM team (Technische Universität München – P53) worked in close collaboration with 
SP10 to make sure that the development of the first close-loop experiment was well 
aligned with the development of the Neurorobotics Platform. At the beginning, a student 
jointly supervised by TUM and UGR (Universidad de Granada – P58) worked on retinal 
models for Task 11.1.2. TUM also worked on a physical, musculoskeletal platform based on 
variable stiffness joints with sensors, links, and motors. In collaboration with UGR, a real-
time model of the cerebellum was selected as a motor controller. It was then ported to 
PyNN, so that it could be used as front-end for neuronal simulators including the SpiNNaker 
board, which allows for future connections to several other Tasks within this SP, and also 
connects to SP9. 

All groups worked on the development of Milestone MS201, which developed an initial 
experimental design for testing the models for the Weber-Fechner law of visual 
perception. The planned design places the models within a simulated environment, with 
closed-loop interactions between the environment and the neural models. A document 
describing the experimental design has been uploaded to EMDesk. We encountered some 
difficulty producing benchmarks for the as-yet-unfinished Neurorobotics Platform, but we 
anticipate catching up when the Platform is released. In the meantime, Task 11.1.2 
members worked on motor models that will promote the closed-loop experiment being 
integrated into the Neurorobotics Platform. 

The Neurorobotics tool chain was successfully tested via the development of a 
“Braitenberg vehicle” experiment. This test demonstrated the interplay of different virtual 
robots (a Husky robot and a Lauron robot) with a virtual environment that includes objects 
such as bookshelves and pictures on the wall. A neural network model was calibrated to 
realise the brain-body transfer function. This work was done in close collaboration with 
SP10, especially WP10.5. 

The next major task is to connect the retinal and cortical models into a single system, and 
then to integrate that combined model into the simulation environment being created by 
SP10. The resulting system will then be ported to various computing platforms being 
developed by the HBP (e.g., supercomputers, SpiNNaker). 

2.3 Future Neuroscience: Main Problems 

Areas where WP is behind 

Although development of the retinal and cortical model has proceeded well, we have 
faced technical challenges connecting the two models.  

Why behind 

It has proven difficult to install the necessary libraries in a variety of systems. We have 
tried three different systems, but encountered problems each time (not always with the 
same library). 

What is being done 
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The most recent unsuccessful efforts suggest that computer memory may be an issue (but 
this is not yet established). Additional memory has been ordered. 

Likely impact 

Because of this technical problem, we are a bit behind on those KPIs that require the 
integrated models. We believe the problem can be solved, and the impact is likely to be 
only be a few months delay in those KPIs. 

2.4 Future Neuroscience: The Next Six Months 

Milestone achievement 

We anticipate that we will achieve MS202 “Robot, environment and experiment 
implemented” by completing a first implementation of all components (virtual robot, 
environment and experiment). 

Other major accomplishments 

Refinements of retinal and cortical models (SKPIs 11.1.1.4-11.1.1.7, 11.1.1.10 and 
11.1.1.11). Exploration of models to account for psychophysical data (SKPIs 11.1.13-
11.1.1.20). Exploration of models and cortical column statistics (SKPI 11.1.1.12). 
Integration of the retinal model with the simulation environment being developed in SP10 
(SKPI 11.1.2.5). Development of a suitable set of benchmarks as contribution to MS202 
(SKPI 11.1.2.3). 

Work that can start now 

All of the above. 

Changes 

None. 

Major problems 

Meeting Milestone MS202 requires integration with the Neurorobotics Platform. Our 
estimates of accomplishments over the next six months assume that the Platform will 
become operational according to schedule. Should that not be the case, we will proceed 
with simpler simulations that do not include a closed-loop environment. 
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3. Future Medicine (WP11.2) 

3.1 Future Medicine: Overall Goals 

SP8’s Medical Informatics Platform will federate imaging, genetic and other clinical data 
currently stored in hospital/research archives and databases, but unavailable to the wider 
medical research community. SP8 will also provide tools for epidemiological exploration, 
numerical and statistical analysis, data visualisation and data mining. WP11.2 will use 
these resources to identify unique biological signatures of brain diseases. 

With advanced computing power and data mining, nearly exhaustive searches of a data 
space can be performed to identify sets of rules that describe homogeneous populations, 
to explain their biological data and to predict the pattern of symptoms. Biological 
Signatures of Diseases are the results of a continuous dynamic data mining process of 
clinical data in local data sources. These will be used for diagnosis, more accurate 
prognosis and new approaches to drug discovery for the development of new medicines. 
The biological signature of brain diseases will form the basis for a new multi-dimensional 
brain disease space, facilitating scientific investigation and permitting personalised 
medicine. The advantage of disease signatures is that they are based on mechanistic, 
deterministic and predictive rules, as opposed to purely descriptive (phenomenological or 
clinical) features. 

3.1.1 Biological Signatures of Diseases (T11.2.1) 

This Task will rely on data accessible through the Medical Informatics Platform, including 
data on the longitudinal study of the large cohort of ‘control’ Alzheimer’s patients. Even 
with common Alzheimer's disease (AD), the clinical syndromic diagnoses are wrong in 20% 
cases. The current study is designed to show that, with modern mathematics, powerful 
information technology and a large data set, it is possible to identify homogeneous groups 
of patients, characterised by a set of parameterised latent causes, which constitute what 
we choose to call "disease signatures". There is a great amount of uncertainty regarding 
the accuracy of diagnostic classification in the early stages of AD, because of the 
underlying heterogeneity in etiologies leading to similar phenotype. To explain the 
observed heterogeneity we use rule based clustering algorithm and identify homogeneous 
subgroups of patients. The hypothesis is that such subgroups are due to the same 
underlying causes. 

3.2 Future Medicine: Main Achievements 

WP Milestones achieved 

The Milestone MS204 “Standardised description format for biological signatures of brain 
disease” has been achieved. The on-going study of Alzheimer's disease phenotype using 
machine learning methods and brain pathology has identified several subgroups or subtypes 
of AD and therefore defined the first standard description of the biological signatures of 
brain diseases. 

Other WP progress 

The Function (11.2.1.1) providing a “Description format for the biological signatures of the 
disease” has been achieved. The following KPIs have been achieved: 1) Identify multimodal 
clinical data, 2) Data pre-processing, 3) Data aligned, and 4) Feature selection. Our work 
was based on the observation that previous neuroimaging-based classification can predict 
Alzheimer’s disease pathological diagnosis. We generated a classifier using Support Vector 
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Machine (SVM) and applied it to predict pathological diagnosis for the living subjects from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort that have been clinically 
diagnosed. Among the clinical healthy control (HC) group, we identified a group of 
subjects at risk, because they are showing disease-specific atrophy. We confirmed that 
their progress from this state to abnormal cognition condition is significantly faster in the 
follow up study than the remaining control subjects. Previously, we have characterised the 
subgroups in term of brain anatomy. We extended this approach to cognitive measures and 
genetic features. The results of this study were presented at the Neurological International 
Conference (Istanbul-Turkey, May 2014). A manuscript for a peer-reviewed article is in 
preparation. 

The work is progressing on the next Function (11.2.1.2) “Informatics based model for 
generating biological signature of a disease”. In this task, we aim to test and benchmark 
other type of algorithms for building the model of disease. An important aspect is to design 
a method that can select the best features. For this Function a neural networks algorithm 
based on stacked auto-encoder were used to classify grey matter images of AD and HC 
subjects. Neural networks with multiple hidden layers can be used to classify input 
vectors. In this work, we proposed two different ways of feature selection for training 
stacked auto-encoders for the classification of AD versus HC subjects. As opposed to 
previous studies on this topic – most of them aiming to optimise the classification accuracy 
– no initial analysis of the raw scans was performed to preselect significant regions of the 
brain. On the contrary, features were selected in such a way that full scans do not have to 
be compared, which open perspectives when privacy issues might occur. Three hidden 
layers containing 800 + 500 + 50 neurons were used. This configuration was chosen out of 
27 possible combinations as it gave the best classification result for a random subset of 64 
subjects. The number of epochs was set to 200 and the batch size to 100. We used a 15-
fold setup in order to test all subjects, resulting in a training set of 600 subjects or 60,000 
images. Training the network takes around 6 hours on a normal computer.  

The results show that low level features, extracted from the scans without any preliminary 
knowledge, combined with a fairly easy deep learning scheme has promising classification 
potential. Using volumes of grey matter ROI defined by a brain atlas, HC subjects are 
correctly classified in 75% of the cases and only 7% are consequently misclassified. The 
performance accuracy is lower for AD classification (57% correct vs. 19% misclassified), but 
the misclassified subjects actually show structural properties of the HC subjects (almost no 
atrophy in temporal and hippocampal areas). Additionally, the Mini Mental State 
Examination (MMSE) scores of misclassified AD subjects are significantly higher than the 
true AD subjects, which means that this could be a subgroup needing a different label 
referring to a mild or early stage of the disease. Apart from having the capability to 
classify single subjects (which is not possible using state-of-the art statistical methods such 
as Voxel-Based-Morphometry), additional conclusions such as the definition of subgroups or 
finding brain regions affected by a disease. 

Collaboration 

WP11.2 works closely with SP8 to increase the volume of data for the algorithms developed 
and tested. Data are obtained from large cohort research studies. 

Results from combination of data and ICT 

T11.2.1 collaborates with SP8 in the design of the Medical Informatics Platform. The data 
mining algorithms for the identification of biological signatures of diseases have been 
specified in the Deliverable D8.6.1 of WP8.6 (technical specifications and implementation 
within the MIP infrastructure). The document describes the layers that will support the 
applications provided by the Platform to researchers. From basic statistical description to 
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advance analytic and machine learning tools the Platform will help research to query data 
and explore the biological signature of brain diseases. 
Internal monitoring and quality control activities 
Work is discussed in a regular joint meeting with SP8. 
Outstanding contributions to WP work 

An important achievement is that we show that computer aided diagnosis of AD has proven 
to be a promising method of early detection, an important condition for a more effective 
treatment of the disease. 

3.3 Future Medicine: Main Problems 

None. 

3.4 Future Medicine: The Next Six Months 

The next Milestone MS205 “First draft informatics-based model generating a biological 
signature of a disease” should be achieved as expected. 

In the next six months, work will be carried out to achieve a more accurate version of 
“Informatics based model for generating biological signature of a disease”. The work will 
consist of the implementation and testing of different algorithms, configuration of the 
model and selection of algorithms. 

T11.2.1 is now testing algorithms for data mining. Thanks to the automation of the pre-
processing steps, new data can be easily added to the system. However, more computing 
power will be required to extract the relevant features for the data-mining algorithm, in 
particular those based on “deep learning” and neural networks. 

Any changes you will need to make to the WP’s original Ramp-Up Phase plan 

None. 

Major problems that the WP might encounter & your plans to address them 

None. 
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4. Future Computing (WP11.3) 

4.1 Future Computing: Overall Goals  

Applications in Future Computing will prepare for the implementation of neural circuit 
models on the hardware systems provided by the Neuromorphic Computing Platform. The 
initial network architectures are compatible with the constraints given by the HBP 
hardware architectures, as described in the SP9 Platform Specification Document, and will 
all be formulated in the network description language PyNN. The HBP will offer a unique 
Neuromorphic Computing Platform to explore the computational capabilities of spiking 
neural networks. Two complementary hardware systems are being constructed, a “many-
core” model in Manchester (NM-MC-1) and a “physical model” in Heidelberg (NM-PM-1).  

The NM-MC-1 system will consist of 0.5 million ARM cores, with 18 cores per chip. The 
cores provide integer operation capability and each chip has six bi-directional links with a 
bandwidth for 6 million spikes per second per link. Networks simulated on this system will 
operate in real time. The NM-PM-1 system will be a physical model based on analogue 
neurons and synapses, with binary, asynchronous and continuous time spike 
communication. NM-PM-1 will provide 20 individual wafer systems, replicating a total of 4 
million neurons and 1 billion synapses. Networks simulated on this system will operate 
10,000 times faster than real time. Both systems are expected to commence hardware 
operation towards the end of the HBP’s Ramp-Up Phase. 

4.1.1 Neuromorphic Data Mining Systems (T11.3.1) 

Very large, open-ended data streams are generated in industrial applications by real-time 
transactions systems in various industries like the retail sector, by utility companies, in 
production facilities, by sensors in surveillance systems, to name but a few. In contrast to 
traditional data sets, stream data flows in and out of a computer system and it may be 
impossible to store the entire stream due to its large volume. In cases where the data are 
actually stored, multiple scans become very expensive and single-scan analysis methods 
need to be applied 1. Within this continuous stream of data, the identification of spatial-
temporal patterns is probably the most important task and despite the fact that this has 
been an active research field for many years no general-purpose solution to the problem is 
currently available. Therefore, the goal of this Task is to contribute to this active research 
field by the adaption/modification of existing algorithms or by the development of a novel 
algorithm.  

Requirements for the algorithm include the ability to detect hidden patterns and causal 
relationships. A software implementation should be developed as a proof-of-concept with 
non-spiking neurons. In a second step, the algorithm will be extended to a spiking network 
system. Finally, the implementation will be migrated to the Neuromorphic Computing 
Platform provided by the Human Brain Project (HBP). The final proof point will be the 
ability of the algorithm to handle real-world business relevant data sets and to 
demonstrate the validity of the Neuromorphic Computing Platform to implement a data 
mining system.  

The overarching goal of the work is to demonstrate the validity of the Neuromorphic 
Computing Platform as a tool for producing and prototyping cognitive devices and systems 
outside the realm of biology, in particular to validate the possibility to develop cognitive 
business information systems.  
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4.1.2 Port CABot3 to Neuromorphic Chips and Extend (T11.3.2) 

This Task will contribute to the HBP by providing an extensible agent that can be used in a 
3D environment, and by providing advances for the HBP’s neuromorphic systems to learn 
tasks normally managed by Cornu Ammonis (CA) areas in the Hippocampus. The agent will 
be useful for researchers to use during and after the Ramp-Up Phase. It will be a working 
embodied agent in a simulated environment implemented entirely in simulated neurons, 
providing a modifiable early link in the Project between robotic systems, cognitive 
architectures, brain data and neuromorphic hardware. It will provide existing modules for 
neural language, vision, planning and action, which have a reasonable degree of 
modularity. Improved models of CA learning will provide insights into the theoretical 
problem of concept formation in neural systems. This work will be linked to the 
environment and psychology, as well as known and posited neural behaviour, leading to a 
significant impact in both the short and longer term. The objectives and approach for 
T11.3.2 are summarised below: 

Neuromorphic Computing Systems Objectives: 

• Implement novel computing paradigms using an embodied agent in spiking neurons. 
• Develop generic circuit concepts of spiking neurons through improved cell assembly 

models. 

Operational Objectives: 

• Advance the Neuromorphic Platform by implementing simplified versions of brain 
models. 

• Advance theoretical foundations by furthering generic CA models. 
• Advance the Brain Simulation Platform by building point models for simulating brain 

areas. 
• Advance cognitive architectures by building neuro-cognitive models to extract 

principles. 

4.1.3 Exploiting of Feedback in Ultra-Fast Spiking Visual Architectures 
(T11.3.3) 

This Task will port architectures for spike-based visual object recognition to PyNN and 
preliminary simulations on the HBP Platforms will be started. The feed forward 
architectures will be similar to those simulations recently reported by IMSE 2  where 
recognition was performed with delays in the range of 1-2ms. Exhaustive optimisations will 
be performed, both on system parameters (such as synaptic values, neurons thresholds, 
delays, etc.) and structural properties (such as number of layers, number of feature 
extractors per layer, number of neurons per feature extractor, etc.). Gradual Attentional 
Feedback will be added to the architectures to carefully assess performance variations in 
object recognition while degrading the visual stimuli. Additional hardware interfacing 
between Address-Event Representation (AER) sensors and processing modules with the HBP 
systems will be conducted. Finally, mismatch impact on performance will be analysed. 

4.1.4 Spiking Associative Networks for Neuromorphic Computing Systems 
(T11.3.4) 

The overall aim of this Task is to explore the computational capabilities of spiking neural 
networks for associative memory (SAM: spiking associative memory) with the help of the 
two complementary HBP hardware systems in Heidelberg and Manchester. Neural 
associative memories can be seen as models for local networks in the cerebral cortex 3 and 
are closely related to assembly theory 4. Furthermore, they offer efficient methods for 
fault tolerant information retrieval in technical cognitive systems with possibly better 
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performance than classical algorithms of computer science-like content addressable 
memories, search-trees, or hash-tables5. We start with the classical binary associative net 
with binary neurons and synapses proposed by Steinbuch6, and theoretically analysed by 
Willshaw et al. 7 and Palm8 which is in the following referred to as the BiNAM (binary 
neural associative memory).  

The Task will have two parts (modelling SAMs with PyNN and HBP hardware; SAM design 
space exploration). First, we will focus on the implementation of spiking associative 
memories (SAMs) in the simulator-independent network description language PyNN and 
their mapping onto the HBP hardware. The first SAM version will be based on the leaky 
integrated-and-fire neuron as implemented in the Heidelberg hardware9 and the spiking 
associative memory based on BiNAM as implemented by Knoblauch et al10 11. Step-by-step, 
we will extend this model, e.g. with non-binary synapses, inhibitory neurons and more 
complex feedback structures, and will study the effects on SAM behaviour quantified by 
the performance measures (storage capacity, retrieval time, energy consumption, and 
robustness). For functional verification, we will use a software simulator (e.g. Neuron, 
Nest, PCSIM). In order to be compatible with the HBP hardware suppliers, we will 
coordinate the selection of the simulator with Heidelberg and Manchester. The next step 
will be the mapping of the SAM to the virtual hardware simulator of the Heidelberg group, 
which is a detailed simulation of the final wafer-scale hardware system implemented in 
C++/SystemC 12. The virtual hardware offers an early modeller’s perspective onto the 
capabilities of the future wafer-scale system. The last step will be the mapping to the 
hardware systems (Heidelberg, Manchester) as soon as they are available for this Task. For 
a smooth transition from simulation to real hardware we intend to use the HICANN 
prototype. 

4.1.5 Asynchronous Computational Retina (T11.3.5) 

The Task aims to develop a pure event-driven visual computation approach that will use 
precise timing mechanisms to design new computation techniques in visual processing. The 
Task will produce a full event-driven visual processing system linking a neuromorphic 
retina directly to the SpiNNaker by an Asynchronous Event Representation (AER) bus. The 
architecture will allow for the first time the development and implementation in real-time 
of new visual event-driven computation techniques. Event-driven early vision models and 
3D stereovision that will use precise timing mechanism, will be implemented into 
SpiNNaker board and fed directly by the outputs of a neuromorphic retina, ATIS 
(Asynchronous Time-based Image Sensor), developed by the UPMC’s research team. The 
consistency and the robustness of the implemented models and algorithms will be 
constantly analysed through extensive evaluations carried out all throughout the Task. 

In this Task, we propose to feed the event-driven retina sensor’s outputs directly into 
SpiNNaker, in order to make use of the temporal dynamics of these sensors. This will allow 
us to build a neuromorphic sensory architecture able to process and interpret visual 
information at the moment they are acquired thus keeping the relative time between 
events. To reach this goal, we are using the ATIS silicon retina13.  

The proposed approach will be organised as follows: 

Interfacing the ATIS with SpiNNaker: This primary task is mandatory to allow SpiNNaker to 
process the retina’s inputs as directly as possible from the silicon retina. Both devices are 
already using the same event-driven data format (AER). However, their designs do not 
include natively their connexion. The interfacing will also be extended to allow the 
integration of two ATIS in order to get the basis of an event-driven stereovision system.  

The event-driven computation paradigm for artificial and asynchronous retina model: This 
Task’s objective is to implement the retina model developed in14, in which the behaviour 
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of ganglion cells is reproduced on the SpiNNaker board. The higher temporal and spatial 
accuracy of the ATIS allows outlining the impact of precise timing: the event-driven optical 
flow developed in [12] and the event-driven 3D reconstruction algorithm that triangulate 
points from the stereovision system15 16. The implementation of these algorithms onto 
SpiNNaker serves the purpose of the asynchronous processing of the flows of events at the 
rate of their arrival using an event-driven methodology. 

4.1.6 Implementing a Spiking Classifier Network on HiCANN (T11.3.6) 

The overarching goal for this Task is to implement spiking neuromorphic networks for 
multivariate data classification, which exploit the properties of large-scale neuromorphic 
systems and solve real-world computing problems. Our networks harness the massively 
parallel architecture of brain circuits to efficiently process high-dimensional data. Our 
network design is inspired by the olfactory system, mimicking the general blueprint of 
parallel feature encoding, processing and classification in feed-forward networks with 
lateral inhibition. Achieving our overall goal entails addressing the following objectives: 

• To develop a scalable implementation targeting the large-scale system provided by the 
Heidelberg group. 

• To implement this solution on the Heidelberg system and test it on large multivariate 
classification problems. 

4.2 Future Computing: Main Achievements (Additional and Revised 
Information) 

4.2.1 Neuromorphic Data Mining Systems (T11.3.1) (Additional Information) 

The evaluation of potential application scenarios and the corresponding algorithms 
(11.3.1.1) proceeded as described in the Research Plan D11.4.1. After an expanded 
analysis of Use Cases of different areas, the current plan is to focus on the three scenarios 
coming from complementary application domains. The first case is related to optimisation 
of data base management systems, the second deals with forecasting of business data and 
the third case will most likely come from the IoT (Internet-of-Things) domain. During the 
evaluation of suitable network architectures many different algorithms have been 
reviewed. The analysis was performed with respect to three main criteria: (i) possibility of 
an implementation on the neuromorphic hardware (ii) complexity of the algorithm to 
ensure a staged implementation and testing approach, start simple and increase the 
complexity stepwise (iii) suitability for a business relevant use case. A short list of network 
structures and algorithms has been compiled. The most promising candidate seems to be a 
model of the Cerebella published decades ago and the corresponding algorithm. It is 
capable to approximate any non-linear function, exhibits fast learning, reasonable 
generalisation capabilities and robust noise tolerance. The final decision on which network 
structure to implement will be made in the next couple of months. 

Application domains considered as potential use cases range from demand forecasting in 
retail stores, fraud detection in insurance claims, supply chain optimisation problems and 
context-aware user guidance, to database management systems. In all these areas, SAP 
has successful products on the market, and deep technical and business expertise.  

While SAP has extensive machine learning knowledge, experience in the field of spiking 
neural networks currently resides mainly in academia and research institutes. IBM has 
developed its own Neuromorphic chip, which is non-spiking. Based on our background, we 
started looking at ‘classical’ neural network structures, keeping in mind the applicability 
to our use cases and the possibility to create spiking versions running on the hardware. 
Initially, we focused on various versions of associative memories. In particular, recent 
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development related to the HTM (Hierarchical Temporal Memory) framework developed by 
Jeff HAWKINS and Dileep GEORGE was reviewed. Due to the complexity of the models 
(HTM requires several hierarchies and is still non-spiking), and considering the time and 
resource constraints, the decision was made to concentrate on simpler models of 
associative memories. Recently, IBM and Numenta set up a joint project with 100 people 
to test the HTM algorithm, and to look at its use in a potential hardware implementation 
(http://www.digitaltrends.com/computing/ibm-creates-a-research-group-to-test-
numenta-a-brain-like-ai-software/ ).  

The Cerebellum model and the corresponding CMAC algorithm published by Albus in 1975 
represent a less complex version of an associative memory function. This algorithm 
combines several attractive features and is still simple enough to be implemented on the 
available neuromorphic HW platforms. Hardware implementations of the CMAC algorithm 
exist, but to our knowledge most of them are based on a look-up version of the algorithm, 
implemented in FPGAs, and are not based on the neural structure of the model. We 
believe that a neural implementation of the CMAC algorithm based on spiking neurons is 
feasible, and that the implementation would exhibit interesting features to test our use 
cases. This has been demonstrated in software simulations, and is described below in more 
detail for one of the use cases.  

The broad range of reviewed algorithms led to Milestone MS209 (network architecture 
evaluation) being delayed. A network structure was decided in the meantime, and the 
Milestone was reached. This delay will not have any detrimental effect on the overall 
progress of the Task. 

4.2.2 Port CABot3 to Neuromorphic Chips and Extend (T11.3.2) (Revised 
Information) 

The agent was successfully ported to SpiNNaker in March 2015. The neurocomputational 
model had to be rewritten from scratch. We chose to use a standard neural model that ran 
on SpiNNaker and Nest. Initially, we tried an Izhekivch model, but found problems with the 
neurons spiking when inhibited. We then switched to a Brette and Gerstner model, and 
proceeded. Initial versions of the subsystems were developed to run in Nest, and then 
using the SpiNNaker emulator. Eventually, a 4-chip SpiNNaker board was used for an agent. 
A virtual environment was developed, and interaction between the board and the 
environment was managed; at this stage, Nest was no longer supported for the agent, 
though we hope to reintegrate it in the near future. Once we got a 48-chip SpiNNaker 
board, we successfully completed the port. The agent takes natural language commands to 
set goals. The main input to the agent is the visual scene as viewed from the avatar’s 
camera. The agent is parameterised and can take the visual scene in as an NxN grid; the 
agent works with 30x30 input for the 48-chip board, and is less successful with 25x25 input 
on the 4-chip board. Larger input can cause IO problems. The agent also receives user 
commands in the form of words, and outputs actions. The goals interact with the current 
environment via the planning system. Simple commands such as “Turn right.” or “Move 
forward.” are successful. Compound commands, e.g. “Move left.” (a combination of turn 
left and move forward) are successful. Environmentally sensitive commands (e.g. “Turn 
toward the pyramid.” or “Move to the pyramid.”) are usually successful, though they 
depend on the object being in the visual field. 

The most complex commands involve the cognitive map. The agent makes a simple 
cognitive map of the environment. The environment consists of four rooms connected by 
corridors. Each room contains a unique shape, a red or blue pyramid or stalactite. The 
command “Explore.” causes the agent to move around the environment and form a room-
to-shape map. This is tested by a command such as “Go to the room before the blue 
pyramid.” This causes the agent to move clockwise around the environment, and stop in 
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the appropriate room. This shows that the map has been learned. This full process, explore 
and go, is successful roughly 90% of the time when the agent starts with the first item in 
the visual field. In the above example, successful means that it works every time we try it. 
We are hoping to do a full evaluation this summer and write a corresponding paper.  

Since the completion of the initial port, we have made progress on several internal 
waypoints. We have made some progress with Cell Assemblies (CAs) that persist for 
reasonable lengths of time. We have also made some progress with a cognitive model of 
categorisation. We have developed new synaptic and neural models in Nest. We have 
started with the ESS (HICANN) emulator, but have yet to get it working. The internal 
waypoint of having the model run on HICANN has not been met because of this, and the 
lack of the actual chip.   

4.2.3 Exploiting of Feedback in Ultra-Fast Spiking Visual Architectures 
(T11.3.3) 

In this period, we achieved the Milestone MS310 “Initial sensor interfaces operative”, 
corresponding to Function 11.3.3.4 (within Step B). We successfully implemented an AER 
interface between our AER in-house hardware and the SpiNNaker hardware, capable of 
communicating through commercial serial SATA connectors using commercial Spartan6 
FPGAs. We have tested transmitted event rates of up to 62.5Meps (Mega events per 
second) with 32bit events per LVDS link. This rate is for board-to-board connected with 
SATA. If one of the boards connects to a SpiNNaker interface the measured transmission 
rate drops to 1.1Meps. This is mainly due to the nature of the SpiNNaker asynchronous 
protocol, which is meant for very low power and is composed of a complex sequence of 
cycles, thus reducing the throughput. 

There has also been progress in parallel on providing an initial PyNN description of a 
Convolutional Neural Network for object recognition, and testing it on SpiNNaker. This 
corresponds to Function 11.3.3.1 (Step A1) “Description of multi-layer vision system in 
PyNN”. We faced some difficulties because the supporting software (pacman) has been 
changing and had to readapt items. We decided to send a student over to UMAN (but paid 
by another project) to advance on this aspect. Progress is satisfactory at this moment. 

Collaboration with UMAN have been important for progress, as stated above. 

We have now hired one person, paid by HBP, who started on 1 September 2014. 

4.2.4 Spiking Associative Networks for Neuromorphic Computing Systems 
(T11.3.4) 

The SANNCS project started in April 2014 and was presented at the HBP SP9 meeting at 
Sabanci University, Istanbul (10 April 2014). During this meeting, important coordination 
and cooperation discussions took place in order to integrate the SANNCS smoothly into the 
Neuromorphic Computing Division of HBP. 

In the first six months of the Project, we successfully implemented a generic software 
prototype of a spiking associative memory (SAM) in PyNN based on leaky integrate-and-fire 
(IaF) neurons. The SAM has a single layer structure and the synapses of the IaF neurons are 
binary. This prototype is now used to explore the effects of parameter variations on the 
behaviour of SAMs. For a more detailed analysis of the parameter influences, we started to 
implement the specified programme package for automatic generation of SAM benchmark 
data sets and the software tool for comprehensive reporting of the performance evaluation 
based on the simulation outputs (spike trains). First results of our research were discussed 
with our Partners at the SP9 meeting in Berlin (24 July 2014) and the HBP Summit in 
Heidelberg (28 September – 1 October 2014). 
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We contributed to the definition of the D11.4.1 Deliverable and specified scientific KPIs for 
our Task. Furthermore, UNIBI participated in the HBP Framework Partnership Agreement 
(FPA). We also joined the special interest group on neuromorphic hardware benchmarking 
(SP9), led by Anders Lansner, KTH Stockholm. Together with the groups from KTH 
Stockholm and UHEI Heidelberg, we contribute to the definition of benchmark sets for 
spiking associative memories. 

4.2.5 Asynchronous Computational Retina (T11.3.5) 

The current period includes Milestone MS315, which was postponed from M12 to M19 (see 
sections 4.3.5 and 4.4.5). Work has been done towards the achievement of this Milestone, 
corresponding to the completion of Functions 11.3.5.1, 11.3.5.2, 11.3.5.3 and 11.3.5.4. 
Functions 11.3.5.1 and 11.3.5.2 relating to interfacing the ATIS camera to the SpiNNaker 
system is currently under final testing and should be completed soon. The stimulation 
platform of Function 11.3.5.3 has been assembled and is in the process of software design 
to start testing its performances. Function 11.3.5.4, the database platform, has been 
physically set up and is waiting for Function 11.3.5.3 to move further. 

In addition to the SpiNN-3 SpiNNaker board (embedding 4 chips) available for our work, we 
have just received from the SpiNNaker group in Manchester a SpiNN-5 SpiNNaker board 
(embedding 48 chips), which will increase the processing power available for 
implementation of Functions 11.3.5.5, 11.3.5.6 and 11.3.5.7. The interface developed for 
Function 11.3.5.1 has been tested on this new hardware and is fully functional. 

Xavier Lagorce has also been recruited, working full time on the Task from September 2014 
to August 2015.  

4.2.6 Implementing a Spiking Classifier Network on HiCANN (T11.3.6) 

The first Milestone for this Project is still pending. We recruited Alan Diamond to work full 
time on the Task from October 2014 until January 2016. So far, we have ported the spiking 
classifier network to a GPU Platform and analysed how the network scales to larger neuron 
numbers. We scaled the network to use ten times the number of neurons that the version 
that ran on Spikey used. This scaling allowed us to tackle novel classification problems, in 
particular an e-nose odour identification task. 

4.3 Future Computing: Main Problems (Additional and Revised 
Information) 

4.3.1 Neuromorphic Data Mining Systems (T11.3.1) (Additional Information) 

The biggest challenge in the last 12 months was to identify applications, which benefit 
most from this new computing paradigm. The search for a “killer application” will remain 
an ongoing activity or the foreseeable future. The main problem is to understand the 
capabilities of the neuromorphic hardware and to identify/develop robust algorithms to 
address specific application scenarios. This will continue to be a challenge as the hardware 
evolves and much bigger systems will become available. The complexity of the algorithms 
and the corresponding network structures will increase, making it possible to address 
completely new application domains. 

Our search of the application space is now determined by the following search parameters: 

• Algorithm mappable to both types of neuromorphic hardware 
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• Clear differentiating value of neuromorphic hardware in a deployment scenario 
through either speed and/or power (precision has to be comparable to alternative 
software solutions). 

For many of the originally envisaged applications, the differential value of the 
neuromorphic hardware compared to the complication of embedding the new hardware 
into the scenario has so far proved unconvincing. The remaining two scenarios we have 
chosen follow two extremes of the second differentiating factor — one goes for power 
efficiency in an embedded, distributed scenario with state-of-the-art precision, making it 
a good fit for the ARM hybrid, while the other goes for a demonstration of speed, playing 
toward the strengths of the analogue neuromorphic hardware. 

4.3.2 Port CABot3 to Neuromorphic Chips and Extend (T11.3.2) (Revised 
Information) 

We faced several problems in the initial port of the agent. These included a misstep using 
Izhekevich neurons, inadequate STP learning rules, problems with IO to the board and 
PyNN, Nest and SpiNNaker software changes. Our first problem was selecting a neural 
model. We wanted to use a standard model that ran on both Nest and SpiNNaker, and after 
a brief exploration chose Izhekevich neurons. Unfortunately, we found them difficult to 
work with because they spike rapidly when heavily inhibited, and our basic mechanism 
often uses inhibition. This caused an initial delay. Other delays were caused by the 
middleware changing, and incompatibilities between different engines. Finally, we spent a 
lot of time managing IO to the SpiNNaker board. Additionally, the initial CABot3 model 
(running in Java) uses short-term potentiation to bind in parsing; bindings are erased when 
the neurons do not fire. The Tsodyks-Markram STP synapse does not erase when the 
neurons do not fire.  So, the parsing component does not use binding, but is merely a 
regular grammar parser.  

4.3.3 Exploiting of Feedback in Ultra-Fast Spiking Visual Architectures 
(T11.3.3) 

No Milestones have been missed at this moment, and for now we are not behind the 
expected work. 

4.3.4 Spiking Associative Networks for Neuromorphic Computing Systems 
(T11.3.4) 

The Project is on schedule. The first Milestone is planned for Month 19 (SAM 
implementation on virtual hardware). 

4.3.5 Asynchronous Computational Retina (T11.3.5) 

The Task has known some delays in the period covered by this report, with Milestone 
MS315 being postponed from M12 to M19 because Functions 11.3.5.2, 11.3.5.3 and 11.3.5.4 
are currently behind schedule. 

The hardware differences between the SpiNN-3 and SpiNN-5 SpiNNaker boards are forcing 
us to change our approach to Function 11.3.5.2. When the SpiNN-3 board has two SpiNN-
links available to plug two ATIS cameras, the SpiNN-5 board has only one available (thus 
allowing direct connexion of only one camera) but also provides a new type of input 
connexions. We are working with the SpiNNaker team in Manchester (NM-PC-1) to adapt 
our designs to these new constraints (the SpiNN-5 board has been received in October 
2014). 

Due to delays in receiving the funding from the Project, we were unable to fill several 
internships, which had been planned for the summer period (April to August 2014). This 
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impacted Functions 11.3.5.3 and 11.3.5.4, which had less manpower than planned in this 
critical period. The late availability of these funds also resulted in delays in the availability 
of supplies and hardware platforms for these functions. Most of our suppliers for these 
sorts of items slow down their production in the summer period. As a result, these 
Functions were considerably delayed. Physical setups for Functions 11.3.5.3 and 11.3.5.4 
were received in August 2014 and work on these Functions could only really start in 
September 2014, instead of April 2014. 

4.3.6 Implementing a Spiking Classifier Network on HiCANN (T11.3.6) 

This Task is on schedule according to the original Project plan. We anticipate that there 
may be problems with our upcoming Milestone “Implementation on HiCANN using adaptive 
neurons and a slightly higher neuron count” planned for MS318 (April 2015), due to its 
dependence on the availability of the HiCANN chip. However, contingency plans are 
already in place (see 4.4.6 below). 

4.4 Future Computing: The Next Six Months (Additional and Revised 
Information) 

4.4.1 Neuromorphic Data Mining Systems (T11.3.1) (Additional Information) 

During the next six months, the implementation of the selected algorithm and network 
architecture in the hardware description language PyNN will be pursued (11.3.1.2). The 
goal is to have a running implementation in PyNN and to perform first tests on the 
neuromorphic hardware. In addition, an MSc student will join the team to support 
implementation and testing activities (11.3.1.3). 

Work on demonstrating the superior execution speed and efficiency for the analogue 
neuromorphic hardware is progressing. After selecting a suitable algorithm that is known 
to be executable on the somewhat constrained environment of the analogue neuromorphic 
hardware, we proceeded to create a suitable training environment. The major obstacle 
here was that we needed a supervised training setup for our classifier and could not get a 
suitable training signal from the real target environment. This required us to recreate a 
software simulation of the target (not unlike the virtual worlds approach used for the 
robotics Work Package) that had to be detailed enough to exhibit the same complex 
nonlinear interactions as the real target hardware. 

The early intermediate results show that we can learn reasonable approximations of the 
optimisation problems with the chosen algorithm. However, we cannot yet demonstrate 
sufficient efficiency gains compared to simpler heuristic approaches to warrant the far 
more elaborate hardware approach. 

The next section describes SAP’s efforts 
related to the use case “predicitve 
maintenance using (spiking) neural 
networks”. This work started in the 
reporting period and is an on-going 
activity. 

The problem posed by this use case is 
that of determining the remaining useful 
life (RUL) of a machine based on its 
sensor readings. Training data sets 
(sensor readings) for a limited number of 
breakdown scenarios are available 
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(supervised training), however generalisation to a wider range of previously un-observed 
sensor readings is required. The main motivation for this use case is to explore the 
possibility of moving application logic closer to the source of data creation (machine, 
embedded sensor) using the low power and high-speed capabilities/parallelism of the HW, 
and to significantly reduce the data traffic to the backend. During the breakdown of a 
machine, certain sensory readings show a typical behaviour, and numerous models are 
available to describe the damage propagation. The exponential evolution of the fault 
signal is common to all these degradation models. Assuming an upper threshold that 
describes an operation limit beyond which the machine cannot be used anymore, a health 
index H(t) can be defined. 

Model data has been generated describing the failure mode and the normal mode. The 
CMAC network mentioned above was trained with these data sets for (a) a classification 
problem and (b) approximating the health function.  

Preliminary results are shown below; the network could clearly distinguish between the 
two operation modes and in case of the failure mode, a reasonable approximation of the 
target function could be reproduced. It remains to be shown whether the described 
software simulation can be implemented on the HW, and whether the results show an 
advantage compared to conventional approaches. 

 
The work described summarises SAP’s effort related to T11.3.1 for the first reporting 
period of approximately 12 PM, as planned in the DoW.   

4.4.2 Port CABot3 to Neuromorphic Chips and Extend (T11.3.2) 

We expect to have met all our internal waypoints in the next six months, and expect to 
have a working categorisation model. This will probably require new neural and synaptic 
models running on Nest and SpiNNaker. We expect to have HiCANN running, at least the 
emulator, and have the basic neural model running on it. We also expect to have the agent 
running on HiCANN, but this is less certain as there may be unanticipated differences. We 
expect to have plans cached away by the system, a simple form of learning. We expect to 
have CAs that persist for psychologically reasonable times. 

 

4.4.3 Exploiting of Feedback in Ultra-Fast Spiking Visual Architectures 
(T11.3.3) 

In the next six months, we will start focusing on the four main aspects of our scientific 
contribution: 
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(a) Perform parameter optimisations. This corresponds to Function 11.3.3.2 “Simulations 
with exhaustive optimisation”, where we will adapt the PyNN description results that came 
out of Function 11.3.3.1 to vary critical parameters using some optimisation algorithm. 

(b) Start analysing the effects of introducing feedback. This corresponds to Function 
11.3.3.3 “PyNN of feedback architecture”. The first job will be to adapt the PyNN 
description available from Function 11.3.3.1 to introduce feedback paths. 

(c) Start introducing the effects of mismatch. This corresponds to Function 11.3.3.7 “PyNN 
for mismatch”. Again, we will use the PyNN description available from Function 11.3.3.1 to 
add statistical random parameter variations to analyse mismatch effects. 

(d) Start elaborating hybrid hardware, combining our AER hardware with SpiNNaker. This 
corresponds to Function 11.3.3.5 “Integrating multi-layer vision system into the 
neuromorphic Platforms”. Here we will take advantage of the results from Function 
11.3.3.4 on “initial interfaces characterisations”, so that now AER sensors and AER 
processing hardware available in our group can interconnect to SpiNNaker using these 
initial interfaces. We will continue studying and characterising these interfaces, identify 
possible shortcomings, and try to improve them. 

There are no specific Milestones in this period. 

4.4.4 Spiking Associative Networks for Neuromorphic Computing Systems 
(T11.3.4) 

During the next six months, we plan to implement another SAM in PyNN (Function 
11.3.4.1). In parallel, we will improve our tools for automatic performance SAM evaluation 
(Function 11.3.4.2). In 2015, we plan to start with the automatic generation of benchmark 
data sets (Function 11.3.4.3) and mapping of the first SAM architecture on the virtual 
hardware simulator (Function 11.3.4.4). 

4.4.5 Asynchronous Computational Retina (T11.3.5) (Revised Information) 

Milestone MS315 was not achieved in Month 12, but in Month 19. Even so, progress was 
traceable along functions. Please find detailed information on this Milestone in Appendix 
A. 

4.4.6 Implementing a Spiking Classifier Network on HiCANN (T11.3.6) 

MS318 “Implementation on HiCANN using adaptive neurons and a slightly higher neuron 
count” is scheduled for April 201). Achievement of this Milestone is conditional on the 
availability of the HiCANN chip for PyNN users. As a fall-back, we are planning to port the 
network to the SpiNNaker Platform and Dr. Diamond will attend a SpiNNaker training event 
in January 2015. The SpiNNaker Platform will allow us to implement neuron counts of a 
similar order of magnitude as eventually planned for the wafer-scale system, as per MS319, 
due in M27 (December 2015). 
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5. Scientific Coordination and Support (WP11.4) 

5.1 Scientific Coordination: Internal Meetings 

Scientific coordination across this Subproject is quite a challenge due to the fact that the 
interaction between each SP11 Work Package and its associated Subproject (WP11-1 – 
SP10, WP11.2 – SP8, and WP11.3 – SP9) is significantly stronger than any connection 
between the SP11 Work Packages. 

For this reason, coordination was reduced to informal updates on Deliverable organisation 
and collection of contributions, reporting duties, forwarding of review information, EC 
requests, etc. For this purpose, an internal mailing list was set-up and a few video-
conferences were held. 

Integrating the five new Partners into the Project was one of the main goals in the third 
quarter of the year. The new Partners presented their Task work plans at a physical 
meeting in Sabanci between SP9 and WP11.3, and a videoconference of all SP11 Task 
leaders of SP11. 

This table lists meetings between SP staff. 

Date Description Location Participants Comments 

16.11.2013 

Planning retinal model (SP11) 

Discussed properties of current 
simulations, plans for future 
development, and properties of the 
cortical model simulators. Agreed 
that NEF format for spike trains is 
good for everyone. 

VC 

Greg Francis (EPFL), 
Marc-Oliver Gewaltig 
(EPFL), Eduardo Ros 
(UGR) 

 

05.12.2013 

Analysing retinal model output 
(SP11) 

Discussed the properties of the 
retinal data output provided by the 
UGR group. Considered what aspects 
of the output were most important 
for integration with a cortical 
model. 

EPFL 
Greg Francis (EPFL), 
Marc-Oliver Gewaltig 
(EPFL) 

 

19.12.2013 

Analysing retinal model output 
(SP11) 

Discussed the properties of the new 
retinal data output provided by the 
UGR group. Considered what aspects 
of the output were most important 
for integration with a cortical 
model. Explored literature for more 
advanced retinal models. 

EPFL 
Greg Francis (EPFL), 
Marc-Oliver Gewaltig 
(EPFL) 
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Date Description Location Participants Comments 

22.01.2014 

Weber law update (SP11) 

Discussed plans for parallel paths of 
investigation. Greg will contact 
Eduardo about developing and 
benchmarking two (simple/complex) 
retinal models. The simple model 
will be used to investigate Weber's 
law for line lengths. Marc-Oliver will 
identify a master's student to start 
putting together a cortical model 
with retinotopic structure to receive 
visual inputs. 

EPFL 
Greg Francis (EPFL), 
Marc-Oliver Gewaltig 
(EPFL) 

 

26.05.2014 SP11 committee meeting VC   

5.2 Scientific Coordination and Support: HBP Meetings 

This table lists meetings between this SP and other SPs. 

Date Description Location Participants Comments 

10.04.2014 
HBP SP9/SP11.3 In-Person-
planning Meeting in 
Sabanci (Turkey) 

Sabanci 
(Turkey) 

  

06.05.2014 SP9/SP11.3 JourFixe TelCo VC   

03.06.2014 SP9/SP11.3 JourFixe TelCo VC   

17.07.2014 

HBP cross SP data, models, 
methods, and service 
exchange meeting (SP1, 
SP2, P3, SP4, SP5, SP6, 
SP7, SP8, SP9, SP10, SP11) 

Video conference for all 
SPs regarding their data 
and data-service offers and 
needs. 

VC   

24.07.2014 

SP9/SP11.3 in-person-
meeting. Full day quarterly 
physical meeting of the 
SP9 and SP11.3 
participants in Berlin. 

Berlin   

05.08.2014 SP9/SP11.3 JourFixe TelCo VC   

29.09.2014 
HBP Summit 2014  

Physical Meeting SP9-
WP11.3 

VC   
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5.3 Scientific Coordination and Support: Monitoring & Quality 
Control 

SP11 is coordinated by Karlheinz Meier (UHEI), who represents SP11 on the HBP Board of 
Directors. His team coordinates and monitors the development of the Applications 
Subproject and makes regular progress reports to the central HBP management. 

The integration of the new Partners was a major goal in the second half of the period and 
this process started with a videoconference with all SP11 Partners in 05/2014. The SP 
manager informed the new Partners about the general purpose of this Project, it’s relation 
to HBP and about reporting duties, namely the quarterly reports and the next Deliverables. 
The last quarter of the period was dominated by the preparation of the Deliverables 
D11.4.1 and D11.4.2 and the definition of Functions and KPIs. The Task leaders now 
regularly report the values via a central website to the Science & Technology Office at 
UHEI. 

Communication among SP11 Partners is facilitated by an internal mailing list.  
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Annex A: Milestones 

No. Milestone Name WP 
Month 
Due 

Month 
Achieved 

See Page 

MS200 Preparation of simplified virtual sensor and motor models for virtual robots 11.1 6 6  

MS208  Specification of benchmark tasks 11.3 6 6  

MS201 Experimental design for the first experimental task 11.1 12 12  

MS204 Standardised description format for biological signatures of brain disease 11.2 12 12  

MS209 Evaluation of suitable network architectures for benchmark tasks 11.3 12 15 est.  

MS310 Initial sensor interfaces operative 11.3 12 12  

MS315 Acquisition and interface Platforms and database  11.3 12 19  

MS308 CABot3 on SpiNNaker 11.3 15 15  
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Annex B: Scientific Key Performance Indicators (SKPIs) 
SP11’s KPI information can be viewed at the Science and Technology Office’s (STO’s) KPI website via the link below: 

https://flagship.kip.uni-heidelberg.de/jss/CollectKPI?uI=268&s=UJuR3AgTezrb&um=sPO&oSP=11  
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